Home | History | Annotate | Line # | Download | only in fpe
fpu_implode.c revision 1.4
      1  1.4  briggs /*	$NetBSD: fpu_implode.c,v 1.4 1999/05/30 20:17:48 briggs Exp $ */
      2  1.1  briggs 
      3  1.1  briggs /*
      4  1.1  briggs  * Copyright (c) 1992, 1993
      5  1.1  briggs  *	The Regents of the University of California.  All rights reserved.
      6  1.1  briggs  *
      7  1.1  briggs  * This software was developed by the Computer Systems Engineering group
      8  1.1  briggs  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
      9  1.1  briggs  * contributed to Berkeley.
     10  1.1  briggs  *
     11  1.1  briggs  * All advertising materials mentioning features or use of this software
     12  1.1  briggs  * must display the following acknowledgement:
     13  1.1  briggs  *	This product includes software developed by the University of
     14  1.1  briggs  *	California, Lawrence Berkeley Laboratory.
     15  1.1  briggs  *
     16  1.1  briggs  * Redistribution and use in source and binary forms, with or without
     17  1.1  briggs  * modification, are permitted provided that the following conditions
     18  1.1  briggs  * are met:
     19  1.1  briggs  * 1. Redistributions of source code must retain the above copyright
     20  1.1  briggs  *    notice, this list of conditions and the following disclaimer.
     21  1.1  briggs  * 2. Redistributions in binary form must reproduce the above copyright
     22  1.1  briggs  *    notice, this list of conditions and the following disclaimer in the
     23  1.1  briggs  *    documentation and/or other materials provided with the distribution.
     24  1.1  briggs  * 3. All advertising materials mentioning features or use of this software
     25  1.1  briggs  *    must display the following acknowledgement:
     26  1.1  briggs  *	This product includes software developed by the University of
     27  1.1  briggs  *	California, Berkeley and its contributors.
     28  1.1  briggs  * 4. Neither the name of the University nor the names of its contributors
     29  1.1  briggs  *    may be used to endorse or promote products derived from this software
     30  1.1  briggs  *    without specific prior written permission.
     31  1.1  briggs  *
     32  1.1  briggs  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     33  1.1  briggs  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     34  1.1  briggs  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     35  1.1  briggs  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     36  1.1  briggs  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     37  1.1  briggs  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     38  1.1  briggs  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     39  1.1  briggs  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     40  1.1  briggs  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     41  1.1  briggs  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     42  1.1  briggs  * SUCH DAMAGE.
     43  1.1  briggs  *
     44  1.1  briggs  *	@(#)fpu_implode.c	8.1 (Berkeley) 6/11/93
     45  1.1  briggs  */
     46  1.1  briggs 
     47  1.1  briggs /*
     48  1.1  briggs  * FPU subroutines: `implode' internal format numbers into the machine's
     49  1.1  briggs  * `packed binary' format.
     50  1.1  briggs  */
     51  1.1  briggs 
     52  1.1  briggs #include <sys/types.h>
     53  1.2  briggs #include <sys/systm.h>
     54  1.1  briggs 
     55  1.1  briggs #include "ieee.h"
     56  1.1  briggs #include <machine/reg.h>
     57  1.1  briggs 
     58  1.1  briggs #include "fpu_emulate.h"
     59  1.1  briggs #include "fpu_arith.h"
     60  1.1  briggs 
     61  1.1  briggs /* Conversion from internal format -- note asymmetry. */
     62  1.1  briggs static u_int	fpu_ftoi __P((struct fpemu *fe, struct fpn *fp));
     63  1.1  briggs static u_int	fpu_ftos __P((struct fpemu *fe, struct fpn *fp));
     64  1.1  briggs static u_int	fpu_ftod __P((struct fpemu *fe, struct fpn *fp, u_int *));
     65  1.1  briggs static u_int	fpu_ftox __P((struct fpemu *fe, struct fpn *fp, u_int *));
     66  1.1  briggs 
     67  1.1  briggs /*
     68  1.1  briggs  * Round a number (algorithm from Motorola MC68882 manual, modified for
     69  1.1  briggs  * our internal format).  Set inexact exception if rounding is required.
     70  1.1  briggs  * Return true iff we rounded up.
     71  1.1  briggs  *
     72  1.1  briggs  * After rounding, we discard the guard and round bits by shifting right
     73  1.1  briggs  * 2 bits (a la fpu_shr(), but we do not bother with fp->fp_sticky).
