Home | History | Annotate | Line # | Download | only in fpe
fpu_implode.c revision 1.4
      1 /*	$NetBSD: fpu_implode.c,v 1.4 1999/05/30 20:17:48 briggs Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1992, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * This software was developed by the Computer Systems Engineering group
      8  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
      9  * contributed to Berkeley.
     10  *
     11  * All advertising materials mentioning features or use of this software
     12  * must display the following acknowledgement:
     13  *	This product includes software developed by the University of
     14  *	California, Lawrence Berkeley Laboratory.
     15  *
     16  * Redistribution and use in source and binary forms, with or without
     17  * modification, are permitted provided that the following conditions
     18  * are met:
     19  * 1. Redistributions of source code must retain the above copyright
     20  *    notice, this list of conditions and the following disclaimer.
     21  * 2. Redistributions in binary form must reproduce the above copyright
     22  *    notice, this list of conditions and the following disclaimer in the
     23  *    documentation and/or other materials provided with the distribution.
     24  * 3. All advertising materials mentioning features or use of this software
     25  *    must display the following acknowledgement:
     26  *	This product includes software developed by the University of
     27  *	California, Berkeley and its contributors.
     28  * 4. Neither the name of the University nor the names of its contributors
     29  *    may be used to endorse or promote products derived from this software
     30  *    without specific prior written permission.
     31  *
     32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     42  * SUCH DAMAGE.
     43  *
     44  *	@(#)fpu_implode.c	8.1 (Berkeley) 6/11/93
     45  */
     46 
     47 /*
     48  * FPU subroutines: `implode' internal format numbers into the machine's
     49  * `packed binary' format.
     50  */
     51 
     52 #include <sys/types.h>
     53 #include <sys/systm.h>
     54 
     55 #include "ieee.h"
     56 #include <machine/reg.h>
     57 
     58 #include "fpu_emulate.h"
     59 #include "fpu_arith.h"
     60 
     61 /* Conversion from internal format -- note asymmetry. */
     62 static u_int	fpu_ftoi __P((struct fpemu *fe, struct fpn *fp));
     63 static u_int	fpu_ftos __P((struct fpemu *fe, struct fpn *fp));
     64 static u_int	fpu_ftod __P((struct fpemu *fe, struct fpn *fp, u_int *));
     65 static u_int	fpu_ftox __P((struct fpemu *fe, struct fpn *fp, u_int *));
     66 
     67 /*
     68  * Round a number (algorithm from Motorola MC68882 manual, modified for
     69  * our internal format).  Set inexact exception if rounding is required.
     70  * Return true iff we rounded up.
     71  *
     72  * After rounding, we discard the guard and round bits by shifting right
     73  * 2 bits (a la fpu_shr(), but we do not bother with fp->fp_sticky).
     74  * This saves effort later.
     75  *
     76  * Note that we may leave the value 2.0 in fp->fp_mant; it is the caller's
     77  * responsibility to fix this if necessary.
     78  */
     79 int
     80 round(register struct fpemu *fe, register struct fpn *fp)
     81 {
     82 	register u_int m0, m1, m2;
     83 	register int gr, s;
     84 
     85 	m0 = fp->fp_mant[0];
     86 	m1 = fp->fp_mant[1];
     87 	m2 = fp->fp_mant[2];
     88 	gr = m2 & 3;
     89 	s = fp->fp_sticky;
     90 
     91 	/* mant >>= FP_NG */
     92 	m2 = (m2 >> FP_NG) | (m1 << (32 - FP_NG));
     93 	m1 = (m1 >> FP_NG) | (m0 << (32 - FP_NG));
     94 	m0 >>= FP_NG;
     95 
     96 	if ((gr | s) == 0)	/* result is exact: no rounding needed */
     97 		goto rounddown;
     98 
     99 	fe->fe_fpsr |= FPSR_INEX2;	/* inexact */
    100 
    101 	/* Go to rounddown to round down; break to round up. */
    102 	switch (fe->fe_fpcr & FPCR_ROUND) {
    103 
    104 	case FPCR_NEAR:
    105 	default:
    106 		/*
    107 		 * Round only if guard is set (gr & 2).  If guard is set,
    108 		 * but round & sticky both clear, then we want to round
    109 		 * but have a tie, so round to even, i.e., add 1 iff odd.
