slogn.sa revision 1.2
1* MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP 2* M68000 Hi-Performance Microprocessor Division 3* M68040 Software Package 4* 5* M68040 Software Package Copyright (c) 1993, 1994 Motorola Inc. 6* All rights reserved. 7* 8* THE SOFTWARE is provided on an "AS IS" basis and without warranty. 9* To the maximum extent permitted by applicable law, 10* MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED, 11* INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A 12* PARTICULAR PURPOSE and any warranty against infringement with 13* regard to the SOFTWARE (INCLUDING ANY MODIFIED VERSIONS THEREOF) 14* and any accompanying written materials. 15* 16* To the maximum extent permitted by applicable law, 17* IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER 18* (INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS 19* PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR 20* OTHER PECUNIARY LOSS) ARISING OF THE USE OR INABILITY TO USE THE 21* SOFTWARE. Motorola assumes no responsibility for the maintenance 22* and support of the SOFTWARE. 23* 24* You are hereby granted a copyright license to use, modify, and 25* distribute the SOFTWARE so long as this entire notice is retained 26* without alteration in any modified and/or redistributed versions, 27* and that such modified versions are clearly identified as such. 28* No licenses are granted by implication, estoppel or otherwise 29* under any patents or trademarks of Motorola, Inc. 30 31* 32* slogn.sa 3.1 12/10/90 33* 34* slogn computes the natural logarithm of an 35* input value. slognd does the same except the input value is a 36* denormalized number. slognp1 computes log(1+X), and slognp1d 37* computes log(1+X) for denormalized X. 38* 39* Input: Double-extended value in memory location pointed to by address 40* register a0. 41* 42* Output: log(X) or log(1+X) returned in floating-point register Fp0. 43* 44* Accuracy and Monotonicity: The returned result is within 2 ulps in 45* 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the 46* result is subsequently rounded to double precision. The 47* result is provably monotonic in double precision. 48* 49* Speed: The program slogn takes approximately 190 cycles for input 50* argument X such that |X-1| >= 1/16, which is the the usual 51* situation. For those arguments, slognp1 takes approximately 52* 210 cycles. For the less common arguments, the program will 53* run no worse than 10% slower. 54* 55* Algorithm: 56* LOGN: 57* Step 1. If |X-1| < 1/16, approximate log(X) by an odd polynomial in 58* u, where u = 2(X-1)/(X+1). Otherwise, move on to Step 2. 