     74  1.1  briggs  * This saves effort later.
     75  1.1  briggs  *
     76  1.1  briggs  * Note that we may leave the value 2.0 in fp->fp_mant; it is the caller's
     77  1.1  briggs  * responsibility to fix this if necessary.
     78  1.1  briggs  */
     79  1.1  briggs int
     80  1.1  briggs round(register struct fpemu *fe, register struct fpn *fp)
     81  1.1  briggs {
     82  1.4  briggs 	register u_int m0, m1, m2;
     83  1.2  briggs 	register int gr, s;
     84  1.1  briggs 
     85  1.1  briggs 	m0 = fp->fp_mant[0];
     86  1.1  briggs 	m1 = fp->fp_mant[1];
     87  1.1  briggs 	m2 = fp->fp_mant[2];
     88  1.4  briggs 	gr = m2 & 3;
     89  1.1  briggs 	s = fp->fp_sticky;
     90  1.1  briggs 
     91  1.1  briggs 	/* mant >>= FP_NG */
     92  1.1  briggs 	m2 = (m2 >> FP_NG) | (m1 << (32 - FP_NG));
     93  1.1  briggs 	m1 = (m1 >> FP_NG) | (m0 << (32 - FP_NG));
     94  1.1  briggs 	m0 >>= FP_NG;
     95  1.1  briggs 
     96  1.1  briggs 	if ((gr | s) == 0)	/* result is exact: no rounding needed */
     97  1.1  briggs 		goto rounddown;
     98  1.1  briggs 
     99  1.1  briggs 	fe->fe_fpsr |= FPSR_INEX2;	/* inexact */
    100  1.1  briggs 
    101  1.1  briggs 	/* Go to rounddown to round down; break to round up. */
    102  1.1  briggs 	switch (fe->fe_fpcr & FPCR_ROUND) {
    103  1.1  briggs 
    104  1.1  briggs 	case FPCR_NEAR:
    105  1.1  briggs 	default:
    106  1.1  briggs 		/*
    107  1.1  briggs 		 * Round only if guard is set (gr & 2).  If guard is set,
    108  1.1  briggs 		 * but round & sticky both clear, then we want to round
    109  1.1  briggs 		 * but have a tie, so round to even, i.e., add 1 iff odd.
    110  1.1  briggs 		 */
    111  1.1  briggs 		if ((gr & 2) == 0)
    112  1.1  briggs 			goto rounddown;
    113  1.4  briggs 		if ((gr & 1) || fp->fp_sticky || (m2 & 1))
    114  1.1  briggs 			break;
    115  1.1  briggs 		goto rounddown;
    116  1.1  briggs 
    117  1.1  briggs 	case FPCR_ZERO:
    118  1.1  briggs 		/* Round towards zero, i.e., down. */
    119  1.1  briggs 		goto rounddown;
    120  1.1  briggs 
    121  1.1  briggs 	case FPCR_MINF:
    122  1.1  briggs 		/* Round towards -Inf: up if negative, down if positive. */
    123  1.1  briggs 		if (fp->fp_sign)
    124  1.1  briggs 			break;
    125  1.1  briggs 		goto rounddown;
    126  1.1  briggs 
    127  1.1  briggs 	case FPCR_PINF:
    128  1.1  briggs 		/* Round towards +Inf: up if positive, down otherwise. */
    129  1.1  briggs 		if (!fp->fp_sign)
    130  1.1  briggs 			break;
    131  1.1  briggs 		goto rounddown;
    132  1.1  briggs 	}
    133  1.1  briggs 
    134  1.1  briggs 	/* Bump low bit of mantissa, with carry. */
    135  1.4  briggs 	if (++m2 == 0 && ++m1 == 0)
    136  1.1  briggs 		m0++;
    137  1.4  briggs 	fp->fp_sticky = 0;
    138  1.1  briggs 	fp->fp_mant[0] = m0;
    139  1.1  briggs 	fp->fp_mant[1] = m1;
    140  1.1  briggs 	fp->fp_mant[2] = m2;
    141  1.1  briggs 	return (1);
    142  1.1  briggs 
    143  1.1  briggs rounddown:
    144  1.4  briggs 	fp->fp_sticky = 0;
    145  1.1  briggs 	fp->fp_mant[0] = m0;
    146  1.1  briggs 	fp->fp_mant[1] = m1;
    147  1.1  briggs 	fp->fp_mant[2] = m2;
    148  1.1  briggs 	return (0);
    149  1.1  briggs }
    150  1.1  briggs 
    151  1.1  briggs /*
    152  1.1  briggs  * For overflow: return true if overflow is to go to +/-Inf, according
    153  1.1  briggs  * to the sign of the overflowing result.  If false, overflow is to go
    154  1.1  briggs  * to the largest magnitude value instead.
