fpu_implode.c revision 1.4 1 /* $NetBSD: fpu_implode.c,v 1.4 1999/05/30 20:17:48 briggs Exp $ */
2
3 /*
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This software was developed by the Computer Systems Engineering group
8 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 * contributed to Berkeley.
10 *
11 * All advertising materials mentioning features or use of this software
12 * must display the following acknowledgement:
13 * This product includes software developed by the University of
14 * California, Lawrence Berkeley Laboratory.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 * 3. All advertising materials mentioning features or use of this software
25 * must display the following acknowledgement:
26 * This product includes software developed by the University of
27 * California, Berkeley and its contributors.
28 * 4. Neither the name of the University nor the names of its contributors
29 * may be used to endorse or promote products derived from this software
30 * without specific prior written permission.
31 *
32 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42 * SUCH DAMAGE.
43 *
44 * @(#)fpu_implode.c 8.1 (Berkeley) 6/11/93
45 */
46
47 /*
48 * FPU subroutines: `implode' internal format numbers into the machine's
49 * `packed binary' format.
50 */
51
52 #include <sys/types.h>
53 #include <sys/systm.h>
54
55 #include "ieee.h"
56 #include <machine/reg.h>
57
58 #include "fpu_emulate.h"
59 #include "fpu_arith.h"
60
61 /* Conversion from internal format -- note asymmetry. */
62 static u_int fpu_ftoi __P((struct fpemu *fe, struct fpn *fp));
63 static u_int fpu_ftos __P((struct fpemu *fe, struct fpn *fp));
64 static u_int fpu_ftod __P((struct fpemu *fe, struct fpn *fp, u_int *));
65 static u_int fpu_ftox __P((struct fpemu *fe, struct fpn *fp, u_int *));
66
67 /*
68 * Round a number (algorithm from Motorola MC68882 manual, modified for
69 * our internal format). Set inexact exception if rounding is required.
70 * Return true iff we rounded up.
71 *
72 * After rounding, we discard the guard and round bits by shifting right
73 * 2 bits (a la fpu_shr(), but we do not bother with fp->fp_sticky).
74 * This saves effort later.
75 *
76 * Note that we may leave the value 2.0 in fp->fp_mant; it is the caller's
77 * responsibility to fix this if necessary.
78 */
79 int
80 round(register struct fpemu *fe, register struct fpn *fp)
81 {
82 register u_int m0, m1, m2;
83 register int gr, s;
84
85 m0 = fp->fp_mant[0];
86 m1 = fp->fp_mant[1];
87 m2 = fp->fp_mant[2];
88 gr = m2 & 3;
89 s = fp->fp_sticky;
90
91 /* mant >>= FP_NG */
92 m2 = (m2 >> FP_NG) | (m1 << (32 - FP_NG));
93 m1 = (m1 >> FP_NG) | (m0 << (32 - FP_NG));
94 m0 >>= FP_NG;
95
96 if ((gr | s) == 0) /* result is exact: no rounding needed */
97 goto rounddown;
98
99 fe->fe_fpsr |= FPSR_INEX2; /* inexact */
100
101 /* Go to rounddown to round down; break to round up. */
102 switch (fe->fe_fpcr & FPCR_ROUND) {
103
104 case FPCR_NEAR:
105 default:
106 /*
107 * Round only if guard is set (gr & 2). If guard is set,
108 * but round & sticky both clear, then we want to round
109 * but have a tie, so round to even, i.e., add 1 iff odd.
110 */
111 if ((gr & 2) == 0)
112 goto rounddown;
113 if ((gr & 1) || fp->fp_sticky || (m2 & 1))
114 break;
115 goto rounddown;
116
117 case FPCR_ZERO:
118 /* Round towards zero, i.e., down. */
119 goto rounddown;
120
121 case FPCR_MINF:
122 /* Round towards -Inf: up if negative, down if positive. */
123 if (fp->fp_sign)
124 break;
125 goto rounddown;
126
127 case FPCR_PINF:
128 /* Round towards +Inf: up if positive, down otherwise. */
129 if (!fp->fp_sign)
130 break;
131 goto rounddown;
132 }
133
134 /* Bump low bit of mantissa, with carry. */
135 if (++m2 == 0 && ++m1 == 0)
136 m0++;
137 fp->fp_sticky = 0;
138 fp->fp_mant[0] = m0;
139 fp->fp_mant[1] = m1;
140 fp->fp_mant[2] = m2;
141 return (1);
142
143 rounddown:
144 fp->fp_sticky = 0;
145 fp->fp_mant[0] = m0;
146 fp->fp_mant[1] = m1;
147 fp->fp_mant[2] = m2;
148 return (0);
149 }
150
151 /*
152 * For overflow: return true if overflow is to go to +/-Inf, according
153 * to the sign of the overflowing result. If false, overflow is to go
154 * to the largest magnitude value instead.
