Home | History | Annotate | Line # | Download | only in fpsp
      1  1.5     matt *	$NetBSD: setox.sa,v 1.5 2014/09/01 08:21:26 matt Exp $
      2  1.3      cgd 
      3  1.1  mycroft *	MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP
      4  1.1  mycroft *	M68000 Hi-Performance Microprocessor Division
      5  1.1  mycroft *	M68040 Software Package 
      6  1.1  mycroft *
      7  1.1  mycroft *	M68040 Software Package Copyright (c) 1993, 1994 Motorola Inc.
      8  1.1  mycroft *	All rights reserved.
      9  1.1  mycroft *
     10  1.1  mycroft *	THE SOFTWARE is provided on an "AS IS" basis and without warranty.
     11  1.1  mycroft *	To the maximum extent permitted by applicable law,
     12  1.1  mycroft *	MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED,
     13  1.1  mycroft *	INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
     14  1.1  mycroft *	PARTICULAR PURPOSE and any warranty against infringement with
     15  1.1  mycroft *	regard to the SOFTWARE (INCLUDING ANY MODIFIED VERSIONS THEREOF)
     16  1.1  mycroft *	and any accompanying written materials. 
     17  1.1  mycroft *
     18  1.1  mycroft *	To the maximum extent permitted by applicable law,
     19  1.1  mycroft *	IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER
     20  1.1  mycroft *	(INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS
     21  1.1  mycroft *	PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR
     22  1.1  mycroft *	OTHER PECUNIARY LOSS) ARISING OF THE USE OR INABILITY TO USE THE
     23  1.1  mycroft *	SOFTWARE.  Motorola assumes no responsibility for the maintenance
     24  1.1  mycroft *	and support of the SOFTWARE.  
     25  1.1  mycroft *
     26  1.1  mycroft *	You are hereby granted a copyright license to use, modify, and
     27  1.1  mycroft *	distribute the SOFTWARE so long as this entire notice is retained
     28  1.1  mycroft *	without alteration in any modified and/or redistributed versions,
     29  1.1  mycroft *	and that such modified versions are clearly identified as such.
     30  1.1  mycroft *	No licenses are granted by implication, estoppel or otherwise
     31  1.1  mycroft *	under any patents or trademarks of Motorola, Inc.
     32  1.1  mycroft 
     33  1.1  mycroft *
     34  1.1  mycroft *	setox.sa 3.1 12/10/90
     35  1.1  mycroft *
     36  1.1  mycroft *	The entry point setox computes the exponential of a value.
     37  1.1  mycroft *	setoxd does the same except the input value is a denormalized
     38  1.1  mycroft *	number.	setoxm1 computes exp(X)-1, and setoxm1d computes
     39  1.1  mycroft *	exp(X)-1 for denormalized X.
     40  1.1  mycroft *
     41  1.1  mycroft *	INPUT
     42  1.1  mycroft *	-----
     43  1.1  mycroft *	Double-extended value in memory location pointed to by address
     44  1.1  mycroft *	register a0.
     45  1.1  mycroft *
     46  1.1  mycroft *	OUTPUT
     47  1.1  mycroft *	------
     48  1.1  mycroft *	exp(X) or exp(X)-1 returned in floating-point register fp0.
     49  1.1  mycroft *
     50  1.1  mycroft *	ACCURACY and MONOTONICITY
     51  1.1  mycroft *	-------------------------
     52  1.1  mycroft *	The returned result is within 0.85 ulps in 64 significant bit, i.e.
     53  1.1  mycroft *	within 0.5001 ulp to 53 bits if the result is subsequently rounded
     54  1.1  mycroft *	to double precision. The result is provably monotonic in double
     55  1.1  mycroft *	precision.
     56  1.1  mycroft *
     57  1.1  mycroft *	SPEED
     58  1.1  mycroft *	-----
     59  1.1  mycroft *	Two timings are measured, both in the copy-back mode. The
     60  1.1  mycroft *	first one is measured when the function is invoked the first time
     61  1.1  mycroft *	(so the instructions and data are not in cache), and the
     62  1.1  mycroft *	second one is measured when the function is reinvoked at the same
     63  1.1  mycroft *	input argument.
     64  1.1  mycroft *
     65  1.1  mycroft *	The program setox takes approximately 210/190 cycles for input
     66  1.1  mycroft *	argument X whose magnitude is less than 16380 log2, which
     67  1.1  mycroft *	is the usual situation.	For the less common arguments,
     68  1.1  mycroft *	depending on their values, the program may run faster or slower --
     69  1.1  mycroft *	but no worse than 10% slower even in the extreme cases.
     70  1.1  mycroft *
     71  1.5     matt *	The program setoxm1 takes approximately ??? / ??? cycles for input
     72  1.1  mycroft *	argument X, 0.25 <= |X| < 70log2. For |X| < 0.25, it takes
     73  1.5     matt *	approximately ??? / ??? cycles. For the less common arguments,
     74  1.1  mycroft *	depending on their values, the program may run faster or slower --
     75  1.1  mycroft *	but no worse than 10% slower even in the extreme cases.
     76  1.1  mycroft *
     77  1.1  mycroft *	ALGORITHM and IMPLEMENTATION NOTES
     78  1.1  mycroft *	----------------------------------
     79  1.1  mycroft *
     80  1.1  mycroft *	setoxd
     81  1.1  mycroft *	------
     82  1.1  mycroft *	Step 1.	Set ans := 1.0
     83  1.1  mycroft *
     84  1.1  mycroft *	Step 2.	Return	ans := ans + sign(X)*2^(-126). Exit.
     85  1.1  mycroft *	Notes:	This will always generate one exception -- inexact.
     86  1.1  mycroft *
     87  1.1  mycroft *
     88  1.1  mycroft *	setox
     89  1.1  mycroft *	-----
     90  1.1  mycroft *
     91  1.1  mycroft *	Step 1.	Filter out extreme cases of input argument.
     92  1.1  mycroft *		1.1	If |X| >= 2^(-65), go to Step 1.3.
     93  1.1  mycroft *		1.2	Go to Step 7.
     94  1.1  mycroft *		1.3	If |X| < 16380 log(2), go to Step 2.
     95  1.1  mycroft *		1.4	Go to Step 8.
     96  1.1  mycroft *	Notes:	The usual case should take the branches 1.1 -> 1.3 -> 2.
     97  1.1  mycroft *		 To avoid the use of floating-point comparisons, a
     98  1.1  mycroft *		 compact representation of |X| is used. This format is a
     99  1.1  mycroft *		 32-bit integer, the upper (more significant) 16 bits are
    100  1.1  mycroft *		 the sign and biased exponent field of |X|; the lower 16
    101  1.1  mycroft *		 bits are the 16 most significant fraction (including the
    102  1.1  mycroft *		 explicit bit) bits of |X|. Consequently, the comparisons
    103  1.1  mycroft *		 in Steps 1.1 and 1.3 can be performed by integer comparison.
    104  1.1  mycroft *		 Note also that the constant 16380 log(2) used in Step 1.3
    105  1.1  mycroft *		 is also in the compact form. Thus taking the branch
    106  1.1  mycroft *		 to Step 2 guarantees |X| < 16380 log(2). There is no harm
    107  1.1  mycroft *		 to have a small number of cases where |X| is less than,
    108  1.1  mycroft *		 but close to, 16380 log(2) and the branch to Step 9 is
    109  1.1  mycroft *		 taken.
    110  1.1  mycroft *
    111  1.1  mycroft *	Step 2.	Calculate N = round-to-nearest-int( X * 64/log2 ).
    112  1.1  mycroft *		2.1	Set AdjFlag := 0 (indicates the branch 1.3 -> 2 was taken)
    113  1.1  mycroft *		2.2	N := round-to-nearest-integer( X * 64/log2 ).
    114  1.1  mycroft *		2.3	Calculate	J = N mod 64; so J = 0,1,2,..., or 63.
    115  1.1  mycroft *		2.4	Calculate	M = (N - J)/64; so N = 64M + J.
    116  1.1  mycroft *		2.5	Calculate the address of the stored value of 2^(J/64).
    117  1.1  mycroft *		2.6	Create the value Scale = 2^M.
    118  1.1  mycroft *	Notes:	The calculation in 2.2 is really performed by
    119  1.1  mycroft *
    120  1.1  mycroft *			Z := X * constant
    121  1.1  mycroft *			N := round-to-nearest-integer(Z)
    122  1.1  mycroft *
    123  1.1  mycroft *		 where
    124  1.1  mycroft *
    125  1.1  mycroft *			constant := single-precision( 64/log 2 ).
    126  1.1  mycroft *
    127  1.1  mycroft *		 Using a single-precision constant avoids memory access.
