adb_direct.c revision 1.11 1 /* $NetBSD: adb_direct.c,v 1.11 1998/02/21 00:37:07 scottr Exp $ */
2
3 /* From: adb_direct.c 2.02 4/18/97 jpw */
4
5 /*
6 * Copyright (C) 1996, 1997 John P. Wittkoski
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by John P. Wittkoski.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /* This code is rather messy, but I don't have time right now
36 * to clean it up as much as I would like.
37 * But it works, so I'm happy. :-) jpw */
38
39 /* TO DO:
40 * - We could reduce the time spent in the adb_intr_* routines
41 * by having them save the incoming and outgoing data directly
42 * in the adbInbound and adbOutbound queues, as it would reduce
43 * the number of times we need to copy the data around. It
44 * would also make the code more readable and easier to follow.
45 * - (Related to above) Use the header part of adbCommand to
46 * reduce the number of copies we have to do of the data.
47 * - (Related to above) Actually implement the adbOutbound queue.
48 * This is fairly easy once you switch all the intr routines
49 * over to using adbCommand structs directly.
50 * - There is a bug in the state machine of adb_intr_cuda
51 * code that causes hangs, especially on 030 machines, probably
52 * because of some timing issues. Because I have been unable to
53 * determine the exact cause of this bug, I used the timeout function
54 * to check for and recover from this condition. If anyone finds
55 * the actual cause of this bug, the calls to timeout and the
56 * adb_cuda_tickle routine can be removed.
57 */
58
59 #ifdef __NetBSD__
60 #include "opt_adb.h"
61
62 #include <sys/param.h>
63 #include <sys/cdefs.h>
64 #include <sys/systm.h>
65
66 #include <machine/viareg.h>
67 #include <machine/param.h>
68 #include <machine/cpu.h>
69 #include <machine/adbsys.h> /* required for adbvar.h */
70
71 #include <mac68k/mac68k/macrom.h>
72 #include <mac68k/dev/adb_direct.h>
73 #include <mac68k/dev/adbvar.h>
74 #define printf_intr printf
75 #else
76 #include "via.h" /* for macos based testing */
77 /* #define DEBUG */ /* more verbose for testing */
78 #endif
79
80 #ifdef DEBUG
81 #ifndef ADB_DEBUG
82 #define ADB_DEBUG
83 #endif
84 #endif
85
86 /* some misc. leftovers */
87 #define vPB 0x0000
88 #define vPB3 0x08
89 #define vPB4 0x10
90 #define vPB5 0x20
91 #define vSR_INT 0x04
92 #define vSR_OUT 0x10
93
94 /* types of adb hardware that we (will eventually) support */
95 #define ADB_HW_UNKNOWN 0x01 /* don't know */
96 #define ADB_HW_II 0x02 /* Mac II series */
97 #define ADB_HW_IISI 0x03 /* Mac IIsi series */
98 #define ADB_HW_PB 0x04 /* PowerBook series */
99 #define ADB_HW_CUDA 0x05 /* Machines with a Cuda chip */
100
101 /* the type of ADB action that we are currently preforming */
102 #define ADB_ACTION_NOTREADY 0x01 /* has not been initialized yet */
103 #define ADB_ACTION_IDLE 0x02 /* the bus is currently idle */
104 #define ADB_ACTION_OUT 0x03 /* sending out a command */
105 #define ADB_ACTION_IN 0x04 /* receiving data */
106
107 /*
108 * These describe the state of the ADB bus itself, although they
109 * don't necessarily correspond directly to ADB states.
110 * Note: these are not really used in the IIsi code.
111 */
112 #define ADB_BUS_UNKNOWN 0x01 /* we don't know yet - all models */
113 #define ADB_BUS_IDLE 0x02 /* bus is idle - all models */
114 #define ADB_BUS_CMD 0x03 /* starting a command - II models */
115 #define ADB_BUS_ODD 0x04 /* the "odd" state - II models */
116 #define ADB_BUS_EVEN 0x05 /* the "even" state - II models */
117 #define ADB_BUS_ACTIVE 0x06 /* active state - IIsi models */
118 #define ADB_BUS_ACK 0x07 /* currently ACKing - IIsi models */
119
120 /*
121 * Shortcuts for setting or testing the VIA bit states.
122 * Not all shortcuts are used for every type of ADB hardware.
123 */
124 #define ADB_SET_STATE_IDLE_II() via_reg(VIA1, vBufB) |= (vPB4 | vPB5)
125 #define ADB_SET_STATE_IDLE_IISI() via_reg(VIA1, vBufB) &= ~(vPB4 | vPB5)
126 #define ADB_SET_STATE_IDLE_CUDA() via_reg(VIA1, vBufB) |= (vPB4 | vPB5)
127 #define ADB_SET_STATE_CMD() via_reg(VIA1, vBufB) &= ~(vPB4 | vPB5)
128 #define ADB_SET_STATE_EVEN() via_reg(VIA1, vBufB) = ((via_reg(VIA1, \
129 vBufB) | vPB4) & ~vPB5)
130 #define ADB_SET_STATE_ODD() via_reg(VIA1, vBufB) = ((via_reg(VIA1, \
131 vBufB) | vPB5) & ~vPB4 )
132 #define ADB_SET_STATE_ACTIVE() via_reg(VIA1, vBufB) |= vPB5
133 #define ADB_SET_STATE_INACTIVE() via_reg(VIA1, vBufB) &= ~vPB5
134 #define ADB_SET_STATE_TIP() via_reg(VIA1, vBufB) &= ~vPB5
135 #define ADB_CLR_STATE_TIP() via_reg(VIA1, vBufB) |= vPB5
136 #define ADB_SET_STATE_ACKON() via_reg(VIA1, vBufB) |= vPB4
137 #define ADB_SET_STATE_ACKOFF() via_reg(VIA1, vBufB) &= ~vPB4
138 #define ADB_TOGGLE_STATE_ACK_CUDA() via_reg(VIA1, vBufB) ^= vPB4
139 #define ADB_SET_STATE_ACKON_CUDA() via_reg(VIA1, vBufB) &= ~vPB4
140 #define ADB_SET_STATE_ACKOFF_CUDA() via_reg(VIA1, vBufB) |= vPB4
141 #define ADB_SET_SR_INPUT() via_reg(VIA1, vACR) &= ~vSR_OUT
142 #define ADB_SET_SR_OUTPUT() via_reg(VIA1, vACR) |= vSR_OUT
143 #define ADB_SR() via_reg(VIA1, vSR)
144 #define ADB_VIA_INTR_ENABLE() via_reg(VIA1, vIER) = 0x84
145 #define ADB_VIA_INTR_DISABLE() via_reg(VIA1, vIER) = 0x04
146 #define ADB_VIA_CLR_INTR() via_reg(VIA1, vIFR) = 0x04
147 #define ADB_INTR_IS_OFF (vPB3 == (via_reg(VIA1, vBufB) & vPB3))
148 #define ADB_INTR_IS_ON (0 == (via_reg(VIA1, vBufB) & vPB3))
149 #define ADB_SR_INTR_IS_OFF (0 == (via_reg(VIA1, vIFR) & vSR_INT))
150 #define ADB_SR_INTR_IS_ON (vSR_INT == (via_reg(VIA1, \
151 vIFR) & vSR_INT))
152
153 /*
154 * This is the delay that is required (in uS) between certain
155 * ADB transactions. The actual timing delay for for each uS is
156 * calculated at boot time to account for differences in machine speed.
157 */
158 #define ADB_DELAY 150
159
160 /*
161 * Maximum ADB message length; includes space for data, result, and
162 * device code - plus a little for safety.
163 */
164 #define ADB_MAX_MSG_LENGTH 16
165 #define ADB_MAX_HDR_LENGTH 8
166
167 #define ADB_QUEUE 32
168 #define ADB_TICKLE_TICKS 4
169
170 /*
171 * A structure for storing information about each ADB device.
172 */
173 struct ADBDevEntry {
174 void (*ServiceRtPtr) __P((void));
175 void *DataAreaAddr;
176 char devType;
177 char origAddr;
178 char currentAddr;
179 };
180
181 /*
182 * Used to hold ADB commands that are waiting to be sent out.
183 */
184 struct adbCmdHoldEntry {
185 u_char outBuf[ADB_MAX_MSG_LENGTH]; /* our message */
186 u_char *saveBuf; /* buffer to know where to save result */
187 u_char *compRout; /* completion routine pointer */
188 u_char *data; /* completion routine data pointer */
189 };
190
191 /*
192 * Eventually used for two separate queues, the queue between
193 * the upper and lower halves, and the outgoing packet queue.
194 * TO DO: adbCommand can replace all of adbCmdHoldEntry eventually
195 */
196 struct adbCommand {
197 u_char header[ADB_MAX_HDR_LENGTH]; /* not used yet */
198 u_char data[ADB_MAX_MSG_LENGTH]; /* packet data only */
199 u_char *saveBuf; /* where to save result */
200 u_char *compRout; /* completion routine pointer */
201 u_char *compData; /* completion routine data pointer */
202 u_int cmd; /* the original command for this data */
203 u_int unsol; /* 1 if packet was unsolicited */
204 u_int ack_only; /* 1 for no special processing */
205 };
206
207 /*
208 * A few variables that we need and their initial values.
209 */
210 int adbHardware = ADB_HW_UNKNOWN;
211 int adbActionState = ADB_ACTION_NOTREADY;
212 int adbBusState = ADB_BUS_UNKNOWN;
213 int adbWaiting = 0; /* waiting for return data from the device */
214 int adbWriteDelay = 0; /* working on (or waiting to do) a write */
215 int adbOutQueueHasData = 0; /* something in the queue waiting to go out */
216 int adbNextEnd = 0; /* the next incoming bute is the last (II) */
217 int adbSoftPower = 0; /* machine supports soft power */
218
219 int adbWaitingCmd = 0; /* ADB command we are waiting for */
220 u_char *adbBuffer = (long) 0; /* pointer to user data area */
221 void *adbCompRout = (long) 0; /* pointer to the completion routine */
222 void *adbCompData = (long) 0; /* pointer to the completion routine data */
223 long adbFakeInts = 0; /* keeps track of fake ADB interrupts for
224 * timeouts (II) */
225 int adbStarting = 1; /* doing ADBReInit so do polling differently */
226 int adbSendTalk = 0; /* the intr routine is sending the talk, not
227 * the user (II) */
228 int adbPolling = 0; /* we are polling for service request */
229 int adbPollCmd = 0; /* the last poll command we sent */
230
231 u_char adbInputBuffer[ADB_MAX_MSG_LENGTH]; /* data input buffer */
232 u_char adbOutputBuffer[ADB_MAX_MSG_LENGTH]; /* data output buffer */
233 struct adbCmdHoldEntry adbOutQueue; /* our 1 entry output queue */
234
235 int adbSentChars = 0; /* how many characters we have sent */
236 int adbLastDevice = 0; /* last ADB dev we heard from (II ONLY) */
237 int adbLastDevIndex = 0; /* last ADB dev loc in dev table (II ONLY) */
238 int adbLastCommand = 0; /* the last ADB command we sent (II) */
239
240 struct ADBDevEntry ADBDevTable[16]; /* our ADB device table */
241 int ADBNumDevices; /* num. of ADB devices found with ADBReInit */
242
243 struct adbCommand adbInbound[ADB_QUEUE]; /* incoming queue */
244 int adbInCount=0; /* how many packets in in queue */
245 int adbInHead=0; /* head of in queue */
246 int adbInTail=0; /* tail of in queue */
247 struct adbCommand adbOutbound[ADB_QUEUE]; /* outgoing queue - not used yet */
248 int adbOutCount=0; /* how many packets in out queue */
249 int adbOutHead=0; /* head of out queue */
250 int adbOutTail=0; /* tail of out queue */
251
252 int tickle_count=0; /* how many tickles seen for this packet? */
253 int tickle_serial=0; /* the last packet tickled */
254 int adb_cuda_serial=0; /* the current packet */
255
256 extern struct mac68k_machine_S mac68k_machine;
257 extern int adb_polling;
258
259 int zshard __P((int));
260
261 void pm_setup_adb __P((void));
262 void pm_check_adb_devices __P((int));
263 void pm_intr __P((void));
264 int pm_adb_op __P((u_char *, void *, void *, int));
265 void pm_init_adb_device __P((void));
266
267 /*
268 * The following are private routines.
