1 1.5 matt * $NetBSD: setox.sa,v 1.5 2014/09/01 08:21:26 matt Exp $ 2 1.3 cgd 3 1.1 mycroft * MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP 4 1.1 mycroft * M68000 Hi-Performance Microprocessor Division 5 1.1 mycroft * M68040 Software Package 6 1.1 mycroft * 7 1.1 mycroft * M68040 Software Package Copyright (c) 1993, 1994 Motorola Inc. 8 1.1 mycroft * All rights reserved. 9 1.1 mycroft * 10 1.1 mycroft * THE SOFTWARE is provided on an "AS IS" basis and without warranty. 11 1.1 mycroft * To the maximum extent permitted by applicable law, 12 1.1 mycroft * MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED, 13 1.1 mycroft * INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A 14 1.1 mycroft * PARTICULAR PURPOSE and any warranty against infringement with 15 1.1 mycroft * regard to the SOFTWARE (INCLUDING ANY MODIFIED VERSIONS THEREOF) 16 1.1 mycroft * and any accompanying written materials. 17 1.1 mycroft * 18 1.1 mycroft * To the maximum extent permitted by applicable law, 19 1.1 mycroft * IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER 20 1.1 mycroft * (INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS 21 1.1 mycroft * PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR 22 1.1 mycroft * OTHER PECUNIARY LOSS) ARISING OF THE USE OR INABILITY TO USE THE 23 1.1 mycroft * SOFTWARE. Motorola assumes no responsibility for the maintenance 24 1.1 mycroft * and support of the SOFTWARE. 25 1.1 mycroft * 26 1.1 mycroft * You are hereby granted a copyright license to use, modify, and 27 1.1 mycroft * distribute the SOFTWARE so long as this entire notice is retained 28 1.1 mycroft * without alteration in any modified and/or redistributed versions, 29 1.1 mycroft * and that such modified versions are clearly identified as such. 30 1.1 mycroft * No licenses are granted by implication, estoppel or otherwise 31 1.1 mycroft * under any patents or trademarks of Motorola, Inc. 32 1.1 mycroft 33 1.1 mycroft * 34 1.1 mycroft * setox.sa 3.1 12/10/90 35 1.1 mycroft * 36 1.1 mycroft * The entry point setox computes the exponential of a value. 37 1.1 mycroft * setoxd does the same except the input value is a denormalized 38 1.1 mycroft * number. setoxm1 computes exp(X)-1, and setoxm1d computes 39 1.1 mycroft * exp(X)-1 for denormalized X. 40 1.1 mycroft * 41 1.1 mycroft * INPUT 42 1.1 mycroft * ----- 43 1.1 mycroft * Double-extended value in memory location pointed to by address 44 1.1 mycroft * register a0. 45 1.1 mycroft * 46 1.1 mycroft * OUTPUT 47 1.1 mycroft * ------ 48 1.1 mycroft * exp(X) or exp(X)-1 returned in floating-point register fp0. 49 1.1 mycroft * 50 1.1 mycroft * ACCURACY and MONOTONICITY 51 1.1 mycroft * ------------------------- 52 1.1 mycroft * The returned result is within 0.85 ulps in 64 significant bit, i.e. 53 1.1 mycroft * within 0.5001 ulp to 53 bits if the result is subsequently rounded 54 1.1 mycroft * to double precision. The result is provably monotonic in double 55 1.1 mycroft * precision. 56 1.1 mycroft * 57 1.1 mycroft * SPEED 58 1.1 mycroft * ----- 59 1.1 mycroft * Two timings are measured, both in the copy-back mode. The 60 1.1 mycroft * first one is measured when the function is invoked the first time 61 1.1 mycroft * (so the instructions and data are not in cache), and the 62 1.1 mycroft * second one is measured when the function is reinvoked at the same 63 1.1 mycroft * input argument. 64 1.1 mycroft * 65 1.1 mycroft * The program setox takes approximately 210/190 cycles for input 66 1.1 mycroft * argument X whose magnitude is less than 16380 log2, which 67 1.1 mycroft * is the usual situation. For the less common arguments, 68 1.1 mycroft * depending on their values, the program may run faster or slower -- 69 1.1 mycroft * but no worse than 10% slower even in the extreme cases. 70 1.1 mycroft * 71 1.5 matt * The program setoxm1 takes approximately ??? / ??? cycles for input 72 1.1 mycroft * argument X, 0.25 <= |X| < 70log2. For |X| < 0.25, it takes 73 1.5 matt * approximately ??? / ??? cycles. For the less common arguments, 74 1.1 mycroft * depending on their values, the program may run faster or slower -- 75 1.1 mycroft * but no worse than 10% slower even in the extreme cases. 76 1.1 mycroft * 77 1.1 mycroft * ALGORITHM and IMPLEMENTATION NOTES 78 1.1 mycroft * ---------------------------------- 79 1.1 mycroft * 80 1.1 mycroft * setoxd 81 1.1 mycroft * ------ 82 1.1 mycroft * Step 1. Set ans := 1.0 83 1.1 mycroft * 84 1.1 mycroft * Step 2. Return ans := ans + sign(X)*2^(-126). Exit. 85 1.1 mycroft * Notes: This will always generate one exception -- inexact. 86 1.1 mycroft * 87 1.1 mycroft * 88 1.1 mycroft * setox 89 1.1 mycroft * ----- 90 1.1 mycroft * 91 1.1 mycroft * Step 1. Filter out extreme cases of input argument. 92 1.1 mycroft * 1.1 If |X| >= 2^(-65), go to Step 1.3. 93 1.1 mycroft * 1.2 Go to Step 7. 94 1.1 mycroft * 1.3 If |X| < 16380 log(2), go to Step 2. 95 1.1 mycroft * 1.4 Go to Step 8. 96 1.1 mycroft * Notes: The usual case should take the branches 1.1 -> 1.3 -> 2. 