    128  1.1  mycroft *		 Another effect of using a single-precision "constant" is
    129  1.1  mycroft *		 that the calculated value Z is
    130  1.1  mycroft *
    131  1.1  mycroft *			Z = X*(64/log2)*(1+eps), |eps| <= 2^(-24).
    132  1.1  mycroft *
    133  1.1  mycroft *		 This error has to be considered later in Steps 3 and 4.
    134  1.1  mycroft *
    135  1.1  mycroft *	Step 3.	Calculate X - N*log2/64.
    136  1.1  mycroft *		3.1	R := X + N*L1, where L1 := single-precision(-log2/64).
    137  1.1  mycroft *		3.2	R := R + N*L2, L2 := extended-precision(-log2/64 - L1).
    138  1.1  mycroft *	Notes:	a) The way L1 and L2 are chosen ensures L1+L2 approximate
    139  1.1  mycroft *		 the value	-log2/64	to 88 bits of accuracy.
    140  1.1  mycroft *		 b) N*L1 is exact because N is no longer than 22 bits and
    141  1.1  mycroft *		 L1 is no longer than 24 bits.
    142  1.1  mycroft *		 c) The calculation X+N*L1 is also exact due to cancellation.
    143  1.1  mycroft *		 Thus, R is practically X+N(L1+L2) to full 64 bits.
    144  1.1  mycroft *		 d) It is important to estimate how large can |R| be after
    145  1.1  mycroft *		 Step 3.2.
    146  1.1  mycroft *
    147  1.1  mycroft *			N = rnd-to-int( X*64/log2 (1+eps) ), |eps|<=2^(-24)
    148  1.1  mycroft *			X*64/log2 (1+eps)	=	N + f,	|f| <= 0.5
    149  1.1  mycroft *			X*64/log2 - N	=	f - eps*X 64/log2
    150  1.1  mycroft *			X - N*log2/64	=	f*log2/64 - eps*X
    151  1.1  mycroft *
    152  1.1  mycroft *
    153  1.1  mycroft *		 Now |X| <= 16446 log2, thus
    154  1.1  mycroft *
    155  1.1  mycroft *			|X - N*log2/64| <= (0.5 + 16446/2^(18))*log2/64
    156  1.1  mycroft *					<= 0.57 log2/64.
    157  1.1  mycroft *		 This bound will be used in Step 4.
    158  1.1  mycroft *
    159  1.1  mycroft *	Step 4.	Approximate exp(R)-1 by a polynomial
    160  1.1  mycroft *			p = R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*A5))))
    161  1.1  mycroft *	Notes:	a) In order to reduce memory access, the coefficients are
    162  1.1  mycroft *		 made as "short" as possible: A1 (which is 1/2), A4 and A5
    163  1.1  mycroft *		 are single precision; A2 and A3 are double precision.
    164  1.1  mycroft *		 b) Even with the restrictions above,
    165  1.1  mycroft *			|p - (exp(R)-1)| < 2^(-68.8) for all |R| <= 0.0062.
    166  1.1  mycroft *		 Note that 0.0062 is slightly bigger than 0.57 log2/64.
    167  1.4    perry *		 c) To fully use the pipeline, p is separated into
    168  1.1  mycroft *		 two independent pieces of roughly equal complexities
    169  1.1  mycroft *			p = [ R + R*S*(A2 + S*A4) ]	+
    170  1.1  mycroft *				[ S*(A1 + S*(A3 + S*A5)) ]
    171  1.1  mycroft *		 where S = R*R.
    172  1.1  mycroft *
    173  1.1  mycroft *	Step 5.	Compute 2^(J/64)*exp(R) = 2^(J/64)*(1+p) by
    174  1.1  mycroft *				ans := T + ( T*p + t)
    175  1.1  mycroft *		 where T and t are the stored values for 2^(J/64).
    176  1.1  mycroft *	Notes:	2^(J/64) is stored as T and t where T+t approximates
    177  1.1  mycroft *		 2^(J/64) to roughly 85 bits; T is in extended precision
    178  1.1  mycroft *		 and t is in single precision. Note also that T is rounded
    179  1.1  mycroft *		 to 62 bits so that the last two bits of T are zero. The
    180  1.1  mycroft *		 reason for such a special form is that T-1, T-2, and T-8
    181  1.1  mycroft *		 will all be exact --- a property that will give much
    182  1.1  mycroft *		 more accurate computation of the function EXPM1.
    183  1.1  mycroft *
    184  1.1  mycroft *	Step 6.	Reconstruction of exp(X)
    185  1.1  mycroft *			exp(X) = 2^M * 2^(J/64) * exp(R).
    186  1.1  mycroft *		6.1	If AdjFlag = 0, go to 6.3
    187  1.1  mycroft *		6.2	ans := ans * AdjScale
    188  1.1  mycroft *		6.3	Restore the user FPCR
    189  1.1  mycroft *		6.4	Return ans := ans * Scale. Exit.
    190  1.1  mycroft *	Notes:	If AdjFlag = 0, we have X = Mlog2 + Jlog2/64 + R,
    191  1.1  mycroft *		 |M| <= 16380, and Scale = 2^M. Moreover, exp(X) will
    192  1.1  mycroft *		 neither overflow nor underflow. If AdjFlag = 1, that
    193  1.1  mycroft *		 means that
    194  1.1  mycroft *			X = (M1+M)log2 + Jlog2/64 + R, |M1+M| >= 16380.
    195  1.1  mycroft *		 Hence, exp(X) may overflow or underflow or neither.
    196  1.1  mycroft *		 When that is the case, AdjScale = 2^(M1) where M1 is
    197  1.1  mycroft *		 approximately M. Thus 6.2 will never cause over/underflow.
    198  1.1  mycroft *		 Possible exception in 6.4 is overflow or underflow.
    199  1.1  mycroft *		 The inexact exception is not generated in 6.4. Although
    200  1.1  mycroft *		 one can argue that the inexact flag should always be
    201  1.1  mycroft *		 raised, to simulate that exception cost to much than the
    202  1.1  mycroft *		 flag is worth in practical uses.
    203  1.1  mycroft *
    204  1.1  mycroft *	Step 7.	Return 1 + X.
    205  1.1  mycroft *		7.1	ans := X
    206  1.1  mycroft *		7.2	Restore user FPCR.
    207  1.1  mycroft *		7.3	Return ans := 1 + ans. Exit
    208  1.1  mycroft *	Notes:	For non-zero X, the inexact exception will always be
    209  1.1  mycroft *		 raised by 7.3. That is the only exception raised by 7.3.
    210  1.1  mycroft *		 Note also that we use the FMOVEM instruction to move X
    211  1.1  mycroft *		 in Step 7.1 to avoid unnecessary trapping. (Although
    212  1.1  mycroft *		 the FMOVEM may not seem relevant since X is normalized,
    213  1.1  mycroft *		 the precaution will be useful in the library version of
    214  1.1  mycroft *		 this code where the separate entry for denormalized inputs
    215  1.1  mycroft *		 will be done away with.)
    216  1.1  mycroft *
    217  1.1  mycroft *	Step 8.	Handle exp(X) where |X| >= 16380log2.
    218  1.1  mycroft *		8.1	If |X| > 16480 log2, go to Step 9.
    219  1.1  mycroft *		(mimic 2.2 - 2.6)
    220  1.1  mycroft *		8.2	N := round-to-integer( X * 64/log2 )
    221  1.1  mycroft *		8.3	Calculate J = N mod 64, J = 0,1,...,63
    222  1.1  mycroft *		8.4	K := (N-J)/64, M1 := truncate(K/2), M = K-M1, AdjFlag := 1.
    223  1.1  mycroft *		8.5	Calculate the address of the stored value 2^(J/64).
    224  1.1  mycroft *		8.6	Create the values Scale = 2^M, AdjScale = 2^M1.
    225  1.1  mycroft *		8.7	Go to Step 3.
    226  1.1  mycroft *	Notes:	Refer to notes for 2.2 - 2.6.
    227  1.1  mycroft *
    228  1.1  mycroft *	Step 9.	Handle exp(X), |X| > 16480 log2.
    229  1.1  mycroft *		9.1	If X < 0, go to 9.3
    230  1.1  mycroft *		9.2	ans := Huge, go to 9.4
    231  1.1  mycroft *		9.3	ans := Tiny.
    232  1.1  mycroft *		9.4	Restore user FPCR.
    233  1.1  mycroft *		9.5	Return ans := ans * ans. Exit.
