fpu_implode.c revision 1.13 1 1.13 isaki /* $NetBSD: fpu_implode.c,v 1.13 2013/03/19 09:17:17 isaki Exp $ */
2 1.1 briggs
3 1.1 briggs /*
4 1.1 briggs * Copyright (c) 1992, 1993
5 1.1 briggs * The Regents of the University of California. All rights reserved.
6 1.1 briggs *
7 1.1 briggs * This software was developed by the Computer Systems Engineering group
8 1.1 briggs * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 1.1 briggs * contributed to Berkeley.
10 1.1 briggs *
11 1.1 briggs * All advertising materials mentioning features or use of this software
12 1.1 briggs * must display the following acknowledgement:
13 1.1 briggs * This product includes software developed by the University of
14 1.1 briggs * California, Lawrence Berkeley Laboratory.
15 1.1 briggs *
16 1.1 briggs * Redistribution and use in source and binary forms, with or without
17 1.1 briggs * modification, are permitted provided that the following conditions
18 1.1 briggs * are met:
19 1.1 briggs * 1. Redistributions of source code must retain the above copyright
20 1.1 briggs * notice, this list of conditions and the following disclaimer.
21 1.1 briggs * 2. Redistributions in binary form must reproduce the above copyright
22 1.1 briggs * notice, this list of conditions and the following disclaimer in the
23 1.1 briggs * documentation and/or other materials provided with the distribution.
24 1.7 agc * 3. Neither the name of the University nor the names of its contributors
25 1.1 briggs * may be used to endorse or promote products derived from this software
26 1.1 briggs * without specific prior written permission.
27 1.1 briggs *
28 1.1 briggs * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 1.1 briggs * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 1.1 briggs * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 1.1 briggs * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 1.1 briggs * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 1.1 briggs * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 1.1 briggs * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 1.1 briggs * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 1.1 briggs * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 1.1 briggs * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 1.1 briggs * SUCH DAMAGE.
39 1.1 briggs *
40 1.1 briggs * @(#)fpu_implode.c 8.1 (Berkeley) 6/11/93
41 1.1 briggs */
42 1.1 briggs
43 1.1 briggs /*
44 1.1 briggs * FPU subroutines: `implode' internal format numbers into the machine's
45 1.1 briggs * `packed binary' format.
46 1.1 briggs */
47 1.6 lukem
48 1.6 lukem #include <sys/cdefs.h>
49 1.13 isaki __KERNEL_RCSID(0, "$NetBSD: fpu_implode.c,v 1.13 2013/03/19 09:17:17 isaki Exp $");
50 1.1 briggs
51 1.1 briggs #include <sys/types.h>
52 1.2 briggs #include <sys/systm.h>
53 1.1 briggs
54 1.8 kleink #include <machine/ieee.h>
55 1.1 briggs #include <machine/reg.h>
56 1.1 briggs
57 1.1 briggs #include "fpu_emulate.h"
58 1.1 briggs #include "fpu_arith.h"
59 1.1 briggs
60 1.1 briggs /* Conversion from internal format -- note asymmetry. */
61 1.10 dsl static u_int fpu_ftoi(struct fpemu *fe, struct fpn *fp);
62 1.10 dsl static u_int fpu_ftos(struct fpemu *fe, struct fpn *fp);
63 1.10 dsl static u_int fpu_ftod(struct fpemu *fe, struct fpn *fp, u_int *);
64 1.10 dsl static u_int fpu_ftox(struct fpemu *fe, struct fpn *fp, u_int *);
65 1.1 briggs
66 1.1 briggs /*
67 1.1 briggs * Round a number (algorithm from Motorola MC68882 manual, modified for
68 1.1 briggs * our internal format). Set inexact exception if rounding is required.
69 1.1 briggs * Return true iff we rounded up.
70 1.1 briggs *
71 1.1 briggs * After rounding, we discard the guard and round bits by shifting right
72 1.1 briggs * 2 bits (a la fpu_shr(), but we do not bother with fp->fp_sticky).