    155  1.1  briggs  */
    156  1.1  briggs static int
    157  1.1  briggs toinf(struct fpemu *fe, int sign)
    158  1.1  briggs {
    159  1.1  briggs 	int inf;
    160  1.1  briggs 
    161  1.1  briggs 	/* look at rounding direction */
    162  1.1  briggs 	switch (fe->fe_fpcr & FPCR_ROUND) {
    163  1.1  briggs 
    164  1.1  briggs 	default:
    165  1.1  briggs 	case FPCR_NEAR:		/* the nearest value is always Inf */
    166  1.1  briggs 		inf = 1;
    167  1.1  briggs 		break;
    168  1.1  briggs 
    169  1.1  briggs 	case FPCR_ZERO:		/* toward 0 => never towards Inf */
    170  1.1  briggs 		inf = 0;
    171  1.1  briggs 		break;
    172  1.1  briggs 
    173  1.1  briggs 	case FPCR_PINF:		/* toward +Inf iff positive */
    174  1.1  briggs 		inf = (sign == 0);
    175  1.1  briggs 		break;
    176  1.1  briggs 
    177  1.1  briggs 	case FPCR_MINF:		/* toward -Inf iff negative */
    178  1.1  briggs 		inf = sign;
    179  1.1  briggs 		break;
    180  1.1  briggs 	}
    181  1.1  briggs 	return (inf);
    182  1.1  briggs }
    183  1.1  briggs 
    184  1.1  briggs /*
    185  1.1  briggs  * fpn -> int (int value returned as return value).
    186  1.1  briggs  *
    187  1.1  briggs  * N.B.: this conversion always rounds towards zero (this is a peculiarity
    188  1.1  briggs  * of the SPARC instruction set).
    189  1.1  briggs  */
    190  1.1  briggs static u_int
    191  1.1  briggs fpu_ftoi(fe, fp)
    192  1.1  briggs 	struct fpemu *fe;
    193  1.1  briggs 	register struct fpn *fp;
    194  1.1  briggs {
    195  1.1  briggs 	register u_int i;
    196  1.1  briggs 	register int sign, exp;
    197  1.1  briggs 
    198  1.1  briggs 	sign = fp->fp_sign;
    199  1.1  briggs 	switch (fp->fp_class) {
    200  1.1  briggs 
    201  1.1  briggs 	case FPC_ZERO:
    202  1.1  briggs 		return (0);
    203  1.1  briggs 
    204  1.1  briggs 	case FPC_NUM:
    205  1.1  briggs 		/*
    206  1.1  briggs 		 * If exp >= 2^32, overflow.  Otherwise shift value right
    207  1.1  briggs 		 * into last mantissa word (this will not exceed 0xffffffff),
    208  1.1  briggs 		 * shifting any guard and round bits out into the sticky
    209  1.1  briggs 		 * bit.  Then ``round'' towards zero, i.e., just set an
    210  1.1  briggs 		 * inexact exception if sticky is set (see round()).
    211  1.1  briggs 		 * If the result is > 0x80000000, or is positive and equals
    212  1.1  briggs 		 * 0x80000000, overflow; otherwise the last fraction word
    213  1.1  briggs 		 * is the result.
    214  1.1  briggs 		 */
    215  1.1  briggs 		if ((exp = fp->fp_exp) >= 32)
    216  1.1  briggs 			break;
    217  1.1  briggs 		/* NB: the following includes exp < 0 cases */
    218  1.1  briggs 		if (fpu_shr(fp, FP_NMANT - 1 - FP_NG - exp) != 0)
    219  1.1  briggs 			/* m68881/2 do not underflow when
    220  1.1  briggs 			   converting to integer */;
    221  1.1  briggs 		round(fe, fp);
    222  1.4  briggs 		i = fp->fp_mant[2];
    223  1.1  briggs 		if (i >= ((u_int)0x80000000 + sign))
    224  1.1  briggs 			break;
    225  1.1  briggs 		return (sign ? -i : i);
    226  1.1  briggs 
    227  1.1  briggs 	default:		/* Inf, qNaN, sNaN */
    228  1.1  briggs 		break;
    229  1.1  briggs 	}
    230  1.1  briggs 	/* overflow: replace any inexact exception with invalid */
    231  1.1  briggs 	fe->fe_fpsr = (fe->fe_fpsr & ~FPSR_INEX2) | FPSR_OPERR;
    232  1.1  briggs 	return (0x7fffffff + sign);
    233  1.1  briggs }
    234  1.1  briggs 
    235  1.1  briggs /*
    236  1.1  briggs  * fpn -> single (32 bit single returned as return value).