269 */
270 void print_single __P((u_char *));
271 void adb_intr __P((void));
272 void adb_intr_II __P((void));
273 void adb_intr_IIsi __P((void));
274 void adb_intr_cuda __P((void));
275 void adb_soft_intr __P((void));
276 int send_adb_II __P((u_char *, u_char *, void *, void *, int));
277 int send_adb_IIsi __P((u_char *, u_char *, void *, void *, int));
278 int send_adb_cuda __P((u_char *, u_char *, void *, void *, int));
279 void adb_intr_cuda_test __P((void));
280 void adb_cuda_tickle __P((void));
281 void adb_pass_up __P((struct adbCommand *));
282 void adb_op_comprout __P((void));
283 void adb_reinit __P((void));
284 int count_adbs __P((void));
285 int get_ind_adb_info __P((ADBDataBlock *, int));
286 int get_adb_info __P((ADBDataBlock *, int));
287 int set_adb_info __P((ADBSetInfoBlock *, int));
288 void adb_setup_hw_type __P((void));
289 int adb_op __P((Ptr, Ptr, Ptr, short));
290 int adb_op_sync __P((Ptr, Ptr, Ptr, short));
291 void adb_read_II __P((u_char *));
292 void adb_hw_setup __P((void));
293 void adb_hw_setup_IIsi __P((u_char *));
294 void adb_comp_exec __P((void));
295 int adb_cmd_result __P((u_char *));
296 int adb_cmd_extra __P((u_char *));
297 int adb_guess_next_device __P((void));
298 int adb_prog_switch_enable __P((void));
299 int adb_prog_switch_disable __P((void));
300 /* we should create this and it will be the public version */
301 int send_adb __P((u_char *, void *, void *));
302
303 /*
304 * print_single
305 * Diagnostic display routine. Displays the hex values of the
306 * specified elements of the u_char. The length of the "string"
307 * is in [0].
308 */
309 void
310 print_single(thestring)
311 u_char *thestring;
312 {
313 int x;
314
315 if ((int) (thestring[0]) == 0) {
316 printf_intr("nothing returned\n");
317 return;
318 }
319 if (thestring == 0) {
320 printf_intr("no data - null pointer\n");
321 return;
322 }
323 if (thestring[0] > 20) {
324 printf_intr("ADB: ACK > 20 no way!\n");
325 thestring[0] = 20;
326 }
327 printf_intr("(length=0x%x):", thestring[0]);
328 for (x = 0; x < thestring[0]; x++)
329 printf_intr(" 0x%02x", thestring[x + 1]);
330 printf_intr("\n");
331 }
332
333 void
334 adb_cuda_tickle(void)
335 {
336 volatile int s;
337
338 if (adbActionState==ADB_ACTION_IN) {
339 if (tickle_serial==adb_cuda_serial) {
340 if (++tickle_count>0) {
341 s=splhigh();
342 adbActionState = ADB_ACTION_IDLE;
343 adbInputBuffer[0] = 0;
344 ADB_SET_STATE_IDLE_CUDA();
345 splx(s);
346 }
347 } else {
348 tickle_serial=adb_cuda_serial;
349 tickle_count=0;
350 }
351 } else {
352 tickle_serial=adb_cuda_serial;
353 tickle_count=0;
354 }
355
356 timeout((void *)adb_cuda_tickle, 0, ADB_TICKLE_TICKS);
357 }
358
359 /*
360 * called when when an adb interrupt happens
361 *
362 * Cuda version of adb_intr
363 * TO DO: do we want to add some zshard calls in here?
364 */
365 void
366 adb_intr_cuda(void)
367 {
368 volatile int i, ending;
369 volatile unsigned int s;
370 struct adbCommand packet;
371
372 s = splhigh(); /* can't be too careful - might be called */
373 /* from a routine, NOT an interrupt */
374
375 ADB_VIA_CLR_INTR(); /* clear interrupt */
376 ADB_VIA_INTR_DISABLE(); /* disable ADB interrupt on IIs. */
377
378 switch_start:
379 switch (adbActionState) {
380 case ADB_ACTION_IDLE:
381 /* This is an unexpected packet, so grab the first (dummy)
382 * byte, set up the proper vars, and tell the chip we are
383 * starting to receive the packet by setting the TIP bit. */
384 adbInputBuffer[1] = ADB_SR();
385 adb_cuda_serial++;
386 if (ADB_INTR_IS_OFF) /* must have been a fake start */
387 break;
388
389 ADB_SET_SR_INPUT();
390 ADB_SET_STATE_TIP();
391
392 adbInputBuffer[0] = 1;
393 adbActionState = ADB_ACTION_IN;
394 #ifdef ADB_DEBUG
395 if (adb_debug)
396 printf_intr("idle 0x%02x ", adbInputBuffer[1]);
397 #endif
398 break;
399
400 case ADB_ACTION_IN:
401 adbInputBuffer[++adbInputBuffer[0]] = ADB_SR();
402 /* intr off means this is the last byte (end of frame) */
403 if (ADB_INTR_IS_OFF)
404 ending = 1;
405 else
406 ending = 0;
407
408 if (1 == ending) { /* end of message? */
409 #ifdef ADB_DEBUG
410 if (adb_debug) {
411 printf_intr("in end 0x%02x ",
412 adbInputBuffer[adbInputBuffer[0]]);
413 print_single(adbInputBuffer);
414 }
415 #endif
416
417 /* Are we waiting AND does this packet match what we
418 * are waiting for AND is it coming from either the
419 * ADB or RTC/PRAM sub-device? This section _should_
420 * recognize all ADB and RTC/PRAM type commands, but
421 * there may be more... NOTE: commands are always at
422 * [4], even for RTC/PRAM commands. */
423 /* set up data for adb_pass_up */
424 for (i=0; i<=adbInputBuffer[0]; i++)
425 packet.data[i]=adbInputBuffer[i];
426
427 if ((adbWaiting == 1) &&
428 (adbInputBuffer[4] == adbWaitingCmd) &&
429 ((adbInputBuffer[2] == 0x00) ||
430 (adbInputBuffer[2] == 0x01))) {
431
432 packet.saveBuf=adbBuffer;
433 packet.compRout=adbCompRout;
434 packet.compData=adbCompData;
435 packet.unsol=0;
436 packet.ack_only=0;
437 adb_pass_up(&packet);
438
439 adbWaitingCmd = 0; /* reset "waiting" vars */
440 adbWaiting = 0;
441 adbBuffer = (long) 0;
442 adbCompRout = (long) 0;
443 adbCompData = (long) 0;
444 } else {
445 packet.unsol=1;
446 packet.ack_only=0;
447 adb_pass_up(&packet);
448 }
449
450
451 /* reset vars and signal the end of this frame */
452 adbActionState = ADB_ACTION_IDLE;
453 adbInputBuffer[0] = 0;
454 ADB_SET_STATE_IDLE_CUDA();
455 /*ADB_SET_SR_INPUT();*/
456
457 /*
458 * If there is something waiting to be sent out,
459 * the set everything up and send the first byte.
460 */
461 if (adbWriteDelay == 1) {
462 delay(ADB_DELAY); /* required */
463 adbSentChars = 0;
464 adbActionState = ADB_ACTION_OUT;
465 /*
466 * If the interrupt is on, we were too slow
467 * and the chip has already started to send
468 * something to us, so back out of the write
469 * and start a read cycle.
470 */
471 if (ADB_INTR_IS_ON) {
472 ADB_SET_SR_INPUT();
473 ADB_SET_STATE_IDLE_CUDA();
474 adbSentChars = 0;
475 adbActionState = ADB_ACTION_IDLE;
476 adbInputBuffer[0] = 0;
477 break;
478 }
479 /*
480 * If we got here, it's ok to start sending
481 * so load the first byte and tell the chip
482 * we want to send.
483 */
484 ADB_SET_STATE_TIP();
485 ADB_SET_SR_OUTPUT();
486 ADB_SR() = adbOutputBuffer[adbSentChars + 1];
487 }
488 } else {
489 ADB_TOGGLE_STATE_ACK_CUDA();
490 #ifdef ADB_DEBUG
491 if (adb_debug)
492 printf_intr("in 0x%02x ",
493 adbInputBuffer[adbInputBuffer[0]]);
494 #endif
495 }
496 break;
497
498 case ADB_ACTION_OUT:
499 i = ADB_SR(); /* reset SR-intr in IFR */
500 #ifdef ADB_DEBUG
501 if (adb_debug)
502 printf_intr("intr out 0x%02x ", i);
503 #endif
504
505 adbSentChars++;
506 if (ADB_INTR_IS_ON) { /* ADB intr low during write */
507 #ifdef ADB_DEBUG
508 if (adb_debug)
509 printf_intr("intr was on ");
510 #endif
511 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
512 ADB_SET_STATE_IDLE_CUDA();
513 adbSentChars = 0; /* must start all over */
514 adbActionState = ADB_ACTION_IDLE; /* new state */
515 adbInputBuffer[0] = 0;
516 adbWriteDelay = 1; /* must retry when done with
517 * read */
518 delay(ADB_DELAY);
519 goto switch_start; /* process next state right
520 * now */
521 break;
522 }
523 if (adbOutputBuffer[0] == adbSentChars) { /* check for done */
524 if (0 == adb_cmd_result(adbOutputBuffer)) { /* do we expect data
525 * back? */
526 adbWaiting = 1; /* signal waiting for return */
527 adbWaitingCmd = adbOutputBuffer[2]; /* save waiting command */
528 } else {/* no talk, so done */
529 /* set up stuff for adb_pass_up */
530 for (i=0; i<=adbInputBuffer[0]; i++)
531 packet.data[i]=adbInputBuffer[i];
532 packet.saveBuf=adbBuffer;
533 packet.compRout=adbCompRout;
534 packet.compData=adbCompData;
535 packet.cmd=adbWaitingCmd;
536 packet.unsol=0;
537 packet.ack_only=1;
538 adb_pass_up(&packet);
539
540 /* reset "waiting" vars, just in case */
541 adbWaitingCmd = 0;
542 adbBuffer = (long) 0;
543 adbCompRout = (long) 0;
544 adbCompData = (long) 0;
545 }
546
547 adbWriteDelay = 0; /* done writing */
548 adbActionState = ADB_ACTION_IDLE; /* signal bus is idle */
549 ADB_SET_SR_INPUT();
550 ADB_SET_STATE_IDLE_CUDA();
551 #ifdef ADB_DEBUG
552 if (adb_debug)
553 printf_intr("write done ");
554 #endif
555 } else {
556 ADB_SR() = adbOutputBuffer[adbSentChars + 1]; /* send next byte */
557 ADB_TOGGLE_STATE_ACK_CUDA(); /* signal byte ready to
558 * shift */
559 #ifdef ADB_DEBUG
560 if (adb_debug)
561 printf_intr("toggle ");
562 #endif
563 }
564 break;
565
566 case ADB_ACTION_NOTREADY:
567 printf_intr("adb: not yet initialized\n");
568 break;
569
570 default:
571 printf_intr("intr: unknown ADB state\n");
572 }
573
574 ADB_VIA_INTR_ENABLE(); /* enable ADB interrupt on IIs. */
575
576 splx(s); /* restore */
577
578 return;
579 } /* end adb_intr_cuda */
580
581
582 int
583 send_adb_cuda(u_char * in, u_char * buffer, void *compRout, void *data, int
584 command)
585 {
586 int i, s, len;
587
588 #ifdef ADB_DEBUG
589 if (adb_debug)
590 printf_intr("SEND\n");
591 #endif
592
593 if (adbActionState == ADB_ACTION_NOTREADY)
594 return 1;
595
596 s = splhigh(); /* don't interrupt while we are messing with
597 * the ADB */
598
599 if ((adbActionState == ADB_ACTION_IDLE) && /* ADB available? */
600 (ADB_INTR_IS_OFF)) { /* and no incoming interrupt? */
601 } else
602 if (adbWriteDelay == 0) /* it's busy, but is anything waiting? */
603 adbWriteDelay = 1; /* if no, then we'll "queue"
604 * it up */
605 else {
606 splx(s);
607 return 1; /* really busy! */
608 }
609
610 #ifdef ADB_DEBUG
611 if (adb_debug)
612 printf_intr("QUEUE\n");
613 #endif
614 if ((long) in == (long) 0) { /* need to convert? */
615 /* don't need to use adb_cmd_extra here because this section
616 * will be called */
617 /* ONLY when it is an ADB command (no RTC or PRAM) */
618 if ((command & 0x0c) == 0x08) /* copy addl data ONLY if
619 * doing a listen! */
620 len = buffer[0]; /* length of additional data */
621 else
622 len = 0;/* no additional data */
623
624 adbOutputBuffer[0] = 2 + len; /* dev. type + command + addl.
