fpu_implode.c revision 1.1 1 1.1 briggs /* $NetBSD: fpu_implode.c,v 1.1 1995/11/03 04:47:12 briggs Exp $ */
2 1.1 briggs
3 1.1 briggs /*
4 1.1 briggs * Copyright (c) 1992, 1993
5 1.1 briggs * The Regents of the University of California. All rights reserved.
6 1.1 briggs *
7 1.1 briggs * This software was developed by the Computer Systems Engineering group
8 1.1 briggs * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 1.1 briggs * contributed to Berkeley.
10 1.1 briggs *
11 1.1 briggs * All advertising materials mentioning features or use of this software
12 1.1 briggs * must display the following acknowledgement:
13 1.1 briggs * This product includes software developed by the University of
14 1.1 briggs * California, Lawrence Berkeley Laboratory.
15 1.1 briggs *
16 1.1 briggs * Redistribution and use in source and binary forms, with or without
17 1.1 briggs * modification, are permitted provided that the following conditions
18 1.1 briggs * are met:
19 1.1 briggs * 1. Redistributions of source code must retain the above copyright
20 1.1 briggs * notice, this list of conditions and the following disclaimer.
21 1.1 briggs * 2. Redistributions in binary form must reproduce the above copyright
22 1.1 briggs * notice, this list of conditions and the following disclaimer in the
23 1.1 briggs * documentation and/or other materials provided with the distribution.
24 1.1 briggs * 3. All advertising materials mentioning features or use of this software
25 1.1 briggs * must display the following acknowledgement:
26 1.1 briggs * This product includes software developed by the University of
27 1.1 briggs * California, Berkeley and its contributors.
28 1.1 briggs * 4. Neither the name of the University nor the names of its contributors
29 1.1 briggs * may be used to endorse or promote products derived from this software
30 1.1 briggs * without specific prior written permission.
31 1.1 briggs *
32 1.1 briggs * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33 1.1 briggs * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34 1.1 briggs * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35 1.1 briggs * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36 1.1 briggs * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 1.1 briggs * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 1.1 briggs * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 1.1 briggs * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40 1.1 briggs * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41 1.1 briggs * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42 1.1 briggs * SUCH DAMAGE.
43 1.1 briggs *
44 1.1 briggs * @(#)fpu_implode.c 8.1 (Berkeley) 6/11/93
45 1.1 briggs */
46 1.1 briggs
47 1.1 briggs /*
48 1.1 briggs * FPU subroutines: `implode' internal format numbers into the machine's
49 1.1 briggs * `packed binary' format.
50 1.1 briggs */
51 1.1 briggs
52 1.1 briggs #include <sys/types.h>
53 1.1 briggs
54 1.1 briggs #include "ieee.h"
55 1.1 briggs #include <machine/reg.h>
56 1.1 briggs
57 1.1 briggs #include "fpu_emulate.h"
58 1.1 briggs #include "fpu_arith.h"
59 1.1 briggs
60 1.1 briggs /* Conversion from internal format -- note asymmetry. */
61 1.1 briggs static u_int fpu_ftoi __P((struct fpemu *fe, struct fpn *fp));
62 1.1 briggs static u_int fpu_ftos __P((struct fpemu *fe, struct fpn *fp));
63 1.1 briggs static u_int fpu_ftod __P((struct fpemu *fe, struct fpn *fp, u_int *));
64 1.1 briggs static u_int fpu_ftox __P((struct fpemu *fe, struct fpn *fp, u_int *));
65 1.1 briggs
66 1.1 briggs /*
67 1.1 briggs * Round a number (algorithm from Motorola MC68882 manual, modified for
68 1.1 briggs * our internal format). Set inexact exception if rounding is required.
69 1.1 briggs * Return true iff we rounded up.
70 1.1 briggs *
71 1.1 briggs * After rounding, we discard the guard and round bits by shifting right
72 1.1 briggs * 2 bits (a la fpu_shr(), but we do not bother with fp->fp_sticky).
73 1.1 briggs * This saves effort later.
74 1.1 briggs *
75 1.1 briggs * Note that we may leave the value 2.0 in fp->fp_mant; it is the caller's
76 1.1 briggs * responsibility to fix this if necessary.
