Home | History | Annotate | Line # | Download | only in fpe
fpu_implode.c revision 1.3
      1 /*	$NetBSD: fpu_implode.c,v 1.3 1997/07/19 22:28:50 is Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1992, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * This software was developed by the Computer Systems Engineering group
      8  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
      9  * contributed to Berkeley.
     10  *
     11  * All advertising materials mentioning features or use of this software
     12  * must display the following acknowledgement:
     13  *	This product includes software developed by the University of
     14  *	California, Lawrence Berkeley Laboratory.
     15  *
     16  * Redistribution and use in source and binary forms, with or without
     17  * modification, are permitted provided that the following conditions
     18  * are met:
     19  * 1. Redistributions of source code must retain the above copyright
     20  *    notice, this list of conditions and the following disclaimer.
     21  * 2. Redistributions in binary form must reproduce the above copyright
     22  *    notice, this list of conditions and the following disclaimer in the
     23  *    documentation and/or other materials provided with the distribution.
     24  * 3. All advertising materials mentioning features or use of this software
     25  *    must display the following acknowledgement:
     26  *	This product includes software developed by the University of
     27  *	California, Berkeley and its contributors.
     28  * 4. Neither the name of the University nor the names of its contributors
     29  *    may be used to endorse or promote products derived from this software
     30  *    without specific prior written permission.
     31  *
     32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     42  * SUCH DAMAGE.
     43  *
     44  *	@(#)fpu_implode.c	8.1 (Berkeley) 6/11/93
     45  */
     46 
     47 /*
     48  * FPU subroutines: `implode' internal format numbers into the machine's
     49  * `packed binary' format.
     50  */
     51 
     52 #include <sys/types.h>
     53 #include <sys/systm.h>
     54 
     55 #include "ieee.h"
     56 #include <machine/reg.h>
     57 
     58 #include "fpu_emulate.h"
     59 #include "fpu_arith.h"
     60 
     61 /* Conversion from internal format -- note asymmetry. */
     62 static u_int	fpu_ftoi __P((struct fpemu *fe, struct fpn *fp));
     63 static u_int	fpu_ftos __P((struct fpemu *fe, struct fpn *fp));
     64 static u_int	fpu_ftod __P((struct fpemu *fe, struct fpn *fp, u_int *));
     65 static u_int	fpu_ftox __P((struct fpemu *fe, struct fpn *fp, u_int *));
     66 
     67 /*
     68  * Round a number (algorithm from Motorola MC68882 manual, modified for
     69  * our internal format).  Set inexact exception if rounding is required.
     70  * Return true iff we rounded up.
     71  *
     72  * After rounding, we discard the guard and round bits by shifting right
     73  * 2 bits (a la fpu_shr(), but we do not bother with fp->fp_sticky).
     74  * This saves effort later.
     75  *
     76  * Note that we may leave the value 2.0 in fp->fp_mant; it is the caller's
     77  * responsibility to fix this if necessary.
     78  */
     79 int
     80 round(register struct fpemu *fe, register struct fpn *fp)
     81 {
     82 	register u_int m0, m1, m2, m3;
     83 	register int gr, s;
     84 
     85 	m0 = fp->fp_mant[0];
     86 	m1 = fp->fp_mant[1];
     87 	m2 = fp->fp_mant[2];
     88 	m3 = fp->fp_mant[3];
     89 	gr = m3 & 3;
     90 	s = fp->fp_sticky;
     91 
     92 	/* mant >>= FP_NG */
     93 	m3 = (m3 >> FP_NG) | (m2 << (32 - FP_NG));
     94 	m2 = (m2 >> FP_NG) | (m1 << (32 - FP_NG));
     95 	m1 = (m1 >> FP_NG) | (m0 << (32 - FP_NG));
     96 	m0 >>= FP_NG;
     97 
     98 	if ((gr | s) == 0)	/* result is exact: no rounding needed */
     99 		goto rounddown;
    100 
    101 	fe->fe_fpsr |= FPSR_INEX2;	/* inexact */
    102 
    103 	/* Go to rounddown to round down; break to round up. */
    104 	switch (fe->fe_fpcr & FPCR_ROUND) {
    105 
    106 	case FPCR_NEAR:
    107 	default:
    108 		/*
    109 		 * Round only if guard is set (gr & 2).  If guard is set,
    110 		 * but round & sticky both clear, then we want to round
    111 		 * but have a tie, so round to even, i.e., add 1 iff odd.