    234  1.1  mycroft *	Notes:	Exp(X) will surely overflow or underflow, depending on
    235  1.1  mycroft *		 X's sign. "Huge" and "Tiny" are respectively large/tiny
    236  1.1  mycroft *		 extended-precision numbers whose square over/underflow
    237  1.1  mycroft *		 with an inexact result. Thus, 9.5 always raises the
    238  1.1  mycroft *		 inexact together with either overflow or underflow.
    239  1.1  mycroft *
    240  1.1  mycroft *
    241  1.1  mycroft *	setoxm1d
    242  1.1  mycroft *	--------
    243  1.1  mycroft *
    244  1.1  mycroft *	Step 1.	Set ans := 0
    245  1.1  mycroft *
    246  1.1  mycroft *	Step 2.	Return	ans := X + ans. Exit.
    247  1.1  mycroft *	Notes:	This will return X with the appropriate rounding
    248  1.1  mycroft *		 precision prescribed by the user FPCR.
    249  1.1  mycroft *
    250  1.1  mycroft *	setoxm1
    251  1.1  mycroft *	-------
    252  1.1  mycroft *
    253  1.1  mycroft *	Step 1.	Check |X|
    254  1.1  mycroft *		1.1	If |X| >= 1/4, go to Step 1.3.
    255  1.1  mycroft *		1.2	Go to Step 7.
    256  1.1  mycroft *		1.3	If |X| < 70 log(2), go to Step 2.
    257  1.1  mycroft *		1.4	Go to Step 10.
    258  1.1  mycroft *	Notes:	The usual case should take the branches 1.1 -> 1.3 -> 2.
    259  1.1  mycroft *		 However, it is conceivable |X| can be small very often
    260  1.1  mycroft *		 because EXPM1 is intended to evaluate exp(X)-1 accurately
    261  1.1  mycroft *		 when |X| is small. For further details on the comparisons,
    262  1.1  mycroft *		 see the notes on Step 1 of setox.
    263  1.1  mycroft *
    264  1.1  mycroft *	Step 2.	Calculate N = round-to-nearest-int( X * 64/log2 ).
    265  1.1  mycroft *		2.1	N := round-to-nearest-integer( X * 64/log2 ).
    266  1.1  mycroft *		2.2	Calculate	J = N mod 64; so J = 0,1,2,..., or 63.
    267  1.1  mycroft *		2.3	Calculate	M = (N - J)/64; so N = 64M + J.
    268  1.1  mycroft *		2.4	Calculate the address of the stored value of 2^(J/64).
    269  1.1  mycroft *		2.5	Create the values Sc = 2^M and OnebySc := -2^(-M).
    270  1.1  mycroft *	Notes:	See the notes on Step 2 of setox.
    271  1.1  mycroft *
    272  1.1  mycroft *	Step 3.	Calculate X - N*log2/64.
    273  1.1  mycroft *		3.1	R := X + N*L1, where L1 := single-precision(-log2/64).
    274  1.1  mycroft *		3.2	R := R + N*L2, L2 := extended-precision(-log2/64 - L1).
    275  1.1  mycroft *	Notes:	Applying the analysis of Step 3 of setox in this case
    276  1.1  mycroft *		 shows that |R| <= 0.0055 (note that |X| <= 70 log2 in
    277  1.1  mycroft *		 this case).
    278  1.1  mycroft *
    279  1.1  mycroft *	Step 4.	Approximate exp(R)-1 by a polynomial
    280  1.1  mycroft *			p = R+R*R*(A1+R*(A2+R*(A3+R*(A4+R*(A5+R*A6)))))
    281  1.1  mycroft *	Notes:	a) In order to reduce memory access, the coefficients are
    282  1.1  mycroft *		 made as "short" as possible: A1 (which is 1/2), A5 and A6
    283  1.1  mycroft *		 are single precision; A2, A3 and A4 are double precision.
    284  1.1  mycroft *		 b) Even with the restriction above,
    285  1.1  mycroft *			|p - (exp(R)-1)| <	|R| * 2^(-72.7)
    286  1.1  mycroft *		 for all |R| <= 0.0055.
    287  1.4    perry *		 c) To fully use the pipeline, p is separated into
    288  1.1  mycroft *		 two independent pieces of roughly equal complexity
    289  1.1  mycroft *			p = [ R*S*(A2 + S*(A4 + S*A6)) ]	+
    290  1.1  mycroft *				[ R + S*(A1 + S*(A3 + S*A5)) ]
    291  1.1  mycroft *		 where S = R*R.
    292  1.1  mycroft *
    293  1.1  mycroft *	Step 5.	Compute 2^(J/64)*p by
    294  1.1  mycroft *				p := T*p
    295  1.1  mycroft *		 where T and t are the stored values for 2^(J/64).
    296  1.1  mycroft *	Notes:	2^(J/64) is stored as T and t where T+t approximates
    297  1.1  mycroft *		 2^(J/64) to roughly 85 bits; T is in extended precision
    298  1.1  mycroft *		 and t is in single precision. Note also that T is rounded
    299  1.1  mycroft *		 to 62 bits so that the last two bits of T are zero. The
    300  1.1  mycroft *		 reason for such a special form is that T-1, T-2, and T-8
    301  1.1  mycroft *		 will all be exact --- a property that will be exploited
    302  1.1  mycroft *		 in Step 6 below. The total relative error in p is no
    303  1.1  mycroft *		 bigger than 2^(-67.7) compared to the final result.
    304  1.1  mycroft *
    305  1.1  mycroft *	Step 6.	Reconstruction of exp(X)-1
    306  1.1  mycroft *			exp(X)-1 = 2^M * ( 2^(J/64) + p - 2^(-M) ).
    307  1.1  mycroft *		6.1	If M <= 63, go to Step 6.3.
    308  1.1  mycroft *		6.2	ans := T + (p + (t + OnebySc)). Go to 6.6
    309  1.1  mycroft *		6.3	If M >= -3, go to 6.5.
    310  1.1  mycroft *		6.4	ans := (T + (p + t)) + OnebySc. Go to 6.6
    311  1.1  mycroft *		6.5	ans := (T + OnebySc) + (p + t).
    312  1.1  mycroft *		6.6	Restore user FPCR.
    313  1.1  mycroft *		6.7	Return ans := Sc * ans. Exit.
    314  1.1  mycroft *	Notes:	The various arrangements of the expressions give accurate
    315  1.1  mycroft *		 evaluations.
    316  1.1  mycroft *
    317  1.1  mycroft *	Step 7.	exp(X)-1 for |X| < 1/4.
    318  1.1  mycroft *		7.1	If |X| >= 2^(-65), go to Step 9.
    319  1.1  mycroft *		7.2	Go to Step 8.
    320  1.1  mycroft *
    321  1.1  mycroft *	Step 8.	Calculate exp(X)-1, |X| < 2^(-65).
    322  1.1  mycroft *		8.1	If |X| < 2^(-16312), goto 8.3
    323  1.1  mycroft *		8.2	Restore FPCR; return ans := X - 2^(-16382). Exit.
    324  1.1  mycroft *		8.3	X := X * 2^(140).
    325  1.1  mycroft *		8.4	Restore FPCR; ans := ans - 2^(-16382).
    326  1.1  mycroft *		 Return ans := ans*2^(140). Exit
    327  1.1  mycroft *	Notes:	The idea is to return "X - tiny" under the user
    328  1.1  mycroft *		 precision and rounding modes. To avoid unnecessary
    329  1.1  mycroft *		 inefficiency, we stay away from denormalized numbers the
    330  1.1  mycroft *		 best we can. For |X| >= 2^(-16312), the straightforward
    331  1.1  mycroft *		 8.2 generates the inexact exception as the case warrants.
    332  1.1  mycroft *
    333  1.1  mycroft *	Step 9.	Calculate exp(X)-1, |X| < 1/4, by a polynomial
    334  1.1  mycroft *			p = X + X*X*(B1 + X*(B2 + ... + X*B12))
    335  1.1  mycroft *	Notes:	a) In order to reduce memory access, the coefficients are
    336  1.1  mycroft *		 made as "short" as possible: B1 (which is 1/2), B9 to B12
    337  1.1  mycroft *		 are single precision; B3 to B8 are double precision; and
    338  1.1  mycroft *		 B2 is double extended.
    339  1.1  mycroft *		 b) Even with the restriction above,
    340  1.1  mycroft *			|p - (exp(X)-1)| < |X| 2^(-70.6)
    341  1.1  mycroft *		 for all |X| <= 0.251.
    342  1.1  mycroft *		 Note that 0.251 is slightly bigger than 1/4.
