fpu_implode.c revision 1.2 1 1.2 briggs /* $NetBSD: fpu_implode.c,v 1.2 1996/04/30 11:52:30 briggs Exp $ */
2 1.1 briggs
3 1.1 briggs /*
4 1.1 briggs * Copyright (c) 1992, 1993
5 1.1 briggs * The Regents of the University of California. All rights reserved.
6 1.1 briggs *
7 1.1 briggs * This software was developed by the Computer Systems Engineering group
8 1.1 briggs * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 1.1 briggs * contributed to Berkeley.
10 1.1 briggs *
11 1.1 briggs * All advertising materials mentioning features or use of this software
12 1.1 briggs * must display the following acknowledgement:
13 1.1 briggs * This product includes software developed by the University of
14 1.1 briggs * California, Lawrence Berkeley Laboratory.
15 1.1 briggs *
16 1.1 briggs * Redistribution and use in source and binary forms, with or without
17 1.1 briggs * modification, are permitted provided that the following conditions
18 1.1 briggs * are met:
19 1.1 briggs * 1. Redistributions of source code must retain the above copyright
20 1.1 briggs * notice, this list of conditions and the following disclaimer.
21 1.1 briggs * 2. Redistributions in binary form must reproduce the above copyright
22 1.1 briggs * notice, this list of conditions and the following disclaimer in the
23 1.1 briggs * documentation and/or other materials provided with the distribution.
24 1.1 briggs * 3. All advertising materials mentioning features or use of this software
25 1.1 briggs * must display the following acknowledgement:
26 1.1 briggs * This product includes software developed by the University of
27 1.1 briggs * California, Berkeley and its contributors.
28 1.1 briggs * 4. Neither the name of the University nor the names of its contributors
29 1.1 briggs * may be used to endorse or promote products derived from this software
30 1.1 briggs * without specific prior written permission.
31 1.1 briggs *
32 1.1 briggs * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33 1.1 briggs * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34 1.1 briggs * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35 1.1 briggs * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36 1.1 briggs * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 1.1 briggs * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 1.1 briggs * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 1.1 briggs * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40 1.1 briggs * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41 1.1 briggs * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42 1.1 briggs * SUCH DAMAGE.
43 1.1 briggs *
44 1.1 briggs * @(#)fpu_implode.c 8.1 (Berkeley) 6/11/93
45 1.1 briggs */
46 1.1 briggs
47 1.1 briggs /*
48 1.1 briggs * FPU subroutines: `implode' internal format numbers into the machine's
49 1.1 briggs * `packed binary' format.
50 1.1 briggs */
51 1.1 briggs
52 1.1 briggs #include <sys/types.h>
53 1.2 briggs #include <sys/systm.h>
54 1.1 briggs
55 1.1 briggs #include "ieee.h"
56 1.1 briggs #include <machine/reg.h>
57 1.1 briggs
58 1.1 briggs #include "fpu_emulate.h"
59 1.1 briggs #include "fpu_arith.h"
60 1.1 briggs
61 1.1 briggs /* Conversion from internal format -- note asymmetry. */
62 1.1 briggs static u_int fpu_ftoi __P((struct fpemu *fe, struct fpn *fp));
63 1.1 briggs static u_int fpu_ftos __P((struct fpemu *fe, struct fpn *fp));
64 1.1 briggs static u_int fpu_ftod __P((struct fpemu *fe, struct fpn *fp, u_int *));
65 1.1 briggs static u_int fpu_ftox __P((struct fpemu *fe, struct fpn *fp, u_int *));
66 1.1 briggs
67 1.1 briggs /*
68 1.1 briggs * Round a number (algorithm from Motorola MC68882 manual, modified for
69 1.1 briggs * our internal format). Set inexact exception if rounding is required.
70 1.1 briggs * Return true iff we rounded up.
71 1.1 briggs *
72 1.1 briggs * After rounding, we discard the guard and round bits by shifting right
73 1.1 briggs * 2 bits (a la fpu_shr(), but we do not bother with fp->fp_sticky).
74 1.1 briggs * This saves effort later.
75 1.1 briggs *
76 1.1 briggs * Note that we may leave the value 2.0 in fp->fp_mant; it is the caller's
77 1.1 briggs * responsibility to fix this if necessary.