59* 60* Step 2. X = 2**k * Y where 1 <= Y < 2. Define F to be the first seven 61* significant bits of Y plus 2**(-7), i.e. F = 1.xxxxxx1 in base 62* 2 where the six "x" match those of Y. Note that |Y-F| <= 2**(-7). 63* 64* Step 3. Define u = (Y-F)/F. Approximate log(1+u) by a polynomial in u, 65* log(1+u) = poly. 66* 67* Step 4. Reconstruct log(X) = log( 2**k * Y ) = k*log(2) + log(F) + log(1+u) 68* by k*log(2) + (log(F) + poly). The values of log(F) are calculated 69* beforehand and stored in the program. 70* 71* lognp1: 72* Step 1: If |X| < 1/16, approximate log(1+X) by an odd polynomial in 73* u where u = 2X/(2+X). Otherwise, move on to Step 2. 74* 75* Step 2: Let 1+X = 2**k * Y, where 1 <= Y < 2. Define F as done in Step 2 76* of the algorithm for LOGN and compute log(1+X) as 77* k*log(2) + log(F) + poly where poly approximates log(1+u), 78* u = (Y-F)/F. 79* 80* Implementation Notes: 81* Note 1. There are 64 different possible values for F, thus 64 log(F)'s 82* need to be tabulated. Moreover, the values of 1/F are also 83* tabulated so that the division in (Y-F)/F can be performed by a 84* multiplication. 85* 86* Note 2. In Step 2 of lognp1, in order to preserved accuracy, the value 87* Y-F has to be calculated carefully when 1/2 <= X < 3/2. 88* 89* Note 3. To fully exploit the pipeline, polynomials are usually separated 90* into two parts evaluated independently before being added up. 91* 92 93slogn IDNT 2,1 Motorola 040 Floating Point Software Package 94 95 section 8 96 97 include fpsp.h 98 99BOUNDS1 DC.L $3FFEF07D,$3FFF8841 100BOUNDS2 DC.L $3FFE8000,$3FFFC000 101 102LOGOF2 DC.L $3FFE0000,$B17217F7,$D1CF79AC,$00000000 103 104one DC.L $3F800000 105zero DC.L $00000000 106infty DC.L $7F800000 107negone DC.L $BF800000 108 109LOGA6 DC.L $3FC2499A,$B5E4040B 110LOGA5 DC.L $BFC555B5,$848CB7DB 111 112LOGA4 DC.L $3FC99999,$987D8730 113LOGA3 DC.L $BFCFFFFF,$FF6F7E97 114 115LOGA2 DC.L $3FD55555,$555555A4 116LOGA1 DC.L $BFE00000,$00000008 117 118LOGB5 DC.L $3F175496,$ADD7DAD6 119LOGB4 DC.L $3F3C71C2,$FE80C7E0 120 121LOGB3 DC.L $3F624924,$928BCCFF 122LOGB2 DC.L $3F899999,$999995EC 123 124LOGB1 DC.L $3FB55555,$55555555 125TWO DC.L $40000000,$00000000 126 127LTHOLD DC.L $3f990000,$80000000,$00000000,$00000000 128 129LOGTBL: 130 DC.L $3FFE0000,$FE03F80F,$E03F80FE,$00000000 131 DC.L $3FF70000,$FF015358,$833C47E2,$00000000 132 DC.L $3FFE0000,$FA232CF2,$52138AC0,$00000000 133 DC.L $3FF90000,$BDC8D83E,$AD88D549,$00000000 134 DC.L $3FFE0000,$F6603D98,$0F6603DA,$00000000 135 DC.L $3FFA0000,$9CF43DCF,$F5EAFD48,$00000000 136 DC.L $3FFE0000,$F2B9D648,$0F2B9D65,$00000000 137 DC.L $3FFA0000,$DA16EB88,$CB8DF614,$00000000 138 DC.L $3FFE0000,$EF2EB71F,$C4345238,$00000000 139 DC.L $3FFB0000,$8B29B775,$1BD70743,$00000000 140 DC.L $3FFE0000,$EBBDB2A5,$C1619C8C,$00000000 141 DC.L $3FFB0000,$A8D839F8,$30C1FB49,$00000000 142 DC.L $3FFE0000,$E865AC7B,$7603A197,$00000000 143 DC.L $3FFB0000,$C61A2EB1,$8CD907AD,$00000000 144 DC.L $3FFE0000,$E525982A,$F70C880E,$00000000 145 DC.L $3FFB0000,$E2F2A47A,$DE3A18AF,$00000000 146 DC.L $3FFE0000,$E1FC780E,$1FC780E2,$00000000 147 DC.L $3FFB0000,$FF64898E,$DF55D551,$00000000 148 DC.L $3FFE0000,$DEE95C4C,$A037BA57,$00000000 149 DC.L $3FFC0000,$8DB956A9,$7B3D0148,$00000000 150 DC.L $3FFE0000,$DBEB61EE,$D19C5958,$00000000 151 DC.L $3FFC0000,$9B8FE100,$F47BA1DE,$00000000 152 DC.L $3FFE0000,$D901B203,$6406C80E,$00000000 153 DC.L $3FFC0000,$A9372F1D,$0DA1BD17,$00000000 154 DC.L $3FFE0000,$D62B80D6,$2B80D62C,$00000000 155 DC.L $3FFC0000,$B6B07F38,$CE90E46B,$00000000 156 DC.L $3FFE0000,$D3680D36,$80D3680D,$00000000 157 DC.L $3FFC0000,$C3FD0329,$06488481,$00000000 158 DC.L $3FFE0000,$D0B69FCB,$D2580D0B,$00000000 159 DC.L $3FFC0000,$D11DE0FF,$15AB18CA,$00000000 160 DC.L $3FFE0000,$CE168A77,$25080CE1,$00000000 161 DC.L $3FFC0000,$DE1433A1,$6C66B150,$00000000 162 DC.L $3FFE0000,$CB8727C0,$65C393E0,$00000000 163 DC.L $3FFC0000,$EAE10B5A,$7DDC8ADD,$00000000 164 DC.L $3FFE0000,$C907DA4E,$871146AD,$00000000 165 DC.L $3FFC0000,$F7856E5E,$E2C9B291,$00000000 166 DC.L $3FFE0000,$C6980C69,$80C6980C,$00000000 167 DC.L $3FFD0000,$82012CA5,$A68206D7,$00000000 168 DC.L $3FFE0000,$C4372F85,$5D824CA6,$00000000 169 DC.L $3FFD0000,$882C5FCD,$7256A8C5,$00000000 170 DC.L $3FFE0000,$C1E4BBD5,$95F6E947,$00000000 171 DC.L $3FFD0000,$8E44C60B,$4CCFD7DE,$00000000 172 DC.L $3FFE0000,$BFA02FE8,$0BFA02FF,$00000000 173 DC.L $3FFD0000,$944AD09E,$F4351AF6,$00000000 174 DC.L $3FFE0000,$BD691047,$07661AA3,$00000000 175 DC.L $3FFD0000,$9A3EECD4,$C3EAA6B2,$00000000 176 DC.L $3FFE0000,$BB3EE721,$A54D880C,$00000000 177 DC.L $3FFD0000,$A0218434,$353F1DE8,$00000000 178 DC.L $3FFE0000,$B92143FA,$36F5E02E,$00000000 179 DC.L $3FFD0000,$A5F2FCAB,$BBC506DA,$00000000 180 DC.L $3FFE0000,$B70FBB5A,$19BE3659,$00000000 181 DC.L $3FFD0000,$ABB3B8BA,$2AD362A5,$00000000 182 DC.L $3FFE0000,$B509E68A,$9B94821F,$00000000 183 DC.L $3FFD0000,$B1641795,$CE3CA97B,$00000000 184 DC.L $3FFE0000,$B30F6352,$8917C80B,$00000000 185 DC.L $3FFD0000,$B7047551,$5D0F1C61,$00000000 186 DC.L $3FFE0000,$B11FD3B8,$0B11FD3C,$00000000 187 DC.L $3FFD0000,$BC952AFE,$EA3D13E1,$00000000 188 DC.L $3FFE0000,$AF3ADDC6,$80AF3ADE,$00000000 189 DC.L $3FFD0000,$C2168ED0,$F458BA4A,$00000000 190 DC.L $3FFE0000,$AD602B58,$0AD602B6,$00000000 191 DC.L $3FFD0000,$C788F439,$B3163BF1,$00000000 192 DC.L $3FFE0000,$AB8F69E2,$8359CD11,$00000000 193 DC.L $3FFD0000,$CCECAC08,$BF04565D,$00000000 194 DC.L $3FFE0000,$A9C84A47,$A07F5638,$00000000 195 DC.L $3FFD0000,$D2420487,$2DD85160,$00000000 196 DC.L $3FFE0000,$A80A80A8,$0A80A80B,$00000000 197 DC.L $3FFD0000,$D7894992,$3BC3588A,$00000000 198 DC.L $3FFE0000,$A655C439,$2D7B73A8,$00000000 199 DC.L $3FFD0000,$DCC2C4B4,$9887DACC,$00000000 200 DC.L $3FFE0000,$A4A9CF1D,$96833751,$00000000 201 DC.L $3FFD0000,$E1EEBD3E,$6D6A6B9E,$00000000 202 DC.L $3FFE0000,$A3065E3F,$AE7CD0E0,$00000000 203 DC.L $3FFD0000,$E70D785C,$2F9F5BDC,$00000000 204 DC.L $3FFE0000,$A16B312E,$A8FC377D,$00000000 205 DC.L $3FFD0000,$EC1F392C,$5179F283,$00000000 206 DC.L $3FFE0000,$9FD809FD,$809FD80A,$00000000 207 DC.L $3FFD0000,$F12440D3,$E36130E6,$00000000 208 DC.L $3FFE0000,$9E4CAD23,$DD5F3A20,$00000000 209 DC.L $3FFD0000,$F61CCE92,$346600BB,$00000000 210 DC.L $3FFE0000,$9CC8E160,$C3FB19B9,$00000000 211 DC.L $3FFD0000,$FB091FD3,$8145630A,$00000000 212 DC.L $3FFE0000,$9B4C6F9E,$F03A3CAA,$00000000 213 DC.L $3FFD0000,$FFE97042,$BFA4C2AD,$00000000 214 DC.L $3FFE0000,$99D722DA,$BDE58F06,$00000000 215 DC.L $3FFE0000,$825EFCED,$49369330,$00000000 216 DC.L $3FFE0000,$9868C809,$868C8098,$00000000 217 DC.L $3FFE0000,$84C37A7A,$B9A905C9,$00000000 218 DC.L $3FFE0000,$97012E02,$5C04B809,$00000000 219 DC.L $3FFE0000,$87224C2E,$8E645FB7,$00000000 220 DC.L $3FFE0000,$95A02568,$095A0257,$00000000 221 DC.L $3FFE0000,$897B8CAC,$9F7DE298,$00000000 222 DC.L $3FFE0000,$94458094,$45809446,$00000000 223 DC.L $3FFE0000,$8BCF55DE,$C4CD05FE,$00000000 224 DC.L $3FFE0000,$92F11384,$0497889C,$00000000 225 DC.L $3FFE0000,$8E1DC0FB,$89E125E5,$00000000 226 DC.L $3FFE0000,$91A2B3C4,$D5E6F809,$00000000 227 DC.L $3FFE0000,$9066E68C,$955B6C9B,$00000000 228 DC.L $3FFE0000,$905A3863,$3E06C43B,$00000000 229 DC.L $3FFE0000,$92AADE74,$C7BE59E0,$00000000 230 DC.L $3FFE0000,$8F1779D9,$FDC3A219,$00000000 231 DC.L $3FFE0000,$94E9BFF6,$15845643,$00000000 232 DC.L $3FFE0000,$8DDA5202,$37694809,$00000000 233 DC.L $3FFE0000,$9723A1B7,$20134203,$00000000 234 DC.L $3FFE0000,$8CA29C04,$6514E023,$00000000 235 DC.L $3FFE0000,$995899C8,$90EB8990,$00000000 236 DC.L $3FFE0000,$8B70344A,$139BC75A,$00000000 237 DC.L $3FFE0000,$9B88BDAA,$3A3DAE2F,$00000000 238 DC.L $3FFE0000,$8A42F870,$5669DB46,$00000000 239 DC.L $3FFE0000,$9DB4224F,$FFE1157C,$00000000 240 DC.L $3FFE0000,$891AC73A,$E9819B50,$00000000 241 DC.L $3FFE0000,$9FDADC26,$8B7A12DA,$00000000 242 DC.L $3FFE0000,$87F78087,$F78087F8,$00000000 243 DC.L $3FFE0000,$A1FCFF17,$CE733BD4,$00000000 