fpu_implode.c revision 1.1 1 /* $NetBSD: fpu_implode.c,v 1.1 1995/11/03 04:47:12 briggs Exp $ */
2
3 /*
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This software was developed by the Computer Systems Engineering group
8 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 * contributed to Berkeley.
10 *
11 * All advertising materials mentioning features or use of this software
12 * must display the following acknowledgement:
13 * This product includes software developed by the University of
14 * California, Lawrence Berkeley Laboratory.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 * 3. All advertising materials mentioning features or use of this software
25 * must display the following acknowledgement:
26 * This product includes software developed by the University of
27 * California, Berkeley and its contributors.
28 * 4. Neither the name of the University nor the names of its contributors
29 * may be used to endorse or promote products derived from this software
30 * without specific prior written permission.
31 *
32 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42 * SUCH DAMAGE.
43 *
44 * @(#)fpu_implode.c 8.1 (Berkeley) 6/11/93
45 */
46
47 /*
48 * FPU subroutines: `implode' internal format numbers into the machine's
49 * `packed binary' format.
50 */
51
52 #include <sys/types.h>
53
54 #include "ieee.h"
55 #include <machine/reg.h>
56
57 #include "fpu_emulate.h"
58 #include "fpu_arith.h"
59
60 /* Conversion from internal format -- note asymmetry. */
61 static u_int fpu_ftoi __P((struct fpemu *fe, struct fpn *fp));
62 static u_int fpu_ftos __P((struct fpemu *fe, struct fpn *fp));
63 static u_int fpu_ftod __P((struct fpemu *fe, struct fpn *fp, u_int *));
64 static u_int fpu_ftox __P((struct fpemu *fe, struct fpn *fp, u_int *));
65
66 /*
67 * Round a number (algorithm from Motorola MC68882 manual, modified for
68 * our internal format). Set inexact exception if rounding is required.
69 * Return true iff we rounded up.
70 *
71 * After rounding, we discard the guard and round bits by shifting right
72 * 2 bits (a la fpu_shr(), but we do not bother with fp->fp_sticky).
73 * This saves effort later.
74 *
75 * Note that we may leave the value 2.0 in fp->fp_mant; it is the caller's
76 * responsibility to fix this if necessary.
77 */
78 int
79 round(register struct fpemu *fe, register struct fpn *fp)
80 {
81 register u_int m0, m1, m2, m3;
82 register int gr, s, ret;
83
84 m0 = fp->fp_mant[0];
85 m1 = fp->fp_mant[1];
86 m2 = fp->fp_mant[2];
87 m3 = fp->fp_mant[3];
88 gr = m3 & 3;
89 s = fp->fp_sticky;
90
91 /* mant >>= FP_NG */
92 m3 = (m3 >> FP_NG) | (m2 << (32 - FP_NG));
93 m2 = (m2 >> FP_NG) | (m1 << (32 - FP_NG));
94 m1 = (m1 >> FP_NG) | (m0 << (32 - FP_NG));
95 m0 >>= FP_NG;
96
97 if ((gr | s) == 0) /* result is exact: no rounding needed */
98 goto rounddown;
99
100 fe->fe_fpsr |= FPSR_INEX2; /* inexact */
101
102 /* Go to rounddown to round down; break to round up. */
103 switch (fe->fe_fpcr & FPCR_ROUND) {
104
105 case FPCR_NEAR:
106 default:
107 /*
108 * Round only if guard is set (gr & 2). If guard is set,
109 * but round & sticky both clear, then we want to round
110 * but have a tie, so round to even, i.e., add 1 iff odd.