625 * data */
626 adbOutputBuffer[1] = 0x00; /* mark as an ADB command */
627 adbOutputBuffer[2] = (u_char) command; /* load command */
628
629 for (i = 1; i <= len; i++) /* copy additional output
630 * data, if any */
631 adbOutputBuffer[2 + i] = buffer[i];
632 } else
633 for (i = 0; i <= (adbOutputBuffer[0] + 1); i++)
634 adbOutputBuffer[i] = in[i];
635
636 adbSentChars = 0; /* nothing sent yet */
637 adbBuffer = buffer; /* save buffer to know where to save result */
638 adbCompRout = compRout; /* save completion routine pointer */
639 adbCompData = data; /* save completion routine data pointer */
640 adbWaitingCmd = adbOutputBuffer[2]; /* save wait command */
641
642 if (adbWriteDelay != 1) { /* start command now? */
643 #ifdef ADB_DEBUG
644 if (adb_debug)
645 printf_intr("out start NOW");
646 #endif
647 delay(ADB_DELAY);
648 adbActionState = ADB_ACTION_OUT; /* set next state */
649 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
650 ADB_SR() = adbOutputBuffer[adbSentChars + 1]; /* load byte for output */
651 ADB_SET_STATE_ACKOFF_CUDA();
652 ADB_SET_STATE_TIP(); /* tell ADB that we want to send */
653 }
654 adbWriteDelay = 1; /* something in the write "queue" */
655
656 splx(s);
657
658 if (0x0100 <= (s & 0x0700)) /* were VIA1 interrupts blocked ? */
659 /* poll until byte done */
660 while ((adbActionState != ADB_ACTION_IDLE) || (ADB_INTR_IS_ON)
661 || (adbWaiting == 1))
662 if (ADB_SR_INTR_IS_ON) { /* wait for "interrupt" */
663 adb_intr_cuda(); /* go process
664 * "interrupt" */
665 adb_soft_intr();
666 }
667
668 return 0;
669 } /* send_adb_cuda */
670
671
672 /* TO DO: add one or two zshard calls in here */
673 void
674 adb_intr_II(void)
675 {
676 struct adbCommand packet;
677 int i, intr_on = 0;
678 int send = 0, do_srq = 0;
679 unsigned int s;
680
681 s = splhigh(); /* can't be too careful - might be called */
682 /* from a routine, NOT an interrupt */
683
684 ADB_VIA_CLR_INTR(); /* clear interrupt */
685
686 ADB_VIA_INTR_DISABLE(); /* disable ADB interrupt on IIs. */
687
688 /*if (ADB_INTR_IS_ON)*/
689 /* printf_intr("INTR ON ");*/
690 if (ADB_INTR_IS_ON)
691 intr_on = 1; /* save for later */
692
693 switch (adbActionState) {
694 case ADB_ACTION_IDLE:
695 if (!intr_on) {
696 /* printf_intr("FAKE DROPPED \n"); */
697 /* printf_intr(" XX "); */
698 i = ADB_SR();
699 break;
700 }
701 adbNextEnd = 0;
702 /* printf_intr("idle "); */
703 adbInputBuffer[0] = 1;
704 adbInputBuffer[1] = ADB_SR(); /* get first byte */
705 /* printf_intr("0x%02x ", adbInputBuffer[1]); */
706 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
707 adbActionState = ADB_ACTION_IN; /* set next state */
708 ADB_SET_STATE_EVEN(); /* set bus state to even */
709 adbBusState = ADB_BUS_EVEN;
710 break;
711
712 case ADB_ACTION_IN:
713 adbInputBuffer[++adbInputBuffer[0]] = ADB_SR(); /* get byte */
714 /* printf_intr("in 0x%02x ",
715 * adbInputBuffer[adbInputBuffer[0]]); */
716 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
717
718 /*
719 * Check for an unsolicited Service Request (SRQ).
720 * An empty SRQ packet NEVER ends, so we must manually
721 * check for the following condition.
722 */
723 if (adbInputBuffer[0] == 4 && adbInputBuffer[2] == 0xff &&
724 adbInputBuffer[3] == 0xff && adbInputBuffer[4] == 0xff &&
725 intr_on && !adbNextEnd)
726 do_srq = 1;
727
728 if (adbNextEnd == 1) { /* process last byte of packet */
729 adbNextEnd = 0;
730 /* printf_intr("done: "); */
731
732 /* If the following conditions are true (4 byte
733 * message, last 3 bytes are 0xff) then we basically
734 * got a "no response" from the ADB chip, so change
735 * the message to an empty one. We also clear intr_on
736 * to stop the SRQ send later on because these packets
737 * normally have the SRQ bit set even when there is
738 * NOT a pending SRQ. */
739 if (adbInputBuffer[0] == 4 && adbInputBuffer[2] == 0xff &&
740 adbInputBuffer[3] == 0xff && adbInputBuffer[4] == 0xff) {
741 /* printf_intr("NO RESP "); */
742 intr_on = 0;
743 adbInputBuffer[0] = 0;
744 }
745 adbLastDevice = (adbInputBuffer[1] & 0xf0) >> 4;
746
747 /* set up data for adb_pass_up */
748 for (i=0; i<=adbInputBuffer[0]; i++)
749 packet.data[i]=adbInputBuffer[i];
750
751 if ((!adbWaiting || adbPolling)
752 && (adbInputBuffer[0] != 0)) {
753 packet.unsol=1;
754 packet.ack_only=0;
755 adb_pass_up(&packet);
756 } else
757 if (!adbPolling) { /* someone asked for it */
758 packet.saveBuf=adbBuffer;
759 packet.compRout=adbCompRout;
760 packet.compData=adbCompData;
761 packet.unsol=0;
762 packet.ack_only=0;
763 adb_pass_up(&packet);
764 }
765 adbWaiting = 0;
766 adbPolling = 0;
767 adbInputBuffer[0] = 0;
768 adbBuffer = (long) 0;
769 adbCompRout = (long) 0;
770 adbCompData = (long) 0;
771 /*
772 * Since we are done, check whether there is any data
773 * waiting to do out. If so, start the sending the data.
774 */
775 if (adbOutQueueHasData == 1) {
776 /* printf_intr("XXX: DOING OUT QUEUE\n"); */
777 /* copy over data */
778 for (i = 0; i <= (adbOutQueue.outBuf[0] + 1); i++)
779 adbOutputBuffer[i] = adbOutQueue.outBuf[i];
780 adbBuffer = adbOutQueue.saveBuf; /* user data area */
781 adbCompRout = adbOutQueue.compRout; /* completion routine */
782 adbCompData = adbOutQueue.data; /* comp. rout. data */
783 adbOutQueueHasData = 0; /* currently processing
784 * "queue" entry */
785 adbPolling = 0;
786 send = 1;
787 /* if intr_on is true, then it's a SRQ so poll
788 * other devices. */
789 } else
790 if (intr_on) {
791 /* printf_intr("starting POLL "); */
792 do_srq = 1;
793 adbPolling = 1;
794 } else
795 if ((adbInputBuffer[1] & 0x0f) != 0x0c) {
796 /* printf_intr("xC HACK "); */
797 adbPolling = 1;
798 send = 1;
799 adbOutputBuffer[0] = 1;
800 adbOutputBuffer[1] = (adbInputBuffer[1] & 0xf0) | 0x0c;
801 } else {
802 /* printf_intr("ending "); */
803 adbBusState = ADB_BUS_IDLE;
804 adbActionState = ADB_ACTION_IDLE;
805 ADB_SET_STATE_IDLE_II();
806 break;
807 }
808 }
809 /*
810 * If do_srq is true then something above determined that
811 * the message has ended and some device is sending a
812 * service request. So we need to determine the next device
813 * and send a poll to it. (If the device we send to isn't the
814 * one that sent the SRQ, that ok as it will be caught
815 * the next time though.)
816 */
817 if (do_srq) {
818 /* printf_intr("SRQ! "); */
819 adbPolling = 1;
820 adb_guess_next_device();
821 adbOutputBuffer[0] = 1;
822 adbOutputBuffer[1] = ((adbLastDevice & 0x0f) << 4) | 0x0c;
823 send = 1;
824 }
825 /*
826 * If send is true then something above determined that
827 * the message has ended and we need to start sending out
828 * a new message immediately. This could be because there
829 * is data waiting to go out or because an SRQ was seen.
830 */
831 if (send) {
832 adbNextEnd = 0;
833 adbSentChars = 0; /* nothing sent yet */
834 adbActionState = ADB_ACTION_OUT; /* set next state */
835 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
836 ADB_SR() = adbOutputBuffer[1]; /* load byte for output */
837 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */
838 ADB_SET_STATE_CMD(); /* tell ADB that we want to
839 * send */
840 break;
841 }
842 /* We only get this far if the message hasn't ended yet. */
843 if (!intr_on) /* if adb intr. on then the */
844 adbNextEnd = 1; /* NEXT byte is the last */
845
846 switch (adbBusState) { /* set to next state */
847 case ADB_BUS_EVEN:
848 ADB_SET_STATE_ODD(); /* set state to odd */
849 adbBusState = ADB_BUS_ODD;
850 break;
851
852 case ADB_BUS_ODD:
853 ADB_SET_STATE_EVEN(); /* set state to even */
854 adbBusState = ADB_BUS_EVEN;
855 break;
856 default:
857 printf_intr("strange state!!!\n"); /* huh? */
858 break;
859 }
860 break;
861
862 case ADB_ACTION_OUT:
863 adbNextEnd = 0;
864 if (!adbPolling)
865 adbWaiting = 1; /* not unsolicited */
866 i = ADB_SR(); /* clear interrupt */
867 adbSentChars++;
868 /*
869 * If the outgoing data was a TALK, we must
870 * switch to input mode to get the result.
871 */
872 if ((adbOutputBuffer[1] & 0x0c) == 0x0c) {
873 adbInputBuffer[0] = 1;
874 adbInputBuffer[1] = i;
875 adbActionState = ADB_ACTION_IN;
876 ADB_SET_SR_INPUT();
877 adbBusState = ADB_BUS_EVEN;
878 ADB_SET_STATE_EVEN();
879 /* printf_intr("talk out 0x%02x ", i); */
880 break;
881 }
882 /* If it's not a TALK, check whether all data has been sent.
883 * If so, call the completion routine and clean up. If not,
884 * advance to the next state. */
885 /* printf_intr("non-talk out 0x%0x ", i); */
886 ADB_SET_SR_OUTPUT();
887 if (adbOutputBuffer[0] == adbSentChars) { /* check for done */
888 /* printf_intr("done \n"); */
889 /* set up stuff for adb_pass_up */
890 for (i=0; i<=adbInputBuffer[0]; i++)
891 packet.data[i]=adbInputBuffer[i];
892 packet.saveBuf=adbBuffer;
893 packet.compRout=adbCompRout;
894 packet.compData=adbCompData;
895 packet.cmd=adbWaitingCmd;
896 packet.unsol=0;
897 packet.ack_only=1;
898 adb_pass_up(&packet);
899
900 /* reset "waiting" vars, just in case */
901 adbWaitingCmd = 0;
902 adbBuffer = (long) 0;
903 adbCompRout = (long) 0;
904 adbCompData = (long) 0;
905
906 if (adbOutQueueHasData == 1) {
907 /* copy over data */
908 for (i = 0; i <= (adbOutQueue.outBuf[0] + 1); i++)
909 adbOutputBuffer[i] = adbOutQueue.outBuf[i];
910 adbBuffer = adbOutQueue.saveBuf; /* user data area */
911 adbCompRout = adbOutQueue.compRout; /* completion routine */
912 adbCompData = adbOutQueue.data; /* comp. rout. data */
913 adbOutQueueHasData = 0; /* currently processing
914 * "queue" entry */
915 adbPolling = 0;
916 } else {
917 adbOutputBuffer[0] = 1;
918 adbOutputBuffer[1] = (adbOutputBuffer[1] & 0xf0) | 0x0c;
919 adbPolling = 1; /* non-user poll */
920 }
921 adbNextEnd = 0;
922 adbSentChars = 0; /* nothing sent yet */
923 adbActionState = ADB_ACTION_OUT; /* set next state */
924 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
925 ADB_SR() = adbOutputBuffer[1]; /* load byte for output */
926 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */
927 ADB_SET_STATE_CMD(); /* tell ADB that we want to
928 * send */
929 break;
930 }
931 ADB_SR() = adbOutputBuffer[adbSentChars + 1];
932 switch (adbBusState) { /* advance to next state */
933 case ADB_BUS_EVEN:
934 ADB_SET_STATE_ODD(); /* set state to odd */
935 adbBusState = ADB_BUS_ODD;
936 break;
937
938 case ADB_BUS_CMD:
939 case ADB_BUS_ODD:
940 ADB_SET_STATE_EVEN(); /* set state to even */
941 adbBusState = ADB_BUS_EVEN;
942 break;
943
944 default:
945 printf_intr("strange state!!! (0x%x)\n", adbBusState);
946 break;
947 }
948 break;
949
950 default:
951 printf_intr("adb: unknown ADB state (during intr)\n");
952 }
953
954 ADB_VIA_INTR_ENABLE(); /* enable ADB interrupt on IIs. */
955
956 splx(s); /* restore */
957
958 return;
959
960 }
961
962
963 /*
964 * send_adb version for II series machines
965 */
966 int
967 send_adb_II(u_char * in, u_char * buffer, void *compRout, void *data, int command)
968 {
969 int i, s, len;
970
971 if (adbActionState == ADB_ACTION_NOTREADY) /* return if ADB not
972 * available */
973 return 1;
974
975 s = splhigh(); /* don't interrupt while we are messing with
976 * the ADB */
977
978 if (0 != adbOutQueueHasData) { /* right now, "has data" means "full" */
979 splx(s); /* sorry, try again later */
980 return 1;
981 }
982 if ((long) in == (long) 0) { /* need to convert? */
983 /*
984 * Don't need to use adb_cmd_extra here because this section
985 * will be called ONLY when it is an ADB command (no RTC or
986 * PRAM), especially on II series!