77 1.1 briggs */
78 1.1 briggs int
79 1.1 briggs round(register struct fpemu *fe, register struct fpn *fp)
80 1.1 briggs {
81 1.1 briggs register u_int m0, m1, m2, m3;
82 1.1 briggs register int gr, s, ret;
83 1.1 briggs
84 1.1 briggs m0 = fp->fp_mant[0];
85 1.1 briggs m1 = fp->fp_mant[1];
86 1.1 briggs m2 = fp->fp_mant[2];
87 1.1 briggs m3 = fp->fp_mant[3];
88 1.1 briggs gr = m3 & 3;
89 1.1 briggs s = fp->fp_sticky;
90 1.1 briggs
91 1.1 briggs /* mant >>= FP_NG */
92 1.1 briggs m3 = (m3 >> FP_NG) | (m2 << (32 - FP_NG));
93 1.1 briggs m2 = (m2 >> FP_NG) | (m1 << (32 - FP_NG));
94 1.1 briggs m1 = (m1 >> FP_NG) | (m0 << (32 - FP_NG));
95 1.1 briggs m0 >>= FP_NG;
96 1.1 briggs
97 1.1 briggs if ((gr | s) == 0) /* result is exact: no rounding needed */
98 1.1 briggs goto rounddown;
99 1.1 briggs
100 1.1 briggs fe->fe_fpsr |= FPSR_INEX2; /* inexact */
101 1.1 briggs
102 1.1 briggs /* Go to rounddown to round down; break to round up. */
103 1.1 briggs switch (fe->fe_fpcr & FPCR_ROUND) {
104 1.1 briggs
105 1.1 briggs case FPCR_NEAR:
106 1.1 briggs default:
107 1.1 briggs /*
108 1.1 briggs * Round only if guard is set (gr & 2). If guard is set,
109 1.1 briggs * but round & sticky both clear, then we want to round
110 1.1 briggs * but have a tie, so round to even, i.e., add 1 iff odd.
111 1.1 briggs */
112 1.1 briggs if ((gr & 2) == 0)
113 1.1 briggs goto rounddown;
114 1.1 briggs if ((gr & 1) || fp->fp_sticky || (m3 & 1))
115 1.1 briggs break;
116 1.1 briggs goto rounddown;
117 1.1 briggs
118 1.1 briggs case FPCR_ZERO:
119 1.1 briggs /* Round towards zero, i.e., down. */
120 1.1 briggs goto rounddown;
121 1.1 briggs
122 1.1 briggs case FPCR_MINF:
123 1.1 briggs /* Round towards -Inf: up if negative, down if positive. */
124 1.1 briggs if (fp->fp_sign)
125 1.1 briggs break;
126 1.1 briggs goto rounddown;
127 1.1 briggs
128 1.1 briggs case FPCR_PINF:
129 1.1 briggs /* Round towards +Inf: up if positive, down otherwise. */
130 1.1 briggs if (!fp->fp_sign)
131 1.1 briggs break;
132 1.1 briggs goto rounddown;
133 1.1 briggs }
134 1.1 briggs
135 1.1 briggs /* Bump low bit of mantissa, with carry. */
136 1.1 briggs #ifdef sparc /* ``cheating'' (left out FPU_DECL_CARRY; know this is faster) */
137 1.1 briggs FPU_ADDS(m3, m3, 1);
138 1.1 briggs FPU_ADDCS(m2, m2, 0);
139 1.1 briggs FPU_ADDCS(m1, m1, 0);
140 1.1 briggs FPU_ADDC(m0, m0, 0);
141 1.1 briggs #else
142 1.1 briggs if (++m3 == 0 && ++m2 == 0 && ++m1 == 0)
143 1.1 briggs m0++;
144 1.1 briggs #endif
145 1.1 briggs fp->fp_mant[0] = m0;
146 1.1 briggs fp->fp_mant[1] = m1;
147 1.1 briggs fp->fp_mant[2] = m2;
148 1.1 briggs fp->fp_mant[3] = m3;
149 1.1 briggs return (1);
150 1.1 briggs
151 1.1 briggs rounddown:
152 1.1 briggs fp->fp_mant[0] = m0;
153 1.1 briggs fp->fp_mant[1] = m1;
154 1.1 briggs fp->fp_mant[2] = m2;
155 1.1 briggs fp->fp_mant[3] = m3;
156 1.1 briggs return (0);
157 1.1 briggs }
158 1.1 briggs
159 1.1 briggs /*
160 1.1 briggs * For overflow: return true if overflow is to go to +/-Inf, according
161 1.1 briggs * to the sign of the overflowing result. If false, overflow is to go
162 1.1 briggs * to the largest magnitude value instead.
