sgetem.sa revision 1.1.1.1 1 * MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP
2 * M68000 Hi-Performance Microprocessor Division
3 * M68040 Software Package
4 *
5 * M68040 Software Package Copyright (c) 1993, 1994 Motorola Inc.
6 * All rights reserved.
7 *
8 * THE SOFTWARE is provided on an "AS IS" basis and without warranty.
9 * To the maximum extent permitted by applicable law,
10 * MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED,
11 * INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
12 * PARTICULAR PURPOSE and any warranty against infringement with
13 * regard to the SOFTWARE (INCLUDING ANY MODIFIED VERSIONS THEREOF)
14 * and any accompanying written materials.
15 *
16 * To the maximum extent permitted by applicable law,
17 * IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER
18 * (INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS
19 * PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR
20 * OTHER PECUNIARY LOSS) ARISING OF THE USE OR INABILITY TO USE THE
21 * SOFTWARE. Motorola assumes no responsibility for the maintenance
22 * and support of the SOFTWARE.
23 *
24 * You are hereby granted a copyright license to use, modify, and
25 * distribute the SOFTWARE so long as this entire notice is retained
26 * without alteration in any modified and/or redistributed versions,
27 * and that such modified versions are clearly identified as such.
28 * No licenses are granted by implication, estoppel or otherwise
29 * under any patents or trademarks of Motorola, Inc.
30
31 *
32 * sgetem.sa 3.1 12/10/90
33 *
34 * The entry point sGETEXP returns the exponent portion
35 * of the input argument. The exponent bias is removed
36 * and the exponent value is returned as an extended
37 * precision number in fp0. sGETEXPD handles denormalized
38 * numbers.
39 *
40 * The entry point sGETMAN extracts the mantissa of the
41 * input argument. The mantissa is converted to an
42 * extended precision number and returned in fp0. The
43 * range of the result is [1.0 - 2.0).
44 *
45 *
46 * Input: Double-extended number X in the ETEMP space in
47 * the floating-point save stack.
48 *
49 * Output: The functions return exp(X) or man(X) in fp0.
50 *
51 * Modified: fp0.
52 *
53
54 SGETEM IDNT 2,1 Motorola 040 Floating Point Software Package
55
56 section 8
57
58 include fpsp.h
59
60 xref nrm_set
61
62 *
63 * This entry point is used by the unimplemented instruction exception
64 * handler. It points a0 to the input operand.
65 *
66 *
67 *
68 * SGETEXP
69 *
70
71 xdef sgetexp
72 sgetexp:
73 move.w LOCAL_EX(a0),d0 ;get the exponent
74 bclr.l #15,d0 ;clear the sign bit
75 sub.w #$3fff,d0 ;subtract off the bias
76 fmove.w d0,fp0 ;move the exp to fp0
77 rts
78
79 xdef sgetexpd
80 sgetexpd:
81 bclr.b #sign_bit,LOCAL_EX(a0)
82 bsr nrm_set ;normalize (exp will go negative)
83 move.w LOCAL_EX(a0),d0 ;load resulting exponent into d0
84 sub.w #$3fff,d0 ;subtract off the bias
85 fmove.w d0,fp0 ;move the exp to fp0
86 rts
87 *
88 *
89 * This entry point is used by the unimplemented instruction exception
90 * handler. It points a0 to the input operand.
91 *
92 *
93 *
94 * SGETMAN
95 *
96 *
97 * For normalized numbers, leave the mantissa alone, simply load
98 * with an exponent of +/- $3fff.
99 *
100 xdef sgetman
101 sgetman:
102 move.l USER_FPCR(a6),d0
103 andi.l #$ffffff00,d0 ;clear rounding precision and mode
104 fmove.l d0,fpcr ;this fpcr setting is used by the 882
105 move.w LOCAL_EX(a0),d0 ;get the exp (really just want sign bit)
106 or.w #$7fff,d0 ;clear old exp
107 bclr.l #14,d0 ;make it the new exp +-3fff
108 move.w d0,LOCAL_EX(a0) ;move the sign & exp back to fsave stack
109 fmove.x (a0),fp0 ;put new value back in fp0
110 rts
111
112 *
113 * For denormalized numbers, shift the mantissa until the j-bit = 1,
114 * then load the exponent with +/1 $3fff.
115 *
116 xdef sgetmand
117 sgetmand:
118 move.l LOCAL_HI(a0),d0 ;load ms mant in d0
119 move.l LOCAL_LO(a0),d1 ;load ls mant in d1
120 bsr shft ;shift mantissa bits till msbit is set
121 move.l d0,LOCAL_HI(a0) ;put ms mant back on stack
122 move.l d1,LOCAL_LO(a0) ;put ls mant back on stack
123 bra.b sgetman
124
125 *
126 * SHFT
127 *
128 * Shifts the mantissa bits until msbit is set.
129 * input:
130 * ms mantissa part in d0
131 * ls mantissa part in d1
132 * output:
133 * shifted bits in d0 and d1
134 shft:
135 tst.l d0 ;if any bits set in ms mant
136 bne.b upper ;then branch
137 * ;else no bits set in ms mant
138 tst.l d1 ;test if any bits set in ls mant
139 bne.b cont ;if set then continue
140 bra.b shft_end ;else return
141 cont:
142 move.l d3,-(a7) ;save d3
143 exg d0,d1 ;shift ls mant to ms mant
144 bfffo d0{0:32},d3 ;find first 1 in ls mant to d0
145 lsl.l d3,d0 ;shift first 1 to integer bit in ms mant
146 move.l (a7)+,d3 ;restore d3
147 bra.b shft_end
148 upper:
149
150 movem.l d3/d5/d6,-(a7) ;save registers
151 bfffo d0{0:32},d3 ;find first 1 in ls mant to d0
152 lsl.l d3,d0 ;shift ms mant until j-bit is set
153 move.l d1,d6 ;save ls mant in d6
154 lsl.l d3,d1 ;shift ls mant by count
155 move.l #32,d5
156 sub.l d3,d5 ;sub 32 from shift for ls mant
157 lsr.l d5,d6 ;shift off all bits but those that will
158 * ;be shifted into ms mant
159 or.l d6,d0 ;shift the ls mant bits into the ms mant
160 movem.l (a7)+,d3/d5/d6 ;restore registers
161 shft_end:
162 rts
163
164 end
165