78 1.1 briggs */
79 1.1 briggs int
80 1.1 briggs round(register struct fpemu *fe, register struct fpn *fp)
81 1.1 briggs {
82 1.1 briggs register u_int m0, m1, m2, m3;
83 1.2 briggs register int gr, s;
84 1.1 briggs
85 1.1 briggs m0 = fp->fp_mant[0];
86 1.1 briggs m1 = fp->fp_mant[1];
87 1.1 briggs m2 = fp->fp_mant[2];
88 1.1 briggs m3 = fp->fp_mant[3];
89 1.1 briggs gr = m3 & 3;
90 1.1 briggs s = fp->fp_sticky;
91 1.1 briggs
92 1.1 briggs /* mant >>= FP_NG */
93 1.1 briggs m3 = (m3 >> FP_NG) | (m2 << (32 - FP_NG));
94 1.1 briggs m2 = (m2 >> FP_NG) | (m1 << (32 - FP_NG));
95 1.1 briggs m1 = (m1 >> FP_NG) | (m0 << (32 - FP_NG));
96 1.1 briggs m0 >>= FP_NG;
97 1.1 briggs
98 1.1 briggs if ((gr | s) == 0) /* result is exact: no rounding needed */
99 1.1 briggs goto rounddown;
100 1.1 briggs
101 1.1 briggs fe->fe_fpsr |= FPSR_INEX2; /* inexact */
102 1.1 briggs
103 1.1 briggs /* Go to rounddown to round down; break to round up. */
104 1.1 briggs switch (fe->fe_fpcr & FPCR_ROUND) {
105 1.1 briggs
106 1.1 briggs case FPCR_NEAR:
107 1.1 briggs default:
108 1.1 briggs /*
109 1.1 briggs * Round only if guard is set (gr & 2). If guard is set,
110 1.1 briggs * but round & sticky both clear, then we want to round
111 1.1 briggs * but have a tie, so round to even, i.e., add 1 iff odd.
112 1.1 briggs */
113 1.1 briggs if ((gr & 2) == 0)
114 1.1 briggs goto rounddown;
115 1.1 briggs if ((gr & 1) || fp->fp_sticky || (m3 & 1))
116 1.1 briggs break;
117 1.1 briggs goto rounddown;
118 1.1 briggs
119 1.1 briggs case FPCR_ZERO:
120 1.1 briggs /* Round towards zero, i.e., down. */
121 1.1 briggs goto rounddown;
122 1.1 briggs
123 1.1 briggs case FPCR_MINF:
124 1.1 briggs /* Round towards -Inf: up if negative, down if positive. */
125 1.1 briggs if (fp->fp_sign)
126 1.1 briggs break;
127 1.1 briggs goto rounddown;
128 1.1 briggs
129 1.1 briggs case FPCR_PINF:
130 1.1 briggs /* Round towards +Inf: up if positive, down otherwise. */
131 1.1 briggs if (!fp->fp_sign)
132 1.1 briggs break;
133 1.1 briggs goto rounddown;
134 1.1 briggs }
135 1.1 briggs
136 1.1 briggs /* Bump low bit of mantissa, with carry. */
137 1.1 briggs #ifdef sparc /* ``cheating'' (left out FPU_DECL_CARRY; know this is faster) */
138 1.1 briggs FPU_ADDS(m3, m3, 1);
139 1.1 briggs FPU_ADDCS(m2, m2, 0);
140 1.1 briggs FPU_ADDCS(m1, m1, 0);
141 1.1 briggs FPU_ADDC(m0, m0, 0);
142 1.1 briggs #else
143 1.1 briggs if (++m3 == 0 && ++m2 == 0 && ++m1 == 0)
144 1.1 briggs m0++;
145 1.1 briggs #endif
146 1.1 briggs fp->fp_mant[0] = m0;
147 1.1 briggs fp->fp_mant[1] = m1;
148 1.1 briggs fp->fp_mant[2] = m2;
149 1.1 briggs fp->fp_mant[3] = m3;
150 1.1 briggs return (1);
151 1.1 briggs
152 1.1 briggs rounddown:
153 1.1 briggs fp->fp_mant[0] = m0;
154 1.1 briggs fp->fp_mant[1] = m1;
155 1.1 briggs fp->fp_mant[2] = m2;
156 1.1 briggs fp->fp_mant[3] = m3;
157 1.1 briggs return (0);
158 1.1 briggs }
159 1.1 briggs
160 1.1 briggs /*
161 1.1 briggs * For overflow: return true if overflow is to go to +/-Inf, according
162 1.1 briggs * to the sign of the overflowing result. If false, overflow is to go
163 1.1 briggs * to the largest magnitude value instead.
