Home | History | Annotate | Line # | Download | only in fpsp
slog2.sa revision 1.1
      1 *	MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP
      2 *	M68000 Hi-Performance Microprocessor Division
      3 *	M68040 Software Package 
      4 *
      5 *	M68040 Software Package Copyright (c) 1993, 1994 Motorola Inc.
      6 *	All rights reserved.
      7 *
      8 *	THE SOFTWARE is provided on an "AS IS" basis and without warranty.
      9 *	To the maximum extent permitted by applicable law,
     10 *	MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED,
     11 *	INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
     12 *	PARTICULAR PURPOSE and any warranty against infringement with
     13 *	regard to the SOFTWARE (INCLUDING ANY MODIFIED VERSIONS THEREOF)
     14 *	and any accompanying written materials. 
     15 *
     16 *	To the maximum extent permitted by applicable law,
     17 *	IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER
     18 *	(INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS
     19 *	PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR
     20 *	OTHER PECUNIARY LOSS) ARISING OF THE USE OR INABILITY TO USE THE
     21 *	SOFTWARE.  Motorola assumes no responsibility for the maintenance
     22 *	and support of the SOFTWARE.  
     23 *
     24 *	You are hereby granted a copyright license to use, modify, and
     25 *	distribute the SOFTWARE so long as this entire notice is retained
     26 *	without alteration in any modified and/or redistributed versions,
     27 *	and that such modified versions are clearly identified as such.
     28 *	No licenses are granted by implication, estoppel or otherwise
     29 *	under any patents or trademarks of Motorola, Inc.
     30 
     31 *
     32 *	slog2.sa 3.1 12/10/90
     33 *
     34 *       The entry point slog10 computes the base-10 
     35 *	logarithm of an input argument X.
     36 *	slog10d does the same except the input value is a 
     37 *	denormalized number.  
     38 *	sLog2 and sLog2d are the base-2 analogues.
     39 *
     40 *       INPUT:	Double-extended value in memory location pointed to 
     41 *		by address register a0.
     42 *
     43 *       OUTPUT: log_10(X) or log_2(X) returned in floating-point 
     44 *		register fp0.
     45 *
     46 *       ACCURACY and MONOTONICITY: The returned result is within 1.7 
     47 *		ulps in 64 significant bit, i.e. within 0.5003 ulp 
     48 *		to 53 bits if the result is subsequently rounded 
     49 *		to double precision. The result is provably monotonic 
     50 *		in double precision.
     51 *
     52 *       SPEED:	Two timings are measured, both in the copy-back mode. 
     53 *		The first one is measured when the function is invoked 
     54 *		the first time (so the instructions and data are not 
     55 *		in cache), and the second one is measured when the 
     56 *		function is reinvoked at the same input argument.
     57 *
     58 *       ALGORITHM and IMPLEMENTATION NOTES:
     59 *
     60 *       slog10d:
     61 *
     62 *       Step 0.   If X < 0, create a NaN and raise the invalid operation
     63 *                 flag. Otherwise, save FPCR in D1; set FpCR to default.
     64 *       Notes:    Default means round-to-nearest mode, no floating-point
     65 *                 traps, and precision control = double extended.
     66 *
     67 *       Step 1.   Call slognd to obtain Y = log(X), the natural log of X.
     68 *       Notes:    Even if X is denormalized, log(X) is always normalized.
     69 *
     70 *       Step 2.   Compute log_10(X) = log(X) * (1/log(10)).
     71 *            2.1  Restore the user FPCR
     72 *            2.2  Return ans := Y * INV_L10.
     73 *
     74 *
     75 *       slog10: 
     76 *
     77 *       Step 0.   If X < 0, create a NaN and raise the invalid operation
     78 *                 flag. Otherwise, save FPCR in D1; set FpCR to default.
     79 *       Notes:    Default means round-to-nearest mode, no floating-point
     80 *                 traps, and precision control = double extended.
     81 *
     82 *       Step 1.   Call sLogN to obtain Y = log(X), the natural log of X.
     83 *
     84 *       Step 2.   Compute log_10(X) = log(X) * (1/log(10)).
     85 *            2.1  Restore the user FPCR
     86 *            2.2  Return ans := Y * INV_L10.
     87 *
     88 *
     89 *       sLog2d:
     90 *
     91 *       Step 0.   If X < 0, create a NaN and raise the invalid operation
     92 *                 flag. Otherwise, save FPCR in D1; set FpCR to default.
     93 *       Notes:    Default means round-to-nearest mode, no floating-point
     94 *                 traps, and precision control = double extended.