163 1.1 briggs */
164 1.1 briggs static int
165 1.1 briggs toinf(struct fpemu *fe, int sign)
166 1.1 briggs {
167 1.1 briggs int inf;
168 1.1 briggs
169 1.1 briggs /* look at rounding direction */
170 1.1 briggs switch (fe->fe_fpcr & FPCR_ROUND) {
171 1.1 briggs
172 1.1 briggs default:
173 1.1 briggs case FPCR_NEAR: /* the nearest value is always Inf */
174 1.1 briggs inf = 1;
175 1.1 briggs break;
176 1.1 briggs
177 1.1 briggs case FPCR_ZERO: /* toward 0 => never towards Inf */
178 1.1 briggs inf = 0;
179 1.1 briggs break;
180 1.1 briggs
181 1.1 briggs case FPCR_PINF: /* toward +Inf iff positive */
182 1.1 briggs inf = (sign == 0);
183 1.1 briggs break;
184 1.1 briggs
185 1.1 briggs case FPCR_MINF: /* toward -Inf iff negative */
186 1.1 briggs inf = sign;
187 1.1 briggs break;
188 1.1 briggs }
189 1.1 briggs return (inf);
190 1.1 briggs }
191 1.1 briggs
192 1.1 briggs /*
193 1.1 briggs * fpn -> int (int value returned as return value).
194 1.1 briggs *
195 1.1 briggs * N.B.: this conversion always rounds towards zero (this is a peculiarity
196 1.1 briggs * of the SPARC instruction set).
197 1.1 briggs */
198 1.1 briggs static u_int
199 1.1 briggs fpu_ftoi(fe, fp)
200 1.1 briggs struct fpemu *fe;
201 1.1 briggs register struct fpn *fp;
202 1.1 briggs {
203 1.1 briggs register u_int i;
204 1.1 briggs register int sign, exp;
205 1.1 briggs
206 1.1 briggs sign = fp->fp_sign;
207 1.1 briggs switch (fp->fp_class) {
208 1.1 briggs
209 1.1 briggs case FPC_ZERO:
210 1.1 briggs return (0);
211 1.1 briggs
212 1.1 briggs case FPC_NUM:
213 1.1 briggs /*
214 1.1 briggs * If exp >= 2^32, overflow. Otherwise shift value right
215 1.1 briggs * into last mantissa word (this will not exceed 0xffffffff),
216 1.1 briggs * shifting any guard and round bits out into the sticky
217 1.1 briggs * bit. Then ``round'' towards zero, i.e., just set an
218 1.1 briggs * inexact exception if sticky is set (see round()).
219 1.1 briggs * If the result is > 0x80000000, or is positive and equals
220 1.1 briggs * 0x80000000, overflow; otherwise the last fraction word
221 1.1 briggs * is the result.
222 1.1 briggs */
223 1.1 briggs if ((exp = fp->fp_exp) >= 32)
224 1.1 briggs break;
225 1.1 briggs /* NB: the following includes exp < 0 cases */
226 1.1 briggs if (fpu_shr(fp, FP_NMANT - 1 - FP_NG - exp) != 0)
227 1.1 briggs /* m68881/2 do not underflow when
228 1.1 briggs converting to integer */;
229 1.1 briggs round(fe, fp);
230 1.1 briggs i = fp->fp_mant[3];
231 1.1 briggs if (i >= ((u_int)0x80000000 + sign))
232 1.1 briggs break;
233 1.1 briggs return (sign ? -i : i);
234 1.1 briggs
235 1.1 briggs default: /* Inf, qNaN, sNaN */
236 1.1 briggs break;
237 1.1 briggs }
238 1.1 briggs /* overflow: replace any inexact exception with invalid */
239 1.1 briggs fe->fe_fpsr = (fe->fe_fpsr & ~FPSR_INEX2) | FPSR_OPERR;
240 1.1 briggs return (0x7fffffff + sign);
241 1.1 briggs }
242 1.1 briggs
243 1.1 briggs /*
244 1.1 briggs * fpn -> single (32 bit single returned as return value).
245 1.1 briggs * We assume <= 29 bits in a single-precision fraction (1.f part).
