1 1.2 cgd * $NetBSD: slog2.sa,v 1.2 1994/10/26 07:49:52 cgd Exp $ 2 1.2 cgd 3 1.1 mycroft * MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP 4 1.1 mycroft * M68000 Hi-Performance Microprocessor Division 5 1.1 mycroft * M68040 Software Package 6 1.1 mycroft * 7 1.1 mycroft * M68040 Software Package Copyright (c) 1993, 1994 Motorola Inc. 8 1.1 mycroft * All rights reserved. 9 1.1 mycroft * 10 1.1 mycroft * THE SOFTWARE is provided on an "AS IS" basis and without warranty. 11 1.1 mycroft * To the maximum extent permitted by applicable law, 12 1.1 mycroft * MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED, 13 1.1 mycroft * INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A 14 1.1 mycroft * PARTICULAR PURPOSE and any warranty against infringement with 15 1.1 mycroft * regard to the SOFTWARE (INCLUDING ANY MODIFIED VERSIONS THEREOF) 16 1.1 mycroft * and any accompanying written materials. 17 1.1 mycroft * 18 1.1 mycroft * To the maximum extent permitted by applicable law, 19 1.1 mycroft * IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER 20 1.1 mycroft * (INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS 21 1.1 mycroft * PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR 22 1.1 mycroft * OTHER PECUNIARY LOSS) ARISING OF THE USE OR INABILITY TO USE THE 23 1.1 mycroft * SOFTWARE. Motorola assumes no responsibility for the maintenance 24 1.1 mycroft * and support of the SOFTWARE. 25 1.1 mycroft * 26 1.1 mycroft * You are hereby granted a copyright license to use, modify, and 27 1.1 mycroft * distribute the SOFTWARE so long as this entire notice is retained 28 1.1 mycroft * without alteration in any modified and/or redistributed versions, 29 1.1 mycroft * and that such modified versions are clearly identified as such. 30 1.1 mycroft * No licenses are granted by implication, estoppel or otherwise 31 1.1 mycroft * under any patents or trademarks of Motorola, Inc. 32 1.1 mycroft 33 1.1 mycroft * 34 1.1 mycroft * slog2.sa 3.1 12/10/90 35 1.1 mycroft * 36 1.1 mycroft * The entry point slog10 computes the base-10 37 1.1 mycroft * logarithm of an input argument X. 38 1.1 mycroft * slog10d does the same except the input value is a 39 1.1 mycroft * denormalized number. 40 1.1 mycroft * sLog2 and sLog2d are the base-2 analogues. 41 1.1 mycroft * 42 1.1 mycroft * INPUT: Double-extended value in memory location pointed to 43 1.1 mycroft * by address register a0. 44 1.1 mycroft * 45 1.1 mycroft * OUTPUT: log_10(X) or log_2(X) returned in floating-point 46 1.1 mycroft * register fp0. 47 1.1 mycroft * 48 1.1 mycroft * ACCURACY and MONOTONICITY: The returned result is within 1.7 49 1.1 mycroft * ulps in 64 significant bit, i.e. within 0.5003 ulp 50 1.1 mycroft * to 53 bits if the result is subsequently rounded 51 1.1 mycroft * to double precision. The result is provably monotonic 52 1.1 mycroft * in double precision. 