    110 		 */
    111 		if ((gr & 2) == 0)
    112 			goto rounddown;
    113 		if ((gr & 1) || fp->fp_sticky || (m2 & 1))
    114 			break;
    115 		goto rounddown;
    116 
    117 	case FPCR_ZERO:
    118 		/* Round towards zero, i.e., down. */
    119 		goto rounddown;
    120 
    121 	case FPCR_MINF:
    122 		/* Round towards -Inf: up if negative, down if positive. */
    123 		if (fp->fp_sign)
    124 			break;
    125 		goto rounddown;
    126 
    127 	case FPCR_PINF:
    128 		/* Round towards +Inf: up if positive, down otherwise. */
    129 		if (!fp->fp_sign)
    130 			break;
    131 		goto rounddown;
    132 	}
    133 
    134 	/* Bump low bit of mantissa, with carry. */
    135 	if (++m2 == 0 && ++m1 == 0)
    136 		m0++;
    137 	fp->fp_sticky = 0;
    138 	fp->fp_mant[0] = m0;
    139 	fp->fp_mant[1] = m1;
    140 	fp->fp_mant[2] = m2;
    141 	return (1);
    142 
    143 rounddown:
    144 	fp->fp_sticky = 0;
    145 	fp->fp_mant[0] = m0;
    146 	fp->fp_mant[1] = m1;
    147 	fp->fp_mant[2] = m2;
    148 	return (0);
    149 }
    150 
    151 /*
    152  * For overflow: return true if overflow is to go to +/-Inf, according
    153  * to the sign of the overflowing result.  If false, overflow is to go
    154  * to the largest magnitude value instead.
    155  */
    156 static int
    157 toinf(struct fpemu *fe, int sign)
    158 {
    159 	int inf;
    160 
    161 	/* look at rounding direction */
    162 	switch (fe->fe_fpcr & FPCR_ROUND) {
    163 
    164 	default:
    165 	case FPCR_NEAR:		/* the nearest value is always Inf */
    166 		inf = 1;
    167 		break;
    168 
    169 	case FPCR_ZERO:		/* toward 0 => never towards Inf */
    170 		inf = 0;
    171 		break;
    172 
    173 	case FPCR_PINF:		/* toward +Inf iff positive */
    174 		inf = (sign == 0);
    175 		break;
    176 
    177 	case FPCR_MINF:		/* toward -Inf iff negative */
    178 		inf = sign;
    179 		break;
    180 	}
    181 	return (inf);
    182 }
    183 
    184 /*
    185  * fpn -> int (int value returned as return value).
    186  *
    187  * N.B.: this conversion always rounds towards zero (this is a peculiarity
    188  * of the SPARC instruction set).
    189  */
    190 static u_int
    191 fpu_ftoi(fe, fp)
    192 	struct fpemu *fe;
    193 	register struct fpn *fp;
    194 {
    195 	register u_int i;
    196 	register int sign, exp;
    197 
    198 	sign = fp->fp_sign;
    199 	switch (fp->fp_class) {
    200 
    201 	case FPC_ZERO:
    202 		return (0);
    203 
    204 	case FPC_NUM:
    205 		/*
    206 		 * If exp >= 2^32, overflow.  Otherwise shift value right
    207 		 * into last mantissa word (this will not exceed 0xffffffff),
    208 		 * shifting any guard and round bits out into the sticky
    209 		 * bit.  Then ``round'' towards zero, i.e., just set an
    210 		 * inexact exception if sticky is set (see round()).
    211 		 * If the result is > 0x80000000, or is positive and equals
    212 		 * 0x80000000, overflow; otherwise the last fraction word
    213 		 * is the result.