97 1.1 mycroft * To avoid the use of floating-point comparisons, a 98 1.1 mycroft * compact representation of |X| is used. This format is a 99 1.1 mycroft * 32-bit integer, the upper (more significant) 16 bits are 100 1.1 mycroft * the sign and biased exponent field of |X|; the lower 16 101 1.1 mycroft * bits are the 16 most significant fraction (including the 102 1.1 mycroft * explicit bit) bits of |X|. Consequently, the comparisons 103 1.1 mycroft * in Steps 1.1 and 1.3 can be performed by integer comparison. 104 1.1 mycroft * Note also that the constant 16380 log(2) used in Step 1.3 105 1.1 mycroft * is also in the compact form. Thus taking the branch 106 1.1 mycroft * to Step 2 guarantees |X| < 16380 log(2). There is no harm 107 1.1 mycroft * to have a small number of cases where |X| is less than, 108 1.1 mycroft * but close to, 16380 log(2) and the branch to Step 9 is 109 1.1 mycroft * taken. 110 1.1 mycroft * 111 1.1 mycroft * Step 2. Calculate N = round-to-nearest-int( X * 64/log2 ). 112 1.1 mycroft * 2.1 Set AdjFlag := 0 (indicates the branch 1.3 -> 2 was taken) 113 1.1 mycroft * 2.2 N := round-to-nearest-integer( X * 64/log2 ). 114 1.1 mycroft * 2.3 Calculate J = N mod 64; so J = 0,1,2,..., or 63. 115 1.1 mycroft * 2.4 Calculate M = (N - J)/64; so N = 64M + J. 116 1.1 mycroft * 2.5 Calculate the address of the stored value of 2^(J/64). 117 1.1 mycroft * 2.6 Create the value Scale = 2^M. 118 1.1 mycroft * Notes: The calculation in 2.2 is really performed by 119 1.1 mycroft * 120 1.1 mycroft * Z := X * constant 121 1.1 mycroft * N := round-to-nearest-integer(Z) 122 1.1 mycroft * 123 1.1 mycroft * where 124 1.1 mycroft * 125 1.1 mycroft * constant := single-precision( 64/log 2 ). 126 1.1 mycroft * 127 1.1 mycroft * Using a single-precision constant avoids memory access. 128 1.1 mycroft * Another effect of using a single-precision "constant" is 129 1.1 mycroft * that the calculated value Z is 130 1.1 mycroft * 131 1.1 mycroft * Z = X*(64/log2)*(1+eps), |eps| <= 2^(-24). 132 1.1 mycroft * 133 1.1 mycroft * This error has to be considered later in Steps 3 and 4. 134 1.1 mycroft * 135 1.1 mycroft * Step 3. Calculate X - N*log2/64. 136 1.1 mycroft * 3.1 R := X + N*L1, where L1 := single-precision(-log2/64). 137 1.1 mycroft * 3.2 R := R + N*L2, L2 := extended-precision(-log2/64 - L1). 138 1.1 mycroft * Notes: a) The way L1 and L2 are chosen ensures L1+L2 approximate 139 1.1 mycroft * the value -log2/64 to 88 bits of accuracy. 140 1.1 mycroft * b) N*L1 is exact because N is no longer than 22 bits and 141 1.1 mycroft * L1 is no longer than 24 bits. 142 1.1 mycroft * c) The calculation X+N*L1 is also exact due to cancellation. 143 1.1 mycroft * Thus, R is practically X+N(L1+L2) to full 64 bits. 144 1.1 mycroft * d) It is important to estimate how large can |R| be after 145 1.1 mycroft * Step 3.2. 146 1.1 mycroft * 147 1.1 mycroft * N = rnd-to-int( X*64/log2 (1+eps) ), |eps|<=2^(-24) 148 1.1 mycroft * X*64/log2 (1+eps) = N + f, |f| <= 0.5 149 1.1 mycroft * X*64/log2 - N = f - eps*X 64/log2 150 1.1 mycroft * X - N*log2/64 = f*log2/64 - eps*X 151 1.1 mycroft * 152 1.1 mycroft * 153 1.1 mycroft * Now |X| <= 16446 log2, thus 154 1.1 mycroft * 155 1.1 mycroft * |X - N*log2/64| <= (0.5 + 16446/2^(18))*log2/64 156 1.1 mycroft * <= 0.57 log2/64. 157 1.1 mycroft * This bound will be used in Step 4. 158 1.1 mycroft * 159 1.1 mycroft * Step 4. Approximate exp(R)-1 by a polynomial 160 1.1 mycroft * p = R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*A5)))) 161 1.1 mycroft * Notes: a) In order to reduce memory access, the coefficients are 162 1.1 mycroft * made as "short" as possible: A1 (which is 1/2), A4 and A5 163 1.1 mycroft * are single precision; A2 and A3 are double precision. 164 1.1 mycroft * b) Even with the restrictions above, 165 1.1 mycroft * |p - (exp(R)-1)| < 2^(-68.8) for all |R| <= 0.0062. 166 1.1 mycroft * Note that 0.0062 is slightly bigger than 0.57 log2/64. 167 1.4 perry * c) To fully use the pipeline, p is separated into 168 1.1 mycroft * two independent pieces of roughly equal complexities 169 1.1 mycroft * p = [ R + R*S*(A2 + S*A4) ] + 170 1.1 mycroft * [ S*(A1 + S*(A3 + S*A5)) ] 171 1.1 mycroft * where S = R*R. 172 1.1 mycroft * 173 1.1 mycroft * Step 5. Compute 2^(J/64)*exp(R) = 2^(J/64)*(1+p) by 174 1.1 mycroft * ans := T + ( T*p + t) 175 1.1 mycroft * where T and t are the stored values for 2^(J/64). 176 1.1 mycroft * Notes: 2^(J/64) is stored as T and t where T+t approximates 177 1.1 mycroft * 2^(J/64) to roughly 85 bits; T is in extended precision 178 1.1 mycroft * and t is in single precision. Note also that T is rounded 179 1.1 mycroft * to 62 bits so that the last two bits of T are zero. The 180 1.1 mycroft * reason for such a special form is that T-1, T-2, and T-8 181 1.1 mycroft * will all be exact --- a property that will give much 182 1.1 mycroft * more accurate computation of the function EXPM1. 183 1.1 mycroft * 184 1.1 mycroft * Step 6. Reconstruction of exp(X) 185 1.1 mycroft * exp(X) = 2^M * 2^(J/64) * exp(R). 186 1.1 mycroft * 6.1 If AdjFlag = 0, go to 6.3 187 1.1 mycroft * 6.2 ans := ans * AdjScale 188 1.1 mycroft * 6.3 Restore the user FPCR 189 1.1 mycroft * 6.4 Return ans := ans * Scale. Exit. 190 1.1 mycroft * Notes: If AdjFlag = 0, we have X = Mlog2 + Jlog2/64 + R, 191 1.1 mycroft * |M| <= 16380, and Scale = 2^M. Moreover, exp(X) will 192 1.1 mycroft * neither overflow nor underflow. If AdjFlag = 1, that 193 1.1 mycroft * means that 194 1.1 mycroft * X = (M1+M)log2 + Jlog2/64 + R, |M1+M| >= 16380. 