155 */
156 static int
157 toinf(struct fpemu *fe, int sign)
158 {
159 int inf;
160
161 /* look at rounding direction */
162 switch (fe->fe_fpcr & FPCR_ROUND) {
163
164 default:
165 case FPCR_NEAR: /* the nearest value is always Inf */
166 inf = 1;
167 break;
168
169 case FPCR_ZERO: /* toward 0 => never towards Inf */
170 inf = 0;
171 break;
172
173 case FPCR_PINF: /* toward +Inf iff positive */
174 inf = (sign == 0);
175 break;
176
177 case FPCR_MINF: /* toward -Inf iff negative */
178 inf = sign;
179 break;
180 }
181 return (inf);
182 }
183
184 /*
185 * fpn -> int (int value returned as return value).
186 *
187 * N.B.: this conversion always rounds towards zero (this is a peculiarity
188 * of the SPARC instruction set).
189 */
190 static u_int
191 fpu_ftoi(fe, fp)
192 struct fpemu *fe;
193 register struct fpn *fp;
194 {
195 register u_int i;
196 register int sign, exp;
197
198 sign = fp->fp_sign;
199 switch (fp->fp_class) {
200
201 case FPC_ZERO:
202 return (0);
203
204 case FPC_NUM:
205 /*
206 * If exp >= 2^32, overflow. Otherwise shift value right
207 * into last mantissa word (this will not exceed 0xffffffff),
208 * shifting any guard and round bits out into the sticky
209 * bit. Then ``round'' towards zero, i.e., just set an
210 * inexact exception if sticky is set (see round()).
211 * If the result is > 0x80000000, or is positive and equals
212 * 0x80000000, overflow; otherwise the last fraction word
213 * is the result.
214 */
215 if ((exp = fp->fp_exp) >= 32)
216 break;
217 /* NB: the following includes exp < 0 cases */
218 if (fpu_shr(fp, FP_NMANT - 1 - FP_NG - exp) != 0)
219 /* m68881/2 do not underflow when
220 converting to integer */;
221 round(fe, fp);
222 i = fp->fp_mant[2];
223 if (i >= ((u_int)0x80000000 + sign))
224 break;
225 return (sign ? -i : i);
226
227 default: /* Inf, qNaN, sNaN */
228 break;
229 }
230 /* overflow: replace any inexact exception with invalid */
231 fe->fe_fpsr = (fe->fe_fpsr & ~FPSR_INEX2) | FPSR_OPERR;
232 return (0x7fffffff + sign);
233 }
234
235 /*
236 * fpn -> single (32 bit single returned as return value).
237 * We assume <= 29 bits in a single-precision fraction (1.f part).
238 */
239 static u_int
240 fpu_ftos(fe, fp)
241 struct fpemu *fe;
242 register struct fpn *fp;
243 {
244 register u_int sign = fp->fp_sign << 31;
245 register int exp;
246
247 #define SNG_EXP(e) ((e) << SNG_FRACBITS) /* makes e an exponent */
248 #define SNG_MASK (SNG_EXP(1) - 1) /* mask for fraction */
249
250 /* Take care of non-numbers first. */
251 if (ISNAN(fp)) {
252 /*
253 * Preserve upper bits of NaN, per SPARC V8 appendix N.
254 * Note that fp->fp_mant[0] has the quiet bit set,
255 * even if it is classified as a signalling NaN.
256 */
257 (void) fpu_shr(fp, FP_NMANT - 1 - SNG_FRACBITS);
258 exp = SNG_EXP_INFNAN;
259 goto done;
260 }
261 if (ISINF(fp))
262 return (sign | SNG_EXP(SNG_EXP_INFNAN));
263 if (ISZERO(fp))
264 return (sign);
265
266 /*
267 * Normals (including subnormals). Drop all the fraction bits
268 * (including the explicit ``implied'' 1 bit) down into the
269 * single-precision range. If the number is subnormal, move
270 * the ``implied'' 1 into the explicit range as well, and shift
271 * right to introduce leading zeroes. Rounding then acts
272 * differently for normals and subnormals: the largest subnormal
273 * may round to the smallest normal (1.0 x 2^minexp), or may
274 * remain subnormal. In the latter case, signal an underflow
275 * if the result was inexact or if underflow traps are enabled.
