1 1.12 isaki /* $NetBSD: fpu_subr.c,v 1.12 2013/04/21 02:50:48 isaki Exp $ */ 2 1.1 briggs 3 1.1 briggs /* 4 1.1 briggs * Copyright (c) 1992, 1993 5 1.1 briggs * The Regents of the University of California. All rights reserved. 6 1.1 briggs * 7 1.1 briggs * This software was developed by the Computer Systems Engineering group 8 1.1 briggs * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and 9 1.1 briggs * contributed to Berkeley. 10 1.1 briggs * 11 1.1 briggs * All advertising materials mentioning features or use of this software 12 1.1 briggs * must display the following acknowledgement: 13 1.1 briggs * This product includes software developed by the University of 14 1.1 briggs * California, Lawrence Berkeley Laboratory. 15 1.1 briggs * 16 1.1 briggs * Redistribution and use in source and binary forms, with or without 17 1.1 briggs * modification, are permitted provided that the following conditions 18 1.1 briggs * are met: 19 1.1 briggs * 1. Redistributions of source code must retain the above copyright 20 1.1 briggs * notice, this list of conditions and the following disclaimer. 21 1.1 briggs * 2. Redistributions in binary form must reproduce the above copyright 22 1.1 briggs * notice, this list of conditions and the following disclaimer in the 23 1.1 briggs * documentation and/or other materials provided with the distribution. 24 1.6 agc * 3. Neither the name of the University nor the names of its contributors 25 1.1 briggs * may be used to endorse or promote products derived from this software 26 1.1 briggs * without specific prior written permission. 27 1.1 briggs * 28 1.1 briggs * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 1.1 briggs * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 1.1 briggs * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 1.1 briggs * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 1.1 briggs * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 1.1 briggs * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 1.1 briggs * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 1.1 briggs * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 1.1 briggs * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 1.1 briggs * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 1.1 briggs * SUCH DAMAGE. 39 1.1 briggs * 40 1.1 briggs * @(#)fpu_subr.c 8.1 (Berkeley) 6/11/93 41 1.1 briggs */ 42 1.1 briggs 43 1.1 briggs /* 44 1.1 briggs * FPU subroutines. 45 1.1 briggs */ 46 1.5 lukem 47 1.5 lukem #include <sys/cdefs.h> 48 1.12 isaki __KERNEL_RCSID(0, "$NetBSD: fpu_subr.c,v 1.12 2013/04/21 02:50:48 isaki Exp $"); 49 1.1 briggs 50 1.1 briggs #include <sys/types.h> 51 1.2 briggs #include <sys/systm.h> 52 1.1 briggs 53 1.1 briggs #include <machine/reg.h> 54 1.1 briggs 55 1.1 briggs #include "fpu_emulate.h" 56 1.1 briggs #include "fpu_arith.h" 57 1.1 briggs 58 1.1 briggs /* 59 1.11 isaki * m68020 or later has a BFFFO instruction, therefore use it. 60 1.11 isaki * Otherwise, use C version. 