195 1.1 mycroft * Hence, exp(X) may overflow or underflow or neither. 196 1.1 mycroft * When that is the case, AdjScale = 2^(M1) where M1 is 197 1.1 mycroft * approximately M. Thus 6.2 will never cause over/underflow. 198 1.1 mycroft * Possible exception in 6.4 is overflow or underflow. 199 1.1 mycroft * The inexact exception is not generated in 6.4. Although 200 1.1 mycroft * one can argue that the inexact flag should always be 201 1.1 mycroft * raised, to simulate that exception cost to much than the 202 1.1 mycroft * flag is worth in practical uses. 203 1.1 mycroft * 204 1.1 mycroft * Step 7. Return 1 + X. 205 1.1 mycroft * 7.1 ans := X 206 1.1 mycroft * 7.2 Restore user FPCR. 207 1.1 mycroft * 7.3 Return ans := 1 + ans. Exit 208 1.1 mycroft * Notes: For non-zero X, the inexact exception will always be 209 1.1 mycroft * raised by 7.3. That is the only exception raised by 7.3. 210 1.1 mycroft * Note also that we use the FMOVEM instruction to move X 211 1.1 mycroft * in Step 7.1 to avoid unnecessary trapping. (Although 212 1.1 mycroft * the FMOVEM may not seem relevant since X is normalized, 213 1.1 mycroft * the precaution will be useful in the library version of 214 1.1 mycroft * this code where the separate entry for denormalized inputs 215 1.1 mycroft * will be done away with.) 216 1.1 mycroft * 217 1.1 mycroft * Step 8. Handle exp(X) where |X| >= 16380log2. 218 1.1 mycroft * 8.1 If |X| > 16480 log2, go to Step 9. 219 1.1 mycroft * (mimic 2.2 - 2.6) 220 1.1 mycroft * 8.2 N := round-to-integer( X * 64/log2 ) 221 1.1 mycroft * 8.3 Calculate J = N mod 64, J = 0,1,...,63 222 1.1 mycroft * 8.4 K := (N-J)/64, M1 := truncate(K/2), M = K-M1, AdjFlag := 1. 223 1.1 mycroft * 8.5 Calculate the address of the stored value 2^(J/64). 224 1.1 mycroft * 8.6 Create the values Scale = 2^M, AdjScale = 2^M1. 225 1.1 mycroft * 8.7 Go to Step 3. 226 1.1 mycroft * Notes: Refer to notes for 2.2 - 2.6. 227 1.1 mycroft * 228 1.1 mycroft * Step 9. Handle exp(X), |X| > 16480 log2. 229 1.1 mycroft * 9.1 If X < 0, go to 9.3 230 1.1 mycroft * 9.2 ans := Huge, go to 9.4 231 1.1 mycroft * 9.3 ans := Tiny. 232 1.1 mycroft * 9.4 Restore user FPCR. 233 1.1 mycroft * 9.5 Return ans := ans * ans. Exit. 234 1.1 mycroft * Notes: Exp(X) will surely overflow or underflow, depending on 235 1.1 mycroft * X's sign. "Huge" and "Tiny" are respectively large/tiny 236 1.1 mycroft * extended-precision numbers whose square over/underflow 237 1.1 mycroft * with an inexact result. Thus, 9.5 always raises the 238 1.1 mycroft * inexact together with either overflow or underflow. 239 1.1 mycroft * 240 1.1 mycroft * 241 1.1 mycroft * setoxm1d 242 1.1 mycroft * -------- 243 1.1 mycroft * 244 1.1 mycroft * Step 1. Set ans := 0 245 1.1 mycroft * 246 1.1 mycroft * Step 2. Return ans := X + ans. Exit. 247 1.1 mycroft * Notes: This will return X with the appropriate rounding 248 1.1 mycroft * precision prescribed by the user FPCR. 249 1.1 mycroft * 250 1.1 mycroft * setoxm1 251 1.1 mycroft * ------- 252 1.1 mycroft * 253 1.1 mycroft * Step 1. Check |X| 254 1.1 mycroft * 1.1 If |X| >= 1/4, go to Step 1.3. 255 1.1 mycroft * 1.2 Go to Step 7. 256 1.1 mycroft * 1.3 If |X| < 70 log(2), go to Step 2. 257 1.1 mycroft * 1.4 Go to Step 10. 258 1.1 mycroft * Notes: The usual case should take the branches 1.1 -> 1.3 -> 2. 259 1.1 mycroft * However, it is conceivable |X| can be small very often 260 1.1 mycroft * because EXPM1 is intended to evaluate exp(X)-1 accurately 261 1.1 mycroft * when |X| is small. For further details on the comparisons, 262 1.1 mycroft * see the notes on Step 1 of setox. 263 1.1 mycroft * 264 1.1 mycroft * Step 2. Calculate N = round-to-nearest-int( X * 64/log2 ). 265 1.1 mycroft * 2.1 N := round-to-nearest-integer( X * 64/log2 ). 266 1.1 mycroft * 2.2 Calculate J = N mod 64; so J = 0,1,2,..., or 63. 267 1.1 mycroft * 2.3 Calculate M = (N - J)/64; so N = 64M + J. 268 1.1 mycroft * 2.4 Calculate the address of the stored value of 2^(J/64). 269 1.1 mycroft * 2.5 Create the values Sc = 2^M and OnebySc := -2^(-M). 270 1.1 mycroft * Notes: See the notes on Step 2 of setox. 271 1.1 mycroft * 272 1.1 mycroft * Step 3. Calculate X - N*log2/64. 273 1.1 mycroft * 3.1 R := X + N*L1, where L1 := single-precision(-log2/64). 274 1.1 mycroft * 3.2 R := R + N*L2, L2 := extended-precision(-log2/64 - L1). 275 1.1 mycroft * Notes: Applying the analysis of Step 3 of setox in this case 276 1.1 mycroft * shows that |R| <= 0.0055 (note that |X| <= 70 log2 in 277 1.1 mycroft * this case). 278 1.1 mycroft * 279 1.1 mycroft * Step 4. Approximate exp(R)-1 by a polynomial 280 1.1 mycroft * p = R+R*R*(A1+R*(A2+R*(A3+R*(A4+R*(A5+R*A6))))) 281 1.1 mycroft * Notes: a) In order to reduce memory access, the coefficients are 282 1.1 mycroft * made as "short" as possible: A1 (which is 1/2), A5 and A6 283 1.1 mycroft * are single precision; A2, A3 and A4 are double precision. 284 1.1 mycroft * b) Even with the restriction above, 285 1.1 mycroft * |p - (exp(R)-1)| < |R| * 2^(-72.7) 286 1.1 mycroft * for all |R| <= 0.0055. 