244 DC.L $3FFE0000,$86D90544,$7A34ACC6,$00000000 245 DC.L $3FFE0000,$A41A9E8F,$5446FB9F,$00000000 246 DC.L $3FFE0000,$85BF3761,$2CEE3C9B,$00000000 247 DC.L $3FFE0000,$A633CD7E,$6771CD8B,$00000000 248 DC.L $3FFE0000,$84A9F9C8,$084A9F9D,$00000000 249 DC.L $3FFE0000,$A8489E60,$0B435A5E,$00000000 250 DC.L $3FFE0000,$83993052,$3FBE3368,$00000000 251 DC.L $3FFE0000,$AA59233C,$CCA4BD49,$00000000 252 DC.L $3FFE0000,$828CBFBE,$B9A020A3,$00000000 253 DC.L $3FFE0000,$AC656DAE,$6BCC4985,$00000000 254 DC.L $3FFE0000,$81848DA8,$FAF0D277,$00000000 255 DC.L $3FFE0000,$AE6D8EE3,$60BB2468,$00000000 256 DC.L $3FFE0000,$80808080,$80808081,$00000000 257 DC.L $3FFE0000,$B07197A2,$3C46C654,$00000000 258 259ADJK equ L_SCR1 260 261X equ FP_SCR1 262XDCARE equ X+2 263XFRAC equ X+4 264 265F equ FP_SCR2 266FFRAC equ F+4 267 268KLOG2 equ FP_SCR3 269 270SAVEU equ FP_SCR4 271 272 xref t_frcinx 273 xref t_extdnrm 274 xref t_operr 275 xref t_dz 276 277 xdef slognd 278slognd: 279*--ENTRY POINT FOR LOG(X) FOR DENORMALIZED INPUT 280 281 MOVE.L #-100,ADJK(a6) ...INPUT = 2^(ADJK) * FP0 282 283*----normalize the input value by left shifting k bits (k to be determined 284*----below), adjusting exponent and storing -k to ADJK 285*----the value TWOTO100 is no longer needed. 286*----Note that this code assumes the denormalized input is NON-ZERO. 287 288 MoveM.L D2-D7,-(A7) ...save some registers 289 Clr.L D3 ...D3 is exponent of smallest norm. # 290 Move.L 4(A0),D4 291 Move.L 8(A0),D5 ...(D4,D5) is (Hi_X,Lo_X) 292 Clr.L D2 ...D2 used for holding K 293 294 Tst.L D4 295 BNE.B HiX_not0 296 297HiX_0: 298 Move.L D5,D4 299 Clr.L D5 300 Move.L #32,D2 301 Clr.L D6 302 BFFFO D4{0:32},D6 303 LSL.L D6,D4 304 Add.L D6,D2 ...(D3,D4,D5) is normalized 305 306 Move.L D3,X(a6) 307 Move.L D4,XFRAC(a6) 308 Move.L D5,XFRAC+4(a6) 309 Neg.L D2 310 Move.L D2,ADJK(a6) 311 FMove.X X(a6),FP0 312 MoveM.L (A7)+,D2-D7 ...restore registers 313 LEA X(a6),A0 314 Bra.B LOGBGN ...begin regular log(X) 315 316 317HiX_not0: 318 Clr.L D6 319 BFFFO D4{0:32},D6 ...find first 1 320 Move.L D6,D2 ...get k 321 LSL.L D6,D4 322 Move.L D5,D7 ...a copy of D5 323 LSL.L D6,D5 324 Neg.L D6 325 AddI.L #32,D6 326 LSR.L D6,D7 327 Or.L D7,D4 ...(D3,D4,D5) normalized 328 329 Move.L D3,X(a6) 330 Move.L D4,XFRAC(a6) 331 Move.L D5,XFRAC+4(a6) 332 Neg.L D2 333 Move.L D2,ADJK(a6) 334 FMove.X X(a6),FP0 335 MoveM.L (A7)+,D2-D7 ...restore registers 336 LEA X(a6),A0 337 Bra.B LOGBGN ...begin regular log(X) 338 339 340 xdef slogn 341slogn: 342*--ENTRY POINT FOR LOG(X) FOR X FINITE, NON-ZERO, NOT NAN'S 343 344 FMOVE.X (A0),FP0 ...LOAD INPUT 345 CLR.L ADJK(a6) 346 347LOGBGN: 348*--FPCR SAVED AND CLEARED, INPUT IS 2^(ADJK)*FP0, FP0 CONTAINS 349*--A FINITE, NON-ZERO, NORMALIZED NUMBER. 