987 */
988 if ((command & 0x0c) == 0x08) /* copy addl data ONLY if
989 * doing a listen! */
990 len = buffer[0]; /* length of additional data */
991 else
992 len = 0;/* no additional data */
993
994 adbOutQueue.outBuf[0] = 1 + len; /* command + addl. data */
995 adbOutQueue.outBuf[1] = (u_char) command; /* load command */
996
997 for (i = 1; i <= len; i++) /* copy additional output
998 * data, if any */
999 adbOutQueue.outBuf[1 + i] = buffer[i];
1000 } else
1001 /* if data ready, just copy over */
1002 for (i = 0; i <= (adbOutQueue.outBuf[0] + 1); i++)
1003 adbOutQueue.outBuf[i] = in[i];
1004
1005 adbOutQueue.saveBuf = buffer; /* save buffer to know where to save
1006 * result */
1007 adbOutQueue.compRout = compRout; /* save completion routine
1008 * pointer */
1009 adbOutQueue.data = data;/* save completion routine data pointer */
1010
1011 if ((adbActionState == ADB_ACTION_IDLE) && /* is ADB available? */
1012 (ADB_INTR_IS_OFF) &&/* and no incoming interrupts? */
1013 (adbPolling == 0)) {/* and we are not currently polling */
1014 /* then start command now */
1015 for (i = 0; i <= (adbOutQueue.outBuf[0] + 1); i++) /* copy over data */
1016 adbOutputBuffer[i] = adbOutQueue.outBuf[i];
1017
1018 adbBuffer = adbOutQueue.saveBuf; /* pointer to user data
1019 * area */
1020 adbCompRout = adbOutQueue.compRout; /* pointer to the
1021 * completion routine */
1022 adbCompData = adbOutQueue.data; /* pointer to the completion
1023 * routine data */
1024
1025 adbSentChars = 0; /* nothing sent yet */
1026 adbActionState = ADB_ACTION_OUT; /* set next state */
1027 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */
1028
1029 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
1030
1031 ADB_SR() = adbOutputBuffer[adbSentChars + 1]; /* load byte for output */
1032 ADB_SET_STATE_CMD(); /* tell ADB that we want to send */
1033 adbOutQueueHasData = 0; /* currently processing "queue" entry */
1034 } else
1035 adbOutQueueHasData = 1; /* something in the write "queue" */
1036
1037 splx(s);
1038
1039 if (0x0100 <= (s & 0x0700)) /* were VIA1 interrupts blocked ? */
1040 /* poll until message done */
1041 while ((adbActionState != ADB_ACTION_IDLE) || (ADB_INTR_IS_ON)
1042 || (adbWaiting == 1) || (adbPolling == 1))
1043 if (ADB_SR_INTR_IS_ON) { /* wait for "interrupt" */
1044 adb_intr_II(); /* go process "interrupt" */
1045 adb_soft_intr();
1046 }
1047
1048 return 0;
1049 }
1050
1051
1052 /*
1053 * This routine is called from the II series interrupt routine
1054 * to determine what the "next" device is that should be polled.
1055 */
1056 int
1057 adb_guess_next_device(void)
1058 {
1059 int last, i, dummy;
1060
1061 if (adbStarting) {
1062 /* start polling EVERY device, since we can't be sure there is
1063 * anything in the device table yet */
1064 if (adbLastDevice < 1 || adbLastDevice > 15)
1065 adbLastDevice = 1;
1066 if (++adbLastDevice > 15) /* point to next one */
1067 adbLastDevice = 1;
1068 } else {
1069 /* find the next device using the device table */
1070 if (adbLastDevice < 1 || adbLastDevice > 15) /* let's be parinoid */
1071 adbLastDevice = 2;
1072 last = 1; /* default index location */
1073
1074 for (i = 1; i < 16; i++) /* find index entry */
1075 if (ADBDevTable[i].currentAddr == adbLastDevice) { /* look for device */
1076 last = i; /* found it */
1077 break;
1078 }
1079 dummy = last; /* index to start at */
1080 for (;;) { /* find next device in index */
1081 if (++dummy > 15) /* wrap around if needed */
1082 dummy = 1;
1083 if (dummy == last) { /* didn't find any other
1084 * device! This can happen if
1085 * there are no devices on the
1086 * bus */
1087 dummy = 2;
1088 break;
1089 }
1090 /* found the next device */
1091 if (ADBDevTable[dummy].devType != 0)
1092 break;
1093 }
1094 adbLastDevice = ADBDevTable[dummy].currentAddr;
1095 }
1096 return adbLastDevice;
1097 }
1098
1099
1100 /*
1101 * Called when when an adb interrupt happens.
1102 * This routine simply transfers control over to the appropriate
1103 * code for the machine we are running on.
1104 */
1105 void
1106 adb_intr(void)
1107 {
1108 switch (adbHardware) {
1109 case ADB_HW_II:
1110 adb_intr_II();
1111 break;
1112
1113 case ADB_HW_IISI:
1114 adb_intr_IIsi();
1115 break;
1116
1117 case ADB_HW_PB:
1118 break;
1119
1120 case ADB_HW_CUDA:
1121 adb_intr_cuda();
1122 break;
1123
1124 case ADB_HW_UNKNOWN:
1125 break;
1126 }
1127 }
1128
1129
1130 /*
1131 * called when when an adb interrupt happens
1132 *
1133 * IIsi version of adb_intr
1134 *
1135 */
1136 void
1137 adb_intr_IIsi(void)
1138 {
1139 struct adbCommand packet;
1140 int i, ending;
1141 unsigned int s;
1142
1143 s = splhigh(); /* can't be too careful - might be called */
1144 /* from a routine, NOT an interrupt */
1145
1146 ADB_VIA_CLR_INTR(); /* clear interrupt */
1147
1148 ADB_VIA_INTR_DISABLE(); /* disable ADB interrupt on IIs. */
1149
1150 switch_start:
1151 switch (adbActionState) {
1152 case ADB_ACTION_IDLE:
1153 delay(ADB_DELAY); /* short delay is required before the
1154 * first byte */
1155
1156 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
1157 ADB_SET_STATE_ACTIVE(); /* signal start of data frame */
1158 adbInputBuffer[1] = ADB_SR(); /* get byte */
1159 adbInputBuffer[0] = 1;
1160 adbActionState = ADB_ACTION_IN; /* set next state */
1161
1162 ADB_SET_STATE_ACKON(); /* start ACK to ADB chip */
1163 delay(ADB_DELAY); /* delay */
1164 ADB_SET_STATE_ACKOFF(); /* end ACK to ADB chip */
1165 zshard(0); /* grab any serial interrupts */
1166 break;
1167
1168 case ADB_ACTION_IN:
1169 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
1170 adbInputBuffer[++adbInputBuffer[0]] = ADB_SR(); /* get byte */
1171 if (ADB_INTR_IS_OFF) /* check for end of frame */
1172 ending = 1;
1173 else
1174 ending = 0;
1175
1176 ADB_SET_STATE_ACKON(); /* start ACK to ADB chip */
1177 delay(ADB_DELAY); /* delay */
1178 ADB_SET_STATE_ACKOFF(); /* end ACK to ADB chip */
1179 zshard(0); /* grab any serial interrupts */
1180
1181 if (1 == ending) { /* end of message? */
1182 ADB_SET_STATE_INACTIVE(); /* signal end of frame */
1183 /* this section _should_ handle all ADB and RTC/PRAM
1184 * type commands, */
1185 /* but there may be more... */
1186 /* note: commands are always at [4], even for rtc/pram
1187 * commands */
1188 /* set up data for adb_pass_up */
1189 for (i=0; i<=adbInputBuffer[0]; i++)
1190 packet.data[i]=adbInputBuffer[i];
1191
1192 if ((adbWaiting == 1) && /* are we waiting AND */
1193 (adbInputBuffer[4] == adbWaitingCmd) && /* the cmd we sent AND */
1194 ((adbInputBuffer[2] == 0x00) || /* it's from the ADB
1195 * device OR */
1196 (adbInputBuffer[2] == 0x01))) { /* it's from the
1197 * PRAM/RTC device */
1198
1199 packet.saveBuf=adbBuffer;
1200 packet.compRout=adbCompRout;
1201 packet.compData=adbCompData;
1202 packet.unsol=0;
1203 packet.ack_only=0;
1204 adb_pass_up(&packet);
1205
1206 adbWaitingCmd = 0; /* reset "waiting" vars */
1207 adbWaiting = 0;
1208 adbBuffer = (long) 0;
1209 adbCompRout = (long) 0;
1210 adbCompData = (long) 0;
1211 } else {
1212 packet.unsol=1;
1213 packet.ack_only=0;
1214 adb_pass_up(&packet);
1215 }
1216
1217 adbActionState = ADB_ACTION_IDLE;
1218 adbInputBuffer[0] = 0; /* reset length */
1219
1220 if (adbWriteDelay == 1) { /* were we waiting to
1221 * write? */
1222 adbSentChars = 0; /* nothing sent yet */
1223 adbActionState = ADB_ACTION_OUT; /* set next state */
1224
1225 delay(ADB_DELAY); /* delay */
1226 zshard(0); /* grab any serial interrupts */
1227
1228 if (ADB_INTR_IS_ON) { /* ADB intr low during
1229 * write */
1230 ADB_SET_STATE_IDLE_IISI(); /* reset */
1231 ADB_SET_SR_INPUT(); /* make sure SR is set
1232 * to IN */
1233 adbSentChars = 0; /* must start all over */
1234 adbActionState = ADB_ACTION_IDLE; /* new state */
1235 adbInputBuffer[0] = 0;
1236 /* may be able to take this out later */
1237 delay(ADB_DELAY); /* delay */
1238 break;
1239 }
1240 ADB_SET_STATE_ACTIVE(); /* tell ADB that we want
1241 * to send */
1242 ADB_SET_STATE_ACKOFF(); /* make sure */
1243 ADB_SET_SR_OUTPUT(); /* set shift register
1244 * for OUT */
1245 ADB_SR() = adbOutputBuffer[adbSentChars + 1];
1246 ADB_SET_STATE_ACKON(); /* tell ADB byte ready
1247 * to shift */
1248 }
1249 }
1250 break;
1251
1252 case ADB_ACTION_OUT:
1253 i = ADB_SR(); /* reset SR-intr in IFR */
1254 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
1255
1256 ADB_SET_STATE_ACKOFF(); /* finish ACK */
1257 adbSentChars++;
1258 if (ADB_INTR_IS_ON) { /* ADB intr low during write */
1259 ADB_SET_STATE_IDLE_IISI(); /* reset */
1260 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
1261 adbSentChars = 0; /* must start all over */
1262 adbActionState = ADB_ACTION_IDLE; /* new state */
1263 adbInputBuffer[0] = 0;
1264 adbWriteDelay = 1; /* must retry when done with
1265 * read */
1266 delay(ADB_DELAY); /* delay */
1267 zshard(0); /* grab any serial interrupts */
1268 goto switch_start; /* process next state right
1269 * now */
1270 break;
1271 }
1272 delay(ADB_DELAY); /* required delay */
1273 zshard(0); /* grab any serial interrupts */
1274
1275 if (adbOutputBuffer[0] == adbSentChars) { /* check for done */
1276 if (0 == adb_cmd_result(adbOutputBuffer)) { /* do we expect data
1277 * back? */
1278 adbWaiting = 1; /* signal waiting for return */
1279 adbWaitingCmd = adbOutputBuffer[2]; /* save waiting command */
1280 } else {/* no talk, so done */
1281 /* set up stuff for adb_pass_up */
1282 for (i=0; i<=adbInputBuffer[0]; i++)
1283 packet.data[i]=adbInputBuffer[i];
1284 packet.saveBuf=adbBuffer;
1285 packet.compRout=adbCompRout;
1286 packet.compData=adbCompData;
1287 packet.cmd=adbWaitingCmd;
1288 packet.unsol=0;
1289 packet.ack_only=1;
1290 adb_pass_up(&packet);
1291
1292 /* reset "waiting" vars, just in case */
1293 adbWaitingCmd = 0;
1294 adbBuffer = (long) 0;
1295 adbCompRout = (long) 0;
1296 adbCompData = (long) 0;
1297 }
1298
1299 adbWriteDelay = 0; /* done writing */
1300 adbActionState = ADB_ACTION_IDLE; /* signal bus is idle */
1301 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
1302 ADB_SET_STATE_INACTIVE(); /* end of frame */
1303 } else {
1304 ADB_SR() = adbOutputBuffer[adbSentChars + 1]; /* send next byte */
1305 ADB_SET_STATE_ACKON(); /* signal byte ready to shift */
1306 }
1307 break;
1308
1309 case ADB_ACTION_NOTREADY:
1310 printf_intr("adb: not yet initialized\n");
1311 break;
1312
1313 default:
1314 printf_intr("intr: unknown ADB state\n");
1315 }
1316
1317 ADB_VIA_INTR_ENABLE(); /* enable ADB interrupt on IIs. */
1318
1319 splx(s); /* restore */
1320
1321 return;
1322 } /* end adb_intr_IIsi */
1323
1324
1325 /*****************************************************************************
1326 * if the device is currently busy, and there is no data waiting to go out, then
1327 * the data is "queued" in the outgoing buffer. If we are already waiting, then
1328 * we return.