    214 		 */
    215 		if ((exp = fp->fp_exp) >= 32)
    216 			break;
    217 		/* NB: the following includes exp < 0 cases */
    218 		if (fpu_shr(fp, FP_NMANT - 1 - FP_NG - exp) != 0)
    219 			/* m68881/2 do not underflow when
    220 			   converting to integer */;
    221 		round(fe, fp);
    222 		i = fp->fp_mant[2];
    223 		if (i >= ((u_int)0x80000000 + sign))
    224 			break;
    225 		return (sign ? -i : i);
    226 
    227 	default:		/* Inf, qNaN, sNaN */
    228 		break;
    229 	}
    230 	/* overflow: replace any inexact exception with invalid */
    231 	fe->fe_fpsr = (fe->fe_fpsr & ~FPSR_INEX2) | FPSR_OPERR;
    232 	return (0x7fffffff + sign);
    233 }
    234 
    235 /*
    236  * fpn -> single (32 bit single returned as return value).
    237  * We assume <= 29 bits in a single-precision fraction (1.f part).
    238  */
    239 static u_int
    240 fpu_ftos(fe, fp)
    241 	struct fpemu *fe;
    242 	register struct fpn *fp;
    243 {
    244 	register u_int sign = fp->fp_sign << 31;
    245 	register int exp;
    246 
    247 #define	SNG_EXP(e)	((e) << SNG_FRACBITS)	/* makes e an exponent */
    248 #define	SNG_MASK	(SNG_EXP(1) - 1)	/* mask for fraction */
    249 
    250 	/* Take care of non-numbers first. */
    251 	if (ISNAN(fp)) {
    252 		/*
    253 		 * Preserve upper bits of NaN, per SPARC V8 appendix N.
    254 		 * Note that fp->fp_mant[0] has the quiet bit set,
    255 		 * even if it is classified as a signalling NaN.
    256 		 */
    257 		(void) fpu_shr(fp, FP_NMANT - 1 - SNG_FRACBITS);
    258 		exp = SNG_EXP_INFNAN;
    259 		goto done;
    260 	}
    261 	if (ISINF(fp))
    262 		return (sign | SNG_EXP(SNG_EXP_INFNAN));
    263 	if (ISZERO(fp))
    264 		return (sign);
    265 
    266 	/*
    267 	 * Normals (including subnormals).  Drop all the fraction bits
    268 	 * (including the explicit ``implied'' 1 bit) down into the
    269 	 * single-precision range.  If the number is subnormal, move
    270 	 * the ``implied'' 1 into the explicit range as well, and shift
    271 	 * right to introduce leading zeroes.  Rounding then acts
    272 	 * differently for normals and subnormals: the largest subnormal
    273 	 * may round to the smallest normal (1.0 x 2^minexp), or may
    274 	 * remain subnormal.  In the latter case, signal an underflow
    275 	 * if the result was inexact or if underflow traps are enabled.
    276 	 *
    277 	 * Rounding a normal, on the other hand, always produces another
    278 	 * normal (although either way the result might be too big for
    279 	 * single precision, and cause an overflow).  If rounding a
    280 	 * normal produces 2.0 in the fraction, we need not adjust that
    281 	 * fraction at all, since both 1.0 and 2.0 are zero under the
    282 	 * fraction mask.
    283 	 *
    284 	 * Note that the guard and round bits vanish from the number after
    285 	 * rounding.
    286 	 */
    287 	if ((exp = fp->fp_exp + SNG_EXP_BIAS) <= 0) {	/* subnormal */
    288 		fe->fe_fpsr |= FPSR_UNFL;
    289 		/* -NG for g,r; -SNG_FRACBITS-exp for fraction */
    290 		(void) fpu_shr(fp, FP_NMANT - FP_NG - SNG_FRACBITS - exp);
    291 		if (round(fe, fp) && fp->fp_mant[2] == SNG_EXP(1))
    292 			return (sign | SNG_EXP(1) | 0);
    293 		if (fe->fe_fpsr & FPSR_INEX2)
    294 			fe->fe_fpsr |= FPSR_UNFL
    295 			/* mc68881/2 don't underflow when converting */;
    296 		return (sign | SNG_EXP(0) | fp->fp_mant[2]);
    297 	}
    298 	/* -FP_NG for g,r; -1 for implied 1; -SNG_FRACBITS for fraction */
    299 	(void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - SNG_FRACBITS);
    300 #ifdef DIAGNOSTIC
    301 	if ((fp->fp_mant[2] & SNG_EXP(1 << FP_NG)) == 0)
    302 		panic("fpu_ftos");
    303 #endif
    304 	if (round(fe, fp) && fp->fp_mant[2] == SNG_EXP(2))
    305 		exp++;
    306 	if (exp >= SNG_EXP_INFNAN) {
    307 		/* overflow to inf or to max single */
    308 		fe->fe_fpsr |= FPSR_OPERR | FPSR_INEX2 | FPSR_OVFL;
    309 		if (toinf(fe, sign))
    310 			return (sign | SNG_EXP(SNG_EXP_INFNAN));
    311 		return (sign | SNG_EXP(SNG_EXP_INFNAN - 1) | SNG_MASK);
    312 	}
    313 done:
    314 	/* phew, made it */
    315 	return (sign | SNG_EXP(exp) | (fp->fp_mant[2] & SNG_MASK));
    316 }
    317 
    318 /*
    319  * fpn -> double (32 bit high-order result returned; 32-bit low order result
    320  * left in res[1]).  Assumes <= 61 bits in double precision fraction.