73 1.1 briggs * This saves effort later.
74 1.1 briggs *
75 1.1 briggs * Note that we may leave the value 2.0 in fp->fp_mant; it is the caller's
76 1.1 briggs * responsibility to fix this if necessary.
77 1.1 briggs */
78 1.1 briggs int
79 1.13 isaki fpu_round(struct fpemu *fe, struct fpn *fp)
80 1.1 briggs {
81 1.13 isaki u_int m0, m1, m2;
82 1.13 isaki int gr, s;
83 1.1 briggs
84 1.1 briggs m0 = fp->fp_mant[0];
85 1.1 briggs m1 = fp->fp_mant[1];
86 1.1 briggs m2 = fp->fp_mant[2];
87 1.4 briggs gr = m2 & 3;
88 1.1 briggs s = fp->fp_sticky;
89 1.1 briggs
90 1.1 briggs /* mant >>= FP_NG */
91 1.1 briggs m2 = (m2 >> FP_NG) | (m1 << (32 - FP_NG));
92 1.1 briggs m1 = (m1 >> FP_NG) | (m0 << (32 - FP_NG));
93 1.1 briggs m0 >>= FP_NG;
94 1.1 briggs
95 1.1 briggs if ((gr | s) == 0) /* result is exact: no rounding needed */
96 1.1 briggs goto rounddown;
97 1.1 briggs
98 1.1 briggs fe->fe_fpsr |= FPSR_INEX2; /* inexact */
99 1.1 briggs
100 1.1 briggs /* Go to rounddown to round down; break to round up. */
101 1.1 briggs switch (fe->fe_fpcr & FPCR_ROUND) {
102 1.1 briggs
103 1.1 briggs case FPCR_NEAR:
104 1.1 briggs default:
105 1.1 briggs /*
106 1.1 briggs * Round only if guard is set (gr & 2). If guard is set,
107 1.1 briggs * but round & sticky both clear, then we want to round
108 1.1 briggs * but have a tie, so round to even, i.e., add 1 iff odd.
109 1.1 briggs */
110 1.1 briggs if ((gr & 2) == 0)
111 1.1 briggs goto rounddown;
112 1.4 briggs if ((gr & 1) || fp->fp_sticky || (m2 & 1))
113 1.1 briggs break;
114 1.1 briggs goto rounddown;
115 1.1 briggs
116 1.1 briggs case FPCR_ZERO:
117 1.1 briggs /* Round towards zero, i.e., down. */
118 1.1 briggs goto rounddown;
119 1.1 briggs
120 1.1 briggs case FPCR_MINF:
121 1.1 briggs /* Round towards -Inf: up if negative, down if positive. */
122 1.1 briggs if (fp->fp_sign)
123 1.1 briggs break;
124 1.1 briggs goto rounddown;
125 1.1 briggs
126 1.1 briggs case FPCR_PINF:
127 1.1 briggs /* Round towards +Inf: up if positive, down otherwise. */
128 1.1 briggs if (!fp->fp_sign)
129 1.1 briggs break;
130 1.1 briggs goto rounddown;
131 1.1 briggs }
132 1.1 briggs
133 1.1 briggs /* Bump low bit of mantissa, with carry. */
134 1.4 briggs if (++m2 == 0 && ++m1 == 0)
135 1.1 briggs m0++;
136 1.4 briggs fp->fp_sticky = 0;
137 1.1 briggs fp->fp_mant[0] = m0;
138 1.1 briggs fp->fp_mant[1] = m1;
139 1.1 briggs fp->fp_mant[2] = m2;
140 1.1 briggs return (1);
141 1.1 briggs
142 1.1 briggs rounddown:
143 1.4 briggs fp->fp_sticky = 0;
144 1.1 briggs fp->fp_mant[0] = m0;
145 1.1 briggs fp->fp_mant[1] = m1;
146 1.1 briggs fp->fp_mant[2] = m2;
147 1.1 briggs return (0);
148 1.1 briggs }
149 1.1 briggs
150 1.1 briggs /*
151 1.1 briggs * For overflow: return true if overflow is to go to +/-Inf, according
152 1.1 briggs * to the sign of the overflowing result. If false, overflow is to go
153 1.1 briggs * to the largest magnitude value instead.