61 1.11 isaki */ 62 1.11 isaki static inline int 63 1.11 isaki bfffo(uint32_t src) 64 1.11 isaki { 65 1.11 isaki int offset; 66 1.12 isaki #if defined(__m68k__) && !defined(__mc68010__) 67 1.11 isaki __asm volatile("bfffo %1{#0:#32},%0" : "=d"(offset) : "g"(src)); 68 1.11 isaki #else 69 1.11 isaki int width = 32; 70 1.11 isaki for (offset = 0; width-- > 0 && (int)src >= 0; src <<= 1) { 71 1.11 isaki offset++; 72 1.11 isaki } 73 1.11 isaki #endif 74 1.11 isaki return offset; 75 1.11 isaki } 76 1.11 isaki 77 1.11 isaki /* 78 1.1 briggs * Shift the given number right rsh bits. Any bits that `fall off' will get 79 1.1 briggs * shoved into the sticky field; we return the resulting sticky. Note that 80 1.1 briggs * shifting NaNs is legal (this will never shift all bits out); a NaN's 81 1.1 briggs * sticky field is ignored anyway. 82 1.1 briggs */ 83 1.1 briggs int 84 1.9 isaki fpu_shr(struct fpn *fp, int rsh) 85 1.1 briggs { 86 1.10 isaki uint32_t m0, m1, m2, s; 87 1.9 isaki int lsh; 88 1.1 briggs 89 1.1 briggs #ifdef DIAGNOSTIC 90 1.3 briggs if (rsh < 0 || (fp->fp_class != FPC_NUM && !ISNAN(fp))) 91 1.1 briggs panic("fpu_rightshift 1"); 92 1.1 briggs #endif 93 1.1 briggs 94 1.1 briggs m0 = fp->fp_mant[0]; 95 1.1 briggs m1 = fp->fp_mant[1]; 96 1.1 briggs m2 = fp->fp_mant[2]; 97 1.1 briggs 98 1.1 briggs /* If shifting all the bits out, take a shortcut. */ 99 1.1 briggs if (rsh >= FP_NMANT) { 100 1.1 briggs #ifdef DIAGNOSTIC 101 1.3 briggs if ((m0 | m1 | m2) == 0) 102 1.1 briggs panic("fpu_rightshift 2"); 103 1.1 briggs #endif 104 1.1 briggs fp->fp_mant[0] = 0; 105 1.1 briggs fp->fp_mant[1] = 0; 106 1.1 briggs fp->fp_mant[2] = 0; 107 1.1 briggs #ifdef notdef 108 1.3 briggs if ((m0 | m1 | m2) == 0) 109 1.1 briggs fp->fp_class = FPC_ZERO; 110 1.1 briggs else 111 1.1 briggs #endif 112 1.1 briggs fp->fp_sticky = 1; 113 1.1 briggs return (1); 114 1.1 briggs } 115 1.1 briggs 116 1.1 briggs /* Squish out full words. */ 117 1.1 briggs s = fp->fp_sticky; 118 1.3 briggs if (rsh >= 32 * 2) { 119 1.3 briggs s |= m2 | m1; 120 1.3 briggs m2 = m0, m1 = 0, m0 = 0; 121 1.1 briggs } else if (rsh >= 32) { 122 1.3 briggs s |= m2; 123 1.3 briggs m2 = m1, m1 = m0, m0 = 0; 124 1.1 briggs } 125 1.1 briggs 126 1.1 briggs /* Handle any remaining partial word. */ 127 1.1 briggs if ((rsh &= 31) != 0) { 128 1.1 briggs lsh = 32 - rsh; 129 1.3 briggs s |= m2 << lsh; 130 1.1 briggs m2 = (m2 >> rsh) | (m1 << lsh); 131 1.1 briggs m1 = (m1 >> rsh) | (m0 << lsh); 132 1.1 briggs m0 >>= rsh; 133 1.1 briggs } 134 1.1 briggs fp->fp_mant[0] = m0; 135 1.1 briggs fp->fp_mant[1] = m1; 136 1.1 briggs fp->fp_mant[2] = m2; 137 1.1 briggs fp->fp_sticky = s; 138 1.1 briggs return (s); 139 1.1 briggs } 140 1.1 briggs 141 1.1 briggs /* 142 1.1 briggs * Force a number to be normal, i.e., make its fraction have all zero 143 1.1 briggs * bits before FP_1, then FP_1, then all 1 bits. This is used for denorms 144 1.1 briggs * and (sometimes) for intermediate results. 