164 1.1 briggs */
165 1.1 briggs static int
166 1.1 briggs toinf(struct fpemu *fe, int sign)
167 1.1 briggs {
168 1.1 briggs int inf;
169 1.1 briggs
170 1.1 briggs /* look at rounding direction */
171 1.1 briggs switch (fe->fe_fpcr & FPCR_ROUND) {
172 1.1 briggs
173 1.1 briggs default:
174 1.1 briggs case FPCR_NEAR: /* the nearest value is always Inf */
175 1.1 briggs inf = 1;
176 1.1 briggs break;
177 1.1 briggs
178 1.1 briggs case FPCR_ZERO: /* toward 0 => never towards Inf */
179 1.1 briggs inf = 0;
180 1.1 briggs break;
181 1.1 briggs
182 1.1 briggs case FPCR_PINF: /* toward +Inf iff positive */
183 1.1 briggs inf = (sign == 0);
184 1.1 briggs break;
185 1.1 briggs
186 1.1 briggs case FPCR_MINF: /* toward -Inf iff negative */
187 1.1 briggs inf = sign;
188 1.1 briggs break;
189 1.1 briggs }
190 1.1 briggs return (inf);
191 1.1 briggs }
192 1.1 briggs
193 1.1 briggs /*
194 1.1 briggs * fpn -> int (int value returned as return value).
195 1.1 briggs *
196 1.1 briggs * N.B.: this conversion always rounds towards zero (this is a peculiarity
197 1.1 briggs * of the SPARC instruction set).
198 1.1 briggs */
199 1.1 briggs static u_int
200 1.1 briggs fpu_ftoi(fe, fp)
201 1.1 briggs struct fpemu *fe;
202 1.1 briggs register struct fpn *fp;
203 1.1 briggs {
204 1.1 briggs register u_int i;
205 1.1 briggs register int sign, exp;
206 1.1 briggs
207 1.1 briggs sign = fp->fp_sign;
208 1.1 briggs switch (fp->fp_class) {
209 1.1 briggs
210 1.1 briggs case FPC_ZERO:
211 1.1 briggs return (0);
212 1.1 briggs
213 1.1 briggs case FPC_NUM:
214 1.1 briggs /*
215 1.1 briggs * If exp >= 2^32, overflow. Otherwise shift value right
216 1.1 briggs * into last mantissa word (this will not exceed 0xffffffff),
217 1.1 briggs * shifting any guard and round bits out into the sticky
218 1.1 briggs * bit. Then ``round'' towards zero, i.e., just set an
219 1.1 briggs * inexact exception if sticky is set (see round()).
220 1.1 briggs * If the result is > 0x80000000, or is positive and equals
221 1.1 briggs * 0x80000000, overflow; otherwise the last fraction word
222 1.1 briggs * is the result.
223 1.1 briggs */
224 1.1 briggs if ((exp = fp->fp_exp) >= 32)
225 1.1 briggs break;
226 1.1 briggs /* NB: the following includes exp < 0 cases */
227 1.1 briggs if (fpu_shr(fp, FP_NMANT - 1 - FP_NG - exp) != 0)
228 1.1 briggs /* m68881/2 do not underflow when
229 1.1 briggs converting to integer */;
230 1.1 briggs round(fe, fp);
231 1.1 briggs i = fp->fp_mant[3];
232 1.1 briggs if (i >= ((u_int)0x80000000 + sign))
233 1.1 briggs break;
234 1.1 briggs return (sign ? -i : i);
235 1.1 briggs
236 1.1 briggs default: /* Inf, qNaN, sNaN */
237 1.1 briggs break;
238 1.1 briggs }
239 1.1 briggs /* overflow: replace any inexact exception with invalid */
240 1.1 briggs fe->fe_fpsr = (fe->fe_fpsr & ~FPSR_INEX2) | FPSR_OPERR;
241 1.1 briggs return (0x7fffffff + sign);
242 1.1 briggs }
243 1.1 briggs
244 1.1 briggs /*
245 1.1 briggs * fpn -> single (32 bit single returned as return value).
246 1.1 briggs * We assume <= 29 bits in a single-precision fraction (1.f part).