    112 		 */
    113 		if ((gr & 2) == 0)
    114 			goto rounddown;
    115 		if ((gr & 1) || fp->fp_sticky || (m3 & 1))
    116 			break;
    117 		goto rounddown;
    118 
    119 	case FPCR_ZERO:
    120 		/* Round towards zero, i.e., down. */
    121 		goto rounddown;
    122 
    123 	case FPCR_MINF:
    124 		/* Round towards -Inf: up if negative, down if positive. */
    125 		if (fp->fp_sign)
    126 			break;
    127 		goto rounddown;
    128 
    129 	case FPCR_PINF:
    130 		/* Round towards +Inf: up if positive, down otherwise. */
    131 		if (!fp->fp_sign)
    132 			break;
    133 		goto rounddown;
    134 	}
    135 
    136 	/* Bump low bit of mantissa, with carry. */
    137 #ifdef sparc /* ``cheating'' (left out FPU_DECL_CARRY; know this is faster) */
    138 	FPU_ADDS(m3, m3, 1);
    139 	FPU_ADDCS(m2, m2, 0);
    140 	FPU_ADDCS(m1, m1, 0);
    141 	FPU_ADDC(m0, m0, 0);
    142 #else
    143 	if (++m3 == 0 && ++m2 == 0 && ++m1 == 0)
    144 		m0++;
    145 #endif
    146 	fp->fp_mant[0] = m0;
    147 	fp->fp_mant[1] = m1;
    148 	fp->fp_mant[2] = m2;
    149 	fp->fp_mant[3] = m3;
    150 	return (1);
    151 
    152 rounddown:
    153 	fp->fp_mant[0] = m0;
    154 	fp->fp_mant[1] = m1;
    155 	fp->fp_mant[2] = m2;
    156 	fp->fp_mant[3] = m3;
    157 	return (0);
    158 }
    159 
    160 /*
    161  * For overflow: return true if overflow is to go to +/-Inf, according
    162  * to the sign of the overflowing result.  If false, overflow is to go
    163  * to the largest magnitude value instead.
    164  */
    165 static int
    166 toinf(struct fpemu *fe, int sign)
    167 {
    168 	int inf;
    169 
    170 	/* look at rounding direction */
    171 	switch (fe->fe_fpcr & FPCR_ROUND) {
    172 
    173 	default:
    174 	case FPCR_NEAR:		/* the nearest value is always Inf */
    175 		inf = 1;
    176 		break;
    177 
    178 	case FPCR_ZERO:		/* toward 0 => never towards Inf */
    179 		inf = 0;
    180 		break;
    181 
    182 	case FPCR_PINF:		/* toward +Inf iff positive */
    183 		inf = (sign == 0);
    184 		break;
    185 
    186 	case FPCR_MINF:		/* toward -Inf iff negative */
    187 		inf = sign;
    188 		break;
    189 	}
    190 	return (inf);
    191 }
    192 
    193 /*
    194  * fpn -> int (int value returned as return value).
    195  *
    196  * N.B.: this conversion always rounds towards zero (this is a peculiarity
    197  * of the SPARC instruction set).
    198  */
    199 static u_int
    200 fpu_ftoi(fe, fp)
    201 	struct fpemu *fe;
    202 	register struct fpn *fp;
    203 {
    204 	register u_int i;
    205 	register int sign, exp;
    206 
    207 	sign = fp->fp_sign;
    208 	switch (fp->fp_class) {
    209 
    210 	case FPC_ZERO:
    211 		return (0);
    212 
    213 	case FPC_NUM:
    214 		/*
    215 		 * If exp >= 2^32, overflow.  Otherwise shift value right
    216 		 * into last mantissa word (this will not exceed 0xffffffff),
    217 		 * shifting any guard and round bits out into the sticky
    218 		 * bit.  Then ``round'' towards zero, i.e., just set an
    219 		 * inexact exception if sticky is set (see round()).