    237  1.1  briggs  * We assume <= 29 bits in a single-precision fraction (1.f part).
    238  1.1  briggs  */
    239  1.1  briggs static u_int
    240  1.1  briggs fpu_ftos(fe, fp)
    241  1.1  briggs 	struct fpemu *fe;
    242  1.1  briggs 	register struct fpn *fp;
    243  1.1  briggs {
    244  1.1  briggs 	register u_int sign = fp->fp_sign << 31;
    245  1.1  briggs 	register int exp;
    246  1.1  briggs 
    247  1.1  briggs #define	SNG_EXP(e)	((e) << SNG_FRACBITS)	/* makes e an exponent */
    248  1.1  briggs #define	SNG_MASK	(SNG_EXP(1) - 1)	/* mask for fraction */
    249  1.1  briggs 
    250  1.1  briggs 	/* Take care of non-numbers first. */
    251  1.1  briggs 	if (ISNAN(fp)) {
    252  1.1  briggs 		/*
    253  1.1  briggs 		 * Preserve upper bits of NaN, per SPARC V8 appendix N.
    254  1.1  briggs 		 * Note that fp->fp_mant[0] has the quiet bit set,
    255  1.1  briggs 		 * even if it is classified as a signalling NaN.
    256  1.1  briggs 		 */
    257  1.1  briggs 		(void) fpu_shr(fp, FP_NMANT - 1 - SNG_FRACBITS);
    258  1.1  briggs 		exp = SNG_EXP_INFNAN;
    259  1.1  briggs 		goto done;
    260  1.1  briggs 	}
    261  1.1  briggs 	if (ISINF(fp))
    262  1.1  briggs 		return (sign | SNG_EXP(SNG_EXP_INFNAN));
    263  1.1  briggs 	if (ISZERO(fp))
    264  1.1  briggs 		return (sign);
    265  1.1  briggs 
    266  1.1  briggs 	/*
    267  1.1  briggs 	 * Normals (including subnormals).  Drop all the fraction bits
    268  1.1  briggs 	 * (including the explicit ``implied'' 1 bit) down into the
    269  1.1  briggs 	 * single-precision range.  If the number is subnormal, move
    270  1.1  briggs 	 * the ``implied'' 1 into the explicit range as well, and shift
    271  1.1  briggs 	 * right to introduce leading zeroes.  Rounding then acts
    272  1.1  briggs 	 * differently for normals and subnormals: the largest subnormal
    273  1.1  briggs 	 * may round to the smallest normal (1.0 x 2^minexp), or may
    274  1.1  briggs 	 * remain subnormal.  In the latter case, signal an underflow
    275  1.1  briggs 	 * if the result was inexact or if underflow traps are enabled.
    276  1.1  briggs 	 *
    277  1.1  briggs 	 * Rounding a normal, on the other hand, always produces another
    278  1.1  briggs 	 * normal (although either way the result might be too big for
    279  1.1  briggs 	 * single precision, and cause an overflow).  If rounding a
    280  1.1  briggs 	 * normal produces 2.0 in the fraction, we need not adjust that
    281  1.1  briggs 	 * fraction at all, since both 1.0 and 2.0 are zero under the
    282  1.1  briggs 	 * fraction mask.
    283  1.1  briggs 	 *
    284  1.1  briggs 	 * Note that the guard and round bits vanish from the number after
    285  1.1  briggs 	 * rounding.