276 *
277 * Rounding a normal, on the other hand, always produces another
278 * normal (although either way the result might be too big for
279 * single precision, and cause an overflow). If rounding a
280 * normal produces 2.0 in the fraction, we need not adjust that
281 * fraction at all, since both 1.0 and 2.0 are zero under the
282 * fraction mask.
283 *
284 * Note that the guard and round bits vanish from the number after
285 * rounding.
286 */
287 if ((exp = fp->fp_exp + SNG_EXP_BIAS) <= 0) { /* subnormal */
288 fe->fe_fpsr |= FPSR_UNFL;
289 /* -NG for g,r; -SNG_FRACBITS-exp for fraction */
290 (void) fpu_shr(fp, FP_NMANT - FP_NG - SNG_FRACBITS - exp);
291 if (round(fe, fp) && fp->fp_mant[2] == SNG_EXP(1))
292 return (sign | SNG_EXP(1) | 0);
293 if (fe->fe_fpsr & FPSR_INEX2)
294 fe->fe_fpsr |= FPSR_UNFL
295 /* mc68881/2 don't underflow when converting */;
296 return (sign | SNG_EXP(0) | fp->fp_mant[2]);
297 }
298 /* -FP_NG for g,r; -1 for implied 1; -SNG_FRACBITS for fraction */
299 (void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - SNG_FRACBITS);
300 #ifdef DIAGNOSTIC
301 if ((fp->fp_mant[2] & SNG_EXP(1 << FP_NG)) == 0)
302 panic("fpu_ftos");
303 #endif
304 if (round(fe, fp) && fp->fp_mant[2] == SNG_EXP(2))
305 exp++;
306 if (exp >= SNG_EXP_INFNAN) {
307 /* overflow to inf or to max single */
308 fe->fe_fpsr |= FPSR_OPERR | FPSR_INEX2 | FPSR_OVFL;
309 if (toinf(fe, sign))
310 return (sign | SNG_EXP(SNG_EXP_INFNAN));
311 return (sign | SNG_EXP(SNG_EXP_INFNAN - 1) | SNG_MASK);
312 }
313 done:
314 /* phew, made it */
315 return (sign | SNG_EXP(exp) | (fp->fp_mant[2] & SNG_MASK));
316 }
317
318 /*
319 * fpn -> double (32 bit high-order result returned; 32-bit low order result
320 * left in res[1]). Assumes <= 61 bits in double precision fraction.
321 *
322 * This code mimics fpu_ftos; see it for comments.
323 */
324 static u_int
325 fpu_ftod(fe, fp, res)
326 struct fpemu *fe;
327 register struct fpn *fp;
328 u_int *res;
329 {
330 register u_int sign = fp->fp_sign << 31;
331 register int exp;
332
333 #define DBL_EXP(e) ((e) << (DBL_FRACBITS & 31))
334 #define DBL_MASK (DBL_EXP(1) - 1)
335
336 if (ISNAN(fp)) {
337 (void) fpu_shr(fp, FP_NMANT - 1 - DBL_FRACBITS);
338 exp = DBL_EXP_INFNAN;
339 goto done;
340 }
341 if (ISINF(fp)) {
342 sign |= DBL_EXP(DBL_EXP_INFNAN);
343 res[1] = 0;
344 return (sign);
345 }
346 if (ISZERO(fp)) {
347 res[1] = 0;
348 return (sign);
349 }
350
351 if ((exp = fp->fp_exp + DBL_EXP_BIAS) <= 0) {
352 fe->fe_fpsr |= FPSR_UNFL;
353 (void) fpu_shr(fp, FP_NMANT - FP_NG - DBL_FRACBITS - exp);
354 if (round(fe, fp) && fp->fp_mant[1] == DBL_EXP(1)) {
355 res[1] = 0;
356 return (sign | DBL_EXP(1) | 0);
357 }
358 if (fe->fe_fpsr & FPSR_INEX2)
359 fe->fe_fpsr |= FPSR_UNFL
360 /* mc68881/2 don't underflow when converting */;
361 exp = 0;
362 goto done;
363 }
364 (void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - DBL_FRACBITS);
365 if (round(fe, fp) && fp->fp_mant[1] == DBL_EXP(2))
366 exp++;
367 if (exp >= DBL_EXP_INFNAN) {
368 fe->fe_fpsr |= FPSR_OPERR | FPSR_INEX2 | FPSR_OVFL;
369 if (toinf(fe, sign)) {
370 res[1] = 0;
371 return (sign | DBL_EXP(DBL_EXP_INFNAN) | 0);
372 }
373 res[1] = ~0;
374 return (sign | DBL_EXP(DBL_EXP_INFNAN) | DBL_MASK);
375 }
376 done:
377 res[1] = fp->fp_mant[2];
378 return (sign | DBL_EXP(exp) | (fp->fp_mant[1] & DBL_MASK));
379 }
380
381 /*
382 * fpn -> 68k extended (32 bit high-order result returned; two 32-bit low
383 * order result left in res[1] & res[2]). Assumes == 64 bits in extended
384 * precision fraction.