1329 * in: if (in==0) then the command string is built from command and buffer
1330 * if (in!=0) then in is used as the command string
1331 * buffer: additional data to be sent (used only if in==0)
1332 * this is also where return data is stored
1333 * compRout: the completion routine that is called when then return value
1334 * is received (if a return value is expected)
1335 * data: a data pointer that can be used by the completion routine
1336 * command: an ADB command to be sent (used only if in==0)
1337 *
1338 */
1339 int
1340 send_adb_IIsi(u_char * in, u_char * buffer, void *compRout, void *data, int
1341 command)
1342 {
1343 int i, s, len;
1344
1345 if (adbActionState == ADB_ACTION_NOTREADY)
1346 return 1;
1347
1348 s = splhigh(); /* don't interrupt while we are messing with
1349 * the ADB */
1350
1351 if ((adbActionState == ADB_ACTION_IDLE) && /* ADB available? */
1352 (ADB_INTR_IS_OFF)) {/* and no incoming interrupt? */
1353
1354 } else
1355 if (adbWriteDelay == 0) /* it's busy, but is anything waiting? */
1356 adbWriteDelay = 1; /* if no, then we'll "queue"
1357 * it up */
1358 else {
1359 splx(s);
1360 return 1; /* really busy! */
1361 }
1362
1363 if ((long) in == (long) 0) { /* need to convert? */
1364 /* don't need to use adb_cmd_extra here because this section
1365 * will be called */
1366 /* ONLY when it is an ADB command (no RTC or PRAM) */
1367 if ((command & 0x0c) == 0x08) /* copy addl data ONLY if
1368 * doing a listen! */
1369 len = buffer[0]; /* length of additional data */
1370 else
1371 len = 0;/* no additional data */
1372
1373 adbOutputBuffer[0] = 2 + len; /* dev. type + command + addl.
1374 * data */
1375 adbOutputBuffer[1] = 0x00; /* mark as an ADB command */
1376 adbOutputBuffer[2] = (u_char) command; /* load command */
1377
1378 for (i = 1; i <= len; i++) /* copy additional output
1379 * data, if any */
1380 adbOutputBuffer[2 + i] = buffer[i];
1381 } else
1382 for (i = 0; i <= (adbOutputBuffer[0] + 1); i++)
1383 adbOutputBuffer[i] = in[i];
1384
1385 adbSentChars = 0; /* nothing sent yet */
1386 adbBuffer = buffer; /* save buffer to know where to save result */
1387 adbCompRout = compRout; /* save completion routine pointer */
1388 adbCompData = data; /* save completion routine data pointer */
1389 adbWaitingCmd = adbOutputBuffer[2]; /* save wait command */
1390
1391 if (adbWriteDelay != 1) { /* start command now? */
1392 adbActionState = ADB_ACTION_OUT; /* set next state */
1393
1394 ADB_SET_STATE_ACTIVE(); /* tell ADB that we want to send */
1395 ADB_SET_STATE_ACKOFF(); /* make sure */
1396
1397 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
1398
1399 ADB_SR() = adbOutputBuffer[adbSentChars + 1]; /* load byte for output */
1400
1401 ADB_SET_STATE_ACKON(); /* tell ADB byte ready to shift */
1402 }
1403 adbWriteDelay = 1; /* something in the write "queue" */
1404
1405 splx(s);
1406
1407 if (0x0100 <= (s & 0x0700)) /* were VIA1 interrupts blocked ? */
1408 /* poll until byte done */
1409 while ((adbActionState != ADB_ACTION_IDLE) || (ADB_INTR_IS_ON)
1410 || (adbWaiting == 1))
1411 if (ADB_SR_INTR_IS_ON) { /* wait for "interrupt" */
1412 adb_intr_IIsi(); /* go process
1413 * "interrupt" */
1414 adb_soft_intr();
1415 }
1416
1417 return 0;
1418 } /* send_adb_IIsi */
1419
1420
1421 /*
1422 * adb_pass_up is called by the interrupt-time routines.
1423 * It takes the raw packet data that was received from the
1424 * device and puts it into the queue that the upper half
1425 * processes. It then signals for a soft ADB interrupt which
1426 * will eventually call the upper half routine (adb_soft_intr).
1427 *
1428 * If in->unsol is 0, then this is either the notification
1429 * that the packet was sent (on a LISTEN, for example), or the
1430 * response from the device (on a TALK). The completion routine
1431 * is called only if the user specified one.
1432 *
1433 * If in->unsol is 1, then this packet was unsolicited and
1434 * so we look up the device in the ADB device table to determine
1435 * what it's default service routine is.
1436 *
1437 * If in->ack_only is 1, then we really only need to call
1438 * the completion routine, so don't do any other stuff.
1439 *
1440 * Note that in->data contains the packet header AND data,
1441 * while adbInbound[]->data contains ONLY data.
1442 *
1443 * Note: Called only at interrupt time. Assumes this.
1444 *
1445 */
1446 void
1447 adb_pass_up(struct adbCommand *in)
1448 {
1449 int i, start=0, len=0, cmd=0;
1450 ADBDataBlock block;
1451
1452 /* temp for testing */
1453 /*u_char *buffer = 0;*/
1454 /*u_char *compdata = 0;*/
1455 /*u_char *comprout = 0;*/
1456
1457 if (adbInCount>=ADB_QUEUE) {
1458 printf_intr("adb: ring buffer overflow\n");
1459 return;
1460 }
1461
1462 if (in->ack_only) {
1463 len=in->data[0];
1464 cmd=in->cmd;
1465 start=0;
1466 } else {
1467 switch (adbHardware) {
1468 case ADB_HW_II:
1469 cmd = in->data[1];
1470 if (in->data[0] < 2)
1471 len=0;
1472 else
1473 len=in->data[0]-1;
1474 start=1;
1475 break;
1476
1477 case ADB_HW_IISI:
1478 case ADB_HW_CUDA:
1479 /* If it's unsolicited, accept only ADB data for now */
1480 if (in->unsol)
1481 if (0 != in->data[2])
1482 return;
1483 cmd = in->data[4];
1484 if (in->data[0] < 5)
1485 len=0;
1486 else
1487 len=in->data[0]-4;
1488 start=4;
1489 break;
1490
1491 case ADB_HW_PB:
1492 return; /* how does PM handle "unsolicited" messages? */
1493
1494 case ADB_HW_UNKNOWN:
1495 return;
1496 }
1497
1498 /* Make sure there is a valid device entry for this device */
1499 if (in->unsol) {
1500 /* ignore unsolicited data during adbreinit */
1501 if (adbStarting)
1502 return;
1503 /* get device's comp. routine and data area */
1504 if (-1 == get_adb_info(&block, ((cmd & 0xf0) >> 4)))
1505 return;
1506 }
1507 }
1508
1509 /*
1510 * If this is an unsolicited packet, we need to fill in
1511 * some info so adb_soft_intr can process this packet
1512 * properly. If it's not unsolicited, then use what
1513 * the caller sent us.
1514 */
1515 if (in->unsol) {
1516 adbInbound[adbInTail].compRout=(void *)block.dbServiceRtPtr;
1517 adbInbound[adbInTail].compData=(void *)block.dbDataAreaAddr;
1518 adbInbound[adbInTail].saveBuf=(void *)adbInbound[adbInTail].data;
1519 } else {
1520 adbInbound[adbInTail].compRout=(void *)in->compRout;
1521 adbInbound[adbInTail].compData=(void *)in->compData;
1522 adbInbound[adbInTail].saveBuf=(void *)in->saveBuf;
1523 }
1524
1525 #ifdef ADB_DEBUG
1526 if (adb_debug && in->data[1] == 2)
1527 printf_intr("adb: caught error\n");
1528 #endif
1529
1530 /* copy the packet data over */
1531 /* TO DO: If the *_intr routines fed their incoming data
1532 * directly into an adbCommand struct, which is passed to
1533 * this routine, then we could eliminate this copy.
1534 */
1535 for (i = 1; i <= len; i++)
1536 adbInbound[adbInTail].data[i]=in->data[start+i];
1537
1538 adbInbound[adbInTail].data[0]=len;
1539 adbInbound[adbInTail].cmd=cmd;
1540
1541 adbInCount++;
1542 if (++adbInTail >= ADB_QUEUE)
1543 adbInTail=0;
1544
1545 /*
1546 * If the debugger is running, call upper half manually.
1547 * Otherwise, trigger a soft interrupt to handle the rest later.
1548 */
1549 if (adb_polling)
1550 adb_soft_intr();
1551 else
1552 setsoftadb();
1553
1554 return;
1555 }
1556
1557
1558 /*
1559 * Called to process the packets after they have been
1560 * placed in the incoming queue.
1561 *
1562 */
1563 void
1564 adb_soft_intr(void)
1565 {
1566 int s, i;
1567 int cmd=0;
1568 u_char *buffer=0;
1569 u_char *comprout=0;
1570 u_char *compdata=0;
1571
1572 #if 0
1573 s=splhigh();
1574 printf_intr("sr: %x\n", (s & 0x0700));
1575 splx(s);
1576 #endif
1577
1578 /*delay(2*ADB_DELAY);*/
1579
1580 while (adbInCount) {
1581 /*printf_intr("%x %x %x ", adbInCount, adbInHead, adbInTail);*/
1582 /* get the data we need from the queue */
1583 buffer=adbInbound[adbInHead].saveBuf;
1584 comprout=adbInbound[adbInHead].compRout;
1585 compdata=adbInbound[adbInHead].compData;
1586 cmd=adbInbound[adbInHead].cmd;
1587
1588 /* copy over data to data area if it's valid */
1589 /* note that for unsol packets we don't want to copy the
1590 * data anywhere, so buffer was already set to 0.
1591 * For ack_only buffer was set to 0, so don't copy. */
1592 if (buffer)
1593 for (i = 0; i <= adbInbound[adbInHead].data[0]; i++)
1594 *(buffer+i)=adbInbound[adbInHead].data[i];
1595
1596 /*printf_intr("%lx %lx %lx %x ", buffer, comprout, compdata, cmd);*/
1597 /*printf_intr("buf: ");*/
1598 /*print_single(adbInbound[adbInHead].data);*/
1599
1600 /* call default completion routine if it's valid */
1601 if (comprout) {
1602 #ifdef __NetBSD__
1603 asm("
1604 movml #0xffff, sp@- | save all registers
1605 movl %0, a2 | compdata
1606 movl %1, a1 | comprout
1607 movl %2, a0 | buffer
1608 movl %3, d0 | cmd
1609 jbsr a1@ | go call the routine
1610 movml sp@+, #0xffff | restore all registers"
1611 :
1612 : "g"(compdata),
1613 "g"(comprout),
1614 "g"(buffer),
1615 "g"(cmd)
1616 : "d0", "a0", "a1", "a2");
1617 #else /* for macos based testing */
1618 asm
1619 {
1620 movem.l a0/a1/a2/d0, -(a7)
1621 move.l compdata, a2
1622 move.l comprout, a1
1623 move.l buffer, a0
1624 move.w cmd, d0
1625 jsr(a1)
1626 movem.l(a7)+, d0/a2/a1/a0
1627 }
1628 #endif
1629 }
1630
1631 s=splhigh();
1632 adbInCount--;
1633 if (++adbInHead >= ADB_QUEUE)
1634 adbInHead=0;
1635 splx(s);
1636
1637 }
1638 return;
1639 }
1640
1641
1642 /*
1643 * This is my version of the ADBOp routine. It mainly just calls the hardware-specific
1644 * routine.