111 */
112 if ((gr & 2) == 0)
113 goto rounddown;
114 if ((gr & 1) || fp->fp_sticky || (m3 & 1))
115 break;
116 goto rounddown;
117
118 case FPCR_ZERO:
119 /* Round towards zero, i.e., down. */
120 goto rounddown;
121
122 case FPCR_MINF:
123 /* Round towards -Inf: up if negative, down if positive. */
124 if (fp->fp_sign)
125 break;
126 goto rounddown;
127
128 case FPCR_PINF:
129 /* Round towards +Inf: up if positive, down otherwise. */
130 if (!fp->fp_sign)
131 break;
132 goto rounddown;
133 }
134
135 /* Bump low bit of mantissa, with carry. */
136 #ifdef sparc /* ``cheating'' (left out FPU_DECL_CARRY; know this is faster) */
137 FPU_ADDS(m3, m3, 1);
138 FPU_ADDCS(m2, m2, 0);
139 FPU_ADDCS(m1, m1, 0);
140 FPU_ADDC(m0, m0, 0);
141 #else
142 if (++m3 == 0 && ++m2 == 0 && ++m1 == 0)
143 m0++;
144 #endif
145 fp->fp_mant[0] = m0;
146 fp->fp_mant[1] = m1;
147 fp->fp_mant[2] = m2;
148 fp->fp_mant[3] = m3;
149 return (1);
150
151 rounddown:
152 fp->fp_mant[0] = m0;
153 fp->fp_mant[1] = m1;
154 fp->fp_mant[2] = m2;
155 fp->fp_mant[3] = m3;
156 return (0);
157 }
158
159 /*
160 * For overflow: return true if overflow is to go to +/-Inf, according
161 * to the sign of the overflowing result. If false, overflow is to go
162 * to the largest magnitude value instead.
163 */
164 static int
165 toinf(struct fpemu *fe, int sign)
166 {
167 int inf;
168
169 /* look at rounding direction */
170 switch (fe->fe_fpcr & FPCR_ROUND) {
171
172 default:
173 case FPCR_NEAR: /* the nearest value is always Inf */
174 inf = 1;
175 break;
176
177 case FPCR_ZERO: /* toward 0 => never towards Inf */
178 inf = 0;
179 break;
180
181 case FPCR_PINF: /* toward +Inf iff positive */
182 inf = (sign == 0);
183 break;
184
185 case FPCR_MINF: /* toward -Inf iff negative */
186 inf = sign;
187 break;
188 }
189 return (inf);
190 }
191
192 /*
193 * fpn -> int (int value returned as return value).
194 *
195 * N.B.: this conversion always rounds towards zero (this is a peculiarity
196 * of the SPARC instruction set).
197 */
198 static u_int
199 fpu_ftoi(fe, fp)
200 struct fpemu *fe;
201 register struct fpn *fp;
202 {
203 register u_int i;
204 register int sign, exp;
205
206 sign = fp->fp_sign;
207 switch (fp->fp_class) {
208
209 case FPC_ZERO:
210 return (0);
211
212 case FPC_NUM:
213 /*
214 * If exp >= 2^32, overflow. Otherwise shift value right
215 * into last mantissa word (this will not exceed 0xffffffff),
216 * shifting any guard and round bits out into the sticky
217 * bit. Then ``round'' towards zero, i.e., just set an
218 * inexact exception if sticky is set (see round()).
219 * If the result is > 0x80000000, or is positive and equals
220 * 0x80000000, overflow; otherwise the last fraction word
221 * is the result.
222 */
223 if ((exp = fp->fp_exp) >= 32)
224 break;
225 /* NB: the following includes exp < 0 cases */
226 if (fpu_shr(fp, FP_NMANT - 1 - FP_NG - exp) != 0)
227 /* m68881/2 do not underflow when
228 converting to integer */;
229 round(fe, fp);
230 i = fp->fp_mant[3];
231 if (i >= ((u_int)0x80000000 + sign))
232 break;
233 return (sign ? -i : i);
234
235 default: /* Inf, qNaN, sNaN */
236 break;
237 }
238 /* overflow: replace any inexact exception with invalid */
239 fe->fe_fpsr = (fe->fe_fpsr & ~FPSR_INEX2) | FPSR_OPERR;
240 return (0x7fffffff + sign);
241 }
242
243 /*
244 * fpn -> single (32 bit single returned as return value).
245 * We assume <= 29 bits in a single-precision fraction (1.f part).
246 */
247 static u_int
248 fpu_ftos(fe, fp)
249 struct fpemu *fe;
250 register struct fpn *fp;
251 {
252 register u_int sign = fp->fp_sign << 31;
253 register int exp;
254
255 #define SNG_EXP(e) ((e) << SNG_FRACBITS) /* makes e an exponent */
256 #define SNG_MASK (SNG_EXP(1) - 1) /* mask for fraction */
257
258 /* Take care of non-numbers first. */
259 if (ISNAN(fp)) {
260 /*
261 * Preserve upper bits of NaN, per SPARC V8 appendix N.
262 * Note that fp->fp_mant[0] has the quiet bit set,
263 * even if it is classified as a signalling NaN.