    343  1.1  mycroft *		 c) To fully preserve accuracy, the polynomial is computed
    344  1.1  mycroft *		 as	X + ( S*B1 +	Q ) where S = X*X and
    345  1.1  mycroft *			Q	=	X*S*(B2 + X*(B3 + ... + X*B12))
    346  1.4    perry *		 d) To fully use the pipeline, Q is separated into
    347  1.1  mycroft *		 two independent pieces of roughly equal complexity
    348  1.1  mycroft *			Q = [ X*S*(B2 + S*(B4 + ... + S*B12)) ] +
    349  1.1  mycroft *				[ S*S*(B3 + S*(B5 + ... + S*B11)) ]
    350  1.1  mycroft *
    351  1.1  mycroft *	Step 10.	Calculate exp(X)-1 for |X| >= 70 log 2.
    352  1.1  mycroft *		10.1 If X >= 70log2 , exp(X) - 1 = exp(X) for all practical
    353  1.1  mycroft *		 purposes. Therefore, go to Step 1 of setox.
    354  1.1  mycroft *		10.2 If X <= -70log2, exp(X) - 1 = -1 for all practical purposes.
    355  1.1  mycroft *		 ans := -1
    356  1.1  mycroft *		 Restore user FPCR
    357  1.1  mycroft *		 Return ans := ans + 2^(-126). Exit.
    358  1.1  mycroft *	Notes:	10.2 will always create an inexact and return -1 + tiny
    359  1.1  mycroft *		 in the user rounding precision and mode.
    360  1.1  mycroft *
    361  1.1  mycroft 
    362  1.1  mycroft setox	IDNT	2,1 Motorola 040 Floating Point Software Package
    363  1.1  mycroft 
    364  1.1  mycroft 	section	8
    365  1.1  mycroft 
    366  1.1  mycroft 	include	fpsp.h
    367  1.1  mycroft 
    368  1.1  mycroft L2	DC.L	$3FDC0000,$82E30865,$4361C4C6,$00000000
    369  1.1  mycroft 
    370  1.1  mycroft EXPA3	DC.L	$3FA55555,$55554431
    371  1.1  mycroft EXPA2	DC.L	$3FC55555,$55554018
    372  1.1  mycroft 
    373  1.1  mycroft HUGE	DC.L	$7FFE0000,$FFFFFFFF,$FFFFFFFF,$00000000
    374  1.1  mycroft TINY	DC.L	$00010000,$FFFFFFFF,$FFFFFFFF,$00000000
    375  1.1  mycroft 
    376  1.1  mycroft EM1A4	DC.L	$3F811111,$11174385
    377  1.1  mycroft EM1A3	DC.L	$3FA55555,$55554F5A
    378  1.1  mycroft 
    379  1.1  mycroft EM1A2	DC.L	$3FC55555,$55555555,$00000000,$00000000
    380  1.1  mycroft 
    381  1.1  mycroft EM1B8	DC.L	$3EC71DE3,$A5774682
    382  1.1  mycroft EM1B7	DC.L	$3EFA01A0,$19D7CB68
    383  1.1  mycroft 
    384  1.1  mycroft EM1B6	DC.L	$3F2A01A0,$1A019DF3
    385  1.1  mycroft EM1B5	DC.L	$3F56C16C,$16C170E2
    386  1.1  mycroft 
    387  1.1  mycroft EM1B4	DC.L	$3F811111,$11111111
    388  1.1  mycroft EM1B3	DC.L	$3FA55555,$55555555
    389  1.1  mycroft 
    390  1.1  mycroft EM1B2	DC.L	$3FFC0000,$AAAAAAAA,$AAAAAAAB
    391  1.1  mycroft 	DC.L	$00000000
    392  1.1  mycroft 
    393  1.1  mycroft TWO140	DC.L	$48B00000,$00000000
    394  1.1  mycroft TWON140	DC.L	$37300000,$00000000
    395  1.1  mycroft 
    396  1.1  mycroft EXPTBL
    397  1.1  mycroft 	DC.L	$3FFF0000,$80000000,$00000000,$00000000
    398  1.1  mycroft 	DC.L	$3FFF0000,$8164D1F3,$BC030774,$9F841A9B
    399  1.1  mycroft 	DC.L	$3FFF0000,$82CD8698,$AC2BA1D8,$9FC1D5B9
    400  1.1  mycroft 	DC.L	$3FFF0000,$843A28C3,$ACDE4048,$A0728369
    401  1.1  mycroft 	DC.L	$3FFF0000,$85AAC367,$CC487B14,$1FC5C95C
    402  1.1  mycroft 	DC.L	$3FFF0000,$871F6196,$9E8D1010,$1EE85C9F
    403  1.1  mycroft 	DC.L	$3FFF0000,$88980E80,$92DA8528,$9FA20729
    404  1.1  mycroft 	DC.L	$3FFF0000,$8A14D575,$496EFD9C,$A07BF9AF
    405  1.1  mycroft 	DC.L	$3FFF0000,$8B95C1E3,$EA8BD6E8,$A0020DCF
    406  1.1  mycroft 	DC.L	$3FFF0000,$8D1ADF5B,$7E5BA9E4,$205A63DA
    407  1.1  mycroft 	DC.L	$3FFF0000,$8EA4398B,$45CD53C0,$1EB70051
    408  1.1  mycroft 	DC.L	$3FFF0000,$9031DC43,$1466B1DC,$1F6EB029
    409  1.1  mycroft 	DC.L	$3FFF0000,$91C3D373,$AB11C338,$A0781494
    410  1.1  mycroft 	DC.L	$3FFF0000,$935A2B2F,$13E6E92C,$9EB319B0
    411  1.1  mycroft 	DC.L	$3FFF0000,$94F4EFA8,$FEF70960,$2017457D
    412  1.1  mycroft 	DC.L	$3FFF0000,$96942D37,$20185A00,$1F11D537
    413  1.1  mycroft 	DC.L	$3FFF0000,$9837F051,$8DB8A970,$9FB952DD
    414  1.1  mycroft 	DC.L	$3FFF0000,$99E04593,$20B7FA64,$1FE43087
    415  1.1  mycroft 	DC.L	$3FFF0000,$9B8D39B9,$D54E5538,$1FA2A818
    416  1.1  mycroft 	DC.L	$3FFF0000,$9D3ED9A7,$2CFFB750,$1FDE494D
    417  1.1  mycroft 	DC.L	$3FFF0000,$9EF53260,$91A111AC,$20504890
    418  1.1  mycroft 	DC.L	$3FFF0000,$A0B0510F,$B9714FC4,$A073691C
    419  1.1  mycroft 	DC.L	$3FFF0000,$A2704303,$0C496818,$1F9B7A05
    420  1.1  mycroft 	DC.L	$3FFF0000,$A43515AE,$09E680A0,$A0797126
    421  1.1  mycroft 	DC.L	$3FFF0000,$A5FED6A9,$B15138EC,$A071A140
    422  1.1  mycroft 	DC.L	$3FFF0000,$A7CD93B4,$E9653568,$204F62DA
    423  1.1  mycroft 	DC.L	$3FFF0000,$A9A15AB4,$EA7C0EF8,$1F283C4A
    424  1.1  mycroft 	DC.L	$3FFF0000,$AB7A39B5,$A93ED338,$9F9A7FDC
    425  1.1  mycroft 	DC.L	$3FFF0000,$AD583EEA,$42A14AC8,$A05B3FAC
    426  1.1  mycroft 	DC.L	$3FFF0000,$AF3B78AD,$690A4374,$1FDF2610
    427  1.1  mycroft 	DC.L	$3FFF0000,$B123F581,$D2AC2590,$9F705F90
    428  1.1  mycroft 	DC.L	$3FFF0000,$B311C412,$A9112488,$201F678A
    429  1.1  mycroft 	DC.L	$3FFF0000,$B504F333,$F9DE6484,$1F32FB13
    430  1.1  mycroft 	DC.L	$3FFF0000,$B6FD91E3,$28D17790,$20038B30
    431  1.1  mycroft 	DC.L	$3FFF0000,$B8FBAF47,$62FB9EE8,$200DC3CC
    432  1.1  mycroft 	DC.L	$3FFF0000,$BAFF5AB2,$133E45FC,$9F8B2AE6
    433  1.1  mycroft 	DC.L	$3FFF0000,$BD08A39F,$580C36C0,$A02BBF70
    434  1.1  mycroft 	DC.L	$3FFF0000,$BF1799B6,$7A731084,$A00BF518