350 351 move.l (a0),d0 352 move.w 4(a0),d0 353 354 move.l (a0),X(a6) 355 move.l 4(a0),X+4(a6) 356 move.l 8(a0),X+8(a6) 357 358 TST.L D0 ...CHECK IF X IS NEGATIVE 359 BLT.W LOGNEG ...LOG OF NEGATIVE ARGUMENT IS INVALID 360 CMP2.L BOUNDS1,D0 ...X IS POSITIVE, CHECK IF X IS NEAR 1 361 BCC.W LOGNEAR1 ...BOUNDS IS ROUGHLY [15/16, 17/16] 362 363LOGMAIN: 364*--THIS SHOULD BE THE USUAL CASE, X NOT VERY CLOSE TO 1 365 366*--X = 2^(K) * Y, 1 <= Y < 2. THUS, Y = 1.XXXXXXXX....XX IN BINARY. 367*--WE DEFINE F = 1.XXXXXX1, I.E. FIRST 7 BITS OF Y AND ATTACH A 1. 368*--THE IDEA IS THAT LOG(X) = K*LOG2 + LOG(Y) 369*-- = K*LOG2 + LOG(F) + LOG(1 + (Y-F)/F). 370*--NOTE THAT U = (Y-F)/F IS VERY SMALL AND THUS APPROXIMATING 371*--LOG(1+U) CAN BE VERY EFFICIENT. 372*--ALSO NOTE THAT THE VALUE 1/F IS STORED IN A TABLE SO THAT NO 373*--DIVISION IS NEEDED TO CALCULATE (Y-F)/F. 374 375*--GET K, Y, F, AND ADDRESS OF 1/F. 376 ASR.L #8,D0 377 ASR.L #8,D0 ...SHIFTED 16 BITS, BIASED EXPO. OF X 378 SUBI.L #$3FFF,D0 ...THIS IS K 379 ADD.L ADJK(a6),D0 ...ADJUST K, ORIGINAL INPUT MAY BE DENORM. 380 LEA LOGTBL,A0 ...BASE ADDRESS OF 1/F AND LOG(F) 381 FMOVE.L D0,FP1 ...CONVERT K TO FLOATING-POINT FORMAT 382 383*--WHILE THE CONVERSION IS GOING ON, WE GET F AND ADDRESS OF 1/F 384 MOVE.L #$3FFF0000,X(a6) ...X IS NOW Y, I.E. 2^(-K)*X 385 MOVE.L XFRAC(a6),FFRAC(a6) 386 ANDI.L #$FE000000,FFRAC(a6) ...FIRST 7 BITS OF Y 387 ORI.L #$01000000,FFRAC(a6) ...GET F: ATTACH A 1 AT THE EIGHTH BIT 388 MOVE.L FFRAC(a6),D0 ...READY TO GET ADDRESS OF 1/F 389 ANDI.L #$7E000000,D0 390 ASR.L #8,D0 391 ASR.L #8,D0 392 ASR.L #4,D0 ...SHIFTED 20, D0 IS THE DISPLACEMENT 393 ADDA.L D0,A0 ...A0 IS THE ADDRESS FOR 1/F 394 395 FMOVE.X X(a6),FP0 396 move.l #$3fff0000,F(a6) 397 clr.l F+8(a6) 398 FSUB.X F(a6),FP0 ...Y-F 399 FMOVEm.X FP2/fp3,-(sp) ...SAVE FP2 WHILE FP0 IS NOT READY 400*--SUMMARY: FP0 IS Y-F, A0 IS ADDRESS OF 1/F, FP1 IS K 401*--REGISTERS SAVED: FPCR, FP1, FP2 402 403LP1CONT1: 404*--AN RE-ENTRY POINT FOR LOGNP1 405 FMUL.X (A0),FP0 ...FP0 IS U = (Y-F)/F 406 FMUL.X LOGOF2,FP1 ...GET K*LOG2 WHILE FP0 IS NOT READY 407 FMOVE.X FP0,FP2 408 FMUL.X FP2,FP2 ...FP2 IS V=U*U 409 FMOVE.X FP1,KLOG2(a6) ...PUT K*LOG2 IN MEMEORY, FREE FP1 410 411*--LOG(1+U) IS APPROXIMATED BY 412*--U + V*(A1+U*(A2+U*(A3+U*(A4+U*(A5+U*A6))))) WHICH IS 413*--[U + V*(A1+V*(A3+V*A5))] + [U*V*(A2+V*(A4+V*A6))] 414 415 FMOVE.X FP2,FP3 416 FMOVE.X FP2,FP1 417 418 FMUL.D LOGA6,FP1 ...V*A6 419 FMUL.D LOGA5,FP2 ...V*A5 420 421 FADD.D LOGA4,FP1 ...A4+V*A6 422 FADD.D