154 1.1 briggs */
155 1.1 briggs static int
156 1.1 briggs toinf(struct fpemu *fe, int sign)
157 1.1 briggs {
158 1.1 briggs int inf;
159 1.1 briggs
160 1.1 briggs /* look at rounding direction */
161 1.1 briggs switch (fe->fe_fpcr & FPCR_ROUND) {
162 1.1 briggs
163 1.1 briggs default:
164 1.1 briggs case FPCR_NEAR: /* the nearest value is always Inf */
165 1.1 briggs inf = 1;
166 1.1 briggs break;
167 1.1 briggs
168 1.1 briggs case FPCR_ZERO: /* toward 0 => never towards Inf */
169 1.1 briggs inf = 0;
170 1.1 briggs break;
171 1.1 briggs
172 1.1 briggs case FPCR_PINF: /* toward +Inf iff positive */
173 1.1 briggs inf = (sign == 0);
174 1.1 briggs break;
175 1.1 briggs
176 1.1 briggs case FPCR_MINF: /* toward -Inf iff negative */
177 1.1 briggs inf = sign;
178 1.1 briggs break;
179 1.1 briggs }
180 1.1 briggs return (inf);
181 1.1 briggs }
182 1.1 briggs
183 1.1 briggs /*
184 1.1 briggs * fpn -> int (int value returned as return value).
185 1.1 briggs *
186 1.1 briggs * N.B.: this conversion always rounds towards zero (this is a peculiarity
187 1.1 briggs * of the SPARC instruction set).
188 1.1 briggs */
189 1.1 briggs static u_int
190 1.13 isaki fpu_ftoi(struct fpemu *fe, struct fpn *fp)
191 1.1 briggs {
192 1.13 isaki u_int i;
193 1.13 isaki int sign, exp;
194 1.1 briggs
195 1.1 briggs sign = fp->fp_sign;
196 1.1 briggs switch (fp->fp_class) {
197 1.1 briggs case FPC_ZERO:
198 1.1 briggs return (0);
199 1.1 briggs
200 1.1 briggs case FPC_NUM:
201 1.1 briggs /*
202 1.1 briggs * If exp >= 2^32, overflow. Otherwise shift value right
203 1.1 briggs * into last mantissa word (this will not exceed 0xffffffff),
204 1.1 briggs * shifting any guard and round bits out into the sticky
205 1.1 briggs * bit. Then ``round'' towards zero, i.e., just set an
206 1.5 chs * inexact exception if sticky is set (see fpu_round()).
207 1.1 briggs * If the result is > 0x80000000, or is positive and equals
208 1.1 briggs * 0x80000000, overflow; otherwise the last fraction word
209 1.1 briggs * is the result.
210 1.1 briggs */
211 1.1 briggs if ((exp = fp->fp_exp) >= 32)
212 1.1 briggs break;
213 1.1 briggs /* NB: the following includes exp < 0 cases */
214 1.12 isaki if (fpu_shr(fp, FP_NMANT - 1 - FP_NG - exp) != 0) {
215 1.12 isaki /*
216 1.12 isaki * m68881/2 do not underflow when
217 1.12 isaki * converting to integer
218 1.12 isaki */
219 1.12 isaki ;
220 1.12 isaki }
221 1.5 chs fpu_round(fe, fp);
222 1.4 briggs i = fp->fp_mant[2];
223 1.1 briggs if (i >= ((u_int)0x80000000 + sign))
224 1.1 briggs break;
225 1.1 briggs return (sign ? -i : i);
226 1.1 briggs
227 1.1 briggs default: /* Inf, qNaN, sNaN */
228 1.1 briggs break;
229 1.1 briggs }
230 1.1 briggs /* overflow: replace any inexact exception with invalid */
231 1.1 briggs fe->fe_fpsr = (fe->fe_fpsr & ~FPSR_INEX2) | FPSR_OPERR;
232 1.1 briggs return (0x7fffffff + sign);
233 1.1 briggs }
234 1.1 briggs
235 1.1 briggs /*
236 1.1 briggs * fpn -> single (32 bit single returned as return value).