287 1.4 perry * c) To fully use the pipeline, p is separated into 288 1.1 mycroft * two independent pieces of roughly equal complexity 289 1.1 mycroft * p = [ R*S*(A2 + S*(A4 + S*A6)) ] + 290 1.1 mycroft * [ R + S*(A1 + S*(A3 + S*A5)) ] 291 1.1 mycroft * where S = R*R. 292 1.1 mycroft * 293 1.1 mycroft * Step 5. Compute 2^(J/64)*p by 294 1.1 mycroft * p := T*p 295 1.1 mycroft * where T and t are the stored values for 2^(J/64). 296 1.1 mycroft * Notes: 2^(J/64) is stored as T and t where T+t approximates 297 1.1 mycroft * 2^(J/64) to roughly 85 bits; T is in extended precision 298 1.1 mycroft * and t is in single precision. Note also that T is rounded 299 1.1 mycroft * to 62 bits so that the last two bits of T are zero. The 300 1.1 mycroft * reason for such a special form is that T-1, T-2, and T-8 301 1.1 mycroft * will all be exact --- a property that will be exploited 302 1.1 mycroft * in Step 6 below. The total relative error in p is no 303 1.1 mycroft * bigger than 2^(-67.7) compared to the final result. 304 1.1 mycroft * 305 1.1 mycroft * Step 6. Reconstruction of exp(X)-1 306 1.1 mycroft * exp(X)-1 = 2^M * ( 2^(J/64) + p - 2^(-M) ). 307 1.1 mycroft * 6.1 If M <= 63, go to Step 6.3. 308 1.1 mycroft * 6.2 ans := T + (p + (t + OnebySc)). Go to 6.6 309 1.1 mycroft * 6.3 If M >= -3, go to 6.5. 310 1.1 mycroft * 6.4 ans := (T + (p + t)) + OnebySc. Go to 6.6 311 1.1 mycroft * 6.5 ans := (T + OnebySc) + (p + t). 312 1.1 mycroft * 6.6 Restore user FPCR. 313 1.1 mycroft * 6.7 Return ans := Sc * ans. Exit. 314 1.1 mycroft * Notes: The various arrangements of the expressions give accurate 315 1.1 mycroft * evaluations. 316 1.1 mycroft * 317 1.1 mycroft * Step 7. exp(X)-1 for |X| < 1/4. 318 1.1 mycroft * 7.1 If |X| >= 2^(-65), go to Step 9. 319 1.1 mycroft * 7.2 Go to Step 8. 320 1.1 mycroft * 321 1.1 mycroft * Step 8. Calculate exp(X)-1, |X| < 2^(-65). 322 1.1 mycroft * 8.1 If |X| < 2^(-16312), goto 8.3 323 1.1 mycroft * 8.2 Restore FPCR; return ans := X - 2^(-16382). Exit. 324 1.1 mycroft * 8.3 X := X * 2^(140). 325 1.1 mycroft * 8.4 Restore FPCR; ans := ans - 2^(-16382). 326 1.1 mycroft * Return ans := ans*2^(140). Exit 327 1.1 mycroft * Notes: The idea is to return "X - tiny" under the user 328 1.1 mycroft * precision and rounding modes. To avoid unnecessary 329 1.1 mycroft * inefficiency, we stay away from denormalized numbers the 330 1.1 mycroft * best we can. For |X| >= 2^(-16312), the straightforward 331 1.1 mycroft * 8.2 generates the inexact exception as the case warrants. 332 1.1 mycroft * 333 1.1 mycroft * Step 9. Calculate exp(X)-1, |X| < 1/4, by a polynomial 334 1.1 mycroft * p = X + X*X*(B1 + X*(B2 + ... + X*B12)) 335 1.1 mycroft * Notes: a) In order to reduce memory access, the coefficients are 336 1.1 mycroft * made as "short" as possible: B1 (which is 1/2), B9 to B12 337 1.1 mycroft * are single precision; B3 to B8 are double precision; and 338 1.1 mycroft * B2 is double extended. 339 1.1 mycroft * b) Even with the restriction above, 340 1.1 mycroft * |p - (exp(X)-1)| < |X| 2^(-70.6) 341 1.1 mycroft * for all |X| <= 0.251. 342 1.1 mycroft * Note that 0.251 is slightly bigger than 1/4. 343 1.1 mycroft * c) To fully preserve accuracy, the polynomial is computed 344 1.1 mycroft * as X + ( S*B1 + Q ) where S = X*X and 345 1.1 mycroft * Q = X*S*(B2 + X*(B3 + ... + X*B12)) 346 1.4 perry * d) To fully use the pipeline, Q is separated into 347 1.1 mycroft * two independent pieces of roughly equal complexity 348 1.1 mycroft * Q = [ X*S*(B2 + S*(B4 + ... + S*B12)) ] + 349 1.1 mycroft * [ S*S*(B3 + S*(B5 + ... + S*B11)) ] 350 1.1 mycroft * 351 1.1 mycroft * Step 10. Calculate exp(X)-1 for |X| >= 70 log 2. 352 1.1 mycroft * 10.1 If X >= 70log2 , exp(X) - 1 = exp(X) for all practical 353 1.1 mycroft * purposes. Therefore, go to Step 1 of setox. 354 1.1 mycroft * 10.2 If X <= -70log2, exp(X) - 1 = -1 for all practical purposes. 355 1.1 mycroft * ans := -1 356 1.1 mycroft * Restore user FPCR 357 1.1 mycroft * Return ans := ans + 2^(-126). Exit. 358 1.1 mycroft * Notes: 10.2 will always create an inexact and return -1 + tiny 359 1.1 mycroft * in the user rounding precision and mode. 360 1.1 mycroft * 361 1.1 mycroft 362 1.1 mycroft setox IDNT 2,1 Motorola 040 Floating Point Software Package 363 1.1 mycroft 364 1.1 mycroft section 8 365 1.1 mycroft 366 1.1 mycroft include fpsp.h 367 1.1 mycroft 368 1.1 mycroft L2 DC.L $3FDC0000,$82E30865,$4361C4C6,$00000000 369 1.1 mycroft 370 1.1 mycroft EXPA3 DC.L $3FA55555,$55554431 371 1.1 mycroft EXPA2 DC.L $3FC55555,$55554018 372 1.1 mycroft 373 1.1 mycroft HUGE DC.L $7FFE0000,$FFFFFFFF,$FFFFFFFF,$00000000 374 1.1 mycroft TINY DC.L $00010000,$FFFFFFFF,$FFFFFFFF,$00000000 375 1.1 mycroft 376 1.1 mycroft EM1A4 DC.L $3F811111,$11174385 377 1.1 mycroft EM1A3 DC.L $3FA55555,$55554F5A 378 1.1 mycroft 379 1.1 mycroft EM1A2 DC.L $3FC55555,$55555555,$00000000,$00000000 380 1.1 mycroft 381 1.1 mycroft EM1B8 DC.L $3EC71DE3,$A5774682 382 1.1 mycroft EM1B7 DC.L $3EFA01A0,$19D7CB68 383 1.1 mycroft 384 1.1 mycroft EM1B6 DC.L $3F2A01A0,$1A019DF3 385 1.1 mycroft EM1B5 DC.L $3F56C16C,$16C170E2 386 1.1 mycroft 387 1.1 mycroft EM1B4 DC.L $3F811111,$11111111 388 1.1 mycroft EM1B3 DC.L $3FA55555,$55555555 389 1.1 mycroft 390 1.1 mycroft EM1B2 DC.L $3FFC0000,$AAAAAAAA,$AAAAAAAB 