LOGA3,FP2 ...A3+V*A5 423 424 FMUL.X FP3,FP1 ...V*(A4+V*A6) 425 FMUL.X FP3,FP2 ...V*(A3+V*A5) 426 427 FADD.D LOGA2,FP1 ...A2+V*(A4+V*A6) 428 FADD.D LOGA1,FP2 ...A1+V*(A3+V*A5) 429 430 FMUL.X FP3,FP1 ...V*(A2+V*(A4+V*A6)) 431 ADDA.L #16,A0 ...ADDRESS OF LOG(F) 432 FMUL.X FP3,FP2 ...V*(A1+V*(A3+V*A5)), FP3 RELEASED 433 434 FMUL.X FP0,FP1 ...U*V*(A2+V*(A4+V*A6)) 435 FADD.X FP2,FP0 ...U+V*(A1+V*(A3+V*A5)), FP2 RELEASED 436 437 FADD.X (A0),FP1 ...LOG(F)+U*V*(A2+V*(A4+V*A6)) 438 FMOVEm.X (sp)+,FP2/fp3 ...RESTORE FP2 439 FADD.X FP1,FP0 ...FP0 IS LOG(F) + LOG(1+U) 440 441 fmove.l d1,fpcr 442 FADD.X KLOG2(a6),FP0 ...FINAL ADD 443 bra t_frcinx 444 445 446LOGNEAR1: 447*--REGISTERS SAVED: FPCR, FP1. FP0 CONTAINS THE INPUT. 448 FMOVE.X FP0,FP1 449 FSUB.S one,FP1 ...FP1 IS X-1 450 FADD.S one,FP0 ...FP0 IS X+1 451 FADD.X FP1,FP1 ...FP1 IS 2(X-1) 452*--LOG(X) = LOG(1+U/2)-LOG(1-U/2) WHICH IS AN ODD POLYNOMIAL 453*--IN U, U = 2(X-1)/(X+1) = FP1/FP0 454 455LP1CONT2: 456*--THIS IS AN RE-ENTRY POINT FOR LOGNP1 457 FDIV.X FP0,FP1 ...FP1 IS U 458 FMOVEm.X FP2/fp3,-(sp) ...SAVE FP2 459*--REGISTERS SAVED ARE NOW FPCR,FP1,FP2,FP3 460*--LET V=U*U, W=V*V, CALCULATE 461*--U + U*V*(B1 + V*(B2 + V*(B3 + V*(B4 + V*B5)))) BY 462*--U + U*V*( [B1 + W*(B3 + W*B5)] + [V*(B2 + W*B4)] ) 463 FMOVE.X FP1,FP0 464 FMUL.X FP0,FP0 ...FP0 IS V 465 FMOVE.X FP1,SAVEU(a6) ...STORE U IN MEMORY, FREE FP1 466 FMOVE.X FP0,FP1 467 FMUL.X FP1,FP1 ...FP1 IS W 468 469 FMOVE.D LOGB5,FP3 470 FMOVE.D LOGB4,FP2 471 472 FMUL.X FP1,FP3 ...W*B5 473 FMUL.X FP1,FP2 ...W*B4 474 475 FADD.D LOGB3,FP3 ...B3+W*B5 476 FADD.D LOGB2,FP2 ...B2+W*B4 477 478 FMUL.X FP3,FP1 ...W*(B3+W*B5), FP3 RELEASED 479 480 FMUL.X FP0,FP2 ...V*(B2+W*B4) 481 482 FADD.D LOGB1,FP1 ...B1+W*(B3+W*B5) 483 FMUL.X SAVEU(a6),FP0 ...FP0 IS U*V 484 485 FADD.X FP2,FP1 ...B1+W*(B3+W*B5) + V*(B2+W*B4), FP2 RELEASED 486 FMOVEm.X (sp)+,FP2/fp3 ...FP2 RESTORED 487 488 FMUL.X FP1,FP0 ...U*V*( [B1+W*(B3+W*B5)] + [V*(B2+W*B4)] ) 489 490 fmove.l d1,fpcr 491 FADD.X SAVEU(a6),FP0 492 bra t_frcinx 493 rts 494 495LOGNEG: 496*--REGISTERS SAVED FPCR. LOG(-VE) IS INVALID 497 bra t_operr 498 499 xdef slognp1d 500slognp1d: 501*--ENTRY POINT FOR LOG(1+Z) FOR DENORMALIZED INPUT 502* Simply return the denorm 503 504 bra t_extdnrm 505 506 xdef slognp1 507slognp1: 508*--ENTRY POINT FOR LOG(1+X) FOR X FINITE, NON-ZERO, NOT NAN'S 509 510 FMOVE.X (A0),FP0 ...LOAD INPUT 511 fabs.x fp0 ;test magnitude 512 fcmp.x LTHOLD,fp0 ;compare with min threshold 513 fbgt.w LP1REAL ;if greater, continue 514 fmove.l #0,fpsr ;clr N flag from compare 515 fmove.l d1,fpcr 516 fmove.x (a0),fp0 ;return signed argument 