237 1.1 briggs * We assume <= 29 bits in a single-precision fraction (1.f part).
238 1.1 briggs */
239 1.1 briggs static u_int
240 1.13 isaki fpu_ftos(struct fpemu *fe, struct fpn *fp)
241 1.1 briggs {
242 1.13 isaki u_int sign = fp->fp_sign << 31;
243 1.13 isaki int exp;
244 1.1 briggs
245 1.1 briggs #define SNG_EXP(e) ((e) << SNG_FRACBITS) /* makes e an exponent */
246 1.1 briggs #define SNG_MASK (SNG_EXP(1) - 1) /* mask for fraction */
247 1.1 briggs
248 1.1 briggs /* Take care of non-numbers first. */
249 1.1 briggs if (ISNAN(fp)) {
250 1.1 briggs /*
251 1.1 briggs * Preserve upper bits of NaN, per SPARC V8 appendix N.
252 1.1 briggs * Note that fp->fp_mant[0] has the quiet bit set,
253 1.1 briggs * even if it is classified as a signalling NaN.
254 1.1 briggs */
255 1.1 briggs (void) fpu_shr(fp, FP_NMANT - 1 - SNG_FRACBITS);
256 1.1 briggs exp = SNG_EXP_INFNAN;
257 1.1 briggs goto done;
258 1.1 briggs }
259 1.1 briggs if (ISINF(fp))
260 1.1 briggs return (sign | SNG_EXP(SNG_EXP_INFNAN));
261 1.1 briggs if (ISZERO(fp))
262 1.1 briggs return (sign);
263 1.1 briggs
264 1.1 briggs /*
265 1.1 briggs * Normals (including subnormals). Drop all the fraction bits
266 1.1 briggs * (including the explicit ``implied'' 1 bit) down into the
267 1.1 briggs * single-precision range. If the number is subnormal, move
268 1.1 briggs * the ``implied'' 1 into the explicit range as well, and shift
269 1.1 briggs * right to introduce leading zeroes. Rounding then acts
270 1.1 briggs * differently for normals and subnormals: the largest subnormal
271 1.1 briggs * may round to the smallest normal (1.0 x 2^minexp), or may
272 1.1 briggs * remain subnormal. In the latter case, signal an underflow
273 1.1 briggs * if the result was inexact or if underflow traps are enabled.
274 1.1 briggs *
275 1.1 briggs * Rounding a normal, on the other hand, always produces another
276 1.1 briggs * normal (although either way the result might be too big for
277 1.1 briggs * single precision, and cause an overflow). If rounding a
278 1.1 briggs * normal produces 2.0 in the fraction, we need not adjust that
279 1.1 briggs * fraction at all, since both 1.0 and 2.0 are zero under the
280 1.1 briggs * fraction mask.
281 1.1 briggs *
282 1.1 briggs * Note that the guard and round bits vanish from the number after
283 1.1 briggs * rounding.