    220 		 * If the result is > 0x80000000, or is positive and equals
    221 		 * 0x80000000, overflow; otherwise the last fraction word
    222 		 * is the result.
    223 		 */
    224 		if ((exp = fp->fp_exp) >= 32)
    225 			break;
    226 		/* NB: the following includes exp < 0 cases */
    227 		if (fpu_shr(fp, FP_NMANT - 1 - FP_NG - exp) != 0)
    228 			/* m68881/2 do not underflow when
    229 			   converting to integer */;
    230 		round(fe, fp);
    231 		i = fp->fp_mant[3];
    232 		if (i >= ((u_int)0x80000000 + sign))
    233 			break;
    234 		return (sign ? -i : i);
    235 
    236 	default:		/* Inf, qNaN, sNaN */
    237 		break;
    238 	}
    239 	/* overflow: replace any inexact exception with invalid */
    240 	fe->fe_fpsr = (fe->fe_fpsr & ~FPSR_INEX2) | FPSR_OPERR;
    241 	return (0x7fffffff + sign);
    242 }
    243 
    244 /*
    245  * fpn -> single (32 bit single returned as return value).
    246  * We assume <= 29 bits in a single-precision fraction (1.f part).
    247  */
    248 static u_int
    249 fpu_ftos(fe, fp)
    250 	struct fpemu *fe;
    251 	register struct fpn *fp;
    252 {
    253 	register u_int sign = fp->fp_sign << 31;
    254 	register int exp;
    255 
    256 #define	SNG_EXP(e)	((e) << SNG_FRACBITS)	/* makes e an exponent */
    257 #define	SNG_MASK	(SNG_EXP(1) - 1)	/* mask for fraction */
    258 
    259 	/* Take care of non-numbers first. */
    260 	if (ISNAN(fp)) {
    261 		/*
    262 		 * Preserve upper bits of NaN, per SPARC V8 appendix N.
    263 		 * Note that fp->fp_mant[0] has the quiet bit set,
    264 		 * even if it is classified as a signalling NaN.
    265 		 */
    266 		(void) fpu_shr(fp, FP_NMANT - 1 - SNG_FRACBITS);
    267 		exp = SNG_EXP_INFNAN;
    268 		goto done;
    269 	}
    270 	if (ISINF(fp))
    271 		return (sign | SNG_EXP(SNG_EXP_INFNAN));
    272 	if (ISZERO(fp))
    273 		return (sign);
    274 
    275 	/*
    276 	 * Normals (including subnormals).  Drop all the fraction bits
    277 	 * (including the explicit ``implied'' 1 bit) down into the
    278 	 * single-precision range.  If the number is subnormal, move
    279 	 * the ``implied'' 1 into the explicit range as well, and shift
    280 	 * right to introduce leading zeroes.  Rounding then acts
    281 	 * differently for normals and subnormals: the largest subnormal
    282 	 * may round to the smallest normal (1.0 x 2^minexp), or may
    283 	 * remain subnormal.  In the latter case, signal an underflow
    284 	 * if the result was inexact or if underflow traps are enabled.
    285 	 *
    286 	 * Rounding a normal, on the other hand, always produces another
    287 	 * normal (although either way the result might be too big for
    288 	 * single precision, and cause an overflow).  If rounding a
    289 	 * normal produces 2.0 in the fraction, we need not adjust that
    290 	 * fraction at all, since both 1.0 and 2.0 are zero under the
    291 	 * fraction mask.
    292 	 *
    293 	 * Note that the guard and round bits vanish from the number after
    294 	 * rounding.