391 1.1 mycroft DC.L $00000000 392 1.1 mycroft 393 1.1 mycroft TWO140 DC.L $48B00000,$00000000 394 1.1 mycroft TWON140 DC.L $37300000,$00000000 395 1.1 mycroft 396 1.1 mycroft EXPTBL 397 1.1 mycroft DC.L $3FFF0000,$80000000,$00000000,$00000000 398 1.1 mycroft DC.L $3FFF0000,$8164D1F3,$BC030774,$9F841A9B 399 1.1 mycroft DC.L $3FFF0000,$82CD8698,$AC2BA1D8,$9FC1D5B9 400 1.1 mycroft DC.L $3FFF0000,$843A28C3,$ACDE4048,$A0728369 401 1.1 mycroft DC.L $3FFF0000,$85AAC367,$CC487B14,$1FC5C95C 402 1.1 mycroft DC.L $3FFF0000,$871F6196,$9E8D1010,$1EE85C9F 403 1.1 mycroft DC.L $3FFF0000,$88980E80,$92DA8528,$9FA20729 404 1.1 mycroft DC.L $3FFF0000,$8A14D575,$496EFD9C,$A07BF9AF 405 1.1 mycroft DC.L $3FFF0000,$8B95C1E3,$EA8BD6E8,$A0020DCF 406 1.1 mycroft DC.L $3FFF0000,$8D1ADF5B,$7E5BA9E4,$205A63DA 407 1.1 mycroft DC.L $3FFF0000,$8EA4398B,$45CD53C0,$1EB70051 408 1.1 mycroft DC.L $3FFF0000,$9031DC43,$1466B1DC,$1F6EB029 409 1.1 mycroft DC.L $3FFF0000,$91C3D373,$AB11C338,$A0781494 410 1.1 mycroft DC.L $3FFF0000,$935A2B2F,$13E6E92C,$9EB319B0 411 1.1 mycroft DC.L $3FFF0000,$94F4EFA8,$FEF70960,$2017457D 412 1.1 mycroft DC.L $3FFF0000,$96942D37,$20185A00,$1F11D537 413 1.1 mycroft DC.L $3FFF0000,$9837F051,$8DB8A970,$9FB952DD 414 1.1 mycroft DC.L $3FFF0000,$99E04593,$20B7FA64,$1FE43087 415 1.1 mycroft DC.L $3FFF0000,$9B8D39B9,$D54E5538,$1FA2A818 416 1.1 mycroft DC.L $3FFF0000,$9D3ED9A7,$2CFFB750,$1FDE494D 417 1.1 mycroft DC.L $3FFF0000,$9EF53260,$91A111AC,$20504890 418 1.1 mycroft DC.L $3FFF0000,$A0B0510F,$B9714FC4,$A073691C 419 1.1 mycroft DC.L $3FFF0000,$A2704303,$0C496818,$1F9B7A05 420 1.1 mycroft DC.L $3FFF0000,$A43515AE,$09E680A0,$A0797126 421 1.1 mycroft DC.L $3FFF0000,$A5FED6A9,$B15138EC,$A071A140 422 1.1 mycroft DC.L $3FFF0000,$A7CD93B4,$E9653568,$204F62DA 423 1.1 mycroft DC.L $3FFF0000,$A9A15AB4,$EA7C0EF8,$1F283C4A 424 1.1 mycroft DC.L $3FFF0000,$AB7A39B5,$A93ED338,$9F9A7FDC 425 1.1 mycroft DC.L $3FFF0000,$AD583EEA,$42A14AC8,$A05B3FAC 426 1.1 mycroft DC.L $3FFF0000,$AF3B78AD,$690A4374,$1FDF2610 427 1.1 mycroft DC.L $3FFF0000,$B123F581,$D2AC2590,$9F705F90 428 1.1 mycroft DC.L $3FFF0000,$B311C412,$A9112488,$201F678A 429 1.1 mycroft DC.L $3FFF0000,$B504F333,$F9DE6484,$1F32FB13 430 1.1 mycroft DC.L $3FFF0000,$B6FD91E3,$28D17790,$20038B30 431 1.1 mycroft DC.L $3FFF0000,$B8FBAF47,$62FB9EE8,$200DC3CC 432 1.1 mycroft DC.L $3FFF0000,$BAFF5AB2,$133E45FC,$9F8B2AE6 433 1.1 mycroft DC.L $3FFF0000,$BD08A39F,$580C36C0,$A02BBF70 434 1.1 mycroft DC.L $3FFF0000,$BF1799B6,$7A731084,$A00BF518 435 1.1 mycroft DC.L $3FFF0000,$C12C4CCA,$66709458,$A041DD41 436 1.1 mycroft DC.L $3FFF0000,$C346CCDA,$24976408,$9FDF137B 437 1.1 mycroft DC.L $3FFF0000,$C5672A11,$5506DADC,$201F1568 438 1.1 mycroft DC.L $3FFF0000,$C78D74C8,$ABB9B15C,$1FC13A2E 439 1.1 mycroft DC.L $3FFF0000,$C9B9BD86,$6E2F27A4,$A03F8F03 440 1.1 mycroft DC.L $3FFF0000,$CBEC14FE,$F2727C5C,$1FF4907D 441 1.1 mycroft DC.L $3FFF0000,$CE248C15,$1F8480E4,$9E6E53E4 442 1.1 mycroft DC.L $3FFF0000,$D06333DA,$EF2B2594,$1FD6D45C 443 1.1 mycroft DC.L $3FFF0000,$D2A81D91,$F12AE45C,$A076EDB9 444 1.1 mycroft DC.L $3FFF0000,$D4F35AAB,$CFEDFA20,$9FA6DE21 445 1.1 mycroft DC.L $3FFF0000,$D744FCCA,$D69D6AF4,$1EE69A2F 446 1.1 mycroft DC.L $3FFF0000,$D99D15C2,$78AFD7B4,$207F439F 447 1.1 mycroft DC.L $3FFF0000,$DBFBB797,$DAF23754,$201EC207 448 1.1 mycroft DC.L $3FFF0000,$DE60F482,$5E0E9124,$9E8BE175 449 1.1 mycroft DC.L $3FFF0000,$E0CCDEEC,$2A94E110,$20032C4B 450 1.1 mycroft DC.L $3FFF0000,$E33F8972,$BE8A5A50,$2004DFF5 451 1.1 mycroft DC.L $3FFF0000,$E5B906E7,$7C8348A8,$1E72F47A 452 1.1 mycroft DC.L $3FFF0000,$E8396A50,$3C4BDC68,$1F722F22 453 1.1 mycroft DC.L $3FFF0000,$EAC0C6E7,$DD243930,$A017E945 454 1.1 mycroft DC.L $3FFF0000,$ED4F301E,$D9942B84,$1F401A5B 455 1.1 mycroft DC.L $3FFF0000,$EFE4B99B,$DCDAF5CC,$9FB9A9E3 456 1.1 mycroft DC.L $3FFF0000,$F281773C,$59FFB138,$20744C05 457 1.1 mycroft DC.L $3FFF0000,$F5257D15,$2486CC2C,$1F773A19 458 1.1 mycroft DC.L $3FFF0000,$F7D0DF73,$0AD13BB8,$1FFE90D5 459 1.1 mycroft DC.L $3FFF0000,$FA83B2DB,$722A033C,$A041ED22 460 1.1 mycroft DC.L $3FFF0000,$FD3E0C0C,$F486C174,$1F853F3A 461 1.1 mycroft 462 1.1 mycroft ADJFLAG equ L_SCR2 463 1.1 mycroft SCALE equ FP_SCR1 464 1.1 mycroft ADJSCALE equ FP_SCR2 465 1.1 mycroft SC equ FP_SCR3 466 1.1 mycroft ONEBYSC equ FP_SCR4 467 1.1 mycroft 468 1.1 mycroft xref t_frcinx 469 1.1 mycroft xref t_extdnrm 470 1.1 mycroft xref t_unfl 471 1.1 mycroft xref t_ovfl 472 1.1 mycroft 473 1.1 mycroft xdef setoxd 474 1.1 mycroft setoxd: 475 1.1 mycroft *--entry point for EXP(X), X is denormalized 476 1.1 mycroft MOVE.L (a0),d0 477 1.1 mycroft ANDI.L #$80000000,d0 478 1.1 mycroft ORI.L #$00800000,d0 ...sign(X)*2^(-126) 479 1.1 mycroft MOVE.L d0,-(sp) 480 1.1 mycroft FMOVE.S #:3F800000,fp0 481 1.1 mycroft fmove.l d1,fpcr 482 1.1 mycroft FADD.S (sp)+,fp0 483 1.1 mycroft bra t_frcinx 484 1.1 mycroft 485 1.1 mycroft xdef setox 486 1.1 mycroft setox: 487 1.1 mycroft *--entry point for EXP(X), here X is finite, non-zero, and not NaN's 488 1.1 mycroft 489 1.1 mycroft *--Step 1. 