247 1.1 briggs */
248 1.1 briggs static u_int
249 1.1 briggs fpu_ftos(fe, fp)
250 1.1 briggs struct fpemu *fe;
251 1.1 briggs register struct fpn *fp;
252 1.1 briggs {
253 1.1 briggs register u_int sign = fp->fp_sign << 31;
254 1.1 briggs register int exp;
255 1.1 briggs
256 1.1 briggs #define SNG_EXP(e) ((e) << SNG_FRACBITS) /* makes e an exponent */
257 1.1 briggs #define SNG_MASK (SNG_EXP(1) - 1) /* mask for fraction */
258 1.1 briggs
259 1.1 briggs /* Take care of non-numbers first. */
260 1.1 briggs if (ISNAN(fp)) {
261 1.1 briggs /*
262 1.1 briggs * Preserve upper bits of NaN, per SPARC V8 appendix N.
263 1.1 briggs * Note that fp->fp_mant[0] has the quiet bit set,
264 1.1 briggs * even if it is classified as a signalling NaN.
265 1.1 briggs */
266 1.1 briggs (void) fpu_shr(fp, FP_NMANT - 1 - SNG_FRACBITS);
267 1.1 briggs exp = SNG_EXP_INFNAN;
268 1.1 briggs goto done;
269 1.1 briggs }
270 1.1 briggs if (ISINF(fp))
271 1.1 briggs return (sign | SNG_EXP(SNG_EXP_INFNAN));
272 1.1 briggs if (ISZERO(fp))
273 1.1 briggs return (sign);
274 1.1 briggs
275 1.1 briggs /*
276 1.1 briggs * Normals (including subnormals). Drop all the fraction bits
277 1.1 briggs * (including the explicit ``implied'' 1 bit) down into the
278 1.1 briggs * single-precision range. If the number is subnormal, move
279 1.1 briggs * the ``implied'' 1 into the explicit range as well, and shift
280 1.1 briggs * right to introduce leading zeroes. Rounding then acts
281 1.1 briggs * differently for normals and subnormals: the largest subnormal
282 1.1 briggs * may round to the smallest normal (1.0 x 2^minexp), or may
283 1.1 briggs * remain subnormal. In the latter case, signal an underflow
284 1.1 briggs * if the result was inexact or if underflow traps are enabled.
285 1.1 briggs *
286 1.1 briggs * Rounding a normal, on the other hand, always produces another
287 1.1 briggs * normal (although either way the result might be too big for
288 1.1 briggs * single precision, and cause an overflow). If rounding a
289 1.1 briggs * normal produces 2.0 in the fraction, we need not adjust that
290 1.1 briggs * fraction at all, since both 1.0 and 2.0 are zero under the
291 1.1 briggs * fraction mask.
292 1.1 briggs *
293 1.1 briggs * Note that the guard and round bits vanish from the number after
294 1.1 briggs * rounding.
295 1.1 briggs */
296 1.1 briggs if ((exp = fp->fp_exp + SNG_EXP_BIAS) <= 0) { /* subnormal */
297 1.1 briggs /* -NG for g,r; -SNG_FRACBITS-exp for fraction */
298 1.1 briggs (void) fpu_shr(fp, FP_NMANT - FP_NG - SNG_FRACBITS - exp);
299 1.1 briggs if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(1))
300 1.1 briggs return (sign | SNG_EXP(1) | 0);
301 1.1 briggs if (fe->fe_fpsr & FPSR_INEX2)
302 1.1 briggs /* mc68881/2 don't underflow when converting */;
303 1.1 briggs return (sign | SNG_EXP(0) | fp->fp_mant[3]);
304 1.1 briggs }
305 1.1 briggs /* -FP_NG for g,r; -1 for implied 1; -SNG_FRACBITS for fraction */
306 1.1 briggs (void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - SNG_FRACBITS);
307 1.1 briggs #ifdef DIAGNOSTIC
308 1.1 briggs if ((fp->fp_mant[3] & SNG_EXP(1 << FP_NG)) == 0)
309 1.1 briggs panic("fpu_ftos");
310 1.1 briggs #endif
311 1.1 briggs if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(2))
312 1.1 briggs exp++;
313 1.1 briggs if (exp >= SNG_EXP_INFNAN) {
314 1.1 briggs /* overflow to inf or to max single */
315 1.1 briggs fe->fe_fpsr |= FPSR_OPERR | FPSR_INEX2;
316 1.1 briggs if (toinf(fe, sign))
317 1.1 briggs return (sign | SNG_EXP(SNG_EXP_INFNAN));
318 1.1 briggs return (sign | SNG_EXP(SNG_EXP_INFNAN - 1) | SNG_MASK);
319 1.1 briggs }
320 1.1 briggs done:
321 1.1 briggs /* phew, made it */
322 1.1 briggs return (sign | SNG_EXP(exp) | (fp->fp_mant[3] & SNG_MASK));
323 1.1 briggs }
324 1.1 briggs
325 1.1 briggs /*
326 1.1 briggs * fpn -> double (32 bit high-order result returned; 32-bit low order result
327 1.1 briggs * left in res[1]). Assumes <= 61 bits in double precision fraction.