    286  1.1  briggs 	 */
    287  1.1  briggs 	if ((exp = fp->fp_exp + SNG_EXP_BIAS) <= 0) {	/* subnormal */
    288  1.3      is 		fe->fe_fpsr |= FPSR_UNFL;
    289  1.1  briggs 		/* -NG for g,r; -SNG_FRACBITS-exp for fraction */
    290  1.1  briggs 		(void) fpu_shr(fp, FP_NMANT - FP_NG - SNG_FRACBITS - exp);
    291  1.4  briggs 		if (round(fe, fp) && fp->fp_mant[2] == SNG_EXP(1))
    292  1.1  briggs 			return (sign | SNG_EXP(1) | 0);
    293  1.1  briggs 		if (fe->fe_fpsr & FPSR_INEX2)
    294  1.3      is 			fe->fe_fpsr |= FPSR_UNFL
    295  1.1  briggs 			/* mc68881/2 don't underflow when converting */;
    296  1.4  briggs 		return (sign | SNG_EXP(0) | fp->fp_mant[2]);
    297  1.1  briggs 	}
    298  1.1  briggs 	/* -FP_NG for g,r; -1 for implied 1; -SNG_FRACBITS for fraction */
    299  1.1  briggs 	(void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - SNG_FRACBITS);
    300  1.1  briggs #ifdef DIAGNOSTIC
    301  1.4  briggs 	if ((fp->fp_mant[2] & SNG_EXP(1 << FP_NG)) == 0)
    302  1.1  briggs 		panic("fpu_ftos");
    303  1.1  briggs #endif
    304  1.4  briggs 	if (round(fe, fp) && fp->fp_mant[2] == SNG_EXP(2))
    305  1.1  briggs 		exp++;
    306  1.1  briggs 	if (exp >= SNG_EXP_INFNAN) {
    307  1.1  briggs 		/* overflow to inf or to max single */
    308  1.3      is 		fe->fe_fpsr |= FPSR_OPERR | FPSR_INEX2 | FPSR_OVFL;
    309  1.1  briggs 		if (toinf(fe, sign))
    310  1.1  briggs 			return (sign | SNG_EXP(SNG_EXP_INFNAN));
    311  1.1  briggs 		return (sign | SNG_EXP(SNG_EXP_INFNAN - 1) | SNG_MASK);
    312  1.1  briggs 	}
    313  1.1  briggs done:
    314  1.1  briggs 	/* phew, made it */
    315  1.4  briggs 	return (sign | SNG_EXP(exp) | (fp->fp_mant[2] & SNG_MASK));
    316  1.1  briggs }
    317  1.1  briggs 
    318  1.1  briggs /*
    319  1.1  briggs  * fpn -> double (32 bit high-order result returned; 32-bit low order result
    320  1.1  briggs  * left in res[1]).  Assumes <= 61 bits in double precision fraction.
    321  1.1  briggs  *
    322  1.1  briggs  * This code mimics fpu_ftos; see it for comments.
    323  1.1  briggs  */
    324  1.1  briggs static u_int
    325  1.1  briggs fpu_ftod(fe, fp, res)
    326  1.1  briggs 	struct fpemu *fe;
    327  1.1  briggs 	register struct fpn *fp;
    328  1.1  briggs 	u_int *res;
    329  1.1  briggs {
    330  1.1  briggs 	register u_int sign = fp->fp_sign << 31;
    331  1.1  briggs 	register int exp;
    332  1.1  briggs 
    333  1.1  briggs #define	DBL_EXP(e)	((e) << (DBL_FRACBITS & 31))
    334  1.1  briggs #define	DBL_MASK	(DBL_EXP(1) - 1)
    335  1.1  briggs 
    336  1.1  briggs 	if (ISNAN(fp)) {
    337  1.1  briggs 		(void) fpu_shr(fp, FP_NMANT - 1 - DBL_FRACBITS);
    338  1.1  briggs 		exp = DBL_EXP_INFNAN;
    339  1.1  briggs 		goto done;
    340  1.1  briggs 	}
    341  1.1  briggs 	if (ISINF(fp)) {
    342  1.1  briggs 		sign |= DBL_EXP(DBL_EXP_INFNAN);
    343  1.1  briggs 		res[1] = 0;
    344  1.1  briggs 		return (sign);
    345  1.1  briggs 	}
    346  1.1  briggs 	if (ISZERO(fp)) {
    347  1.1  briggs 		res[1] = 0;
    348  1.1  briggs 		return (sign);
    349  1.1  briggs 	}
    350  1.1  briggs 
