Home | History | Annotate | Line # | Download | only in include
ieee.h revision 1.4
      1  1.4  kleink /*	$NetBSD: ieee.h,v 1.4 2003/10/23 16:57:20 kleink Exp $ */
      2  1.1      ws 
      3  1.1      ws /*
      4  1.1      ws  * Copyright (c) 1992, 1993
      5  1.1      ws  *	The Regents of the University of California.  All rights reserved.
      6  1.1      ws  *
      7  1.1      ws  * This software was developed by the Computer Systems Engineering group
      8  1.1      ws  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
      9  1.1      ws  * contributed to Berkeley.
     10  1.1      ws  *
     11  1.1      ws  * All advertising materials mentioning features or use of this software
     12  1.1      ws  * must display the following acknowledgement:
     13  1.1      ws  *	This product includes software developed by the University of
     14  1.1      ws  *	California, Lawrence Berkeley Laboratory.
     15  1.1      ws  *
     16  1.1      ws  * Redistribution and use in source and binary forms, with or without
     17  1.1      ws  * modification, are permitted provided that the following conditions
     18  1.1      ws  * are met:
     19  1.1      ws  * 1. Redistributions of source code must retain the above copyright
     20  1.1      ws  *    notice, this list of conditions and the following disclaimer.
     21  1.1      ws  * 2. Redistributions in binary form must reproduce the above copyright
     22  1.1      ws  *    notice, this list of conditions and the following disclaimer in the
     23  1.1      ws  *    documentation and/or other materials provided with the distribution.
     24  1.2     agc  * 3. Neither the name of the University nor the names of its contributors
     25  1.1      ws  *    may be used to endorse or promote products derived from this software
     26  1.1      ws  *    without specific prior written permission.
     27  1.1      ws  *
     28  1.1      ws  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29  1.1      ws  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30  1.1      ws  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31  1.1      ws  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32  1.1      ws  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33  1.1      ws  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34  1.1      ws  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35  1.1      ws  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36  1.1      ws  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37  1.1      ws  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38  1.1      ws  * SUCH DAMAGE.
     39  1.1      ws  *
     40  1.1      ws  *	@(#)ieee.h	8.1 (Berkeley) 6/11/93
     41  1.1      ws  */
     42  1.1      ws 
     43  1.1      ws /*
     44  1.1      ws  * ieee.h defines the machine-dependent layout of the machine's IEEE
     45  1.1      ws  * floating point.  It does *not* define (yet?) any of the rounding
     46  1.1      ws  * mode bits, exceptions, and so forth.
     47  1.1      ws  */
     48  1.1      ws 
     49  1.1      ws /*
     50  1.1      ws  * Define the number of bits in each fraction and exponent.
     51  1.1      ws  *
     52  1.1      ws  *		     k	         k+1
     53  1.1      ws  * Note that  1.0 x 2  == 0.1 x 2      and that denorms are represented
     54  1.1      ws  *
     55  1.1      ws  *					  (-exp_bias+1)
     56  1.1      ws  * as fractions that look like 0.fffff x 2             .  This means that
     57  1.1      ws  *
     58  1.1      ws  *			 -126
     59  1.1      ws  * the number 0.10000 x 2    , for instance, is the same as the normalized
     60  1.1      ws  *
     61  1.1      ws  *		-127			   -128
     62  1.1      ws  * float 1.0 x 2    .  Thus, to represent 2    , we need one leading zero
     63  1.1      ws  *
     64  1.1      ws  *				  -129
     65  1.1      ws  * in the fraction; to represent 2    , we need two, and so on.  This
     66  1.1      ws  *
     67  1.1      ws  *						     (-exp_bias-fracbits+1)
     68  1.1      ws  * implies that the smallest denormalized number is 2
     69  1.1      ws  *
     70  1.1      ws  * for whichever format we are talking about: for single precision, for
     71  1.1      ws  *
     72  1.1      ws  *						-126		-149
     73  1.1      ws  * instance, we get .00000000000000000000001 x 2    , or 1.0 x 2    , and
     74  1.1      ws  *
     75  1.1      ws  * -149 == -127 - 23 + 1.
     76  1.1      ws  */
     77  1.1      ws #define	SNG_EXPBITS	8
     78  1.1      ws #define	SNG_FRACBITS	23
     79  1.1      ws 
     80  1.1      ws #define	DBL_EXPBITS	11
     81  1.1      ws #define	DBL_FRACBITS	52
     82  1.1      ws 
     83  1.1      ws #define	EXT_EXPBITS	15
     84  1.3  kleink #define	EXT_FRACBITS	64
     85  1.1      ws 
     86  1.1      ws struct ieee_single {
     87  1.1      ws 	u_int	sng_sign:1;
     88  1.1      ws 	u_int	sng_exp:8;
     89  1.1      ws 	u_int	sng_frac:23;
     90  1.1      ws };
     91  1.1      ws 
     92  1.1      ws struct ieee_double {
     93  1.1      ws 	u_int	dbl_sign:1;
     94  1.1      ws 	u_int	dbl_exp:11;
     95  1.1      ws 	u_int	dbl_frach:20;
     96  1.1      ws 	u_int	dbl_fracl;
     97  1.1      ws };
     98  1.1      ws 
     99  1.1      ws struct ieee_ext {
    100  1.1      ws 	u_int	ext_sign:1;
    101  1.1      ws 	u_int	ext_exp:15;
    102  1.3  kleink 	u_int	ext_zero:16;
    103  1.4  kleink 	u_int	ext_int:1;
    104  1.4  kleink 	u_int	ext_frach:31;
    105  1.1      ws 	u_int	ext_fracl;
    106  1.1      ws };
    107  1.1      ws 
    108  1.1      ws /*
    109  1.1      ws  * Floats whose exponent is in [1..INFNAN) (of whatever type) are
    110  1.1      ws  * `normal'.  Floats whose exponent is INFNAN are either Inf or NaN.
    111  1.1      ws  * Floats whose exponent is zero are either zero (iff all fraction
    112  1.1      ws  * bits are zero) or subnormal values.
    113  1.1      ws  *
    114  1.1      ws  * A NaN is a `signalling NaN' if its QUIETNAN bit is clear in its
    115  1.1      ws  * high fraction; if the bit is set, it is a `quiet NaN'.
    116  1.1      ws  */
    117  1.1      ws #define	SNG_EXP_INFNAN	255
    118  1.1      ws #define	DBL_EXP_INFNAN	2047
    119  1.1      ws #define	EXT_EXP_INFNAN	32767
    120  1.1      ws 
    121  1.1      ws #if 0
    122  1.1      ws #define	SNG_QUIETNAN	(1 << 22)
    123  1.1      ws #define	DBL_QUIETNAN	(1 << 19)
    124  1.1      ws #define	EXT_QUIETNAN	(1 << 15)
    125  1.1      ws #endif
    126  1.1      ws 
    127  1.1      ws /*
    128  1.1      ws  * Exponent biases.
    129  1.1      ws  */
    130  1.1      ws #define	SNG_EXP_BIAS	127
    131  1.1      ws #define	DBL_EXP_BIAS	1023
    132  1.1      ws #define	EXT_EXP_BIAS	16383
    133