    435  1.1  mycroft 	DC.L	$3FFF0000,$C12C4CCA,$66709458,$A041DD41
    436  1.1  mycroft 	DC.L	$3FFF0000,$C346CCDA,$24976408,$9FDF137B
    437  1.1  mycroft 	DC.L	$3FFF0000,$C5672A11,$5506DADC,$201F1568
    438  1.1  mycroft 	DC.L	$3FFF0000,$C78D74C8,$ABB9B15C,$1FC13A2E
    439  1.1  mycroft 	DC.L	$3FFF0000,$C9B9BD86,$6E2F27A4,$A03F8F03
    440  1.1  mycroft 	DC.L	$3FFF0000,$CBEC14FE,$F2727C5C,$1FF4907D
    441  1.1  mycroft 	DC.L	$3FFF0000,$CE248C15,$1F8480E4,$9E6E53E4
    442  1.1  mycroft 	DC.L	$3FFF0000,$D06333DA,$EF2B2594,$1FD6D45C
    443  1.1  mycroft 	DC.L	$3FFF0000,$D2A81D91,$F12AE45C,$A076EDB9
    444  1.1  mycroft 	DC.L	$3FFF0000,$D4F35AAB,$CFEDFA20,$9FA6DE21
    445  1.1  mycroft 	DC.L	$3FFF0000,$D744FCCA,$D69D6AF4,$1EE69A2F
    446  1.1  mycroft 	DC.L	$3FFF0000,$D99D15C2,$78AFD7B4,$207F439F
    447  1.1  mycroft 	DC.L	$3FFF0000,$DBFBB797,$DAF23754,$201EC207
    448  1.1  mycroft 	DC.L	$3FFF0000,$DE60F482,$5E0E9124,$9E8BE175
    449  1.1  mycroft 	DC.L	$3FFF0000,$E0CCDEEC,$2A94E110,$20032C4B
    450  1.1  mycroft 	DC.L	$3FFF0000,$E33F8972,$BE8A5A50,$2004DFF5
    451  1.1  mycroft 	DC.L	$3FFF0000,$E5B906E7,$7C8348A8,$1E72F47A
    452  1.1  mycroft 	DC.L	$3FFF0000,$E8396A50,$3C4BDC68,$1F722F22
    453  1.1  mycroft 	DC.L	$3FFF0000,$EAC0C6E7,$DD243930,$A017E945
    454  1.1  mycroft 	DC.L	$3FFF0000,$ED4F301E,$D9942B84,$1F401A5B
    455  1.1  mycroft 	DC.L	$3FFF0000,$EFE4B99B,$DCDAF5CC,$9FB9A9E3
    456  1.1  mycroft 	DC.L	$3FFF0000,$F281773C,$59FFB138,$20744C05
    457  1.1  mycroft 	DC.L	$3FFF0000,$F5257D15,$2486CC2C,$1F773A19
    458  1.1  mycroft 	DC.L	$3FFF0000,$F7D0DF73,$0AD13BB8,$1FFE90D5
    459  1.1  mycroft 	DC.L	$3FFF0000,$FA83B2DB,$722A033C,$A041ED22
    460  1.1  mycroft 	DC.L	$3FFF0000,$FD3E0C0C,$F486C174,$1F853F3A
    461  1.1  mycroft 
    462  1.1  mycroft ADJFLAG	equ L_SCR2
    463  1.1  mycroft SCALE	equ FP_SCR1
    464  1.1  mycroft ADJSCALE equ FP_SCR2
    465  1.1  mycroft SC	equ FP_SCR3
    466  1.1  mycroft ONEBYSC	equ FP_SCR4
    467  1.1  mycroft 
    468  1.1  mycroft 	xref	t_frcinx
    469  1.1  mycroft 	xref	t_extdnrm
    470  1.1  mycroft 	xref	t_unfl
    471  1.1  mycroft 	xref	t_ovfl
    472  1.1  mycroft 
    473  1.1  mycroft 	xdef	setoxd
    474  1.1  mycroft setoxd:
    475  1.1  mycroft *--entry point for EXP(X), X is denormalized
    476  1.1  mycroft 	MOVE.L		(a0),d0
    477  1.1  mycroft 	ANDI.L		#$80000000,d0
    478  1.1  mycroft 	ORI.L		#$00800000,d0		...sign(X)*2^(-126)
    479  1.1  mycroft 	MOVE.L		d0,-(sp)
    480  1.1  mycroft 	FMOVE.S		#:3F800000,fp0
    481  1.1  mycroft 	fmove.l		d1,fpcr
    482  1.1  mycroft 	FADD.S		(sp)+,fp0
    483  1.1  mycroft 	bra		t_frcinx
    484  1.1  mycroft 
    485  1.1  mycroft 	xdef	setox
    486  1.1  mycroft setox:
    487  1.1  mycroft *--entry point for EXP(X), here X is finite, non-zero, and not NaN's
    488  1.1  mycroft 
    489  1.1  mycroft *--Step 1.
    490  1.1  mycroft 	MOVE.L		(a0),d0	 ...load part of input X
    491  1.1  mycroft 	ANDI.L		#$7FFF0000,d0	...biased expo. of X
    492  1.1  mycroft 	CMPI.L		#$3FBE0000,d0	...2^(-65)
    493  1.1  mycroft 	BGE.B		EXPC1		...normal case
    494  1.1  mycroft 	BRA.W		EXPSM
    495  1.1  mycroft 
    496  1.1  mycroft EXPC1:
    497  1.1  mycroft *--The case |X| >= 2^(-65)
    498  1.1  mycroft 	MOVE.W		4(a0),d0	...expo. and partial sig. of |X|
    499  1.1  mycroft 	CMPI.L		#$400CB167,d0	...16380 log2 trunc. 16 bits
    500  1.1  mycroft 	BLT.B		EXPMAIN	 ...normal case
    501  1.1  mycroft 	BRA.W		EXPBIG
    502  1.1  mycroft 
    503  1.1  mycroft EXPMAIN:
    504  1.1  mycroft *--Step 2.
    505  1.1  mycroft *--This is the normal branch:	2^(-65) <= |X| < 16380 log2.
    506  1.1  mycroft 	FMOVE.X		(a0),fp0	...load input from (a0)
    507  1.1  mycroft 
    508  1.1  mycroft 	FMOVE.X		fp0,fp1
    509  1.1  mycroft 	FMUL.S		#:42B8AA3B,fp0	...64/log2 * X
    510  1.1  mycroft 	fmovem.x	fp2/fp3,-(a7)		...save fp2
    511  1.2  mycroft 	CLR.L		ADJFLAG(a6)
    512  1.1  mycroft 	FMOVE.L		fp0,d0		...N = int( X * 64/log2 )
    513  1.1  mycroft 	LEA		EXPTBL,a1
    514  1.1  mycroft 	FMOVE.L		d0,fp0		...convert to floating-format
    515  1.1  mycroft 
    516  1.1  mycroft 	MOVE.L		d0,L_SCR1(a6)	...save N temporarily
    517  1.1  mycroft 	ANDI.L		#$3F,d0		...D0 is J = N mod 64
    518  1.1  mycroft 	LSL.L		#4,d0
    519  1.1  mycroft 	ADDA.L		d0,a1		...address of 2^(J/64)
    520  1.1  mycroft 	MOVE.L		L_SCR1(a6),d0
    521  1.1  mycroft 	ASR.L		#6,d0		...D0 is M
    522  1.1  mycroft 	ADDI.W		#$3FFF,d0	...biased expo. of 2^(M)
    523  1.1  mycroft 	MOVE.W		L2,L_SCR1(a6)	...prefetch L2, no need in CB
    524  1.1  mycroft 
    525  1.1  mycroft EXPCONT1:
    526  1.1  mycroft *--Step 3.
    527  1.1  mycroft *--fp1,fp2 saved on the stack. fp0 is N, fp1 is X,
    528  1.1  mycroft *--a0 points to 2^(J/64), D0 is biased expo. of 2^(M)
    529  1.1  mycroft 	FMOVE.X		fp0,fp2
    530  1.1  mycroft 	FMUL.S		#:BC317218,fp0	...N * L1, L1 = lead(-log2/64)
    531  1.1  mycroft 	FMUL.X		L2,fp2		...N * L2, L1+L2 = -log2/64
    532  1.1  mycroft 	FADD.X		fp1,fp0	 	...X + N*L1
    533  1.1  mycroft 	FADD.X		fp2,fp0		...fp0 is R, reduced arg.
    534  1.1  mycroft *	MOVE.W		#$3FA5,EXPA3	...load EXPA3 in cache
    535  1.1  mycroft 
    536  1.1  mycroft *--Step 4.