490 1.1 mycroft MOVE.L (a0),d0 ...load part of input X 491 1.1 mycroft ANDI.L #$7FFF0000,d0 ...biased expo. of X 492 1.1 mycroft CMPI.L #$3FBE0000,d0 ...2^(-65) 493 1.1 mycroft BGE.B EXPC1 ...normal case 494 1.1 mycroft BRA.W EXPSM 495 1.1 mycroft 496 1.1 mycroft EXPC1: 497 1.1 mycroft *--The case |X| >= 2^(-65) 498 1.1 mycroft MOVE.W 4(a0),d0 ...expo. and partial sig. of |X| 499 1.1 mycroft CMPI.L #$400CB167,d0 ...16380 log2 trunc. 16 bits 500 1.1 mycroft BLT.B EXPMAIN ...normal case 501 1.1 mycroft BRA.W EXPBIG 502 1.1 mycroft 503 1.1 mycroft EXPMAIN: 504 1.1 mycroft *--Step 2. 505 1.1 mycroft *--This is the normal branch: 2^(-65) <= |X| < 16380 log2. 506 1.1 mycroft FMOVE.X (a0),fp0 ...load input from (a0) 507 1.1 mycroft 508 1.1 mycroft FMOVE.X fp0,fp1 509 1.1 mycroft FMUL.S #:42B8AA3B,fp0 ...64/log2 * X 510 1.1 mycroft fmovem.x fp2/fp3,-(a7) ...save fp2 511 1.2 mycroft CLR.L ADJFLAG(a6) 512 1.1 mycroft FMOVE.L fp0,d0 ...N = int( X * 64/log2 ) 513 1.1 mycroft LEA EXPTBL,a1 514 1.1 mycroft FMOVE.L d0,fp0 ...convert to floating-format 515 1.1 mycroft 516 1.1 mycroft MOVE.L d0,L_SCR1(a6) ...save N temporarily 517 1.1 mycroft ANDI.L #$3F,d0 ...D0 is J = N mod 64 518 1.1 mycroft LSL.L #4,d0 519 1.1 mycroft ADDA.L d0,a1 ...address of 2^(J/64) 520 1.1 mycroft MOVE.L L_SCR1(a6),d0 521 1.1 mycroft ASR.L #6,d0 ...D0 is M 522 1.1 mycroft ADDI.W #$3FFF,d0 ...biased expo. of 2^(M) 523 1.1 mycroft MOVE.W L2,L_SCR1(a6) ...prefetch L2, no need in CB 524 1.1 mycroft 525 1.1 mycroft EXPCONT1: 526 1.1 mycroft *--Step 3. 527 1.1 mycroft *--fp1,fp2 saved on the stack. fp0 is N, fp1 is X, 528 1.1 mycroft *--a0 points to 2^(J/64), D0 is biased expo. of 2^(M) 529 1.1 mycroft FMOVE.X fp0,fp2 530 1.1 mycroft FMUL.S #:BC317218,fp0 ...N * L1, L1 = lead(-log2/64) 531 1.1 mycroft FMUL.X L2,fp2 ...N * L2, L1+L2 = -log2/64 532 1.1 mycroft FADD.X fp1,fp0 ...X + N*L1 533 1.1 mycroft FADD.X fp2,fp0 ...fp0 is R, reduced arg. 534 1.1 mycroft * MOVE.W #$3FA5,EXPA3 ...load EXPA3 in cache 535 1.1 mycroft 536 1.1 mycroft *--Step 4. 537 1.1 mycroft *--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL 538 1.1 mycroft *-- R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*A5)))) 539 1.4 perry *--TO FULLY USE THE PIPELINE, WE COMPUTE S = R*R 540 1.1 mycroft *--[R+R*S*(A2+S*A4)] + [S*(A1+S*(A3+S*A5))] 541 1.1 mycroft 542 1.1 mycroft FMOVE.X fp0,fp1 543 1.1 mycroft FMUL.X fp1,fp1 ...fp1 IS S = R*R 544 1.1 mycroft 545 1.1 mycroft FMOVE.S #:3AB60B70,fp2 ...fp2 IS A5 546 1.2 mycroft * CLR.W 2(a1) ...load 2^(J/64) in cache 547 1.1 mycroft 548 1.1 mycroft FMUL.X fp1,fp2 ...fp2 IS S*A5 549 1.1 mycroft FMOVE.X fp1,fp3 550 1.1 mycroft FMUL.S #:3C088895,fp3 ...fp3 IS S*A4 551 1.1 mycroft 552 1.1 mycroft FADD.D EXPA3,fp2 ...fp2 IS A3+S*A5 553 1.1 mycroft FADD.D EXPA2,fp3 ...fp3 IS A2+S*A4 554 1.1 mycroft 555 1.1 mycroft FMUL.X fp1,fp2 ...fp2 IS S*(A3+S*A5) 556 1.1 mycroft MOVE.W d0,SCALE(a6) ...SCALE is 2^(M) in extended 557 1.1 mycroft clr.w SCALE+2(a6) 558 1.1 mycroft move.l #$80000000,SCALE+4(a6) 559 1.1 mycroft clr.l SCALE+8(a6) 560 1.1 mycroft 561 1.1 mycroft FMUL.X fp1,fp3 ...fp3 IS S*(A2+S*A4) 562 1.1 mycroft 563 1.1 mycroft FADD.S #:3F000000,fp2 ...fp2 IS A1+S*(A3+S*A5) 564 1.1 mycroft FMUL.X fp0,fp3 ...fp3 IS R*S*(A2+S*A4) 565 1.1 mycroft 566 1.1 mycroft FMUL.X fp1,fp2 ...fp2 IS S*(A1+S*(A3+S*A5)) 567 1.1 mycroft FADD.X fp3,fp0 ...fp0 IS R+R*S*(A2+S*A4), 568 1.1 mycroft * ...fp3 released 569 1.1 mycroft 570 1.1 mycroft FMOVE.X (a1)+,fp1 ...fp1 is lead. pt. of 2^(J/64) 571 1.1 mycroft FADD.X fp2,fp0 ...fp0 is EXP(R) - 1 572 1.1 mycroft * ...fp2 released 573 1.1 mycroft 574 1.1 mycroft *--Step 5 575 1.1 mycroft *--final reconstruction process 576 1.1 mycroft *--EXP(X) = 2^M * ( 2^(J/64) + 2^(J/64)*(EXP(R)-1) ) 577 1.1 mycroft 578 1.1 mycroft FMUL.X fp1,fp0 ...2^(J/64)*(Exp(R)-1) 579 1.1 mycroft fmovem.x (a7)+,fp2/fp3 ...fp2 restored 580 1.1 mycroft FADD.S (a1),fp0 ...accurate 2^(J/64) 581 1.1 mycroft 582 1.1 mycroft FADD.X fp1,fp0 ...2^(J/64) + 2^(J/64)*... 583 1.1 mycroft MOVE.L ADJFLAG(a6),d0 584 1.1 mycroft 585 1.1 mycroft *--Step 6 586 1.1 mycroft TST.L D0 587 1.1 mycroft BEQ.B NORMAL 588 1.1 mycroft ADJUST: 589 1.1 mycroft FMUL.X ADJSCALE(a6),fp0 590 1.1 mycroft NORMAL: 591 1.1 mycroft FMOVE.L d1,FPCR ...restore user FPCR 592 1.1 mycroft FMUL.X SCALE(a6),fp0 ...multiply 2^(M) 593 1.1 mycroft bra t_frcinx 594 1.1 mycroft 595 1.1 mycroft EXPSM: 596 1.1 mycroft *--Step 7 597 1.1 mycroft FMOVEM.X (a0),fp0 ...in case X is denormalized 598 1.1 mycroft FMOVE.L d1,FPCR 599 1.1 mycroft FADD.S #:3F800000,fp0 ...1+X in user mode 600 1.1 mycroft bra t_frcinx 601 1.1 mycroft 602 1.1 mycroft EXPBIG: 603 1.1 mycroft *--Step 8 604 1.1 mycroft CMPI.L #$400CB27C,d0 ...16480 log2 605 1.1 mycroft BGT.B EXP2BIG 606 1.1 mycroft *--Steps 8.2 -- 8.6 607 1.1 mycroft FMOVE.X (a0),fp0 ...load input from (a0) 608 1.1 mycroft 609 1.1 mycroft FMOVE.X fp0,fp1 610 1.1 mycroft FMUL.S #:42B8AA3B,fp0 ...64/log2 * X 611 1.1 mycroft fmovem.x fp2/fp3,-(a7) ...save fp2 612 1.1 mycroft MOVE.L #1,ADJFLAG(a6) 613 1.1 mycroft FMOVE.L fp0,d0 ...N = int( X * 64/log2 ) 614 1.1 mycroft LEA EXPTBL,a1 615 1.1 mycroft FMOVE.L d0,fp0 ...convert to floating-format 616 1.1 mycroft MOVE.L d0,L_SCR1(a6) ...save N temporarily 617 1.1 mycroft ANDI.L #$3F,d0 ...D0 is J = N mod 64 618 1.1 mycroft LSL.L #4,d0 619 1.1 mycroft ADDA.L d0,a1 ...address of 2^(J/64) 620 1.1 mycroft MOVE.L L_SCR1(a6),d0 