     95 *
     96 *       Step 1.   Call slognd to obtain Y = log(X), the natural log of X.
     97 *       Notes:    Even if X is denormalized, log(X) is always normalized.
     98 *
     99 *       Step 2.   Compute log_10(X) = log(X) * (1/log(2)).
    100 *            2.1  Restore the user FPCR
    101 *            2.2  Return ans := Y * INV_L2.
    102 *
    103 *
    104 *       sLog2:
    105 *
    106 *       Step 0.   If X < 0, create a NaN and raise the invalid operation
    107 *                 flag. Otherwise, save FPCR in D1; set FpCR to default.
    108 *       Notes:    Default means round-to-nearest mode, no floating-point
    109 *                 traps, and precision control = double extended.
    110 *
    111 *       Step 1.   If X is not an integer power of two, i.e., X != 2^k,
    112 *                 go to Step 3.
    113 *
    114 *       Step 2.   Return k.
    115 *            2.1  Get integer k, X = 2^k.
    116 *            2.2  Restore the user FPCR.
    117 *            2.3  Return ans := convert-to-double-extended(k).
    118 *
    119 *       Step 3.   Call sLogN to obtain Y = log(X), the natural log of X.
    120 *
    121 *       Step 4.   Compute log_2(X) = log(X) * (1/log(2)).
    122 *            4.1  Restore the user FPCR
    123 *            4.2  Return ans := Y * INV_L2.
    124 *
    125 
    126 SLOG2    IDNT    2,1 Motorola 040 Floating Point Software Package
    127 
    128 	section	8
    129 
    130 	xref	t_frcinx	
    131 	xref	t_operr
    132 	xref	slogn
    133 	xref	slognd
    134 
    135 INV_L10  DC.L $3FFD0000,$DE5BD8A9,$37287195,$00000000
    136 
    137 INV_L2   DC.L $3FFF0000,$B8AA3B29,$5C17F0BC,$00000000
    138 
    139 	xdef	slog10d
    140 slog10d:
    141 *--entry point for Log10(X), X is denormalized
    142 	move.l		(a0),d0
    143 	blt.w		invalid
    144 	move.l		d1,-(sp)
    145 	clr.l		d1
    146 	bsr		slognd			...log(X), X denorm.
    147 	fmove.l		(sp)+,fpcr
    148 	fmul.x		INV_L10,fp0
    149 	bra		t_frcinx
    150 
    151 	xdef	slog10
    152 slog10:
    153 *--entry point for Log10(X), X is normalized
    154 
    155 	move.l		(a0),d0
    156 	blt.w		invalid
    157 	move.l		d1,-(sp)
    158 	clr.l		d1
    159 	bsr		slogn			...log(X), X normal.
    160 	fmove.l		(sp)+,fpcr
    161 	fmul.x		INV_L10,fp0
    162 	bra		t_frcinx
    163 
    164 
    165 	xdef	slog2d
    166 slog2d:
    167 *--entry point for Log2(X), X is denormalized
    168 
    169 	move.l		(a0),d0
    170 	blt.w		invalid
    171 	move.l		d1,-(sp)
    172 	clr.l		d1
    173 	bsr		slognd			...log(X), X denorm.
    174 	fmove.l		(sp)+,fpcr
    175 	fmul.x		INV_L2,fp0
    176 	bra		t_frcinx
    177 
    178 	xdef	slog2
    179 slog2:
    180 *--entry point for Log2(X), X is normalized
    181 	move.l		(a0),d0
    182 	blt.w		invalid
    183 
    184 	move.l		8(a0),d0
    185 	bne.b		continue		...X is not 2^k
    186 
    187 	move.l		4(a0),d0
    188 	and.l		#$7FFFFFFF,d0
    189 	tst.l		d0
    190 	bne.b		continue
    191 
    192 *--X = 2^k.
    193 	move.w		(a0),d0
    194 	and.l		#$00007FFF,d0
    195 	sub.l		#$3FFF,d0
    196 	fmove.l		d1,fpcr
    197 	fmove.l		d0,fp0
    198 	bra		t_frcinx
    199 
    200 continue:
    201 	move.l		d1,-(sp)
    202 	clr.l		d1
    203 	bsr		slogn			...log(X), X normal.
    204 	fmove.l		(sp)+,fpcr
    205 	fmul.x		INV_L2,fp0
    206 	bra		t_frcinx
    207 
    208 invalid:
    209 	bra		t_operr
    210 
    211 	end
    212