    351  1.1  briggs 	if ((exp = fp->fp_exp + DBL_EXP_BIAS) <= 0) {
    352  1.3      is 		fe->fe_fpsr |= FPSR_UNFL;
    353  1.1  briggs 		(void) fpu_shr(fp, FP_NMANT - FP_NG - DBL_FRACBITS - exp);
    354  1.4  briggs 		if (round(fe, fp) && fp->fp_mant[1] == DBL_EXP(1)) {
    355  1.1  briggs 			res[1] = 0;
    356  1.1  briggs 			return (sign | DBL_EXP(1) | 0);
    357  1.1  briggs 		}
    358  1.1  briggs 		if (fe->fe_fpsr & FPSR_INEX2)
    359  1.3      is                         fe->fe_fpsr |= FPSR_UNFL
    360  1.1  briggs 			/* mc68881/2 don't underflow when converting */;
    361  1.1  briggs 		exp = 0;
    362  1.1  briggs 		goto done;
    363  1.1  briggs 	}
    364  1.1  briggs 	(void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - DBL_FRACBITS);
    365  1.4  briggs 	if (round(fe, fp) && fp->fp_mant[1] == DBL_EXP(2))
    366  1.1  briggs 		exp++;
    367  1.1  briggs 	if (exp >= DBL_EXP_INFNAN) {
    368  1.3      is 		fe->fe_fpsr |= FPSR_OPERR | FPSR_INEX2 | FPSR_OVFL;
    369  1.1  briggs 		if (toinf(fe, sign)) {
    370  1.1  briggs 			res[1] = 0;
    371  1.1  briggs 			return (sign | DBL_EXP(DBL_EXP_INFNAN) | 0);
    372  1.1  briggs 		}
    373  1.1  briggs 		res[1] = ~0;
    374  1.1  briggs 		return (sign | DBL_EXP(DBL_EXP_INFNAN) | DBL_MASK);
    375  1.1  briggs 	}
    376  1.1  briggs done:
    377  1.4  briggs 	res[1] = fp->fp_mant[2];
    378  1.4  briggs 	return (sign | DBL_EXP(exp) | (fp->fp_mant[1] & DBL_MASK));
    379  1.1  briggs }
    380  1.1  briggs 
    381  1.1  briggs /*
    382  1.1  briggs  * fpn -> 68k extended (32 bit high-order result returned; two 32-bit low
    383  1.1  briggs  * order result left in res[1] & res[2]).  Assumes == 64 bits in extended
    384  1.1  briggs  * precision fraction.
    385  1.1  briggs  *
    386  1.1  briggs  * This code mimics fpu_ftos; see it for comments.
    387  1.1  briggs  */
    388  1.1  briggs static u_int
    389  1.1  briggs fpu_ftox(fe, fp, res)
    390  1.1  briggs 	struct fpemu *fe;
    391  1.1  briggs 	register struct fpn *fp;
    392  1.1  briggs 	u_int *res;
    393  1.1  briggs {
    394  1.1  briggs 	register u_int sign = fp->fp_sign << 31;
    395  1.1  briggs 	register int exp;
    396  1.1  briggs 
    397  1.1  briggs #define	EXT_EXP(e)	((e) << 16)
    398  1.4  briggs /*
    399  1.4  briggs  * on m68k extended prec, significand does not share the same long
    400  1.4  briggs  * word with exponent
    401  1.4  briggs  */
    402  1.4  briggs #define	EXT_MASK	0
    403  1.4  briggs #define EXT_EXPLICIT1	(1UL << (63 & 31))
    404  1.4  briggs #define EXT_EXPLICIT2	(1UL << (64 & 31))
    405  1.1  briggs 
    406  1.1  briggs 	if (ISNAN(fp)) {
    407  1.4  briggs 		(void) fpu_shr(fp, FP_NMANT - EXT_FRACBITS);
    408  1.1  briggs 		exp = EXT_EXP_INFNAN;
    409  1.1  briggs 		goto done;
    410  1.1  briggs 	}
    411  1.1  briggs 	if (ISINF(fp)) {
    412  1.1  briggs 		sign |= EXT_EXP(EXT_EXP_INFNAN);
    413  1.1  briggs 		res[1] = res[2] = 0;
    414  1.1  briggs 		return (sign);
    415  1.1  briggs 	}
    416  1.1  briggs 	if (ISZERO(fp)) {
    417  1.1  briggs 		res[1] = res[2] = 0;