621 1.1 mycroft ASR.L #6,d0 ...D0 is K 622 1.1 mycroft MOVE.L d0,L_SCR1(a6) ...save K temporarily 623 1.1 mycroft ASR.L #1,d0 ...D0 is M1 624 1.1 mycroft SUB.L d0,L_SCR1(a6) ...a1 is M 625 1.1 mycroft ADDI.W #$3FFF,d0 ...biased expo. of 2^(M1) 626 1.1 mycroft MOVE.W d0,ADJSCALE(a6) ...ADJSCALE := 2^(M1) 627 1.1 mycroft clr.w ADJSCALE+2(a6) 628 1.1 mycroft move.l #$80000000,ADJSCALE+4(a6) 629 1.1 mycroft clr.l ADJSCALE+8(a6) 630 1.1 mycroft MOVE.L L_SCR1(a6),d0 ...D0 is M 631 1.1 mycroft ADDI.W #$3FFF,d0 ...biased expo. of 2^(M) 632 1.1 mycroft BRA.W EXPCONT1 ...go back to Step 3 633 1.1 mycroft 634 1.1 mycroft EXP2BIG: 635 1.1 mycroft *--Step 9 636 1.1 mycroft FMOVE.L d1,FPCR 637 1.1 mycroft MOVE.L (a0),d0 638 1.1 mycroft bclr.b #sign_bit,(a0) ...setox always returns positive 639 1.2 mycroft TST.L d0 640 1.1 mycroft BLT t_unfl 641 1.1 mycroft BRA t_ovfl 642 1.1 mycroft 643 1.1 mycroft xdef setoxm1d 644 1.1 mycroft setoxm1d: 645 1.1 mycroft *--entry point for EXPM1(X), here X is denormalized 646 1.1 mycroft *--Step 0. 647 1.1 mycroft bra t_extdnrm 648 1.1 mycroft 649 1.1 mycroft 650 1.1 mycroft xdef setoxm1 651 1.1 mycroft setoxm1: 652 1.1 mycroft *--entry point for EXPM1(X), here X is finite, non-zero, non-NaN 653 1.1 mycroft 654 1.1 mycroft *--Step 1. 655 1.1 mycroft *--Step 1.1 656 1.1 mycroft MOVE.L (a0),d0 ...load part of input X 657 1.1 mycroft ANDI.L #$7FFF0000,d0 ...biased expo. of X 658 1.1 mycroft CMPI.L #$3FFD0000,d0 ...1/4 659 1.1 mycroft BGE.B EM1CON1 ...|X| >= 1/4 660 1.1 mycroft BRA.W EM1SM 661 1.1 mycroft 662 1.1 mycroft EM1CON1: 663 1.1 mycroft *--Step 1.3 664 1.1 mycroft *--The case |X| >= 1/4 665 1.1 mycroft MOVE.W 4(a0),d0 ...expo. and partial sig. of |X| 666 1.1 mycroft CMPI.L #$4004C215,d0 ...70log2 rounded up to 16 bits 667 1.1 mycroft BLE.B EM1MAIN ...1/4 <= |X| <= 70log2 668 1.1 mycroft BRA.W EM1BIG 669 1.1 mycroft 670 1.1 mycroft EM1MAIN: 671 1.1 mycroft *--Step 2. 672 1.1 mycroft *--This is the case: 1/4 <= |X| <= 70 log2. 673 1.1 mycroft FMOVE.X (a0),fp0 ...load input from (a0) 674 1.1 mycroft 675 1.1 mycroft FMOVE.X fp0,fp1 676 1.1 mycroft FMUL.S #:42B8AA3B,fp0 ...64/log2 * X 677 1.1 mycroft fmovem.x fp2/fp3,-(a7) ...save fp2 678 1.1 mycroft * MOVE.W #$3F81,EM1A4 ...prefetch in CB mode 679 1.1 mycroft FMOVE.L fp0,d0 ...N = int( X * 64/log2 ) 680 1.1 mycroft LEA EXPTBL,a1 681 1.1 mycroft FMOVE.L d0,fp0 ...convert to floating-format 682 1.1 mycroft 683 1.1 mycroft MOVE.L d0,L_SCR1(a6) ...save N temporarily 684 1.1 mycroft ANDI.L #$3F,d0 ...D0 is J = N mod 64 685 1.1 mycroft LSL.L #4,d0 686 1.1 mycroft ADDA.L d0,a1 ...address of 2^(J/64) 687 1.1 mycroft MOVE.L L_SCR1(a6),d0 688 1.1 mycroft ASR.L #6,d0 ...D0 is M 689 1.1 mycroft MOVE.L d0,L_SCR1(a6) ...save a copy of M 690 1.1 mycroft * MOVE.W #$3FDC,L2 ...prefetch L2 in CB mode 691 1.1 mycroft 692 1.1 mycroft *--Step 3. 693 1.1 mycroft *--fp1,fp2 saved on the stack. fp0 is N, fp1 is X, 694 1.1 mycroft *--a0 points to 2^(J/64), D0 and a1 both contain M 695 1.1 mycroft FMOVE.X fp0,fp2 696 1.1 mycroft FMUL.S #:BC317218,fp0 ...N * L1, L1 = lead(-log2/64) 697 1.1 mycroft FMUL.X L2,fp2 ...N * L2, L1+L2 = -log2/64 698 1.1 mycroft FADD.X fp1,fp0 ...X + N*L1 699 1.1 mycroft FADD.X fp2,fp0 ...fp0 is R, reduced arg. 700 1.1 mycroft * MOVE.W #$3FC5,EM1A2 ...load EM1A2 in cache 701 1.1 mycroft ADDI.W #$3FFF,d0 ...D0 is biased expo. of 2^M 702 1.1 mycroft 703 1.1 mycroft *--Step 4. 704 1.1 mycroft *--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL 705 1.1 mycroft *-- R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*(A5 + R*A6))))) 706 1.4 perry *--TO FULLY USE THE PIPELINE, WE COMPUTE S = R*R 707 1.1 mycroft *--[R*S*(A2+S*(A4+S*A6))] + [R+S*(A1+S*(A3+S*A5))] 708 1.1 mycroft 709 1.1 mycroft FMOVE.X fp0,fp1 710 1.1 mycroft FMUL.X fp1,fp1 ...fp1 IS S = R*R 711 1.1 mycroft 712 1.1 mycroft FMOVE.S #:3950097B,fp2 ...fp2 IS a6 713 1.2 mycroft * CLR.W 2(a1) ...load 2^(J/64) in cache 714 1.1 mycroft 715 1.1 mycroft FMUL.X fp1,fp2 ...fp2 IS S*A6 716 1.1 mycroft FMOVE.X fp1,fp3 717 1.1 mycroft FMUL.S #:3AB60B6A,fp3 ...fp3 IS S*A5 718 1.1 mycroft 719 1.1 mycroft FADD.D EM1A4,fp2 ...fp2 IS A4+S*A6 720 1.1 mycroft FADD.D EM1A3,fp3 ...fp3 IS A3+S*A5 721 1.1 mycroft MOVE.W d0,SC(a6) ...SC is 2^(M) in extended 722 1.1 mycroft clr.w SC+2(a6) 723 1.1 mycroft move.l #$80000000,SC+4(a6) 724 1.1 mycroft clr.l SC+8(a6) 725 1.1 mycroft 726 1.1 mycroft FMUL.X fp1,fp2 ...fp2 IS S*(A4+S*A6) 727 1.1 mycroft MOVE.L L_SCR1(a6),d0 ...D0 is M 728 1.1 mycroft NEG.W D0 ...D0 is -M 729 1.1 mycroft FMUL.X fp1,fp3 ...fp3 IS S*(A3+S*A5) 730 1.1 mycroft ADDI.W #$3FFF,d0 ...biased expo. of 2^(-M) 731 1.1 mycroft FADD.D EM1A2,fp2 ...fp2 IS A2+S*(A4+S*A6) 732 1.1 mycroft FADD.S #:3F000000,fp3 ...fp3 IS A1+S*(A3+S*A5) 733 1.1 mycroft 734 1.1 mycroft FMUL.X fp1,fp2 ...fp2 IS S*(A2+S*(A4+S*A6)) 735 1.1 mycroft ORI.W #$8000,d0 ...signed/expo. of -2^(-M) 736 1.1 mycroft MOVE.W d0,ONEBYSC(a6) ...OnebySc is -2^(-M) 737 1.1 mycroft clr.w ONEBYSC+2(a6) 738 1.1 mycroft move.l #$80000000,ONEBYSC+4(a6) 739 1.1 mycroft clr.l ONEBYSC+8(a6) 740 1.1 mycroft FMUL.X fp3,fp1 ...fp1 IS S*(A1+S*(A3+S*A5)) 741 1.1 mycroft * ...fp3 released 742 1.1 mycroft 743 1.1 mycroft FMUL.X fp0,fp2 ...fp2 IS