    321  *
    322  * This code mimics fpu_ftos; see it for comments.
    323  */
    324 static u_int
    325 fpu_ftod(fe, fp, res)
    326 	struct fpemu *fe;
    327 	register struct fpn *fp;
    328 	u_int *res;
    329 {
    330 	register u_int sign = fp->fp_sign << 31;
    331 	register int exp;
    332 
    333 #define	DBL_EXP(e)	((e) << (DBL_FRACBITS & 31))
    334 #define	DBL_MASK	(DBL_EXP(1) - 1)
    335 
    336 	if (ISNAN(fp)) {
    337 		(void) fpu_shr(fp, FP_NMANT - 1 - DBL_FRACBITS);
    338 		exp = DBL_EXP_INFNAN;
    339 		goto done;
    340 	}
    341 	if (ISINF(fp)) {
    342 		sign |= DBL_EXP(DBL_EXP_INFNAN);
    343 		res[1] = 0;
    344 		return (sign);
    345 	}
    346 	if (ISZERO(fp)) {
    347 		res[1] = 0;
    348 		return (sign);
    349 	}
    350 
    351 	if ((exp = fp->fp_exp + DBL_EXP_BIAS) <= 0) {
    352 		fe->fe_fpsr |= FPSR_UNFL;
    353 		(void) fpu_shr(fp, FP_NMANT - FP_NG - DBL_FRACBITS - exp);
    354 		if (round(fe, fp) && fp->fp_mant[1] == DBL_EXP(1)) {
    355 			res[1] = 0;
    356 			return (sign | DBL_EXP(1) | 0);
    357 		}
    358 		if (fe->fe_fpsr & FPSR_INEX2)
    359                         fe->fe_fpsr |= FPSR_UNFL
    360 			/* mc68881/2 don't underflow when converting */;
    361 		exp = 0;
    362 		goto done;
    363 	}
    364 	(void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - DBL_FRACBITS);
    365 	if (round(fe, fp) && fp->fp_mant[1] == DBL_EXP(2))
    366 		exp++;
    367 	if (exp >= DBL_EXP_INFNAN) {
    368 		fe->fe_fpsr |= FPSR_OPERR | FPSR_INEX2 | FPSR_OVFL;
    369 		if (toinf(fe, sign)) {
    370 			res[1] = 0;
    371 			return (sign | DBL_EXP(DBL_EXP_INFNAN) | 0);
    372 		}
    373 		res[1] = ~0;
    374 		return (sign | DBL_EXP(DBL_EXP_INFNAN) | DBL_MASK);
    375 	}
    376 done:
    377 	res[1] = fp->fp_mant[2];
    378 	return (sign | DBL_EXP(exp) | (fp->fp_mant[1] & DBL_MASK));
    379 }
    380 
    381 /*
    382  * fpn -> 68k extended (32 bit high-order result returned; two 32-bit low
    383  * order result left in res[1] & res[2]).  Assumes == 64 bits in extended
    384  * precision fraction.
    385  *
    386  * This code mimics fpu_ftos; see it for comments.