246 1.1 briggs */
247 1.1 briggs static u_int
248 1.1 briggs fpu_ftos(fe, fp)
249 1.1 briggs struct fpemu *fe;
250 1.1 briggs register struct fpn *fp;
251 1.1 briggs {
252 1.1 briggs register u_int sign = fp->fp_sign << 31;
253 1.1 briggs register int exp;
254 1.1 briggs
255 1.1 briggs #define SNG_EXP(e) ((e) << SNG_FRACBITS) /* makes e an exponent */
256 1.1 briggs #define SNG_MASK (SNG_EXP(1) - 1) /* mask for fraction */
257 1.1 briggs
258 1.1 briggs /* Take care of non-numbers first. */
259 1.1 briggs if (ISNAN(fp)) {
260 1.1 briggs /*
261 1.1 briggs * Preserve upper bits of NaN, per SPARC V8 appendix N.
262 1.1 briggs * Note that fp->fp_mant[0] has the quiet bit set,
263 1.1 briggs * even if it is classified as a signalling NaN.
264 1.1 briggs */
265 1.1 briggs (void) fpu_shr(fp, FP_NMANT - 1 - SNG_FRACBITS);
266 1.1 briggs exp = SNG_EXP_INFNAN;
267 1.1 briggs goto done;
268 1.1 briggs }
269 1.1 briggs if (ISINF(fp))
270 1.1 briggs return (sign | SNG_EXP(SNG_EXP_INFNAN));
271 1.1 briggs if (ISZERO(fp))
272 1.1 briggs return (sign);
273 1.1 briggs
274 1.1 briggs /*
275 1.1 briggs * Normals (including subnormals). Drop all the fraction bits
276 1.1 briggs * (including the explicit ``implied'' 1 bit) down into the
277 1.1 briggs * single-precision range. If the number is subnormal, move
278 1.1 briggs * the ``implied'' 1 into the explicit range as well, and shift
279 1.1 briggs * right to introduce leading zeroes. Rounding then acts
280 1.1 briggs * differently for normals and subnormals: the largest subnormal
281 1.1 briggs * may round to the smallest normal (1.0 x 2^minexp), or may
282 1.1 briggs * remain subnormal. In the latter case, signal an underflow
283 1.1 briggs * if the result was inexact or if underflow traps are enabled.
284 1.1 briggs *
285 1.1 briggs * Rounding a normal, on the other hand, always produces another
286 1.1 briggs * normal (although either way the result might be too big for
287 1.1 briggs * single precision, and cause an overflow). If rounding a
288 1.1 briggs * normal produces 2.0 in the fraction, we need not adjust that
289 1.1 briggs * fraction at all, since both 1.0 and 2.0 are zero under the
290 1.1 briggs * fraction mask.
291 1.1 briggs *
292 1.1 briggs * Note that the guard and round bits vanish from the number after
293 1.1 briggs * rounding.
294 1.1 briggs */
295 1.1 briggs if ((exp = fp->fp_exp + SNG_EXP_BIAS) <= 0) { /* subnormal */
296 1.1 briggs /* -NG for g,r; -SNG_FRACBITS-exp for fraction */
297 1.1 briggs (void) fpu_shr(fp, FP_NMANT - FP_NG - SNG_FRACBITS - exp);
298 1.1 briggs if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(1))
299 1.1 briggs return (sign | SNG_EXP(1) | 0);
300 1.1 briggs if (fe->fe_fpsr & FPSR_INEX2)
301 1.1 briggs /* mc68881/2 don't underflow when converting */;
302 1.1 briggs return (sign | SNG_EXP(0) | fp->fp_mant[3]);
303 1.1 briggs }
304 1.1 briggs /* -FP_NG for g,r; -1 for implied 1; -SNG_FRACBITS for fraction */
305 1.1 briggs (void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - SNG_FRACBITS);
306 1.1 briggs #ifdef DIAGNOSTIC
307 1.1 briggs if ((fp->fp_mant[3] & SNG_EXP(1 << FP_NG)) == 0)
308 1.1 briggs panic("fpu_ftos");
309 1.1 briggs #endif
310 1.1 briggs if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(2))
311 1.1 briggs exp++;
312 1.1 briggs if (exp >= SNG_EXP_INFNAN) {
313 1.1 briggs /* overflow to inf or to max single */
314 1.1 briggs fe->fe_fpsr |= FPSR_OPERR | FPSR_INEX2;
315 1.1 briggs if (toinf(fe, sign))
316 1.1 briggs return (sign | SNG_EXP(SNG_EXP_INFNAN));
317 1.1 briggs return (sign | SNG_EXP(SNG_EXP_INFNAN - 1) | SNG_MASK);
318 1.1 briggs }
319 1.1 briggs done:
320 1.1 briggs /* phew, made it */
321 1.1 briggs return (sign | SNG_EXP(exp) | (fp->fp_mant[3] & SNG_MASK));
322 1.1 briggs }
323 1.1 briggs
324 1.1 briggs /*
325 1.1 briggs * fpn -> double (32 bit high-order result returned; 32-bit low order result
326 1.1 briggs * left in res[1]). Assumes <= 61 bits in double precision fraction.