284 1.1 briggs */
285 1.1 briggs if ((exp = fp->fp_exp + SNG_EXP_BIAS) <= 0) { /* subnormal */
286 1.3 is fe->fe_fpsr |= FPSR_UNFL;
287 1.1 briggs /* -NG for g,r; -SNG_FRACBITS-exp for fraction */
288 1.1 briggs (void) fpu_shr(fp, FP_NMANT - FP_NG - SNG_FRACBITS - exp);
289 1.5 chs if (fpu_round(fe, fp) && fp->fp_mant[2] == SNG_EXP(1))
290 1.1 briggs return (sign | SNG_EXP(1) | 0);
291 1.12 isaki if (fe->fe_fpsr & FPSR_INEX2) {
292 1.12 isaki /* mc68881/2 don't underflow when converting */
293 1.12 isaki fe->fe_fpsr |= FPSR_UNFL;
294 1.12 isaki }
295 1.4 briggs return (sign | SNG_EXP(0) | fp->fp_mant[2]);
296 1.1 briggs }
297 1.1 briggs /* -FP_NG for g,r; -1 for implied 1; -SNG_FRACBITS for fraction */
298 1.1 briggs (void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - SNG_FRACBITS);
299 1.1 briggs #ifdef DIAGNOSTIC
300 1.4 briggs if ((fp->fp_mant[2] & SNG_EXP(1 << FP_NG)) == 0)
301 1.1 briggs panic("fpu_ftos");
302 1.1 briggs #endif
303 1.5 chs if (fpu_round(fe, fp) && fp->fp_mant[2] == SNG_EXP(2))
304 1.1 briggs exp++;
305 1.1 briggs if (exp >= SNG_EXP_INFNAN) {
306 1.1 briggs /* overflow to inf or to max single */
307 1.3 is fe->fe_fpsr |= FPSR_OPERR | FPSR_INEX2 | FPSR_OVFL;
308 1.1 briggs if (toinf(fe, sign))
309 1.1 briggs return (sign | SNG_EXP(SNG_EXP_INFNAN));
310 1.1 briggs return (sign | SNG_EXP(SNG_EXP_INFNAN - 1) | SNG_MASK);
311 1.1 briggs }
312 1.1 briggs done:
313 1.1 briggs /* phew, made it */
314 1.4 briggs return (sign | SNG_EXP(exp) | (fp->fp_mant[2] & SNG_MASK));
315 1.1 briggs }
316 1.1 briggs
317 1.1 briggs /*
318 1.1 briggs * fpn -> double (32 bit high-order result returned; 32-bit low order result
319 1.1 briggs * left in res[1]). Assumes <= 61 bits in double precision fraction.
320 1.1 briggs *
321 1.1 briggs * This code mimics fpu_ftos; see it for comments.
322 1.1 briggs */
323 1.1 briggs static u_int
324 1.13 isaki fpu_ftod(struct fpemu *fe, struct fpn *fp, u_int *res)
325 1.1 briggs {
326 1.13 isaki u_int sign = fp->fp_sign << 31;
327 1.13 isaki int exp;
328 1.1 briggs
329 1.1 briggs #define DBL_EXP(e) ((e) << (DBL_FRACBITS & 31))
330 1.1 briggs #define DBL_MASK (DBL_EXP(1) - 1)
331 1.1 briggs
332 1.1 briggs if (ISNAN(fp)) {
333 1.1 briggs (void) fpu_shr(fp, FP_NMANT - 1 - DBL_FRACBITS);
334 1.1 briggs exp = DBL_EXP_INFNAN;
335 1.1 briggs goto done;
336 1.1 briggs }
337 1.1 briggs if (ISINF(fp)) {
338 1.1 briggs sign |= DBL_EXP(DBL_EXP_INFNAN);
339 1.1 briggs res[1] = 0;
340 1.1 briggs return (sign);
341 1.1 briggs }
342 1.1 briggs if (ISZERO(fp)) {
343 1.1 briggs res[1] = 0;
344 1.1 briggs return (sign);