    295 	 */
    296 	if ((exp = fp->fp_exp + SNG_EXP_BIAS) <= 0) {	/* subnormal */
    297 		fe->fe_fpsr |= FPSR_UNFL;
    298 		/* -NG for g,r; -SNG_FRACBITS-exp for fraction */
    299 		(void) fpu_shr(fp, FP_NMANT - FP_NG - SNG_FRACBITS - exp);
    300 		if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(1))
    301 			return (sign | SNG_EXP(1) | 0);
    302 		if (fe->fe_fpsr & FPSR_INEX2)
    303 			fe->fe_fpsr |= FPSR_UNFL
    304 			/* mc68881/2 don't underflow when converting */;
    305 		return (sign | SNG_EXP(0) | fp->fp_mant[3]);
    306 	}
    307 	/* -FP_NG for g,r; -1 for implied 1; -SNG_FRACBITS for fraction */
    308 	(void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - SNG_FRACBITS);
    309 #ifdef DIAGNOSTIC
    310 	if ((fp->fp_mant[3] & SNG_EXP(1 << FP_NG)) == 0)
    311 		panic("fpu_ftos");
    312 #endif
    313 	if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(2))
    314 		exp++;
    315 	if (exp >= SNG_EXP_INFNAN) {
    316 		/* overflow to inf or to max single */
    317 		fe->fe_fpsr |= FPSR_OPERR | FPSR_INEX2 | FPSR_OVFL;
    318 		if (toinf(fe, sign))
    319 			return (sign | SNG_EXP(SNG_EXP_INFNAN));
    320 		return (sign | SNG_EXP(SNG_EXP_INFNAN - 1) | SNG_MASK);
    321 	}
    322 done:
    323 	/* phew, made it */
    324 	return (sign | SNG_EXP(exp) | (fp->fp_mant[3] & SNG_MASK));
    325 }
    326 
    327 /*
    328  * fpn -> double (32 bit high-order result returned; 32-bit low order result
    329  * left in res[1]).  Assumes <= 61 bits in double precision fraction.
    330  *
    331  * This code mimics fpu_ftos; see it for comments.
    332  */
    333 static u_int
    334 fpu_ftod(fe, fp, res)
    335 	struct fpemu *fe;
    336 	register struct fpn *fp;
    337 	u_int *res;
    338 {
    339 	register u_int sign = fp->fp_sign << 31;
    340 	register int exp;
    341 
    342 #define	DBL_EXP(e)	((e) << (DBL_FRACBITS & 31))
    343 #define	DBL_MASK	(DBL_EXP(1) - 1)
    344 
    345 	if (ISNAN(fp)) {
    346 		(void) fpu_shr(fp, FP_NMANT - 1 - DBL_FRACBITS);
    347 		exp = DBL_EXP_INFNAN;
    348 		goto done;
    349 	}
    350 	if (ISINF(fp)) {
    351 		sign |= DBL_EXP(DBL_EXP_INFNAN);
    352 		res[1] = 0;
    353 		return (sign);
    354 	}
    355 	if (ISZERO(fp)) {
    356 		res[1] = 0;
    357 		return (sign);
    358 	}
    359 
    360 	if ((exp = fp->fp_exp + DBL_EXP_BIAS) <= 0) {
    361 		fe->fe_fpsr |= FPSR_UNFL;
    362 		(void) fpu_shr(fp, FP_NMANT - FP_NG - DBL_FRACBITS - exp);
    363 		if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(1)) {
    364 			res[1] = 0;
    365 			return (sign | DBL_EXP(1) | 0);
    366 		}
    367 		if (fe->fe_fpsr & FPSR_INEX2)
    368                         fe->fe_fpsr |= FPSR_UNFL
    369 			/* mc68881/2 don't underflow when converting */;
    370 		exp = 0;
    371 		goto done;
    372 	}
    373 	(void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - DBL_FRACBITS);
    374 	if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(2))
    375 		exp++;
    376 	if (exp >= DBL_EXP_INFNAN) {
    377 		fe->fe_fpsr |= FPSR_OPERR | FPSR_INEX2 | FPSR_OVFL;
    378 		if (toinf(fe, sign)) {
    379 			res[1] = 0;
    380 			return (sign | DBL_EXP(DBL_EXP_INFNAN) | 0);
    381 		}
    382 		res[1] = ~0;
    383 		return (sign | DBL_EXP(DBL_EXP_INFNAN) | DBL_MASK);
    384 	}
    385 done:
    386 	res[1] = fp->fp_mant[3];
    387 	return (sign | DBL_EXP(exp) | (fp->fp_mant[2] & DBL_MASK));
    388 }
    389 
    390 /*
    391  * fpn -> 68k extended (32 bit high-order result returned; two 32-bit low
    392  * order result left in res[1] & res[2]).  Assumes == 64 bits in extended
    393  * precision fraction.