517 bra t_frcinx 518 519LP1REAL: 520 FMOVE.X (A0),FP0 ...LOAD INPUT 521 CLR.L ADJK(a6) 522 FMOVE.X FP0,FP1 ...FP1 IS INPUT Z 523 FADD.S one,FP0 ...X := ROUND(1+Z) 524 FMOVE.X FP0,X(a6) 525 MOVE.W XFRAC(a6),XDCARE(a6) 526 MOVE.L X(a6),D0 527 TST.L D0 528 BLE.W LP1NEG0 ...LOG OF ZERO OR -VE 529 CMP2.L BOUNDS2,D0 530 BCS.W LOGMAIN ...BOUNDS2 IS [1/2,3/2] 531*--IF 1+Z > 3/2 OR 1+Z < 1/2, THEN X, WHICH IS ROUNDING 1+Z, 532*--CONTAINS AT LEAST 63 BITS OF INFORMATION OF Z. IN THAT CASE, 533*--SIMPLY INVOKE LOG(X) FOR LOG(1+Z). 534 535LP1NEAR1: 536*--NEXT SEE IF EXP(-1/16) < X < EXP(1/16) 537 CMP2.L BOUNDS1,D0 538 BCS.B LP1CARE 539 540LP1ONE16: 541*--EXP(-1/16) < X < EXP(1/16). LOG(1+Z) = LOG(1+U/2) - LOG(1-U/2) 542*--WHERE U = 2Z/(2+Z) = 2Z/(1+X). 543 FADD.X FP1,FP1 ...FP1 IS 2Z 544 FADD.S one,FP0 ...FP0 IS 1+X 545*--U = FP1/FP0 546 BRA.W LP1CONT2 547 548LP1CARE: 549*--HERE WE USE THE USUAL TABLE DRIVEN APPROACH. CARE HAS TO BE 550*--TAKEN BECAUSE 1+Z CAN HAVE 67 BITS OF INFORMATION AND WE MUST 551*--PRESERVE ALL THE INFORMATION. BECAUSE 1+Z IS IN [1/2,3/2], 552*--THERE ARE ONLY TWO CASES. 553*--CASE 1: 1+Z < 1, THEN K = -1 AND Y-F = (2-F) + 2Z 554*--CASE 2: 1+Z > 1, THEN K = 0 AND Y-F = (1-F) + Z 555*--ON RETURNING TO LP1CONT1, WE MUST HAVE K IN FP1, ADDRESS OF 556*--(1/F) IN A0, Y-F IN FP0, AND FP2 SAVED. 557 558 MOVE.L XFRAC(a6),FFRAC(a6) 559 ANDI.L #$FE000000,FFRAC(a6) 560 ORI.L #$01000000,FFRAC(a6) ...F OBTAINED 561 CMPI.L #$3FFF8000,D0 ...SEE IF 1+Z > 1 562 BGE.B KISZERO 563 564KISNEG1: 565 FMOVE.S TWO,FP0 566 move.l #$3fff0000,F(a6) 567 clr.l F+8(a6) 568 FSUB.X F(a6),FP0 ...2-F 569 MOVE.L FFRAC(a6),D0 570 ANDI.L #$7E000000,D0 571 ASR.L #8,D0 572 ASR.L #8,D0 573 ASR.L #4,D0 ...D0 CONTAINS DISPLACEMENT FOR 1/F 574 FADD.X FP1,FP1 ...GET 2Z 575 FMOVEm.X FP2/fp3,-(sp) ...SAVE FP2 576 FADD.X FP1,FP0 ...FP0 IS Y-F = (2-F)+2Z 577 LEA LOGTBL,A0 ...A0 IS ADDRESS OF 1/F 578 ADDA.L D0,A0 579 FMOVE.S negone,FP1 ...FP1 IS K = -1 580 BRA.W LP1CONT1 581 582KISZERO: 583 FMOVE.S one,FP0 584 move.l #$3fff0000,F(a6) 585 clr.l F+8(a6) 586 FSUB.X F(a6),FP0 ...1-F 587 MOVE.L FFRAC(a6),D0 588 ANDI.L #$7E000000,D0 589 ASR.L #8,D0 590 ASR.L #8,D0 591 ASR.L #4,D0 592 FADD.X FP1,FP0 ...FP0 IS Y-F 593 FMOVEm.X FP2/fp3,-(sp) ...FP2 SAVED 594 LEA LOGTBL,A0 595 ADDA.L D0,A0 ...A0 IS ADDRESS OF 1/F 596 FMOVE.S zero,FP1 ...FP1 IS K = 0 597 BRA.W LP1CONT1 598 599LP1NEG0: 600*--FPCR SAVED. D0 IS X IN COMPACT FORM. 601 TST.L D0 602 BLT.B LP1NEG 603LP1ZERO: 604 FMOVE.S negone,FP0 605 606 fmove.l d1,fpcr 607 bra t_dz 608 609LP1NEG: 610 FMOVE.S zero,FP0 611 612 fmove.l d1,fpcr 613 bra t_operr 614 615 end 616