345 1.1 briggs }
346 1.1 briggs
347 1.1 briggs if ((exp = fp->fp_exp + DBL_EXP_BIAS) <= 0) {
348 1.3 is fe->fe_fpsr |= FPSR_UNFL;
349 1.1 briggs (void) fpu_shr(fp, FP_NMANT - FP_NG - DBL_FRACBITS - exp);
350 1.5 chs if (fpu_round(fe, fp) && fp->fp_mant[1] == DBL_EXP(1)) {
351 1.1 briggs res[1] = 0;
352 1.1 briggs return (sign | DBL_EXP(1) | 0);
353 1.1 briggs }
354 1.12 isaki if (fe->fe_fpsr & FPSR_INEX2) {
355 1.12 isaki /* mc68881/2 don't underflow when converting */
356 1.12 isaki fe->fe_fpsr |= FPSR_UNFL;
357 1.12 isaki }
358 1.1 briggs exp = 0;
359 1.1 briggs goto done;
360 1.1 briggs }
361 1.1 briggs (void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - DBL_FRACBITS);
362 1.5 chs if (fpu_round(fe, fp) && fp->fp_mant[1] == DBL_EXP(2))
363 1.1 briggs exp++;
364 1.1 briggs if (exp >= DBL_EXP_INFNAN) {
365 1.3 is fe->fe_fpsr |= FPSR_OPERR | FPSR_INEX2 | FPSR_OVFL;
366 1.1 briggs if (toinf(fe, sign)) {
367 1.1 briggs res[1] = 0;
368 1.1 briggs return (sign | DBL_EXP(DBL_EXP_INFNAN) | 0);
369 1.1 briggs }
370 1.1 briggs res[1] = ~0;
371 1.1 briggs return (sign | DBL_EXP(DBL_EXP_INFNAN) | DBL_MASK);
372 1.1 briggs }
373 1.1 briggs done:
374 1.4 briggs res[1] = fp->fp_mant[2];
375 1.4 briggs return (sign | DBL_EXP(exp) | (fp->fp_mant[1] & DBL_MASK));
376 1.1 briggs }
377 1.1 briggs
378 1.1 briggs /*
379 1.1 briggs * fpn -> 68k extended (32 bit high-order result returned; two 32-bit low
380 1.1 briggs * order result left in res[1] & res[2]). Assumes == 64 bits in extended
381 1.1 briggs * precision fraction.
382 1.1 briggs *
383 1.1 briggs * This code mimics fpu_ftos; see it for comments.
384 1.1 briggs */
385 1.1 briggs static u_int
386 1.13 isaki fpu_ftox(struct fpemu *fe, struct fpn *fp, u_int *res)
387 1.1 briggs {
388 1.13 isaki u_int sign = fp->fp_sign << 31;
389 1.13 isaki int exp;
390 1.1 briggs
391 1.1 briggs #define EXT_EXP(e) ((e) << 16)
392 1.4 briggs /*
393 1.4 briggs * on m68k extended prec, significand does not share the same long
394 1.4 briggs * word with exponent
395 1.4 briggs */
396 1.4 briggs #define EXT_MASK 0
397 1.4 briggs #define EXT_EXPLICIT1 (1UL << (63 & 31))
398 1.4 briggs #define EXT_EXPLICIT2 (1UL << (64 & 31))
399 1.1 briggs
400 1.1 briggs if (ISNAN(fp)) {
401 1.4 briggs (void) fpu_shr(fp, FP_NMANT - EXT_FRACBITS);
402 1.1 briggs exp = EXT_EXP_INFNAN;
403 1.1 briggs goto done;
404 1.1 briggs }
405 1.1 briggs if (ISINF(fp)) {
406 1.1 briggs sign |= EXT_EXP(EXT_EXP_INFNAN);
407 1.1 briggs res[1] = res[2] = 0;
408 1.1 briggs return (sign);
409 1.1 briggs }
410 1.1 briggs if (ISZERO(fp)) {