145 1.1 briggs * 146 1.1 briggs * Internally, this may use a `supernormal' -- a number whose fp_mant 147 1.1 briggs * is greater than or equal to 2.0 -- so as a side effect you can hand it 148 1.3 briggs * a supernormal and it will fix it (provided fp->fp_mant[2] == 0). 149 1.1 briggs */ 150 1.1 briggs void 151 1.9 isaki fpu_norm(struct fpn *fp) 152 1.1 briggs { 153 1.10 isaki uint32_t m0, m1, m2, sup, nrm; 154 1.9 isaki int lsh, rsh, exp; 155 1.1 briggs 156 1.1 briggs exp = fp->fp_exp; 157 1.1 briggs m0 = fp->fp_mant[0]; 158 1.1 briggs m1 = fp->fp_mant[1]; 159 1.1 briggs m2 = fp->fp_mant[2]; 160 1.1 briggs 161 1.1 briggs /* Handle severe subnormals with 32-bit moves. */ 162 1.1 briggs if (m0 == 0) { 163 1.3 briggs if (m1) { 164 1.3 briggs m0 = m1; 165 1.3 briggs m1 = m2; 166 1.3 briggs m2 = 0; 167 1.3 briggs exp -= 32; 168 1.3 briggs } else if (m2) { 169 1.3 briggs m0 = m2; 170 1.3 briggs m1 = 0; 171 1.3 briggs m2 = 0; 172 1.3 briggs exp -= 2 * 32; 173 1.3 briggs } else { 174 1.1 briggs fp->fp_class = FPC_ZERO; 175 1.1 briggs return; 176 1.1 briggs } 177 1.1 briggs } 178 1.1 briggs 179 1.1 briggs /* Now fix any supernormal or remaining subnormal. */ 180 1.1 briggs nrm = FP_1; 181 1.1 briggs sup = nrm << 1; 182 1.1 briggs if (m0 >= sup) { 183 1.1 briggs /* 184 1.1 briggs * We have a supernormal number. We need to shift it right. 185 1.3 briggs * We may assume m2==0. 186 1.1 briggs */ 187 1.11 isaki rsh = bfffo(m0); 188 1.3 briggs rsh = 31 - rsh - FP_LG; 189 1.1 briggs exp += rsh; 190 1.1 briggs lsh = 32 - rsh; 191 1.3 briggs m2 = m1 << lsh; 192 1.1 briggs m1 = (m1 >> rsh) | (m0 << lsh); 193 1.3 briggs m0 = (m0 >> rsh); 194 1.1 briggs } else if (m0 < nrm) { 195 1.1 briggs /* 196 1.1 briggs * We have a regular denorm (a subnormal number), and need 197 1.1 briggs * to shift it left. 198 1.1 briggs */ 199 1.11 isaki lsh = bfffo(m0); 200 1.3 briggs lsh = FP_LG - 31 + lsh; 201 1.1 briggs exp -= lsh; 202 1.1 briggs rsh = 32 - lsh; 203 1.3 briggs m0 = (m0 << lsh) | (m1 >> rsh); 204 1.1 briggs m1 = (m1 << lsh) | (m2 >> rsh); 205 1.3 briggs m2 <<= lsh; 206 1.1 briggs } 207 1.1 briggs 208 1.1 briggs fp->fp_exp = exp; 209 1.1 briggs fp->fp_mant[0] = m0; 210 1.1 briggs fp->fp_mant[1] = m1; 211 1.1 briggs fp->fp_mant[2] = m2; 212 1.1 briggs } 213 1.1 briggs 214 1.1 briggs /* 215 1.1 briggs * Concoct a `fresh' Quiet NaN per Appendix N. 216 1.1 briggs * As a side effect, we set OPERR for the current exceptions. 217 1.1 briggs */ 218 1.1 briggs struct fpn * 219 1.9 isaki fpu_newnan(struct fpemu *fe) 220 1.1 briggs { 221 1.9 isaki struct fpn *fp; 222 1.1 briggs 223 1.1 briggs fe->fe_fpsr |= FPSR_OPERR; 224 1.1 briggs fp = &fe->fe_f3; 225 1.1 briggs fp->fp_class = FPC_QNAN; 226 1.1 briggs fp->fp_sign = 0; 227 1.1 briggs fp->fp_mant[0] = FP_1 - 1; 228 1.3 briggs fp->fp_mant[1] = fp->fp_mant[2] = ~0; 229 1.1 briggs return (fp); 230 1.1 briggs } 231