53 1.1 mycroft * 54 1.1 mycroft * SPEED: Two timings are measured, both in the copy-back mode. 55 1.1 mycroft * The first one is measured when the function is invoked 56 1.1 mycroft * the first time (so the instructions and data are not 57 1.1 mycroft * in cache), and the second one is measured when the 58 1.1 mycroft * function is reinvoked at the same input argument. 59 1.1 mycroft * 60 1.1 mycroft * ALGORITHM and IMPLEMENTATION NOTES: 61 1.1 mycroft * 62 1.1 mycroft * slog10d: 63 1.1 mycroft * 64 1.1 mycroft * Step 0. If X < 0, create a NaN and raise the invalid operation 65 1.1 mycroft * flag. Otherwise, save FPCR in D1; set FpCR to default. 66 1.1 mycroft * Notes: Default means round-to-nearest mode, no floating-point 67 1.1 mycroft * traps, and precision control = double extended. 68 1.1 mycroft * 69 1.1 mycroft * Step 1. Call slognd to obtain Y = log(X), the natural log of X. 70 1.1 mycroft * Notes: Even if X is denormalized, log(X) is always normalized. 71 1.1 mycroft * 72 1.1 mycroft * Step 2. Compute log_10(X) = log(X) * (1/log(10)). 73 1.1 mycroft * 2.1 Restore the user FPCR 74 1.1 mycroft * 2.2 Return ans := Y * INV_L10. 75 1.1 mycroft * 76 1.1 mycroft * 77 1.1 mycroft * slog10: 78 1.1 mycroft * 79 1.1 mycroft * Step 0. If X < 0, create a NaN and raise the invalid operation 80 1.1 mycroft * flag. Otherwise, save FPCR in D1; set FpCR to default. 81 1.1 mycroft * Notes: Default means round-to-nearest mode, no floating-point 82 1.1 mycroft * traps, and precision control = double extended. 83 1.1 mycroft * 84 1.1 mycroft * Step 1. Call sLogN to obtain Y = log(X), the natural log of X. 85 1.1 mycroft * 86 1.1 mycroft * Step 2. Compute log_10(X) = log(X) * (1/log(10)). 87 1.1 mycroft * 2.1 Restore the user FPCR 88 1.1 mycroft * 2.2 Return ans := Y * INV_L10. 89 1.1 mycroft * 90 1.1 mycroft * 91 1.1 mycroft * sLog2d: 92 1.1 mycroft * 93 1.1 mycroft * Step 0. If X < 0, create a NaN and raise the invalid operation 94 1.1 mycroft * flag. Otherwise, save FPCR in D1; set FpCR to default. 95 1.1 mycroft * Notes: Default means round-to-nearest mode, no floating-point 96 1.1 mycroft * traps, and precision control = double extended. 97 1.1 mycroft * 98 1.1 mycroft * Step 1. Call slognd to obtain Y = log(X), the natural log of X. 99 1.1 mycroft * Notes: Even if X is denormalized, log(X) is always normalized. 100 1.1 mycroft * 101 1.1 mycroft * Step 2. Compute log_10(X) = log(X) * (1/log(2)). 102 1.1 mycroft * 2.1 Restore the user FPCR 103 1.1 mycroft * 2.2 Return ans := Y * INV_L2. 104 1.1 mycroft * 105 1.1 mycroft * 106 1.1 mycroft * sLog2: 107 1.1 mycroft * 108 1.1 mycroft * Step 0. If X < 0, create a NaN and raise the invalid operation 109 1.1 mycroft * flag. Otherwise, save FPCR in D1; set FpCR to default. 110 1.1 mycroft * Notes: Default means round-to-nearest mode, no floating-point 111 1.1 mycroft * traps, and precision control = double extended. 112 1.1 mycroft * 113 1.1 mycroft * Step 1. If X is not an integer power of two, i.e., X != 2^k, 114 1.1 mycroft * go to Step 3. 115 1.1 mycroft * 116 1.1 mycroft * Step 2. Return k. 117 1.1 mycroft * 2.1 Get integer k, X = 2^k. 118 1.1 mycroft * 2.2 Restore the user FPCR. 119 1.1 mycroft * 2.3 Return ans := convert-to-double-extended(k). 