1645 *
1646 * data : pointer to data area to be used by compRout
1647 * compRout : completion routine
1648 * buffer : for LISTEN: points to data to send - MAX 8 data bytes,
1649 * byte 0 = # of bytes
1650 * : for TALK: points to place to save return data
1651 * command : the adb command to send
1652 * result : 0 = success
1653 * : -1 = could not complete
1654 */
1655 int
1656 adb_op(Ptr buffer, Ptr compRout, Ptr data, short command)
1657 {
1658 int result;
1659
1660 switch (adbHardware) {
1661 case ADB_HW_II:
1662 result = send_adb_II((u_char *) 0,
1663 (u_char *) buffer, (void *) compRout,
1664 (void *) data, (int) command);
1665 if (result == 0)
1666 return 0;
1667 else
1668 return -1;
1669 break;
1670
1671 case ADB_HW_IISI:
1672 result = send_adb_IIsi((u_char *) 0,
1673 (u_char *) buffer, (void *) compRout,
1674 (void *) data, (int) command);
1675 /*
1676 * I wish I knew why this delay is needed. It usually needs to
1677 * be here when several commands are sent in close succession,
1678 * especially early in device probes when doing collision
1679 * detection. It must be some race condition. Sigh. - jpw
1680 */
1681 delay(100);
1682 if (result == 0)
1683 return 0;
1684 else
1685 return -1;
1686 break;
1687
1688 case ADB_HW_PB:
1689 result = pm_adb_op((u_char *)buffer, (void *)compRout,
1690 (void *)data, (int)command);
1691
1692 if (result == 0)
1693 return 0;
1694 else
1695 return -1;
1696 break;
1697
1698 case ADB_HW_CUDA:
1699 result = send_adb_cuda((u_char *) 0,
1700 (u_char *) buffer, (void *) compRout,
1701 (void *) data, (int) command);
1702 if (result == 0)
1703 return 0;
1704 else
1705 return -1;
1706 break;
1707
1708 case ADB_HW_UNKNOWN:
1709 default:
1710 return -1;
1711 }
1712 }
1713
1714
1715 /*
1716 * adb_hw_setup
1717 * This routine sets up the possible machine specific hardware
1718 * config (mainly VIA settings) for the various models.
1719 */
1720 void
1721 adb_hw_setup(void)
1722 {
1723 volatile int i;
1724 u_char send_string[ADB_MAX_MSG_LENGTH];
1725
1726 switch (adbHardware) {
1727 case ADB_HW_II:
1728 via_reg(VIA1, vDirB) |= 0x30; /* register B bits 4 and 5:
1729 * outputs */
1730 via_reg(VIA1, vDirB) &= 0xf7; /* register B bit 3: input */
1731 via_reg(VIA1, vACR) &= ~vSR_OUT; /* make sure SR is set
1732 * to IN (II, IIsi) */
1733 adbActionState = ADB_ACTION_IDLE; /* used by all types of
1734 * hardware (II, IIsi) */
1735 adbBusState = ADB_BUS_IDLE; /* this var. used in II-series
1736 * code only */
1737 via_reg(VIA1, vIER) = 0x84; /* make sure VIA interrupts
1738 * are on (II, IIsi) */
1739 ADB_SET_STATE_IDLE_II(); /* set ADB bus state to idle */
1740
1741 ADB_VIA_CLR_INTR(); /* clear interrupt */
1742 break;
1743
1744 case ADB_HW_IISI:
1745 via_reg(VIA1, vDirB) |= 0x30; /* register B bits 4 and 5:
1746 * outputs */
1747 via_reg(VIA1, vDirB) &= 0xf7; /* register B bit 3: input */
1748 via_reg(VIA1, vACR) &= ~vSR_OUT; /* make sure SR is set
1749 * to IN (II, IIsi) */
1750 adbActionState = ADB_ACTION_IDLE; /* used by all types of
1751 * hardware (II, IIsi) */
1752 adbBusState = ADB_BUS_IDLE; /* this var. used in II-series
1753 * code only */
1754 via_reg(VIA1, vIER) = 0x84; /* make sure VIA interrupts
1755 * are on (II, IIsi) */
1756 ADB_SET_STATE_IDLE_IISI(); /* set ADB bus state to idle */
1757
1758 /* get those pesky clock ticks we missed while booting */
1759 for (i = 0; i < 30; i++) {
1760 delay(ADB_DELAY);
1761 adb_hw_setup_IIsi(send_string);
1762 printf_intr("adb: cleanup: ");
1763 print_single(send_string);
1764 delay(ADB_DELAY);
1765 if (ADB_INTR_IS_OFF)
1766 break;
1767 }
1768 break;
1769
1770 case ADB_HW_PB:
1771 /*
1772 * XXX - really PM_VIA_CLR_INTR - should we put it in
1773 * pm_direct.h?
1774 */
1775 via_reg(VIA1, vIFR) = 0x90; /* clear interrupt */
1776 break;
1777
1778 case ADB_HW_CUDA:
1779 via_reg(VIA1, vDirB) |= 0x30; /* register B bits 4 and 5:
1780 * outputs */
1781 via_reg(VIA1, vDirB) &= 0xf7; /* register B bit 3: input */
1782 via_reg(VIA1, vACR) &= ~vSR_OUT; /* make sure SR is set
1783 * to IN */
1784 via_reg(VIA1, vACR) = (via_reg(VIA1, vACR) | 0x0c) & ~0x10;
1785 adbActionState = ADB_ACTION_IDLE; /* used by all types of
1786 * hardware */
1787 adbBusState = ADB_BUS_IDLE; /* this var. used in II-series
1788 * code only */
1789 via_reg(VIA1, vIER) = 0x84; /* make sure VIA interrupts
1790 * are on */
1791 ADB_SET_STATE_IDLE_CUDA(); /* set ADB bus state to idle */
1792
1793 /* sort of a device reset */
1794 i = ADB_SR(); /* clear interrupt */
1795 ADB_VIA_INTR_DISABLE(); /* no interrupts while clearing */
1796 ADB_SET_STATE_IDLE_CUDA(); /* reset state to idle */
1797 delay(ADB_DELAY);
1798 ADB_SET_STATE_TIP(); /* signal start of frame */
1799 delay(ADB_DELAY);
1800 ADB_TOGGLE_STATE_ACK_CUDA();
1801 delay(ADB_DELAY);
1802 ADB_CLR_STATE_TIP();
1803 delay(ADB_DELAY);
1804 ADB_SET_STATE_IDLE_CUDA(); /* back to idle state */
1805 i = ADB_SR(); /* clear interrupt */
1806 ADB_VIA_INTR_ENABLE(); /* ints ok now */
1807 break;
1808
1809 case ADB_HW_UNKNOWN:
1810 default:
1811 via_reg(VIA1, vIER) = 0x04; /* turn interrupts off - TO
1812 * DO: turn PB ints off? */
1813 return;
1814 break;
1815 }
1816 }
1817
1818
1819 /*
1820 * adb_hw_setup_IIsi
1821 * This is sort of a "read" routine that forces the adb hardware through a read cycle
1822 * if there is something waiting. This helps "clean up" any commands that may have gotten
1823 * stuck or stopped during the boot process.
1824 *
1825 */
1826 void
1827 adb_hw_setup_IIsi(u_char * buffer)
1828 {
1829 int i;
1830 int dummy;
1831 int s;
1832 long my_time;
1833 int endofframe;
1834
1835 delay(ADB_DELAY);
1836
1837 i = 1; /* skip over [0] */
1838 s = splhigh(); /* block ALL interrupts while we are working */
1839 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
1840 ADB_VIA_INTR_DISABLE(); /* disable ADB interrupt on IIs. */
1841 /* this is required, especially on faster machines */
1842 delay(ADB_DELAY);
1843
1844 if (ADB_INTR_IS_ON) {
1845 ADB_SET_STATE_ACTIVE(); /* signal start of data frame */
1846
1847 endofframe = 0;
1848 while (0 == endofframe) {
1849 /* poll for ADB interrupt and watch for timeout */
1850 /* if time out, keep going in hopes of not hanging the
1851 * ADB chip - I think */
1852 my_time = ADB_DELAY * 5;
1853 while ((ADB_SR_INTR_IS_OFF) && (my_time-- > 0))
1854 dummy = via_reg(VIA1, vBufB);
1855
1856 buffer[i++] = ADB_SR(); /* reset interrupt flag by
1857 * reading vSR */
1858 /* perhaps put in a check here that ignores all data
1859 * after the first ADB_MAX_MSG_LENGTH bytes ??? */
1860 if (ADB_INTR_IS_OFF) /* check for end of frame */
1861 endofframe = 1;
1862
1863 ADB_SET_STATE_ACKON(); /* send ACK to ADB chip */
1864 delay(ADB_DELAY); /* delay */
1865 ADB_SET_STATE_ACKOFF(); /* send ACK to ADB chip */
1866 }
1867 ADB_SET_STATE_INACTIVE(); /* signal end of frame and
1868 * delay */
1869
1870 /* probably don't need to delay this long */
1871 delay(ADB_DELAY);
1872 }
1873 buffer[0] = --i; /* [0] is length of message */
1874 ADB_VIA_INTR_ENABLE(); /* enable ADB interrupt on IIs. */
1875 splx(s); /* restore interrupts */
1876
1877 return;
1878 } /* adb_hw_setup_IIsi */
1879
1880
1881
1882 /*
1883 * adb_reinit sets up the adb stuff
1884 *
1885 */
1886 void
1887 adb_reinit(void)
1888 {
1889 u_char send_string[ADB_MAX_MSG_LENGTH];
1890 int s = 0;
1891 volatile int i, x;
1892 int command;
1893 int result;
1894 int saveptr; /* point to next free relocation address */
1895 int device;
1896 int nonewtimes; /* times thru loop w/o any new devices */
1897 ADBDataBlock data; /* temp. holder for getting device info */
1898
1899 (void)(&s); /* work around lame GCC bug */
1900
1901 /* Make sure we are not interrupted while building the table. */
1902 if (adbHardware != ADB_HW_PB) /* ints must be on for PB? */
1903 s = splhigh();
1904
1905 ADBNumDevices = 0; /* no devices yet */
1906
1907 /* Let intr routines know we are running reinit */
1908 adbStarting = 1;
1909
1910 /* Initialize the ADB table. For now, we'll always use the same table
1911 * that is defined at the beginning of this file - no mallocs. */
1912 for (i = 0; i < 16; i++)
1913 ADBDevTable[i].devType = 0;
1914
1915 adb_setup_hw_type(); /* setup hardware type */
1916
1917 adb_hw_setup(); /* init the VIA bits and hard reset ADB */
1918
1919 /* send an ADB reset first */
1920 adb_op_sync((Ptr) 0, (Ptr) 0, (Ptr) 0, (short) 0x00);
1921
1922 /* Probe for ADB devices. Probe devices 1-15 quickly to determine
1923 * which device addresses are in use and which are free. For each
1924 * address that is in use, move the device at that address to a higher
1925 * free address. Continue doing this at that address until no device
1926 * responds at that address. Then move the last device that was moved
1927 * back to the original address. Do this for the remaining addresses
1928 * that we determined were in use.