328 1.1 briggs *
329 1.1 briggs * This code mimics fpu_ftos; see it for comments.
330 1.1 briggs */
331 1.1 briggs static u_int
332 1.1 briggs fpu_ftod(fe, fp, res)
333 1.1 briggs struct fpemu *fe;
334 1.1 briggs register struct fpn *fp;
335 1.1 briggs u_int *res;
336 1.1 briggs {
337 1.1 briggs register u_int sign = fp->fp_sign << 31;
338 1.1 briggs register int exp;
339 1.1 briggs
340 1.1 briggs #define DBL_EXP(e) ((e) << (DBL_FRACBITS & 31))
341 1.1 briggs #define DBL_MASK (DBL_EXP(1) - 1)
342 1.1 briggs
343 1.1 briggs if (ISNAN(fp)) {
344 1.1 briggs (void) fpu_shr(fp, FP_NMANT - 1 - DBL_FRACBITS);
345 1.1 briggs exp = DBL_EXP_INFNAN;
346 1.1 briggs goto done;
347 1.1 briggs }
348 1.1 briggs if (ISINF(fp)) {
349 1.1 briggs sign |= DBL_EXP(DBL_EXP_INFNAN);
350 1.1 briggs res[1] = 0;
351 1.1 briggs return (sign);
352 1.1 briggs }
353 1.1 briggs if (ISZERO(fp)) {
354 1.1 briggs res[1] = 0;
355 1.1 briggs return (sign);
356 1.1 briggs }
357 1.1 briggs
358 1.1 briggs if ((exp = fp->fp_exp + DBL_EXP_BIAS) <= 0) {
359 1.1 briggs (void) fpu_shr(fp, FP_NMANT - FP_NG - DBL_FRACBITS - exp);
360 1.1 briggs if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(1)) {
361 1.1 briggs res[1] = 0;
362 1.1 briggs return (sign | DBL_EXP(1) | 0);
363 1.1 briggs }
364 1.1 briggs if (fe->fe_fpsr & FPSR_INEX2)
365 1.1 briggs /* mc68881/2 don't underflow when converting */;
366 1.1 briggs exp = 0;
367 1.1 briggs goto done;
368 1.1 briggs }
369 1.1 briggs (void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - DBL_FRACBITS);
370 1.1 briggs if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(2))
371 1.1 briggs exp++;
372 1.1 briggs if (exp >= DBL_EXP_INFNAN) {
373 1.1 briggs fe->fe_fpsr |= FPSR_OPERR | FPSR_INEX2;
374 1.1 briggs if (toinf(fe, sign)) {
375 1.1 briggs res[1] = 0;
376 1.1 briggs return (sign | DBL_EXP(DBL_EXP_INFNAN) | 0);
377 1.1 briggs }
378 1.1 briggs res[1] = ~0;
379 1.1 briggs return (sign | DBL_EXP(DBL_EXP_INFNAN) | DBL_MASK);
380 1.1 briggs }
381 1.1 briggs done:
382 1.1 briggs res[1] = fp->fp_mant[3];
383 1.1 briggs return (sign | DBL_EXP(exp) | (fp->fp_mant[2] & DBL_MASK));
384 1.1 briggs }
385 1.1 briggs
386 1.1 briggs /*
387 1.1 briggs * fpn -> 68k extended (32 bit high-order result returned; two 32-bit low
388 1.1 briggs * order result left in res[1] & res[2]). Assumes == 64 bits in extended
389 1.1 briggs * precision fraction.
390 1.1 briggs *
391 1.1 briggs * This code mimics fpu_ftos; see it for comments.