120 1.1 mycroft * 121 1.1 mycroft * Step 3. Call sLogN to obtain Y = log(X), the natural log of X. 122 1.1 mycroft * 123 1.1 mycroft * Step 4. Compute log_2(X) = log(X) * (1/log(2)). 124 1.1 mycroft * 4.1 Restore the user FPCR 125 1.1 mycroft * 4.2 Return ans := Y * INV_L2. 126 1.1 mycroft * 127 1.1 mycroft 128 1.1 mycroft SLOG2 IDNT 2,1 Motorola 040 Floating Point Software Package 129 1.1 mycroft 130 1.1 mycroft section 8 131 1.1 mycroft 132 1.1 mycroft xref t_frcinx 133 1.1 mycroft xref t_operr 134 1.1 mycroft xref slogn 135 1.1 mycroft xref slognd 136 1.1 mycroft 137 1.1 mycroft INV_L10 DC.L $3FFD0000,$DE5BD8A9,$37287195,$00000000 138 1.1 mycroft 139 1.1 mycroft INV_L2 DC.L $3FFF0000,$B8AA3B29,$5C17F0BC,$00000000 140 1.1 mycroft 141 1.1 mycroft xdef slog10d 142 1.1 mycroft slog10d: 143 1.1 mycroft *--entry point for Log10(X), X is denormalized 144 1.1 mycroft move.l (a0),d0 145 1.1 mycroft blt.w invalid 146 1.1 mycroft move.l d1,-(sp) 147 1.1 mycroft clr.l d1 148 1.1 mycroft bsr slognd ...log(X), X denorm. 149 1.1 mycroft fmove.l (sp)+,fpcr 150 1.1 mycroft fmul.x INV_L10,fp0 151 1.1 mycroft bra t_frcinx 152 1.1 mycroft 153 1.1 mycroft xdef slog10 154 1.1 mycroft slog10: 155 1.1 mycroft *--entry point for Log10(X), X is normalized 156 1.1 mycroft 157 1.1 mycroft move.l (a0),d0 158 1.1 mycroft blt.w invalid 159 1.1 mycroft move.l d1,-(sp) 160 1.1 mycroft clr.l d1 161 1.1 mycroft bsr slogn ...log(X), X normal. 162 1.1 mycroft fmove.l (sp)+,fpcr 163 1.1 mycroft fmul.x INV_L10,fp0 164 1.1 mycroft bra t_frcinx 165 1.1 mycroft 166 1.1 mycroft 167 1.1 mycroft xdef slog2d 168 1.1 mycroft slog2d: 169 1.1 mycroft *--entry point for Log2(X), X is denormalized 170 1.1 mycroft 171 1.1 mycroft move.l (a0),d0 172 1.1 mycroft blt.w invalid 173 1.1 mycroft move.l d1,-(sp) 174 1.1 mycroft clr.l d1 175 1.1 mycroft bsr slognd ...log(X), X denorm. 176 1.1 mycroft fmove.l (sp)+,fpcr 177 1.1 mycroft fmul.x INV_L2,fp0 178 1.1 mycroft bra t_frcinx 179 1.1 mycroft 180 1.1 mycroft xdef slog2 181 1.1 mycroft slog2: 182 1.1 mycroft *--entry point for Log2(X), X is normalized 183 1.1 mycroft move.l (a0),d0 184 1.1 mycroft blt.w invalid 185 1.1 mycroft 186 1.1 mycroft move.l 8(a0),d0 187 1.1 mycroft bne.b continue ...X is not 2^k 188 1.1 mycroft 189 1.1 mycroft move.l 4(a0),d0 190 1.1 mycroft and.l #$7FFFFFFF,d0 191 1.1 mycroft tst.l d0 192 1.1 mycroft bne.b continue 193 1.1 mycroft 194 1.1 mycroft *--X = 2^k. 195 1.1 mycroft move.w (a0),d0 196 1.1 mycroft and.l #$00007FFF,d0 197 1.1 mycroft sub.l #$3FFF,d0 198 1.1 mycroft fmove.l d1,fpcr 199 1.1 mycroft fmove.l d0,fp0 200 1.1 mycroft bra t_frcinx 201 1.1 mycroft 202 1.1 mycroft continue: 203 1.1 mycroft move.l d1,-(sp) 204 1.1 mycroft clr.l d1 205 1.1 mycroft bsr slogn ...log(X), X normal. 206 1.1 mycroft fmove.l (sp)+,fpcr 207 1.1 mycroft fmul.x INV_L2,fp0 208 1.1 mycroft bra t_frcinx 209 1.1 mycroft 210 1.1 mycroft invalid: 211 1.1 mycroft bra t_operr 212 1.1 mycroft 213 1.1 mycroft end 214