1929 *
1930 * When finished, do this entire process over again with the updated list
1931 * of in use addresses. Do this until no new devices have been found
1932 * in 20 passes though the in use address list. (This probably seems
1933 * long and complicated, but it's the best way to detect multiple
1934 * devices at the same address - sometimes it takes a couple of tries
1935 * before the collision is detected.) */
1936
1937 /* initial scan through the devices */
1938 for (i = 1; i < 16; i++) {
1939 command = (int) (0x0f | ((int) (i & 0x000f) << 4)); /* talk R3 */
1940 result = adb_op_sync((Ptr) send_string, (Ptr) 0, (Ptr) 0, (short) command);
1941 if (0x00 != send_string[0]) { /* anything come back ?? */
1942 ADBDevTable[++ADBNumDevices].devType = (u_char) send_string[2];
1943 ADBDevTable[ADBNumDevices].origAddr = i;
1944 ADBDevTable[ADBNumDevices].currentAddr = i;
1945 ADBDevTable[ADBNumDevices].DataAreaAddr = (long) 0;
1946 ADBDevTable[ADBNumDevices].ServiceRtPtr = (void *) 0;
1947 pm_check_adb_devices(i); /* tell pm driver device
1948 * is here */
1949 }
1950 }
1951
1952 /* find highest unused address */
1953 for (saveptr = 15; saveptr > 0; saveptr--)
1954 if (-1 == get_adb_info(&data, saveptr))
1955 break;
1956
1957 if (saveptr == 0) /* no free addresses??? */
1958 saveptr = 15;
1959
1960 /* printf_intr("first free is: 0x%02x\n", saveptr); */
1961 /* printf_intr("devices: %i\n", ADBNumDevices); */
1962
1963 nonewtimes = 0; /* no loops w/o new devices */
1964 while (nonewtimes++ < 11) {
1965 for (i = 1; i <= ADBNumDevices; i++) {
1966 device = ADBDevTable[i].currentAddr;
1967 /* printf_intr("moving device 0x%02x to 0x%02x (index
1968 * 0x%02x) ", device, saveptr, i); */
1969
1970 /* send TALK R3 to address */
1971 command = (int) (0x0f | ((int) (device & 0x000f) << 4));
1972 adb_op_sync((Ptr) send_string, (Ptr) 0, (Ptr) 0, (short) command);
1973
1974 /* move device to higher address */
1975 command = (int) (0x0b | ((int) (device & 0x000f) << 4));
1976 send_string[0] = 2;
1977 send_string[1] = (u_char) (saveptr | 0x60);
1978 send_string[2] = 0xfe;
1979 adb_op_sync((Ptr) send_string, (Ptr) 0, (Ptr) 0, (short) command);
1980
1981 /* send TALK R3 - anything at old address? */
1982 command = (int) (0x0f | ((int) (device & 0x000f) << 4));
1983 result = adb_op_sync((Ptr) send_string, (Ptr) 0, (Ptr) 0, (short) command);
1984 if (send_string[0] != 0) {
1985 /* new device found */
1986 /* update data for previously moved device */
1987 ADBDevTable[i].currentAddr = saveptr;
1988 /* printf_intr("old device at index %i\n",i); */
1989 /* add new device in table */
1990 /* printf_intr("new device found\n"); */
1991 ADBDevTable[++ADBNumDevices].devType = (u_char) send_string[2];
1992 ADBDevTable[ADBNumDevices].origAddr = device;
1993 ADBDevTable[ADBNumDevices].currentAddr = device;
1994 /* These will be set correctly in adbsys.c */
1995 /* Until then, unsol. data will be ignored. */
1996 ADBDevTable[ADBNumDevices].DataAreaAddr = (long) 0;
1997 ADBDevTable[ADBNumDevices].ServiceRtPtr = (void *) 0;
1998 /* find next unused address */
1999 for (x = saveptr; x > 0; x--)
2000 if (-1 == get_adb_info(&data, x)) {
2001 saveptr = x;
2002 break;
2003 }
2004 /* printf_intr("new free is 0x%02x\n",
2005 * saveptr); */
2006 nonewtimes = 0;
2007 /* tell pm driver device is here */
2008 pm_check_adb_devices(device);
2009 } else {
2010 /* printf_intr("moving back...\n"); */
2011 /* move old device back */
2012 command = (int) (0x0b | ((int) (saveptr & 0x000f) << 4));
2013 send_string[0] = 2;
2014 send_string[1] = (u_char) (device | 0x60);
2015 send_string[2] = 0xfe;
2016 adb_op_sync((Ptr) send_string, (Ptr) 0, (Ptr) 0, (short) command);
2017 }
2018 }
2019 }
2020
2021 #ifdef ADB_DEBUG
2022 if (adb_debug) {
2023 for (i = 1; i <= ADBNumDevices; i++) {
2024 x = get_ind_adb_info(&data, i);
2025 if (x != -1)
2026 printf_intr("index 0x%x, addr 0x%x, type 0x%x\n",
2027 i, x, data.devType);
2028 }
2029 }
2030 #endif
2031
2032 adb_prog_switch_enable(); /* enable the programmer's switch, if
2033 * we have one */
2034
2035 if (0 == ADBNumDevices) /* tell user if no devices found */
2036 printf_intr("adb: no devices found\n");
2037
2038 adbStarting = 0; /* not starting anymore */
2039 printf_intr("adb: ADBReInit complete\n");
2040
2041 if (adbHardware==ADB_HW_CUDA)
2042 timeout((void *)adb_cuda_tickle, 0, ADB_TICKLE_TICKS);
2043
2044 if (adbHardware != ADB_HW_PB) /* ints must be on for PB? */
2045 splx(s);
2046 return;
2047 }
2048
2049
2050 /*
2051 * adb_comp_exec
2052 * This is a general routine that calls the completion routine if there is one.
2053 * NOTE: This routine is now only used by pm_direct.c
2054 * All the code in this file (adb_direct.c) uses
2055 * the adb_pass_up routine now.
2056 */
2057 void
2058 adb_comp_exec(void)
2059 {
2060 if ((long) 0 != adbCompRout) /* don't call if empty return location */
2061 #ifdef __NetBSD__
2062 asm("
2063 movml #0xffff, sp@- | save all registers
2064 movl %0, a2 | adbCompData
2065 movl %1, a1 | adbCompRout
2066 movl %2, a0 | adbBuffer
2067 movl %3, d0 | adbWaitingCmd
2068 jbsr a1@ | go call the routine
2069 movml sp@+, #0xffff | restore all registers"
2070 :
2071 :"g"(adbCompData), "g"(adbCompRout),
2072 "g"(adbBuffer), "g"(adbWaitingCmd)
2073 :"d0", "a0", "a1", "a2");
2074 #else /* for macos based testing */
2075 asm {
2076 movem.l a0/a1/a2/d0, -(a7)
2077 move.l adbCompData, a2
2078 move.l adbCompRout, a1
2079 move.l adbBuffer, a0
2080 move.w adbWaitingCmd, d0
2081 jsr(a1)
2082 movem.l(a7) +, d0/a2/a1/a0
2083 }
2084 #endif
2085 }
2086
2087
2088 /* adb_cmd_result
2089 * This routine lets the caller know whether the specified adb command string should
2090 * expect a returned result, such as a TALK command.
2091 * returns: 0 if a result should be expected
2092 * 1 if a result should NOT be expected
2093 */
2094 int
2095 adb_cmd_result(u_char * in)
2096 {
2097 switch (adbHardware) {
2098 case ADB_HW_II:
2099 /* was it an ADB talk command? */
2100 if ((in[1] & 0x0c) == 0x0c)
2101 return 0;
2102 else
2103 return 1;
2104 break;
2105
2106 case ADB_HW_IISI:
2107 case ADB_HW_CUDA:
2108 /* was is an ADB talk command? */
2109 if ((in[1] == 0x00) && ((in[2] & 0x0c) == 0x0c))
2110 return 0;
2111 /* was is an RTC/PRAM read date/time? */
2112 else
2113 if ((in[1] == 0x01) && (in[2] == 0x03))
2114 return 0;
2115 else
2116 return 1;
2117 break;
2118
2119 case ADB_HW_PB:
2120 return 1;
2121 break;
2122
2123 case ADB_HW_UNKNOWN:
2124 default:
2125 return 1;
2126 }
2127 }
2128
2129
2130 /* adb_cmd_extra
2131 * This routine lets the caller know whether the specified adb command string may have
2132 * extra data appended to the end of it, such as a LISTEN command.
2133 * returns: 0 if extra data is allowed
2134 * 1 if extra data is NOT allowed
2135 */
2136 int
2137 adb_cmd_extra(u_char * in)
2138 {
2139 switch (adbHardware) {
2140 case ADB_HW_II:
2141 if ((in[1] & 0x0c) == 0x08) /* was it a listen command? */
2142 return 0;
2143 else
2144 return 1;
2145 break;
2146
2147 case ADB_HW_IISI:
2148 case ADB_HW_CUDA:
2149 /* TO DO: support needs to be added to recognize RTC and PRAM
2150 * commands */
2151 if ((in[2] & 0x0c) == 0x08) /* was it a listen command? */
2152 return 0;
2153 else /* add others later */
2154 return 1;
2155 break;
2156
2157 case ADB_HW_PB:
2158 return 1;
2159 break;
2160
2161 case ADB_HW_UNKNOWN:
2162 default:
2163 return 1;
2164 }
2165 }
2166
2167
2168 /* adb_op_sync
2169 * This routine does exactly what the adb_op routine does, except that after the
2170 * adb_op is called, it waits until the return value is present before returning.
2171 * NOTE: The user specified compRout is ignored, since this routine specifies
2172 * it's own to adb_op, which is why you really called this in the first place
2173 * anyway.
2174 */
2175 int
2176 adb_op_sync(Ptr buffer, Ptr compRout, Ptr data, short command)
2177 {
2178 int result;
2179 volatile int flag = 0;
2180
2181 result = adb_op(buffer, (void *) adb_op_comprout,
2182 (void *) &flag, command); /* send command */
2183 if (result == 0) { /* send ok? */
2184 while (0 == flag); /* wait for compl. routine */
2185 return 0;
2186 } else
2187 return result;
2188 }
2189
2190
2191 /* adb_op_comprout
2192 * This function is used by the adb_op_sync routine so it knows when the function is
2193 * done.
2194 */
2195 void
2196 adb_op_comprout(void)
2197 {
2198 #ifdef __NetBSD__
2199 asm("movw #1,a2@ | update flag value");
2200 #else /* for macos based testing */
2201 asm {
2202 move.w #1,(a2) } /* update flag value */
2203 #endif
2204 }
2205
2206 void
2207 adb_setup_hw_type(void)
2208 {
2209 long response;
2210
2211 response = mac68k_machine.machineid;
2212
2213 /*
2214 * Determine what type of ADB hardware we are running on.
2215 */
2216 switch (response) {
2217 case 6: /* II */
2218 case 7: /* IIx */
2219 case 8: /* IIcx */
2220 case 9: /* SE/30 */
2221 case 11: /* IIci */
2222 case 22: /* Quadra 700 */
2223 case 30: /* Centris 650 */
2224 case 35: /* Quadra 800 */
2225 case 36: /* Quadra 650 */
2226 case 52: /* Centris 610 */
2227 case 53: /* Quadra 610 */
2228 adbHardware = ADB_HW_II;
2229 printf_intr("adb: using II series hardware support\n");
2230 break;
2231 case 18: /* IIsi */
2232 case 20: /* Quadra 900 - not sure if IIsi or not */
2233 case 23: /* Classic II */
2234 case 26: /* Quadra 950 - not sure if IIsi or not */
2235 case 27: /* LC III, Performa 450 */
2236 case 37: /* LC II, Performa 400/405/430 */
2237 case 44: /* IIvi */
2238 case 45: /* Performa 600 */
2239 case 48: /* IIvx */
2240 case 62: /* Performa 460/465/467 */
2241 adbHardware = ADB_HW_IISI;
2242 printf_intr("adb: using IIsi series hardware support\n");
2243 break;
2244 case 21: /* PowerBook 170 */
2245 case 25: /* PowerBook 140 */
2246 case 54: /* PowerBook 145 */
2247 case 34: /* PowerBook 160 */
2248 case 84: /* PowerBook 165 */
2249 case 50: /* PowerBook 165c */
2250 case 33: /* PowerBook 180 */
2251 case 71: /* PowerBook 180c */
2252 case 115: /* PowerBook 150 */
2253 adbHardware = ADB_HW_PB;
2254 pm_setup_adb();
2255 printf_intr("adb: using PowerBook 100-series hardware support\n");
2256 break;
2257 case 29: /* PowerBook Duo 210 */
2258 case 32: /* PowerBook Duo 230 */
2259 case 38: /* PowerBook Duo 250 */
2260 case 72: /* PowerBook 500 series */
2261 case 77: /* PowerBook Duo 270 */
2262 case 102: /* PowerBook Duo 280 */
2263 case 103: /* PowerBook Duo 280c */
2264 adbHardware = ADB_HW_PB;
2265 pm_setup_adb();
2266 printf_intr("adb: using PowerBook Duo-series and PowerBook 500-series hardware support\n");
2267 break;
2268 case 49: /* Color Classic */
2269 case 56: /* LC 520 */
2270 case 60: /* Centris 660AV */
2271 case 78: /* Quadra 840AV */
2272 case 80: /* LC 550, Performa 550 */
2273 case 83: /* Color Classic II */
2274 case 89: /* LC 475, Performa 475/476 */
2275 case 92: /* LC 575, Performa 575/577/578 */
2276 case 94: /* Quadra 605 */
2277 case 98: /* LC 630, Performa 630, Quadra 630 */
2278 adbHardware = ADB_HW_CUDA;
2279 printf_intr("adb: using Cuda series hardware support\n");
2280 break;
2281 default:
2282 adbHardware = ADB_HW_UNKNOWN;
2283 printf_intr("adb: hardware type unknown for this machine\n");
2284 printf_intr("adb: ADB support is disabled\n");
2285 break;
2286 }
2287
2288 /*
2289 * Determine whether this machine has ADB based soft power.