    418  1.1  briggs 		return (sign);
    419  1.1  briggs 	}
    420  1.1  briggs 
    421  1.4  briggs 	if ((exp = fp->fp_exp + EXT_EXP_BIAS) < 0) {
    422  1.3      is 		fe->fe_fpsr |= FPSR_UNFL;
    423  1.1  briggs 		/* I'm not sure about this <=... exp==0 doesn't mean
    424  1.1  briggs 		   it's a denormal in extended format */
    425  1.1  briggs 		(void) fpu_shr(fp, FP_NMANT - FP_NG - EXT_FRACBITS - exp);
    426  1.4  briggs 		if (round(fe, fp) && fp->fp_mant[1] == EXT_EXPLICIT1) {
    427  1.1  briggs 			res[1] = res[2] = 0;
    428  1.1  briggs 			return (sign | EXT_EXP(1) | 0);
    429  1.1  briggs 		}
    430  1.1  briggs 		if (fe->fe_fpsr & FPSR_INEX2)
    431  1.3      is                         fe->fe_fpsr |= FPSR_UNFL
    432  1.1  briggs 			/* mc68881/2 don't underflow */;
    433  1.1  briggs 		exp = 0;
    434  1.1  briggs 		goto done;
    435  1.1  briggs 	}
    436  1.4  briggs #if (FP_NMANT - FP_NG - EXT_FRACBITS) > 0
    437  1.1  briggs 	(void) fpu_shr(fp, FP_NMANT - FP_NG - EXT_FRACBITS);
    438  1.4  briggs #endif
    439  1.4  briggs 	if (round(fe, fp) && fp->fp_mant[0] == EXT_EXPLICIT2)
    440  1.1  briggs 		exp++;
    441  1.1  briggs 	if (exp >= EXT_EXP_INFNAN) {
    442  1.3      is 		fe->fe_fpsr |= FPSR_OPERR | FPSR_INEX2 | FPSR_OVFL;
    443  1.1  briggs 		if (toinf(fe, sign)) {
    444  1.1  briggs 			res[1] = res[2] = 0;
    445  1.1  briggs 			return (sign | EXT_EXP(EXT_EXP_INFNAN) | 0);
    446  1.1  briggs 		}
    447  1.1  briggs 		res[1] = res[2] = ~0;
    448  1.1  briggs 		return (sign | EXT_EXP(EXT_EXP_INFNAN) | EXT_MASK);
    449  1.1  briggs 	}
    450  1.1  briggs done:
    451  1.4  briggs 	res[1] = fp->fp_mant[1];
    452  1.4  briggs 	res[2] = fp->fp_mant[2];
    453  1.1  briggs 	return (sign | EXT_EXP(exp));
    454  1.1  briggs }
    455  1.1  briggs 
    456  1.1  briggs /*
    457  1.1  briggs  * Implode an fpn, writing the result into the given space.
    458  1.1  briggs  */
    459  1.1  briggs void
    460  1.1  briggs fpu_implode(fe, fp, type, space)
    461  1.1  briggs 	struct fpemu *fe;
    462  1.1  briggs 	register struct fpn *fp;
    463  1.1  briggs 	int type;
    464  1.1  briggs 	register u_int *space;
    465  1.1  briggs {
    466  1.3      is 	/* XXX Dont delete exceptions set here: fe->fe_fpsr &= ~FPSR_EXCP; */
    467  1.1  briggs 
    468  1.1  briggs 	switch (type) {
    469  1.1  briggs 	case FTYPE_LNG:
    470  1.1  briggs 		space[0] = fpu_ftoi(fe, fp);
    471  1.1  briggs 		break;
    472  1.1  briggs 
    473  1.1  briggs 	case FTYPE_SNG:
    474  1.1  briggs 		space[0] = fpu_ftos(fe, fp);
    475  1.1  briggs 		break;
    476  1.1  briggs 
    477  1.1  briggs 	case FTYPE_DBL:
    478  1.1  briggs 		space[0] = fpu_ftod(fe, fp, space);
    479  1.1  briggs 		break;
    480  1.1  briggs 
    481  1.1  briggs 	case FTYPE_EXT:
    482  1.1  briggs 		/* funky rounding precision options ?? */
    483  1.1  briggs 		space[0] = fpu_ftox(fe, fp, space);
    484  1.1  briggs 		break;
    485  1.1  briggs 
    486  1.1  briggs 	default:
    487  1.1  briggs 		panic("fpu_implode");
    488  1.1  briggs 	}
    489  1.1  briggs }
    490