    387  */
    388 static u_int
    389 fpu_ftox(fe, fp, res)
    390 	struct fpemu *fe;
    391 	register struct fpn *fp;
    392 	u_int *res;
    393 {
    394 	register u_int sign = fp->fp_sign << 31;
    395 	register int exp;
    396 
    397 #define	EXT_EXP(e)	((e) << 16)
    398 /*
    399  * on m68k extended prec, significand does not share the same long
    400  * word with exponent
    401  */
    402 #define	EXT_MASK	0
    403 #define EXT_EXPLICIT1	(1UL << (63 & 31))
    404 #define EXT_EXPLICIT2	(1UL << (64 & 31))
    405 
    406 	if (ISNAN(fp)) {
    407 		(void) fpu_shr(fp, FP_NMANT - EXT_FRACBITS);
    408 		exp = EXT_EXP_INFNAN;
    409 		goto done;
    410 	}
    411 	if (ISINF(fp)) {
    412 		sign |= EXT_EXP(EXT_EXP_INFNAN);
    413 		res[1] = res[2] = 0;
    414 		return (sign);
    415 	}
    416 	if (ISZERO(fp)) {
    417 		res[1] = res[2] = 0;
    418 		return (sign);
    419 	}
    420 
    421 	if ((exp = fp->fp_exp + EXT_EXP_BIAS) < 0) {
    422 		fe->fe_fpsr |= FPSR_UNFL;
    423 		/* I'm not sure about this <=... exp==0 doesn't mean
    424 		   it's a denormal in extended format */
    425 		(void) fpu_shr(fp, FP_NMANT - FP_NG - EXT_FRACBITS - exp);
    426 		if (round(fe, fp) && fp->fp_mant[1] == EXT_EXPLICIT1) {
    427 			res[1] = res[2] = 0;
    428 			return (sign | EXT_EXP(1) | 0);
    429 		}
    430 		if (fe->fe_fpsr & FPSR_INEX2)
    431                         fe->fe_fpsr |= FPSR_UNFL
    432 			/* mc68881/2 don't underflow */;
    433 		exp = 0;
    434 		goto done;
    435 	}
    436 #if (FP_NMANT - FP_NG - EXT_FRACBITS) > 0
    437 	(void) fpu_shr(fp, FP_NMANT - FP_NG - EXT_FRACBITS);
    438 #endif
    439 	if (round(fe, fp) && fp->fp_mant[0] == EXT_EXPLICIT2)
    440 		exp++;
    441 	if (exp >= EXT_EXP_INFNAN) {
    442 		fe->fe_fpsr |= FPSR_OPERR | FPSR_INEX2 | FPSR_OVFL;
    443 		if (toinf(fe, sign)) {
    444 			res[1] = res[2] = 0;
    445 			return (sign | EXT_EXP(EXT_EXP_INFNAN) | 0);
    446 		}
    447 		res[1] = res[2] = ~0;
    448 		return (sign | EXT_EXP(EXT_EXP_INFNAN) | EXT_MASK);
    449 	}
    450 done:
    451 	res[1] = fp->fp_mant[1];
    452 	res[2] = fp->fp_mant[2];
    453 	return (sign | EXT_EXP(exp));
    454 }
    455 
    456 /*
    457  * Implode an fpn, writing the result into the given space.
    458  */
    459 void
    460 fpu_implode(fe, fp, type, space)
    461 	struct fpemu *fe;
    462 	register struct fpn *fp;
    463 	int type;
    464 	register u_int *space;
    465 {
    466 	/* XXX Dont delete exceptions set here: fe->fe_fpsr &= ~FPSR_EXCP; */
    467 
    468 	switch (type) {
    469 	case FTYPE_LNG:
    470 		space[0] = fpu_ftoi(fe, fp);
    471 		break;
    472 
    473 	case FTYPE_SNG:
    474 		space[0] = fpu_ftos(fe, fp);
    475 		break;
    476 
    477 	case FTYPE_DBL:
    478 		space[0] = fpu_ftod(fe, fp, space);
    479 		break;
    480 
    481 	case FTYPE_EXT:
    482 		/* funky rounding precision options ?? */
    483 		space[0] = fpu_ftox(fe, fp, space);
    484 		break;
    485 
    486 	default:
    487 		panic("fpu_implode");
    488 	}
    489 }
    490