2290 */
2291 switch (response) {
2292 case 18: /* IIsi */
2293 case 20: /* Quadra 900 - not sure if IIsi or not */
2294 case 26: /* Quadra 950 - not sure if IIsi or not */
2295 case 44: /* IIvi */
2296 case 45: /* Performa 600 */
2297 case 48: /* IIvx */
2298 case 49: /* Color Classic */
2299 case 83: /* Color Classic II */
2300 case 56: /* LC 520 */
2301 case 78: /* Quadra 840AV */
2302 case 80: /* LC 550, Performa 550 */
2303 case 92: /* LC 575, Performa 575/577/578 */
2304 case 98: /* LC 630, Performa 630, Quadra 630 */
2305 adbSoftPower=1;
2306 break;
2307 }
2308 }
2309
2310 int
2311 count_adbs(void)
2312 {
2313 int i;
2314 int found;
2315
2316 found = 0;
2317
2318 for (i = 1; i < 16; i++)
2319 if (0 != ADBDevTable[i].devType)
2320 found++;
2321
2322 return found;
2323 }
2324
2325 int
2326 get_ind_adb_info(ADBDataBlock * info, int index)
2327 {
2328 if ((index < 1) || (index > 15)) /* check range 1-15 */
2329 return (-1);
2330
2331 /* printf_intr("index 0x%x devType is: 0x%x\n", index,
2332 ADBDevTable[index].devType); */
2333 if (0 == ADBDevTable[index].devType) /* make sure it's a valid entry */
2334 return (-1);
2335
2336 info->devType = ADBDevTable[index].devType;
2337 info->origADBAddr = ADBDevTable[index].origAddr;
2338 info->dbServiceRtPtr = (Ptr) ADBDevTable[index].ServiceRtPtr;
2339 info->dbDataAreaAddr = (Ptr) ADBDevTable[index].DataAreaAddr;
2340
2341 return (ADBDevTable[index].currentAddr);
2342 }
2343
2344 int
2345 get_adb_info(ADBDataBlock * info, int adbAddr)
2346 {
2347 int i;
2348
2349 if ((adbAddr < 1) || (adbAddr > 15)) /* check range 1-15 */
2350 return (-1);
2351
2352 for (i = 1; i < 15; i++)
2353 if (ADBDevTable[i].currentAddr == adbAddr) {
2354 info->devType = ADBDevTable[i].devType;
2355 info->origADBAddr = ADBDevTable[i].origAddr;
2356 info->dbServiceRtPtr = (Ptr)ADBDevTable[i].ServiceRtPtr;
2357 info->dbDataAreaAddr = ADBDevTable[i].DataAreaAddr;
2358 return 0; /* found */
2359 }
2360
2361 return (-1); /* not found */
2362 }
2363
2364 int
2365 set_adb_info(ADBSetInfoBlock * info, int adbAddr)
2366 {
2367 int i;
2368
2369 if ((adbAddr < 1) || (adbAddr > 15)) /* check range 1-15 */
2370 return (-1);
2371
2372 for (i = 1; i < 15; i++)
2373 if (ADBDevTable[i].currentAddr == adbAddr) {
2374 ADBDevTable[i].ServiceRtPtr =
2375 (void *)(info->siServiceRtPtr);
2376 ADBDevTable[i].DataAreaAddr = info->siDataAreaAddr;
2377 return 0; /* found */
2378 }
2379
2380 return (-1); /* not found */
2381
2382 }
2383
2384 #ifndef MRG_ADB
2385 long
2386 mrg_adbintr(void)
2387 {
2388 adb_intr();
2389 return 1; /* mimic mrg_adbintr in macrom.h just in case */
2390 }
2391
2392 long
2393 mrg_pmintr(void)
2394 {
2395 pm_intr();
2396 return 1; /* mimic mrg_pmintr in macrom.h just in case */
2397 }
2398 #endif
2399
2400 /* caller should really use machine-independant version: getPramTime */
2401 /* this version does pseudo-adb access only */
2402 int
2403 adb_read_date_time(unsigned long *time)
2404 {
2405 u_char output[ADB_MAX_MSG_LENGTH];
2406 int result;
2407 volatile int flag = 0;
2408
2409 switch (adbHardware) {
2410 case ADB_HW_II:
2411 return -1;
2412
2413 case ADB_HW_IISI:
2414 output[0] = 0x02; /* 2 byte message */
2415 output[1] = 0x01; /* to pram/rtc device */
2416 output[2] = 0x03; /* read date/time */
2417 result = send_adb_IIsi((u_char *) output,
2418 (u_char *) output, (void *) adb_op_comprout,
2419 (int *) &flag, (int) 0);
2420 if (result != 0) /* exit if not sent */
2421 return -1;
2422
2423 while (0 == flag) /* wait for result */
2424 ;
2425
2426 *time = (long) (*(long *) (output + 1));
2427 return 0;
2428
2429 case ADB_HW_PB:
2430 return -1;
2431
2432 case ADB_HW_CUDA:
2433 output[0] = 0x02; /* 2 byte message */
2434 output[1] = 0x01; /* to pram/rtc device */
2435 output[2] = 0x03; /* read date/time */
2436 result = send_adb_cuda((u_char *) output,
2437 (u_char *) output, (void *) adb_op_comprout,
2438 (void *) &flag, (int) 0);
2439 if (result != 0) /* exit if not sent */
2440 return -1;
2441
2442 while (0 == flag) /* wait for result */
2443 ;
2444
2445 *time = (long) (*(long *) (output + 1));
2446 return 0;
2447
2448 case ADB_HW_UNKNOWN:
2449 default:
2450 return -1;
2451 }
2452 }
2453
2454 /* caller should really use machine-independant version: setPramTime */
2455 /* this version does pseudo-adb access only */
2456 int
2457 adb_set_date_time(unsigned long time)
2458 {
2459 u_char output[ADB_MAX_MSG_LENGTH];
2460 int result;
2461 volatile int flag = 0;
2462
2463 switch (adbHardware) {
2464 case ADB_HW_II:
2465 return -1;
2466
2467 case ADB_HW_IISI:
2468 output[0] = 0x06; /* 6 byte message */
2469 output[1] = 0x01; /* to pram/rtc device */
2470 output[2] = 0x09; /* set date/time */
2471 output[3] = (u_char) (time >> 24);
2472 output[4] = (u_char) (time >> 16);
2473 output[5] = (u_char) (time >> 8);
2474 output[6] = (u_char) (time);
2475 result = send_adb_IIsi((u_char *) output,
2476 (u_char *) 0, (void *) adb_op_comprout,
2477 (void *) &flag, (int) 0);
2478 if (result != 0) /* exit if not sent */
2479 return -1;
2480
2481 while (0 == flag) /* wait for send to finish */
2482 ;
2483
2484 return 0;
2485
2486 case ADB_HW_PB:
2487 return -1;
2488
2489 case ADB_HW_CUDA:
2490 output[0] = 0x06; /* 6 byte message */
2491 output[1] = 0x01; /* to pram/rtc device */
2492 output[2] = 0x09; /* set date/time */
2493 output[3] = (u_char) (time >> 24);
2494 output[4] = (u_char) (time >> 16);
2495 output[5] = (u_char) (time >> 8);
2496 output[6] = (u_char) (time);
2497 result = send_adb_cuda((u_char *) output,
2498 (u_char *) 0, (void *) adb_op_comprout,
2499 (void *) &flag, (int) 0);
2500 if (result != 0) /* exit if not sent */
2501 return -1;
2502
2503 while (0 == flag) /* wait for send to finish */
2504 ;
2505
2506 return 0;
2507
2508 case ADB_HW_UNKNOWN:
2509 default:
2510 return -1;
2511 }
2512 }
2513
2514
2515 int
2516 adb_poweroff(void)
2517 {
2518 u_char output[ADB_MAX_MSG_LENGTH];
2519 int result;
2520
2521 if (!adbSoftPower)
2522 return -1;
2523
2524 switch (adbHardware) {
2525 case ADB_HW_IISI:
2526 output[0] = 0x02; /* 2 byte message */
2527 output[1] = 0x01; /* to pram/rtc/soft-power device */
2528 output[2] = 0x0a; /* set date/time */
2529 result = send_adb_IIsi((u_char *) output,
2530 (u_char *) 0, (void *) 0, (void *) 0, (int) 0);
2531 if (result != 0) /* exit if not sent */
2532 return -1;
2533
2534 for (;;); /* wait for power off */
2535
2536 return 0;
2537
2538 case ADB_HW_PB:
2539 return -1;
2540
2541 case ADB_HW_CUDA:
2542 output[0] = 0x02; /* 2 byte message */
2543 output[1] = 0x01; /* to pram/rtc/soft-power device */
2544 output[2] = 0x0a; /* set date/time */
2545 result = send_adb_cuda((u_char *) output,
2546 (u_char *) 0, (void *) 0, (void *) 0, (int) 0);
2547 if (result != 0) /* exit if not sent */
2548 return -1;
2549
2550 for (;;); /* wait for power off */
2551
2552 return 0;
2553
2554 case ADB_HW_II: /* II models don't do ADB soft power */
2555 case ADB_HW_UNKNOWN:
2556 default:
2557 return -1;
2558 }
2559 }
2560
2561 int
2562 adb_prog_switch_enable(void)
2563 {
2564 u_char output[ADB_MAX_MSG_LENGTH];
2565 int result;
2566 volatile int flag = 0;
2567
2568 switch (adbHardware) {
2569 case ADB_HW_IISI:
2570 output[0] = 0x03; /* 3 byte message */
2571 output[1] = 0x01; /* to pram/rtc/soft-power device */
2572 output[2] = 0x1c; /* prog. switch control */
2573 output[3] = 0x01; /* enable */
2574 result = send_adb_IIsi((u_char *) output,
2575 (u_char *) 0, (void *) adb_op_comprout,
2576 (void *) &flag, (int) 0);
2577 if (result != 0) /* exit if not sent */
2578 return -1;
2579
2580 while (0 == flag) /* wait for send to finish */
2581 ;
2582
2583 return 0;
2584
2585 case ADB_HW_PB:
2586 return -1;
2587
2588 case ADB_HW_II: /* II models don't do prog. switch */
2589 case ADB_HW_CUDA: /* cuda doesn't do prog. switch TO DO: verify this */
2590 case ADB_HW_UNKNOWN:
2591 default:
2592 return -1;
2593 }
2594 }
2595
2596 int
2597 adb_prog_switch_disable(void)
2598 {
2599 u_char output[ADB_MAX_MSG_LENGTH];
2600 int result;
2601 volatile int flag = 0;
2602
2603 switch (adbHardware) {
2604 case ADB_HW_IISI:
2605 output[0] = 0x03; /* 3 byte message */
2606 output[1] = 0x01; /* to pram/rtc/soft-power device */
2607 output[2] = 0x1c; /* prog. switch control */
2608 output[3] = 0x01; /* disable */
2609 result = send_adb_IIsi((u_char *) output,
2610 (u_char *) 0, (void *) adb_op_comprout,
2611 (void *) &flag, (int) 0);
2612 if (result != 0) /* exit if not sent */
2613 return -1;
2614
2615 while (0 == flag) /* wait for send to finish */
2616 ;
2617
2618 return 0;
2619
2620 case ADB_HW_PB:
2621 return -1;
2622
2623 case ADB_HW_II: /* II models don't do prog. switch */
2624 case ADB_HW_CUDA: /* cuda doesn't do prog. switch */
2625 case ADB_HW_UNKNOWN:
2626 default:
2627 return -1;
2628 }
2629 }
2630
2631 #ifndef MRG_ADB
2632
2633 int
2634 CountADBs(void)
2635 {
2636 return (count_adbs());
2637 }
2638
2639 void
2640 ADBReInit(void)
2641 {
2642 adb_reinit();
2643 }
2644
2645 int
2646 GetIndADB(ADBDataBlock * info, int index)
2647 {
2648 return (get_ind_adb_info(info, index));
2649 }
2650
2651 int
2652 GetADBInfo(ADBDataBlock * info, int adbAddr)
2653 {
2654 return (get_adb_info(info, adbAddr));
2655 }
2656
2657 int
2658 SetADBInfo(ADBSetInfoBlock * info, int adbAddr)
2659 {
2660 return (set_adb_info(info, adbAddr));
2661 }
2662
2663 int
2664 ADBOp(Ptr buffer, Ptr compRout, Ptr data, short commandNum)
2665 {
2666 return (adb_op(buffer, compRout, data, commandNum));
2667 }
2668
2669 #endif
2670
2671