264 */
265 (void) fpu_shr(fp, FP_NMANT - 1 - SNG_FRACBITS);
266 exp = SNG_EXP_INFNAN;
267 goto done;
268 }
269 if (ISINF(fp))
270 return (sign | SNG_EXP(SNG_EXP_INFNAN));
271 if (ISZERO(fp))
272 return (sign);
273
274 /*
275 * Normals (including subnormals). Drop all the fraction bits
276 * (including the explicit ``implied'' 1 bit) down into the
277 * single-precision range. If the number is subnormal, move
278 * the ``implied'' 1 into the explicit range as well, and shift
279 * right to introduce leading zeroes. Rounding then acts
280 * differently for normals and subnormals: the largest subnormal
281 * may round to the smallest normal (1.0 x 2^minexp), or may
282 * remain subnormal. In the latter case, signal an underflow
283 * if the result was inexact or if underflow traps are enabled.
284 *
285 * Rounding a normal, on the other hand, always produces another
286 * normal (although either way the result might be too big for
287 * single precision, and cause an overflow). If rounding a
288 * normal produces 2.0 in the fraction, we need not adjust that
289 * fraction at all, since both 1.0 and 2.0 are zero under the
290 * fraction mask.
291 *
292 * Note that the guard and round bits vanish from the number after
293 * rounding.
294 */
295 if ((exp = fp->fp_exp + SNG_EXP_BIAS) <= 0) { /* subnormal */
296 /* -NG for g,r; -SNG_FRACBITS-exp for fraction */
297 (void) fpu_shr(fp, FP_NMANT - FP_NG - SNG_FRACBITS - exp);
298 if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(1))
299 return (sign | SNG_EXP(1) | 0);
300 if (fe->fe_fpsr & FPSR_INEX2)
301 /* mc68881/2 don't underflow when converting */;
302 return (sign | SNG_EXP(0) | fp->fp_mant[3]);
303 }
304 /* -FP_NG for g,r; -1 for implied 1; -SNG_FRACBITS for fraction */
305 (void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - SNG_FRACBITS);
306 #ifdef DIAGNOSTIC
307 if ((fp->fp_mant[3] & SNG_EXP(1 << FP_NG)) == 0)
308 panic("fpu_ftos");
309 #endif
310 if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(2))
311 exp++;
312 if (exp >= SNG_EXP_INFNAN) {
313 /* overflow to inf or to max single */
314 fe->fe_fpsr |= FPSR_OPERR | FPSR_INEX2;
315 if (toinf(fe, sign))
316 return (sign | SNG_EXP(SNG_EXP_INFNAN));
317 return (sign | SNG_EXP(SNG_EXP_INFNAN - 1) | SNG_MASK);
318 }
319 done:
320 /* phew, made it */
321 return (sign | SNG_EXP(exp) | (fp->fp_mant[3] & SNG_MASK));
322 }
323
324 /*
325 * fpn -> double (32 bit high-order result returned; 32-bit low order result
326 * left in res[1]). Assumes <= 61 bits in double precision fraction.
327 *
328 * This code mimics fpu_ftos; see it for comments.
329 */
330 static u_int
331 fpu_ftod(fe, fp, res)
332 struct fpemu *fe;
333 register struct fpn *fp;
334 u_int *res;
335 {
336 register u_int sign = fp->fp_sign << 31;
337 register int exp;
338
339 #define DBL_EXP(e) ((e) << (DBL_FRACBITS & 31))
340 #define DBL_MASK (DBL_EXP(1) - 1)
341
342 if (ISNAN(fp)) {
343 (void) fpu_shr(fp, FP_NMANT - 1 - DBL_FRACBITS);
344 exp = DBL_EXP_INFNAN;
345 goto done;
346 }
347 if (ISINF(fp)) {
348 sign |= DBL_EXP(DBL_EXP_INFNAN);
349 res[1] = 0;
350 return (sign);
351 }
352 if (ISZERO(fp)) {
353 res[1] = 0;
354 return (sign);
355 }
356
357 if ((exp = fp->fp_exp + DBL_EXP_BIAS) <= 0) {
358 (void) fpu_shr(fp, FP_NMANT - FP_NG - DBL_FRACBITS - exp);
359 if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(1)) {
360 res[1] = 0;
361 return (sign | DBL_EXP(1) | 0);
362 }
363 if (fe->fe_fpsr & FPSR_INEX2)
364 /* mc68881/2 don't underflow when converting */;
365 exp = 0;
366 goto done;
367 }
368 (void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - DBL_FRACBITS);
369 if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(2))
370 exp++;
371 if (exp >= DBL_EXP_INFNAN) {
372 fe->fe_fpsr |= FPSR_OPERR | FPSR_INEX2;
373 if (toinf(fe, sign)) {
374 res[1] = 0;
375 return (sign | DBL_EXP(DBL_EXP_INFNAN) | 0);
376 }
377 res[1] = ~0;
378 return (sign | DBL_EXP(DBL_EXP_INFNAN) | DBL_MASK);
379 }
380 done:
381 res[1] = fp->fp_mant[3];
382 return (sign | DBL_EXP(exp) | (fp->fp_mant[2] & DBL_MASK));
383 }
384
385 /*
386 * fpn -> 68k extended (32 bit high-order result returned; two 32-bit low
387 * order result left in res[1] & res[2]). Assumes == 64 bits in extended
388 * precision fraction.