    537  1.1  mycroft *--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL
    538  1.1  mycroft *-- R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*A5))))
    539  1.4    perry *--TO FULLY USE THE PIPELINE, WE COMPUTE S = R*R
    540  1.1  mycroft *--[R+R*S*(A2+S*A4)] + [S*(A1+S*(A3+S*A5))]
    541  1.1  mycroft 
    542  1.1  mycroft 	FMOVE.X		fp0,fp1
    543  1.1  mycroft 	FMUL.X		fp1,fp1	 	...fp1 IS S = R*R
    544  1.1  mycroft 
    545  1.1  mycroft 	FMOVE.S		#:3AB60B70,fp2	...fp2 IS A5
    546  1.2  mycroft *	CLR.W		2(a1)		...load 2^(J/64) in cache
    547  1.1  mycroft 
    548  1.1  mycroft 	FMUL.X		fp1,fp2	 	...fp2 IS S*A5
    549  1.1  mycroft 	FMOVE.X		fp1,fp3
    550  1.1  mycroft 	FMUL.S		#:3C088895,fp3	...fp3 IS S*A4
    551  1.1  mycroft 
    552  1.1  mycroft 	FADD.D		EXPA3,fp2	...fp2 IS A3+S*A5
    553  1.1  mycroft 	FADD.D		EXPA2,fp3	...fp3 IS A2+S*A4
    554  1.1  mycroft 
    555  1.1  mycroft 	FMUL.X		fp1,fp2	 	...fp2 IS S*(A3+S*A5)
    556  1.1  mycroft 	MOVE.W		d0,SCALE(a6)	...SCALE is 2^(M) in extended
    557  1.1  mycroft 	clr.w		SCALE+2(a6)
    558  1.1  mycroft 	move.l		#$80000000,SCALE+4(a6)
    559  1.1  mycroft 	clr.l		SCALE+8(a6)
    560  1.1  mycroft 
    561  1.1  mycroft 	FMUL.X		fp1,fp3	 	...fp3 IS S*(A2+S*A4)
    562  1.1  mycroft 
    563  1.1  mycroft 	FADD.S		#:3F000000,fp2	...fp2 IS A1+S*(A3+S*A5)
    564  1.1  mycroft 	FMUL.X		fp0,fp3	 	...fp3 IS R*S*(A2+S*A4)
    565  1.1  mycroft 
    566  1.1  mycroft 	FMUL.X		fp1,fp2	 	...fp2 IS S*(A1+S*(A3+S*A5))
    567  1.1  mycroft 	FADD.X		fp3,fp0	 	...fp0 IS R+R*S*(A2+S*A4),
    568  1.1  mycroft *					...fp3 released
    569  1.1  mycroft 
    570  1.1  mycroft 	FMOVE.X		(a1)+,fp1	...fp1 is lead. pt. of 2^(J/64)
    571  1.1  mycroft 	FADD.X		fp2,fp0	 	...fp0 is EXP(R) - 1
    572  1.1  mycroft *					...fp2 released
    573  1.1  mycroft 
    574  1.1  mycroft *--Step 5
    575  1.1  mycroft *--final reconstruction process
    576  1.1  mycroft *--EXP(X) = 2^M * ( 2^(J/64) + 2^(J/64)*(EXP(R)-1) )
    577  1.1  mycroft 
    578  1.1  mycroft 	FMUL.X		fp1,fp0	 	...2^(J/64)*(Exp(R)-1)
    579  1.1  mycroft 	fmovem.x	(a7)+,fp2/fp3	...fp2 restored
    580  1.1  mycroft 	FADD.S		(a1),fp0	...accurate 2^(J/64)
    581  1.1  mycroft 
    582  1.1  mycroft 	FADD.X		fp1,fp0	 	...2^(J/64) + 2^(J/64)*...
    583  1.1  mycroft 	MOVE.L		ADJFLAG(a6),d0
    584  1.1  mycroft 
    585  1.1  mycroft *--Step 6
    586  1.1  mycroft 	TST.L		D0
    587  1.1  mycroft 	BEQ.B		NORMAL
    588  1.1  mycroft ADJUST:
    589  1.1  mycroft 	FMUL.X		ADJSCALE(a6),fp0
    590  1.1  mycroft NORMAL:
    591  1.1  mycroft 	FMOVE.L		d1,FPCR	 	...restore user FPCR
    592  1.1  mycroft 	FMUL.X		SCALE(a6),fp0	...multiply 2^(M)
    593  1.1  mycroft 	bra		t_frcinx
    594  1.1  mycroft 
    595  1.1  mycroft EXPSM:
    596  1.1  mycroft *--Step 7
    597  1.1  mycroft 	FMOVEM.X	(a0),fp0	...in case X is denormalized
    598  1.1  mycroft 	FMOVE.L		d1,FPCR
    599  1.1  mycroft 	FADD.S		#:3F800000,fp0	...1+X in user mode
    600  1.1  mycroft 	bra		t_frcinx
    601  1.1  mycroft 
    602  1.1  mycroft EXPBIG:
    603  1.1  mycroft *--Step 8
    604  1.1  mycroft 	CMPI.L		#$400CB27C,d0	...16480 log2
    605  1.1  mycroft 	BGT.B		EXP2BIG
    606  1.1  mycroft *--Steps 8.2 -- 8.6
    607  1.1  mycroft 	FMOVE.X		(a0),fp0	...load input from (a0)
    608  1.1  mycroft 
    609  1.1  mycroft 	FMOVE.X		fp0,fp1
    610  1.1  mycroft 	FMUL.S		#:42B8AA3B,fp0	...64/log2 * X
    611  1.1  mycroft 	fmovem.x	 fp2/fp3,-(a7)		...save fp2
    612  1.1  mycroft 	MOVE.L		#1,ADJFLAG(a6)
    613  1.1  mycroft 	FMOVE.L		fp0,d0		...N = int( X * 64/log2 )
    614  1.1  mycroft 	LEA		EXPTBL,a1
    615  1.1  mycroft 	FMOVE.L		d0,fp0		...convert to floating-format
    616  1.1  mycroft 	MOVE.L		d0,L_SCR1(a6)			...save N temporarily
    617  1.1  mycroft 	ANDI.L		#$3F,d0		 ...D0 is J = N mod 64
    618  1.1  mycroft 	LSL.L		#4,d0
    619  1.1  mycroft 	ADDA.L		d0,a1			...address of 2^(J/64)
    620  1.1  mycroft 	MOVE.L		L_SCR1(a6),d0
    621  1.1  mycroft 	ASR.L		#6,d0			...D0 is K
    622  1.1  mycroft 	MOVE.L		d0,L_SCR1(a6)			...save K temporarily
    623  1.1  mycroft 	ASR.L		#1,d0			...D0 is M1
    624  1.1  mycroft 	SUB.L		d0,L_SCR1(a6)			...a1 is M
    625  1.1  mycroft 	ADDI.W		#$3FFF,d0		...biased expo. of 2^(M1)
    626  1.1  mycroft 	MOVE.W		d0,ADJSCALE(a6)		...ADJSCALE := 2^(M1)
    627  1.1  mycroft 	clr.w		ADJSCALE+2(a6)
    628  1.1  mycroft 	move.l		#$80000000,ADJSCALE+4(a6)
    629  1.1  mycroft 	clr.l		ADJSCALE+8(a6)
    630  1.1  mycroft 	MOVE.L		L_SCR1(a6),d0			...D0 is M
    631  1.1  mycroft 	ADDI.W		#$3FFF,d0		...biased expo. of 2^(M)
    632  1.1  mycroft 	BRA.W		EXPCONT1		...go back to Step 3
    633  1.1  mycroft 
    634  1.1  mycroft EXP2BIG:
    635  1.1  mycroft *--Step 9
    636  1.1  mycroft 	FMOVE.L		d1,FPCR
    637  1.1  mycroft 	MOVE.L		(a0),d0
    638  1.1  mycroft 	bclr.b		#sign_bit,(a0)		...setox always returns positive
    639  1.2  mycroft 	TST.L		d0
    640  1.1  mycroft 	BLT		t_unfl
    641  1.1  mycroft 	BRA		t_ovfl
    642  1.1  mycroft 
    643  1.1  mycroft 	xdef	setoxm1d
    644  1.1  mycroft setoxm1d:
    645  1.1  mycroft *--entry point for EXPM1(X), here X is denormalized
    646  1.1  mycroft *--Step 0.
    647  1.1  mycroft 	bra		t_extdnrm
    648  1.1  mycroft 
    649  1.1  mycroft 
    650  1.1  mycroft 	xdef	setoxm1
    651  1.1  mycroft setoxm1:
    652  1.1  mycroft *--entry point for EXPM1(X), here X is finite, non-zero, non-NaN
    653  1.1  mycroft 
    654  1.1  mycroft *--Step 1.