392 1.1 briggs */
393 1.1 briggs static u_int
394 1.1 briggs fpu_ftox(fe, fp, res)
395 1.1 briggs struct fpemu *fe;
396 1.1 briggs register struct fpn *fp;
397 1.1 briggs u_int *res;
398 1.1 briggs {
399 1.1 briggs register u_int sign = fp->fp_sign << 31;
400 1.1 briggs register int exp;
401 1.1 briggs
402 1.1 briggs #define EXT_EXP(e) ((e) << 16)
403 1.1 briggs #define EXT_MASK (EXT_EXP(1) - 1)
404 1.1 briggs
405 1.1 briggs if (ISNAN(fp)) {
406 1.1 briggs (void) fpu_shr(fp, FP_NMANT - 1 - EXT_FRACBITS);
407 1.1 briggs exp = EXT_EXP_INFNAN;
408 1.1 briggs goto done;
409 1.1 briggs }
410 1.1 briggs if (ISINF(fp)) {
411 1.1 briggs sign |= EXT_EXP(EXT_EXP_INFNAN);
412 1.1 briggs res[1] = res[2] = 0;
413 1.1 briggs return (sign);
414 1.1 briggs }
415 1.1 briggs if (ISZERO(fp)) {
416 1.1 briggs res[1] = res[2] = 0;
417 1.1 briggs return (sign);
418 1.1 briggs }
419 1.1 briggs
420 1.1 briggs if ((exp = fp->fp_exp + EXT_EXP_BIAS) <= 0) {
421 1.1 briggs /* I'm not sure about this <=... exp==0 doesn't mean
422 1.1 briggs it's a denormal in extended format */
423 1.1 briggs (void) fpu_shr(fp, FP_NMANT - FP_NG - EXT_FRACBITS - exp);
424 1.1 briggs if (round(fe, fp) && fp->fp_mant[2] == EXT_EXP(1)) {
425 1.1 briggs res[1] = res[2] = 0;
426 1.1 briggs return (sign | EXT_EXP(1) | 0);
427 1.1 briggs }
428 1.1 briggs if (fe->fe_fpsr & FPSR_INEX2)
429 1.1 briggs /* mc68881/2 don't underflow */;
430 1.1 briggs exp = 0;
431 1.1 briggs goto done;
432 1.1 briggs }
433 1.1 briggs (void) fpu_shr(fp, FP_NMANT - FP_NG - EXT_FRACBITS);
434 1.1 briggs if (round(fe, fp) && fp->fp_mant[2] == EXT_EXP(2))
435 1.1 briggs exp++;
436 1.1 briggs if (exp >= EXT_EXP_INFNAN) {
437 1.1 briggs fe->fe_fpsr |= FPSR_OPERR | FPSR_INEX2;
438 1.1 briggs if (toinf(fe, sign)) {
439 1.1 briggs res[1] = res[2] = 0;
440 1.1 briggs return (sign | EXT_EXP(EXT_EXP_INFNAN) | 0);
441 1.1 briggs }
442 1.1 briggs res[1] = res[2] = ~0;
443 1.1 briggs return (sign | EXT_EXP(EXT_EXP_INFNAN) | EXT_MASK);
444 1.1 briggs }
445 1.1 briggs done:
446 1.1 briggs res[1] = fp->fp_mant[2];
447 1.1 briggs res[2] = fp->fp_mant[3];
448 1.1 briggs return (sign | EXT_EXP(exp));
449 1.1 briggs }
450 1.1 briggs
451 1.1 briggs /*
452 1.1 briggs * Implode an fpn, writing the result into the given space.
453 1.1 briggs */
454 1.1 briggs void
455 1.1 briggs fpu_implode(fe, fp, type, space)
456 1.1 briggs struct fpemu *fe;
457 1.1 briggs register struct fpn *fp;
458 1.1 briggs int type;
459 1.1 briggs register u_int *space;
460 1.1 briggs {
461 1.1 briggs fe->fe_fpsr &= ~FPSR_EXCP;
462 1.1 briggs
463 1.1 briggs switch (type) {
464 1.1 briggs case FTYPE_LNG:
465 1.1 briggs space[0] = fpu_ftoi(fe, fp);
466 1.1 briggs break;
467 1.1 briggs
468 1.1 briggs case FTYPE_SNG:
469 1.1 briggs space[0] = fpu_ftos(fe, fp);
470 1.1 briggs break;
471 1.1 briggs
472 1.1 briggs case FTYPE_DBL:
473 1.1 briggs space[0] = fpu_ftod(fe, fp, space);
474 1.1 briggs break;
475 1.1 briggs
476 1.1 briggs case FTYPE_EXT:
477 1.1 briggs /* funky rounding precision options ?? */
478 1.1 briggs space[0] = fpu_ftox(fe, fp, space);
479 1.1 briggs break;
480 1.1 briggs
481 1.1 briggs default:
482 1.1 briggs panic("fpu_implode");
483 1.1 briggs }
484 1.1 briggs }
485