327 1.1 briggs *
328 1.1 briggs * This code mimics fpu_ftos; see it for comments.
329 1.1 briggs */
330 1.1 briggs static u_int
331 1.1 briggs fpu_ftod(fe, fp, res)
332 1.1 briggs struct fpemu *fe;
333 1.1 briggs register struct fpn *fp;
334 1.1 briggs u_int *res;
335 1.1 briggs {
336 1.1 briggs register u_int sign = fp->fp_sign << 31;
337 1.1 briggs register int exp;
338 1.1 briggs
339 1.1 briggs #define DBL_EXP(e) ((e) << (DBL_FRACBITS & 31))
340 1.1 briggs #define DBL_MASK (DBL_EXP(1) - 1)
341 1.1 briggs
342 1.1 briggs if (ISNAN(fp)) {
343 1.1 briggs (void) fpu_shr(fp, FP_NMANT - 1 - DBL_FRACBITS);
344 1.1 briggs exp = DBL_EXP_INFNAN;
345 1.1 briggs goto done;
346 1.1 briggs }
347 1.1 briggs if (ISINF(fp)) {
348 1.1 briggs sign |= DBL_EXP(DBL_EXP_INFNAN);
349 1.1 briggs res[1] = 0;
350 1.1 briggs return (sign);
351 1.1 briggs }
352 1.1 briggs if (ISZERO(fp)) {
353 1.1 briggs res[1] = 0;
354 1.1 briggs return (sign);
355 1.1 briggs }
356 1.1 briggs
357 1.1 briggs if ((exp = fp->fp_exp + DBL_EXP_BIAS) <= 0) {
358 1.1 briggs (void) fpu_shr(fp, FP_NMANT - FP_NG - DBL_FRACBITS - exp);
359 1.1 briggs if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(1)) {
360 1.1 briggs res[1] = 0;
361 1.1 briggs return (sign | DBL_EXP(1) | 0);
362 1.1 briggs }
363 1.1 briggs if (fe->fe_fpsr & FPSR_INEX2)
364 1.1 briggs /* mc68881/2 don't underflow when converting */;
365 1.1 briggs exp = 0;
366 1.1 briggs goto done;
367 1.1 briggs }
368 1.1 briggs (void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - DBL_FRACBITS);
369 1.1 briggs if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(2))
370 1.1 briggs exp++;
371 1.1 briggs if (exp >= DBL_EXP_INFNAN) {
372 1.1 briggs fe->fe_fpsr |= FPSR_OPERR | FPSR_INEX2;
373 1.1 briggs if (toinf(fe, sign)) {
374 1.1 briggs res[1] = 0;
375 1.1 briggs return (sign | DBL_EXP(DBL_EXP_INFNAN) | 0);
376 1.1 briggs }
377 1.1 briggs res[1] = ~0;
378 1.1 briggs return (sign | DBL_EXP(DBL_EXP_INFNAN) | DBL_MASK);
379 1.1 briggs }
380 1.1 briggs done:
381 1.1 briggs res[1] = fp->fp_mant[3];
382 1.1 briggs return (sign | DBL_EXP(exp) | (fp->fp_mant[2] & DBL_MASK));
383 1.1 briggs }
384 1.1 briggs
385 1.1 briggs /*
386 1.1 briggs * fpn -> 68k extended (32 bit high-order result returned; two 32-bit low
387 1.1 briggs * order result left in res[1] & res[2]). Assumes == 64 bits in extended
388 1.1 briggs * precision fraction.
389 1.1 briggs *
390 1.1 briggs * This code mimics fpu_ftos; see it for comments.