    655  1.1  mycroft *--Step 1.1
    656  1.1  mycroft 	MOVE.L		(a0),d0	 ...load part of input X
    657  1.1  mycroft 	ANDI.L		#$7FFF0000,d0	...biased expo. of X
    658  1.1  mycroft 	CMPI.L		#$3FFD0000,d0	...1/4
    659  1.1  mycroft 	BGE.B		EM1CON1	 ...|X| >= 1/4
    660  1.1  mycroft 	BRA.W		EM1SM
    661  1.1  mycroft 
    662  1.1  mycroft EM1CON1:
    663  1.1  mycroft *--Step 1.3
    664  1.1  mycroft *--The case |X| >= 1/4
    665  1.1  mycroft 	MOVE.W		4(a0),d0	...expo. and partial sig. of |X|
    666  1.1  mycroft 	CMPI.L		#$4004C215,d0	...70log2 rounded up to 16 bits
    667  1.1  mycroft 	BLE.B		EM1MAIN	 ...1/4 <= |X| <= 70log2
    668  1.1  mycroft 	BRA.W		EM1BIG
    669  1.1  mycroft 
    670  1.1  mycroft EM1MAIN:
    671  1.1  mycroft *--Step 2.
    672  1.1  mycroft *--This is the case:	1/4 <= |X| <= 70 log2.
    673  1.1  mycroft 	FMOVE.X		(a0),fp0	...load input from (a0)
    674  1.1  mycroft 
    675  1.1  mycroft 	FMOVE.X		fp0,fp1
    676  1.1  mycroft 	FMUL.S		#:42B8AA3B,fp0	...64/log2 * X
    677  1.1  mycroft 	fmovem.x	fp2/fp3,-(a7)		...save fp2
    678  1.1  mycroft *	MOVE.W		#$3F81,EM1A4		...prefetch in CB mode
    679  1.1  mycroft 	FMOVE.L		fp0,d0		...N = int( X * 64/log2 )
    680  1.1  mycroft 	LEA		EXPTBL,a1
    681  1.1  mycroft 	FMOVE.L		d0,fp0		...convert to floating-format
    682  1.1  mycroft 
    683  1.1  mycroft 	MOVE.L		d0,L_SCR1(a6)			...save N temporarily
    684  1.1  mycroft 	ANDI.L		#$3F,d0		 ...D0 is J = N mod 64
    685  1.1  mycroft 	LSL.L		#4,d0
    686  1.1  mycroft 	ADDA.L		d0,a1			...address of 2^(J/64)
    687  1.1  mycroft 	MOVE.L		L_SCR1(a6),d0
    688  1.1  mycroft 	ASR.L		#6,d0			...D0 is M
    689  1.1  mycroft 	MOVE.L		d0,L_SCR1(a6)			...save a copy of M
    690  1.1  mycroft *	MOVE.W		#$3FDC,L2		...prefetch L2 in CB mode
    691  1.1  mycroft 
    692  1.1  mycroft *--Step 3.
    693  1.1  mycroft *--fp1,fp2 saved on the stack. fp0 is N, fp1 is X,
    694  1.1  mycroft *--a0 points to 2^(J/64), D0 and a1 both contain M
    695  1.1  mycroft 	FMOVE.X		fp0,fp2
    696  1.1  mycroft 	FMUL.S		#:BC317218,fp0	...N * L1, L1 = lead(-log2/64)
    697  1.1  mycroft 	FMUL.X		L2,fp2		...N * L2, L1+L2 = -log2/64
    698  1.1  mycroft 	FADD.X		fp1,fp0	 ...X + N*L1
    699  1.1  mycroft 	FADD.X		fp2,fp0	 ...fp0 is R, reduced arg.
    700  1.1  mycroft *	MOVE.W		#$3FC5,EM1A2		...load EM1A2 in cache
    701  1.1  mycroft 	ADDI.W		#$3FFF,d0		...D0 is biased expo. of 2^M
    702  1.1  mycroft 
    703  1.1  mycroft *--Step 4.
    704  1.1  mycroft *--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL
    705  1.1  mycroft *-- R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*(A5 + R*A6)))))
    706  1.4    perry *--TO FULLY USE THE PIPELINE, WE COMPUTE S = R*R
    707  1.1  mycroft *--[R*S*(A2+S*(A4+S*A6))] + [R+S*(A1+S*(A3+S*A5))]
    708  1.1  mycroft 
    709  1.1  mycroft 	FMOVE.X		fp0,fp1
    710  1.1  mycroft 	FMUL.X		fp1,fp1		...fp1 IS S = R*R
    711  1.1  mycroft 
    712  1.1  mycroft 	FMOVE.S		#:3950097B,fp2	...fp2 IS a6
    713  1.2  mycroft *	CLR.W		2(a1)		...load 2^(J/64) in cache
    714  1.1  mycroft 
    715  1.1  mycroft 	FMUL.X		fp1,fp2		...fp2 IS S*A6
    716  1.1  mycroft 	FMOVE.X		fp1,fp3
    717  1.1  mycroft 	FMUL.S		#:3AB60B6A,fp3	...fp3 IS S*A5
    718  1.1  mycroft 
    719  1.1  mycroft 	FADD.D		EM1A4,fp2	...fp2 IS A4+S*A6
    720  1.1  mycroft 	FADD.D		EM1A3,fp3	...fp3 IS A3+S*A5
    721  1.1  mycroft 	MOVE.W		d0,SC(a6)		...SC is 2^(M) in extended
    722  1.1  mycroft 	clr.w		SC+2(a6)
    723  1.1  mycroft 	move.l		#$80000000,SC+4(a6)
    724  1.1  mycroft 	clr.l		SC+8(a6)
    725  1.1  mycroft 
    726  1.1  mycroft 	FMUL.X		fp1,fp2		...fp2 IS S*(A4+S*A6)
    727  1.1  mycroft 	MOVE.L		L_SCR1(a6),d0		...D0 is	M
    728  1.1  mycroft 	NEG.W		D0		...D0 is -M
    729  1.1  mycroft 	FMUL.X		fp1,fp3		...fp3 IS S*(A3+S*A5)
    730  1.1  mycroft 	ADDI.W		#$3FFF,d0	...biased expo. of 2^(-M)
    731  1.1  mycroft 	FADD.D		EM1A2,fp2	...fp2 IS A2+S*(A4+S*A6)
    732  1.1  mycroft 	FADD.S		#:3F000000,fp3	...fp3 IS A1+S*(A3+S*A5)
    733  1.1  mycroft 
    734  1.1  mycroft 	FMUL.X		fp1,fp2		...fp2 IS S*(A2+S*(A4+S*A6))
    735  1.1  mycroft 	ORI.W		#$8000,d0	...signed/expo. of -2^(-M)
    736  1.1  mycroft 	MOVE.W		d0,ONEBYSC(a6)	...OnebySc is -2^(-M)
    737  1.1  mycroft 	clr.w		ONEBYSC+2(a6)
    738  1.1  mycroft 	move.l		#$80000000,ONEBYSC+4(a6)
    739  1.1  mycroft 	clr.l		ONEBYSC+8(a6)
    740  1.1  mycroft 	FMUL.X		fp3,fp1		...fp1 IS S*(A1+S*(A3+S*A5))
    741  1.1  mycroft *					...fp3 released
    742  1.1  mycroft 
    743  1.1  mycroft 	FMUL.X		fp0,fp2		...fp2 IS R*S*(A2+S*(A4+S*A6))
    744  1.1  mycroft 	FADD.X		fp1,fp0		...fp0 IS R+S*(A1+S*(A3+S*A5))
    745  1.1  mycroft *					...fp1 released
    746  1.1  mycroft 
    747  1.1  mycroft 	FADD.X		fp2,fp0		...fp0 IS EXP(R)-1
    748  1.1  mycroft *					...fp2 released
    749  1.1  mycroft 	fmovem.x	(a7)+,fp2/fp3	...fp2 restored
    750  1.1  mycroft 
    751  1.1  mycroft *--Step 5
    752  1.1  mycroft *--Compute 2^(J/64)*p
    753  1.1  mycroft 
    754  1.1  mycroft 	FMUL.X		(a1),fp0	...2^(J/64)*(Exp(R)-1)
    755  1.1  mycroft 
    756  1.1  mycroft *--Step 6
    757  1.1  mycroft *--Step 6.1
    758  1.1  mycroft 	MOVE.L		L_SCR1(a6),d0		...retrieve M
    759  1.1  mycroft 	CMPI.L		#63,d0
    760  1.1  mycroft 	BLE.B		MLE63
    761  1.1  mycroft *--Step 6.2	M >= 64
    762  1.1  mycroft 	FMOVE.S		12(a1),fp1	...fp1 is t
    763  1.1  mycroft 	FADD.X		ONEBYSC(a6),fp1	...fp1 is t+OnebySc
    764  1.1  mycroft 	FADD.X		fp1,fp0		...p+(t+OnebySc), fp1 released
    765  1.1  mycroft 	FADD.X		(a1),fp0	...T+(p+(t+OnebySc))
    766  1.1  mycroft 	BRA.B		EM1SCALE
    767  1.1  mycroft MLE63:
    768  1.1  mycroft *--Step 6.3	M <= 63
    769  1.1  mycroft 	CMPI.L		#-3,d0
    770  1.1  mycroft 	BGE.B		MGEN3
    771  1.1  mycroft MLTN3:
    772  1.1  mycroft *--Step 6.4	M <= -4
    773  1.1  mycroft 	FADD.S		12(a1),fp0	...p+t
    774  1.1  mycroft 	FADD.X		(a1),fp0	...T+(p+t)
    775  1.1  mycroft 	FADD.X		ONEBYSC(a6),fp0	...OnebySc + (T+(p+t))
    776  1.1  mycroft 	BRA.B		EM1SCALE
    777  1.1  mycroft MGEN3:
    778  1.1  mycroft *--Step 6.5	-3 <= M <= 63
    779  1.1  mycroft 	FMOVE.X		(a1)+,fp1	...fp1 is T
    780  1.1  mycroft 	FADD.S		(a1),fp0	...fp0 is p+t
    781  1.1  mycroft 	FADD.X		ONEBYSC(a6),fp1	...fp1 is T+OnebySc
    782  1.1  mycroft 	FADD.X		fp1,fp0		...(T+OnebySc)+(p+t)
    783  1.1  mycroft 
    784  1.1  mycroft EM1SCALE:
    785  1.1  mycroft *--Step 6.6
    786  1.1  mycroft 	FMOVE.L		d1,FPCR
    787  1.1  mycroft 	FMUL.X		SC(a6),fp0
    788  1.1  mycroft 
    789  1.1  mycroft 	bra		t_frcinx
    790  1.1  mycroft 
    791  1.1  mycroft EM1SM:
    792  1.1  mycroft *--Step 7	|X| < 1/4.