385 *
386 * This code mimics fpu_ftos; see it for comments.
387 */
388 static u_int
389 fpu_ftox(fe, fp, res)
390 struct fpemu *fe;
391 register struct fpn *fp;
392 u_int *res;
393 {
394 register u_int sign = fp->fp_sign << 31;
395 register int exp;
396
397 #define EXT_EXP(e) ((e) << 16)
398 /*
399 * on m68k extended prec, significand does not share the same long
400 * word with exponent
401 */
402 #define EXT_MASK 0
403 #define EXT_EXPLICIT1 (1UL << (63 & 31))
404 #define EXT_EXPLICIT2 (1UL << (64 & 31))
405
406 if (ISNAN(fp)) {
407 (void) fpu_shr(fp, FP_NMANT - EXT_FRACBITS);
408 exp = EXT_EXP_INFNAN;
409 goto done;
410 }
411 if (ISINF(fp)) {
412 sign |= EXT_EXP(EXT_EXP_INFNAN);
413 res[1] = res[2] = 0;
414 return (sign);
415 }
416 if (ISZERO(fp)) {
417 res[1] = res[2] = 0;
418 return (sign);
419 }
420
421 if ((exp = fp->fp_exp + EXT_EXP_BIAS) < 0) {
422 fe->fe_fpsr |= FPSR_UNFL;
423 /* I'm not sure about this <=... exp==0 doesn't mean
424 it's a denormal in extended format */
425 (void) fpu_shr(fp, FP_NMANT - FP_NG - EXT_FRACBITS - exp);
426 if (round(fe, fp) && fp->fp_mant[1] == EXT_EXPLICIT1) {
427 res[1] = res[2] = 0;
428 return (sign | EXT_EXP(1) | 0);
429 }
430 if (fe->fe_fpsr & FPSR_INEX2)
431 fe->fe_fpsr |= FPSR_UNFL
432 /* mc68881/2 don't underflow */;
433 exp = 0;
434 goto done;
435 }
436 #if (FP_NMANT - FP_NG - EXT_FRACBITS) > 0
437 (void) fpu_shr(fp, FP_NMANT - FP_NG - EXT_FRACBITS);
438 #endif
439 if (round(fe, fp) && fp->fp_mant[0] == EXT_EXPLICIT2)
440 exp++;
441 if (exp >= EXT_EXP_INFNAN) {
442 fe->fe_fpsr |= FPSR_OPERR | FPSR_INEX2 | FPSR_OVFL;
443 if (toinf(fe, sign)) {
444 res[1] = res[2] = 0;
445 return (sign | EXT_EXP(EXT_EXP_INFNAN) | 0);
446 }
447 res[1] = res[2] = ~0;
448 return (sign | EXT_EXP(EXT_EXP_INFNAN) | EXT_MASK);
449 }
450 done:
451 res[1] = fp->fp_mant[1];
452 res[2] = fp->fp_mant[2];
453 return (sign | EXT_EXP(exp));
454 }
455
456 /*
457 * Implode an fpn, writing the result into the given space.
458 */
459 void
460 fpu_implode(fe, fp, type, space)
461 struct fpemu *fe;
462 register struct fpn *fp;
463 int type;
464 register u_int *space;
465 {
466 /* XXX Dont delete exceptions set here: fe->fe_fpsr &= ~FPSR_EXCP; */
467
468 switch (type) {
469 case FTYPE_LNG:
470 space[0] = fpu_ftoi(fe, fp);
471 break;
472
473 case FTYPE_SNG:
474 space[0] = fpu_ftos(fe, fp);
475 break;
476
477 case FTYPE_DBL:
478 space[0] = fpu_ftod(fe, fp, space);
479 break;
480
481 case FTYPE_EXT:
482 /* funky rounding precision options ?? */
483 space[0] = fpu_ftox(fe, fp, space);
484 break;
485
486 default:
487 panic("fpu_implode");
488 }
489 }
490