411 1.1 briggs res[1] = res[2] = 0;
412 1.1 briggs return (sign);
413 1.1 briggs }
414 1.1 briggs
415 1.4 briggs if ((exp = fp->fp_exp + EXT_EXP_BIAS) < 0) {
416 1.3 is fe->fe_fpsr |= FPSR_UNFL;
417 1.12 isaki /*
418 1.12 isaki * I'm not sure about this <=... exp==0 doesn't mean
419 1.12 isaki * it's a denormal in extended format
420 1.12 isaki */
421 1.1 briggs (void) fpu_shr(fp, FP_NMANT - FP_NG - EXT_FRACBITS - exp);
422 1.5 chs if (fpu_round(fe, fp) && fp->fp_mant[1] == EXT_EXPLICIT1) {
423 1.1 briggs res[1] = res[2] = 0;
424 1.1 briggs return (sign | EXT_EXP(1) | 0);
425 1.1 briggs }
426 1.12 isaki if (fe->fe_fpsr & FPSR_INEX2) {
427 1.12 isaki /* mc68881/2 don't underflow */
428 1.12 isaki fe->fe_fpsr |= FPSR_UNFL;
429 1.12 isaki }
430 1.1 briggs exp = 0;
431 1.1 briggs goto done;
432 1.1 briggs }
433 1.4 briggs #if (FP_NMANT - FP_NG - EXT_FRACBITS) > 0
434 1.1 briggs (void) fpu_shr(fp, FP_NMANT - FP_NG - EXT_FRACBITS);
435 1.4 briggs #endif
436 1.5 chs if (fpu_round(fe, fp) && fp->fp_mant[0] == EXT_EXPLICIT2)
437 1.1 briggs exp++;
438 1.1 briggs if (exp >= EXT_EXP_INFNAN) {
439 1.3 is fe->fe_fpsr |= FPSR_OPERR | FPSR_INEX2 | FPSR_OVFL;
440 1.1 briggs if (toinf(fe, sign)) {
441 1.1 briggs res[1] = res[2] = 0;
442 1.1 briggs return (sign | EXT_EXP(EXT_EXP_INFNAN) | 0);
443 1.1 briggs }
444 1.1 briggs res[1] = res[2] = ~0;
445 1.1 briggs return (sign | EXT_EXP(EXT_EXP_INFNAN) | EXT_MASK);
446 1.1 briggs }
447 1.1 briggs done:
448 1.4 briggs res[1] = fp->fp_mant[1];
449 1.4 briggs res[2] = fp->fp_mant[2];
450 1.1 briggs return (sign | EXT_EXP(exp));
451 1.1 briggs }
452 1.1 briggs
453 1.1 briggs /*
454 1.1 briggs * Implode an fpn, writing the result into the given space.
455 1.1 briggs */
456 1.1 briggs void
457 1.13 isaki fpu_implode(struct fpemu *fe, struct fpn *fp, int type, u_int *space)
458 1.1 briggs {
459 1.3 is /* XXX Dont delete exceptions set here: fe->fe_fpsr &= ~FPSR_EXCP; */
460 1.1 briggs
461 1.1 briggs switch (type) {
462 1.1 briggs case FTYPE_LNG:
463 1.1 briggs space[0] = fpu_ftoi(fe, fp);
464 1.1 briggs break;
465 1.1 briggs
466 1.1 briggs case FTYPE_SNG:
467 1.1 briggs space[0] = fpu_ftos(fe, fp);
468 1.1 briggs break;
469 1.1 briggs
470 1.1 briggs case FTYPE_DBL:
471 1.1 briggs space[0] = fpu_ftod(fe, fp, space);
472 1.1 briggs break;
473 1.1 briggs
474 1.1 briggs case FTYPE_EXT:
475 1.1 briggs /* funky rounding precision options ?? */
476 1.1 briggs space[0] = fpu_ftox(fe, fp, space);
477 1.1 briggs break;
478 1.1 briggs
479 1.1 briggs default:
480 1.1 briggs panic("fpu_implode");
481 1.1 briggs }
482 1.1 briggs }
483