389 *
390 * This code mimics fpu_ftos; see it for comments.
391 */
392 static u_int
393 fpu_ftox(fe, fp, res)
394 struct fpemu *fe;
395 register struct fpn *fp;
396 u_int *res;
397 {
398 register u_int sign = fp->fp_sign << 31;
399 register int exp;
400
401 #define EXT_EXP(e) ((e) << 16)
402 #define EXT_MASK (EXT_EXP(1) - 1)
403
404 if (ISNAN(fp)) {
405 (void) fpu_shr(fp, FP_NMANT - 1 - EXT_FRACBITS);
406 exp = EXT_EXP_INFNAN;
407 goto done;
408 }
409 if (ISINF(fp)) {
410 sign |= EXT_EXP(EXT_EXP_INFNAN);
411 res[1] = res[2] = 0;
412 return (sign);
413 }
414 if (ISZERO(fp)) {
415 res[1] = res[2] = 0;
416 return (sign);
417 }
418
419 if ((exp = fp->fp_exp + EXT_EXP_BIAS) <= 0) {
420 /* I'm not sure about this <=... exp==0 doesn't mean
421 it's a denormal in extended format */
422 (void) fpu_shr(fp, FP_NMANT - FP_NG - EXT_FRACBITS - exp);
423 if (round(fe, fp) && fp->fp_mant[2] == EXT_EXP(1)) {
424 res[1] = res[2] = 0;
425 return (sign | EXT_EXP(1) | 0);
426 }
427 if (fe->fe_fpsr & FPSR_INEX2)
428 /* mc68881/2 don't underflow */;
429 exp = 0;
430 goto done;
431 }
432 (void) fpu_shr(fp, FP_NMANT - FP_NG - EXT_FRACBITS);
433 if (round(fe, fp) && fp->fp_mant[2] == EXT_EXP(2))
434 exp++;
435 if (exp >= EXT_EXP_INFNAN) {
436 fe->fe_fpsr |= FPSR_OPERR | FPSR_INEX2;
437 if (toinf(fe, sign)) {
438 res[1] = res[2] = 0;
439 return (sign | EXT_EXP(EXT_EXP_INFNAN) | 0);
440 }
441 res[1] = res[2] = ~0;
442 return (sign | EXT_EXP(EXT_EXP_INFNAN) | EXT_MASK);
443 }
444 done:
445 res[1] = fp->fp_mant[2];
446 res[2] = fp->fp_mant[3];
447 return (sign | EXT_EXP(exp));
448 }
449
450 /*
451 * Implode an fpn, writing the result into the given space.
452 */
453 void
454 fpu_implode(fe, fp, type, space)
455 struct fpemu *fe;
456 register struct fpn *fp;
457 int type;
458 register u_int *space;
459 {
460 fe->fe_fpsr &= ~FPSR_EXCP;
461
462 switch (type) {
463 case FTYPE_LNG:
464 space[0] = fpu_ftoi(fe, fp);
465 break;
466
467 case FTYPE_SNG:
468 space[0] = fpu_ftos(fe, fp);
469 break;
470
471 case FTYPE_DBL:
472 space[0] = fpu_ftod(fe, fp, space);
473 break;
474
475 case FTYPE_EXT:
476 /* funky rounding precision options ?? */
477 space[0] = fpu_ftox(fe, fp, space);
478 break;
479
480 default:
481 panic("fpu_implode");
482 }
483 }
484