    394  *
    395  * This code mimics fpu_ftos; see it for comments.
    396  */
    397 static u_int
    398 fpu_ftox(fe, fp, res)
    399 	struct fpemu *fe;
    400 	register struct fpn *fp;
    401 	u_int *res;
    402 {
    403 	register u_int sign = fp->fp_sign << 31;
    404 	register int exp;
    405 
    406 #define	EXT_EXP(e)	((e) << 16)
    407 #define	EXT_MASK	(EXT_EXP(1) - 1)
    408 
    409 	if (ISNAN(fp)) {
    410 		(void) fpu_shr(fp, FP_NMANT - 1 - EXT_FRACBITS);
    411 		exp = EXT_EXP_INFNAN;
    412 		goto done;
    413 	}
    414 	if (ISINF(fp)) {
    415 		sign |= EXT_EXP(EXT_EXP_INFNAN);
    416 		res[1] = res[2] = 0;
    417 		return (sign);
    418 	}
    419 	if (ISZERO(fp)) {
    420 		res[1] = res[2] = 0;
    421 		return (sign);
    422 	}
    423 
    424 	if ((exp = fp->fp_exp + EXT_EXP_BIAS) <= 0) {
    425 		fe->fe_fpsr |= FPSR_UNFL;
    426 		/* I'm not sure about this <=... exp==0 doesn't mean
    427 		   it's a denormal in extended format */
    428 		(void) fpu_shr(fp, FP_NMANT - FP_NG - EXT_FRACBITS - exp);
    429 		if (round(fe, fp) && fp->fp_mant[2] == EXT_EXP(1)) {
    430 			res[1] = res[2] = 0;
    431 			return (sign | EXT_EXP(1) | 0);
    432 		}
    433 		if (fe->fe_fpsr & FPSR_INEX2)
    434                         fe->fe_fpsr |= FPSR_UNFL
    435 			/* mc68881/2 don't underflow */;
    436 		exp = 0;
    437 		goto done;
    438 	}
    439 	(void) fpu_shr(fp, FP_NMANT - FP_NG - EXT_FRACBITS);
    440 	if (round(fe, fp) && fp->fp_mant[2] == EXT_EXP(2))
    441 		exp++;
    442 	if (exp >= EXT_EXP_INFNAN) {
    443 		fe->fe_fpsr |= FPSR_OPERR | FPSR_INEX2 | FPSR_OVFL;
    444 		if (toinf(fe, sign)) {
    445 			res[1] = res[2] = 0;
    446 			return (sign | EXT_EXP(EXT_EXP_INFNAN) | 0);
    447 		}
    448 		res[1] = res[2] = ~0;
    449 		return (sign | EXT_EXP(EXT_EXP_INFNAN) | EXT_MASK);
    450 	}
    451 done:
    452 	res[1] = fp->fp_mant[2];
    453 	res[2] = fp->fp_mant[3];
    454 	return (sign | EXT_EXP(exp));
    455 }
    456 
    457 /*
    458  * Implode an fpn, writing the result into the given space.
    459  */
    460 void
    461 fpu_implode(fe, fp, type, space)
    462 	struct fpemu *fe;
    463 	register struct fpn *fp;
    464 	int type;
    465 	register u_int *space;
    466 {
    467 	/* XXX Dont delete exceptions set here: fe->fe_fpsr &= ~FPSR_EXCP; */
    468 
    469 	switch (type) {
    470 	case FTYPE_LNG:
    471 		space[0] = fpu_ftoi(fe, fp);
    472 		break;
    473 
    474 	case FTYPE_SNG:
    475 		space[0] = fpu_ftos(fe, fp);
    476 		break;
    477 
    478 	case FTYPE_DBL:
    479 		space[0] = fpu_ftod(fe, fp, space);
    480 		break;
    481 
    482 	case FTYPE_EXT:
    483 		/* funky rounding precision options ?? */
    484 		space[0] = fpu_ftox(fe, fp, space);
    485 		break;
    486 
    487 	default:
    488 		panic("fpu_implode");
    489 	}
    490 }
    491