    793  1.1  mycroft 	CMPI.L		#$3FBE0000,d0	...2^(-65)
    794  1.1  mycroft 	BGE.B		EM1POLY
    795  1.1  mycroft 
    796  1.1  mycroft EM1TINY:
    797  1.1  mycroft *--Step 8	|X| < 2^(-65)
    798  1.1  mycroft 	CMPI.L		#$00330000,d0	...2^(-16312)
    799  1.1  mycroft 	BLT.B		EM12TINY
    800  1.1  mycroft *--Step 8.2
    801  1.1  mycroft 	MOVE.L		#$80010000,SC(a6)	...SC is -2^(-16382)
    802  1.1  mycroft 	move.l		#$80000000,SC+4(a6)
    803  1.1  mycroft 	clr.l		SC+8(a6)
    804  1.1  mycroft 	FMOVE.X		(a0),fp0
    805  1.1  mycroft 	FMOVE.L		d1,FPCR
    806  1.1  mycroft 	FADD.X		SC(a6),fp0
    807  1.1  mycroft 
    808  1.1  mycroft 	bra		t_frcinx
    809  1.1  mycroft 
    810  1.1  mycroft EM12TINY:
    811  1.1  mycroft *--Step 8.3
    812  1.1  mycroft 	FMOVE.X		(a0),fp0
    813  1.1  mycroft 	FMUL.D		TWO140,fp0
    814  1.1  mycroft 	MOVE.L		#$80010000,SC(a6)
    815  1.1  mycroft 	move.l		#$80000000,SC+4(a6)
    816  1.1  mycroft 	clr.l		SC+8(a6)
    817  1.1  mycroft 	FADD.X		SC(a6),fp0
    818  1.1  mycroft 	FMOVE.L		d1,FPCR
    819  1.1  mycroft 	FMUL.D		TWON140,fp0
    820  1.1  mycroft 
    821  1.1  mycroft 	bra		t_frcinx
    822  1.1  mycroft 
    823  1.1  mycroft EM1POLY:
    824  1.1  mycroft *--Step 9	exp(X)-1 by a simple polynomial
    825  1.1  mycroft 	FMOVE.X		(a0),fp0	...fp0 is X
    826  1.1  mycroft 	FMUL.X		fp0,fp0		...fp0 is S := X*X
    827  1.1  mycroft 	fmovem.x	fp2/fp3,-(a7)	...save fp2
    828  1.1  mycroft 	FMOVE.S		#:2F30CAA8,fp1	...fp1 is B12
    829  1.1  mycroft 	FMUL.X		fp0,fp1		...fp1 is S*B12
    830  1.1  mycroft 	FMOVE.S		#:310F8290,fp2	...fp2 is B11
    831  1.1  mycroft 	FADD.S		#:32D73220,fp1	...fp1 is B10+S*B12
    832  1.1  mycroft 
    833  1.1  mycroft 	FMUL.X		fp0,fp2		...fp2 is S*B11
    834  1.1  mycroft 	FMUL.X		fp0,fp1		...fp1 is S*(B10 + ...
    835  1.1  mycroft 
    836  1.1  mycroft 	FADD.S		#:3493F281,fp2	...fp2 is B9+S*...
    837  1.1  mycroft 	FADD.D		EM1B8,fp1	...fp1 is B8+S*...
    838  1.1  mycroft 
    839  1.1  mycroft 	FMUL.X		fp0,fp2		...fp2 is S*(B9+...
    840  1.1  mycroft 	FMUL.X		fp0,fp1		...fp1 is S*(B8+...
    841  1.1  mycroft 
    842  1.1  mycroft 	FADD.D		EM1B7,fp2	...fp2 is B7+S*...
    843  1.1  mycroft 	FADD.D		EM1B6,fp1	...fp1 is B6+S*...
    844  1.1  mycroft 
    845  1.1  mycroft 	FMUL.X		fp0,fp2		...fp2 is S*(B7+...
    846  1.1  mycroft 	FMUL.X		fp0,fp1		...fp1 is S*(B6+...
    847  1.1  mycroft 
    848  1.1  mycroft 	FADD.D		EM1B5,fp2	...fp2 is B5+S*...
    849  1.1  mycroft 	FADD.D		EM1B4,fp1	...fp1 is B4+S*...
    850  1.1  mycroft 
    851  1.1  mycroft 	FMUL.X		fp0,fp2		...fp2 is S*(B5+...
    852  1.1  mycroft 	FMUL.X		fp0,fp1		...fp1 is S*(B4+...
    853  1.1  mycroft 
    854  1.1  mycroft 	FADD.D		EM1B3,fp2	...fp2 is B3+S*...
    855  1.1  mycroft 	FADD.X		EM1B2,fp1	...fp1 is B2+S*...
    856  1.1  mycroft 
    857  1.1  mycroft 	FMUL.X		fp0,fp2		...fp2 is S*(B3+...
    858  1.1  mycroft 	FMUL.X		fp0,fp1		...fp1 is S*(B2+...
    859  1.1  mycroft 
    860  1.1  mycroft 	FMUL.X		fp0,fp2		...fp2 is S*S*(B3+...)
    861  1.1  mycroft 	FMUL.X		(a0),fp1	...fp1 is X*S*(B2...
    862  1.1  mycroft 
    863  1.1  mycroft 	FMUL.S		#:3F000000,fp0	...fp0 is S*B1
    864  1.1  mycroft 	FADD.X		fp2,fp1		...fp1 is Q
    865  1.1  mycroft *					...fp2 released
    866  1.1  mycroft 
    867  1.1  mycroft 	fmovem.x	(a7)+,fp2/fp3	...fp2 restored
    868  1.1  mycroft 
    869  1.1  mycroft 	FADD.X		fp1,fp0		...fp0 is S*B1+Q
    870  1.1  mycroft *					...fp1 released
    871  1.1  mycroft 
    872  1.1  mycroft 	FMOVE.L		d1,FPCR
    873  1.1  mycroft 	FADD.X		(a0),fp0
    874  1.1  mycroft 
    875  1.1  mycroft 	bra		t_frcinx
    876  1.1  mycroft 
    877  1.1  mycroft EM1BIG:
    878  1.1  mycroft *--Step 10	|X| > 70 log2
    879  1.1  mycroft 	MOVE.L		(a0),d0
    880  1.2  mycroft 	TST.L		d0
    881  1.1  mycroft 	BGT.W		EXPC1
    882  1.1  mycroft *--Step 10.2
    883  1.1  mycroft 	FMOVE.S		#:BF800000,fp0	...fp0 is -1
    884  1.1  mycroft 	FMOVE.L		d1,FPCR
    885  1.1  mycroft 	FADD.S		#:00800000,fp0	...-1 + 2^(-126)
    886  1.1  mycroft 
    887  1.1  mycroft 	bra		t_frcinx
    888  1.1  mycroft 
    889  1.1  mycroft 	end
    890