R*S*(A2+S*(A4+S*A6)) 744 1.1 mycroft FADD.X fp1,fp0 ...fp0 IS R+S*(A1+S*(A3+S*A5)) 745 1.1 mycroft * ...fp1 released 746 1.1 mycroft 747 1.1 mycroft FADD.X fp2,fp0 ...fp0 IS EXP(R)-1 748 1.1 mycroft * ...fp2 released 749 1.1 mycroft fmovem.x (a7)+,fp2/fp3 ...fp2 restored 750 1.1 mycroft 751 1.1 mycroft *--Step 5 752 1.1 mycroft *--Compute 2^(J/64)*p 753 1.1 mycroft 754 1.1 mycroft FMUL.X (a1),fp0 ...2^(J/64)*(Exp(R)-1) 755 1.1 mycroft 756 1.1 mycroft *--Step 6 757 1.1 mycroft *--Step 6.1 758 1.1 mycroft MOVE.L L_SCR1(a6),d0 ...retrieve M 759 1.1 mycroft CMPI.L #63,d0 760 1.1 mycroft BLE.B MLE63 761 1.1 mycroft *--Step 6.2 M >= 64 762 1.1 mycroft FMOVE.S 12(a1),fp1 ...fp1 is t 763 1.1 mycroft FADD.X ONEBYSC(a6),fp1 ...fp1 is t+OnebySc 764 1.1 mycroft FADD.X fp1,fp0 ...p+(t+OnebySc), fp1 released 765 1.1 mycroft FADD.X (a1),fp0 ...T+(p+(t+OnebySc)) 766 1.1 mycroft BRA.B EM1SCALE 767 1.1 mycroft MLE63: 768 1.1 mycroft *--Step 6.3 M <= 63 769 1.1 mycroft CMPI.L #-3,d0 770 1.1 mycroft BGE.B MGEN3 771 1.1 mycroft MLTN3: 772 1.1 mycroft *--Step 6.4 M <= -4 773 1.1 mycroft FADD.S 12(a1),fp0 ...p+t 774 1.1 mycroft FADD.X (a1),fp0 ...T+(p+t) 775 1.1 mycroft FADD.X ONEBYSC(a6),fp0 ...OnebySc + (T+(p+t)) 776 1.1 mycroft BRA.B EM1SCALE 777 1.1 mycroft MGEN3: 778 1.1 mycroft *--Step 6.5 -3 <= M <= 63 779 1.1 mycroft FMOVE.X (a1)+,fp1 ...fp1 is T 780 1.1 mycroft FADD.S (a1),fp0 ...fp0 is p+t 781 1.1 mycroft FADD.X ONEBYSC(a6),fp1 ...fp1 is T+OnebySc 782 1.1 mycroft FADD.X fp1,fp0 ...(T+OnebySc)+(p+t) 783 1.1 mycroft 784 1.1 mycroft EM1SCALE: 785 1.1 mycroft *--Step 6.6 786 1.1 mycroft FMOVE.L d1,FPCR 787 1.1 mycroft FMUL.X SC(a6),fp0 788 1.1 mycroft 789 1.1 mycroft bra t_frcinx 790 1.1 mycroft 791 1.1 mycroft EM1SM: 792 1.1 mycroft *--Step 7 |X| < 1/4. 793 1.1 mycroft CMPI.L #$3FBE0000,d0 ...2^(-65) 794 1.1 mycroft BGE.B EM1POLY 795 1.1 mycroft 796 1.1 mycroft EM1TINY: 797 1.1 mycroft *--Step 8 |X| < 2^(-65) 798 1.1 mycroft CMPI.L #$00330000,d0 ...2^(-16312) 799 1.1 mycroft BLT.B EM12TINY 800 1.1 mycroft *--Step 8.2 801 1.1 mycroft MOVE.L #$80010000,SC(a6) ...SC is -2^(-16382) 802 1.1 mycroft move.l #$80000000,SC+4(a6) 803 1.1 mycroft clr.l SC+8(a6) 804 1.1 mycroft FMOVE.X (a0),fp0 805 1.1 mycroft FMOVE.L d1,FPCR 806 1.1 mycroft FADD.X SC(a6),fp0 807 1.1 mycroft 808 1.1 mycroft bra t_frcinx 809 1.1 mycroft 810 1.1 mycroft EM12TINY: 811 1.1 mycroft *--Step 8.3 812 1.1 mycroft FMOVE.X (a0),fp0 813 1.1 mycroft FMUL.D TWO140,fp0 814 1.1 mycroft MOVE.L #$80010000,SC(a6) 815 1.1 mycroft move.l #$80000000,SC+4(a6) 816 1.1 mycroft clr.l SC+8(a6) 817 1.1 mycroft FADD.X SC(a6),fp0 818 1.1 mycroft FMOVE.L d1,FPCR 819 1.1 mycroft FMUL.D TWON140,fp0 820 1.1 mycroft 821 1.1 mycroft bra t_frcinx 822 1.1 mycroft 823 1.1 mycroft EM1POLY: 824 1.1 mycroft *--Step 9 exp(X)-1 by a simple polynomial 825 1.1 mycroft FMOVE.X (a0),fp0 ...fp0 is X 826 1.1 mycroft FMUL.X fp0,fp0 ...fp0 is S := X*X 827 1.1 mycroft fmovem.x fp2/fp3,-(a7) ...save fp2 828 1.1 mycroft FMOVE.S #:2F30CAA8,fp1 ...fp1 is B12 829 1.1 mycroft FMUL.X fp0,fp1 ...fp1 is S*B12 830 1.1 mycroft FMOVE.S #:310F8290,fp2 ...fp2 is B11 831 1.1 mycroft FADD.S #:32D73220,fp1 ...fp1 is B10+S*B12 832 1.1 mycroft 833 1.1 mycroft FMUL.X fp0,fp2 ...fp2 is S*B11 834 1.1 mycroft FMUL.X fp0,fp1 ...fp1 is S*(B10 + ... 835 1.1 mycroft 836 1.1 mycroft FADD.S #:3493F281,fp2 ...fp2 is B9+S*... 837 1.1 mycroft FADD.D EM1B8,fp1 ...fp1 is B8+S*... 838 1.1 mycroft 839 1.1 mycroft FMUL.X fp0,fp2 ...fp2 is S*(B9+... 840 1.1 mycroft FMUL.X fp0,fp1 ...fp1 is S*(B8+... 841 1.1 mycroft 842 1.1 mycroft FADD.D EM1B7,fp2 ...fp2 is B7+S*... 843 1.1 mycroft FADD.D EM1B6,fp1 ...fp1 is B6+S*... 844 1.1 mycroft 845 1.1 mycroft FMUL.X fp0,fp2 ...fp2 is S*(B7+... 846 1.1 mycroft FMUL.X fp0,fp1 ...fp1 is S*(B6+... 847 1.1 mycroft 848 1.1 mycroft FADD.D EM1B5,fp2 ...fp2 is B5+S*... 849 1.1 mycroft FADD.D EM1B4,fp1 ...fp1 is B4+S*... 850 1.1 mycroft 851 1.1 mycroft FMUL.X fp0,fp2 ...fp2 is S*(B5+... 852 1.1 mycroft FMUL.X fp0,fp1 ...fp1 is S*(B4+... 853 1.1 mycroft 854 1.1 mycroft FADD.D EM1B3,fp2 ...fp2 is B3+S*... 855 1.1 mycroft FADD.X EM1B2,fp1 ...fp1 is B2+S*... 856 1.1 mycroft 857 1.1 mycroft FMUL.X fp0,fp2 ...fp2 is S*(B3+... 858 1.1 mycroft FMUL.X fp0,fp1 ...fp1 is S*(B2+... 859 1.1 mycroft 860 1.1 mycroft FMUL.X fp0,fp2 ...fp2 is S*S*(B3+...) 861 1.1 mycroft FMUL.X (a0),fp1 ...fp1 is X*S*(B2... 862 1.1 mycroft 863 1.1 mycroft FMUL.S #:3F000000,fp0 ...fp0 is S*B1 864 1.1 mycroft FADD.X fp2,fp1 ...fp1 is Q 865 1.1 mycroft * ...fp2 released 866 1.1 mycroft 867 1.1 mycroft fmovem.x (a7)+,fp2/fp3 ...fp2 restored 868 1.1 mycroft 869 1.1 mycroft FADD.X fp1,fp0 ...fp0 is S*B1+Q 870 1.1 mycroft * ...fp1 released 871 1.1 mycroft 872 1.1 mycroft FMOVE.L d1,FPCR 873 1.1 mycroft FADD.X (a0),fp0 874 1.1 mycroft 875 1.1 mycroft bra t_frcinx 876 1.1 mycroft 877 1.1 mycroft EM1BIG: 878 1.1 mycroft *--Step 10 |X| > 70 log2 879 1.1 mycroft MOVE.L (a0),d0 880 1.2 mycroft TST.L d0 881 1.1 mycroft BGT.W EXPC1 882 1.1 mycroft *--Step 10.2 883 1.1 mycroft FMOVE.S #:BF800000,fp0 ...fp0 is -1 884 1.1 mycroft FMOVE.L d1,FPCR 885 1.1 mycroft FADD.S #:00800000,fp0 ...-1 + 2^(-126) 886 1.1 mycroft 887 1.1 mycroft bra t_frcinx 888 1.1 mycroft 889 1.1 mycroft end 890