391 1.1 briggs */
392 1.1 briggs static u_int
393 1.1 briggs fpu_ftox(fe, fp, res)
394 1.1 briggs struct fpemu *fe;
395 1.1 briggs register struct fpn *fp;
396 1.1 briggs u_int *res;
397 1.1 briggs {
398 1.1 briggs register u_int sign = fp->fp_sign << 31;
399 1.1 briggs register int exp;
400 1.1 briggs
401 1.1 briggs #define EXT_EXP(e) ((e) << 16)
402 1.1 briggs #define EXT_MASK (EXT_EXP(1) - 1)
403 1.1 briggs
404 1.1 briggs if (ISNAN(fp)) {
405 1.1 briggs (void) fpu_shr(fp, FP_NMANT - 1 - EXT_FRACBITS);
406 1.1 briggs exp = EXT_EXP_INFNAN;
407 1.1 briggs goto done;
408 1.1 briggs }
409 1.1 briggs if (ISINF(fp)) {
410 1.1 briggs sign |= EXT_EXP(EXT_EXP_INFNAN);
411 1.1 briggs res[1] = res[2] = 0;
412 1.1 briggs return (sign);
413 1.1 briggs }
414 1.1 briggs if (ISZERO(fp)) {
415 1.1 briggs res[1] = res[2] = 0;
416 1.1 briggs return (sign);
417 1.1 briggs }
418 1.1 briggs
419 1.1 briggs if ((exp = fp->fp_exp + EXT_EXP_BIAS) <= 0) {
420 1.1 briggs /* I'm not sure about this <=... exp==0 doesn't mean
421 1.1 briggs it's a denormal in extended format */
422 1.1 briggs (void) fpu_shr(fp, FP_NMANT - FP_NG - EXT_FRACBITS - exp);
423 1.1 briggs if (round(fe, fp) && fp->fp_mant[2] == EXT_EXP(1)) {
424 1.1 briggs res[1] = res[2] = 0;
425 1.1 briggs return (sign | EXT_EXP(1) | 0);
426 1.1 briggs }
427 1.1 briggs if (fe->fe_fpsr & FPSR_INEX2)
428 1.1 briggs /* mc68881/2 don't underflow */;
429 1.1 briggs exp = 0;
430 1.1 briggs goto done;
431 1.1 briggs }
432 1.1 briggs (void) fpu_shr(fp, FP_NMANT - FP_NG - EXT_FRACBITS);
433 1.1 briggs if (round(fe, fp) && fp->fp_mant[2] == EXT_EXP(2))
434 1.1 briggs exp++;
435 1.1 briggs if (exp >= EXT_EXP_INFNAN) {
436 1.1 briggs fe->fe_fpsr |= FPSR_OPERR | FPSR_INEX2;
437 1.1 briggs if (toinf(fe, sign)) {
438 1.1 briggs res[1] = res[2] = 0;
439 1.1 briggs return (sign | EXT_EXP(EXT_EXP_INFNAN) | 0);
440 1.1 briggs }
441 1.1 briggs res[1] = res[2] = ~0;
442 1.1 briggs return (sign | EXT_EXP(EXT_EXP_INFNAN) | EXT_MASK);
443 1.1 briggs }
444 1.1 briggs done:
445 1.1 briggs res[1] = fp->fp_mant[2];
446 1.1 briggs res[2] = fp->fp_mant[3];
447 1.1 briggs return (sign | EXT_EXP(exp));
448 1.1 briggs }
449 1.1 briggs
450 1.1 briggs /*
451 1.1 briggs * Implode an fpn, writing the result into the given space.
452 1.1 briggs */
453 1.1 briggs void
454 1.1 briggs fpu_implode(fe, fp, type, space)
455 1.1 briggs struct fpemu *fe;
456 1.1 briggs register struct fpn *fp;
457 1.1 briggs int type;
458 1.1 briggs register u_int *space;
459 1.1 briggs {
460 1.1 briggs fe->fe_fpsr &= ~FPSR_EXCP;
461 1.1 briggs
462 1.1 briggs switch (type) {
463 1.1 briggs case FTYPE_LNG:
464 1.1 briggs space[0] = fpu_ftoi(fe, fp);
465 1.1 briggs break;
466 1.1 briggs
467 1.1 briggs case FTYPE_SNG:
468 1.1 briggs space[0] = fpu_ftos(fe, fp);
469 1.1 briggs break;
470 1.1 briggs
471 1.1 briggs case FTYPE_DBL:
472 1.1 briggs space[0] = fpu_ftod(fe, fp, space);
473 1.1 briggs break;
474 1.1 briggs
475 1.1 briggs case FTYPE_EXT:
476 1.1 briggs /* funky rounding precision options ?? */
477 1.1 briggs space[0] = fpu_ftox(fe, fp, space);
478 1.1 briggs break;
479 1.1 briggs
480 1.1 briggs default:
481 1.1 briggs panic("fpu_implode");
482 1.1 briggs }
483 1.1 briggs }
484