adb_direct.c revision 1.15 1 /* $NetBSD: adb_direct.c,v 1.15 1998/08/12 05:42:44 scottr Exp $ */
2
3 /* From: adb_direct.c 2.02 4/18/97 jpw */
4
5 /*
6 * Copyright (C) 1996, 1997 John P. Wittkoski
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by John P. Wittkoski.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*
36 * This code is rather messy, but I don't have time right now
37 * to clean it up as much as I would like.
38 * But it works, so I'm happy. :-) jpw
39 */
40
41 /*
42 * TO DO:
43 * - We could reduce the time spent in the adb_intr_* routines
44 * by having them save the incoming and outgoing data directly
45 * in the adbInbound and adbOutbound queues, as it would reduce
46 * the number of times we need to copy the data around. It
47 * would also make the code more readable and easier to follow.
48 * - (Related to above) Use the header part of adbCommand to
49 * reduce the number of copies we have to do of the data.
50 * - (Related to above) Actually implement the adbOutbound queue.
51 * This is fairly easy once you switch all the intr routines
52 * over to using adbCommand structs directly.
53 * - There is a bug in the state machine of adb_intr_cuda
54 * code that causes hangs, especially on 030 machines, probably
55 * because of some timing issues. Because I have been unable to
56 * determine the exact cause of this bug, I used the timeout function
57 * to check for and recover from this condition. If anyone finds
58 * the actual cause of this bug, the calls to timeout and the
59 * adb_cuda_tickle routine can be removed.
60 */
61
62 #ifdef __NetBSD__
63 #include "opt_adb.h"
64
65 #include <sys/param.h>
66 #include <sys/cdefs.h>
67 #include <sys/systm.h>
68
69 #include <machine/viareg.h>
70 #include <machine/param.h>
71 #include <machine/cpu.h>
72 #include <machine/adbsys.h> /* required for adbvar.h */
73
74 #include <mac68k/mac68k/macrom.h>
75 #include <mac68k/dev/adb_direct.h>
76 #include <mac68k/dev/adbvar.h>
77 #define printf_intr printf
78 #else /* !__NetBSD__, i.e. Mac OS */
79 #include "via.h" /* for macos based testing */
80 /* #define ADB_DEBUG */ /* more verbose for testing */
81 #endif /* __NetBSD__ */
82
83 #ifdef DEBUG
84 #ifndef ADB_DEBUG
85 #define ADB_DEBUG
86 #endif
87 #endif
88
89 /* some misc. leftovers */
90 #define vPB 0x0000
91 #define vPB3 0x08
92 #define vPB4 0x10
93 #define vPB5 0x20
94 #define vSR_INT 0x04
95 #define vSR_OUT 0x10
96
97 /* types of adb hardware that we (will eventually) support */
98 #define ADB_HW_UNKNOWN 0x01 /* don't know */
99 #define ADB_HW_II 0x02 /* Mac II series */
100 #define ADB_HW_IISI 0x03 /* Mac IIsi series */
101 #define ADB_HW_PB 0x04 /* PowerBook series */
102 #define ADB_HW_CUDA 0x05 /* Machines with a Cuda chip */
103
104 /* the type of ADB action that we are currently preforming */
105 #define ADB_ACTION_NOTREADY 0x01 /* has not been initialized yet */
106 #define ADB_ACTION_IDLE 0x02 /* the bus is currently idle */
107 #define ADB_ACTION_OUT 0x03 /* sending out a command */
108 #define ADB_ACTION_IN 0x04 /* receiving data */
109 #define ADB_ACTION_POLLING 0x05 /* polling - II only */
110
111 /*
112 * These describe the state of the ADB bus itself, although they
113 * don't necessarily correspond directly to ADB states.
114 * Note: these are not really used in the IIsi code.
115 */
116 #define ADB_BUS_UNKNOWN 0x01 /* we don't know yet - all models */
117 #define ADB_BUS_IDLE 0x02 /* bus is idle - all models */
118 #define ADB_BUS_CMD 0x03 /* starting a command - II models */
119 #define ADB_BUS_ODD 0x04 /* the "odd" state - II models */
120 #define ADB_BUS_EVEN 0x05 /* the "even" state - II models */
121 #define ADB_BUS_ACTIVE 0x06 /* active state - IIsi models */
122 #define ADB_BUS_ACK 0x07 /* currently ACKing - IIsi models */
123
124 /*
125 * Shortcuts for setting or testing the VIA bit states.
126 * Not all shortcuts are used for every type of ADB hardware.
127 */
128 #define ADB_SET_STATE_IDLE_II() via_reg(VIA1, vBufB) |= (vPB4 | vPB5)
129 #define ADB_SET_STATE_IDLE_IISI() via_reg(VIA1, vBufB) &= ~(vPB4 | vPB5)
130 #define ADB_SET_STATE_IDLE_CUDA() via_reg(VIA1, vBufB) |= (vPB4 | vPB5)
131 #define ADB_SET_STATE_CMD() via_reg(VIA1, vBufB) &= ~(vPB4 | vPB5)
132 #define ADB_SET_STATE_EVEN() via_reg(VIA1, vBufB) = ((via_reg(VIA1, \
133 vBufB) | vPB4) & ~vPB5)
134 #define ADB_SET_STATE_ODD() via_reg(VIA1, vBufB) = ((via_reg(VIA1, \
135 vBufB) | vPB5) & ~vPB4)
136 #define ADB_SET_STATE_ACTIVE() via_reg(VIA1, vBufB) |= vPB5
137 #define ADB_SET_STATE_INACTIVE() via_reg(VIA1, vBufB) &= ~vPB5
138 #define ADB_SET_STATE_TIP() via_reg(VIA1, vBufB) &= ~vPB5
139 #define ADB_CLR_STATE_TIP() via_reg(VIA1, vBufB) |= vPB5
140 #define ADB_SET_STATE_ACKON() via_reg(VIA1, vBufB) |= vPB4
141 #define ADB_SET_STATE_ACKOFF() via_reg(VIA1, vBufB) &= ~vPB4
142 #define ADB_TOGGLE_STATE_ACK_CUDA() via_reg(VIA1, vBufB) ^= vPB4
143 #define ADB_SET_STATE_ACKON_CUDA() via_reg(VIA1, vBufB) &= ~vPB4
144 #define ADB_SET_STATE_ACKOFF_CUDA() via_reg(VIA1, vBufB) |= vPB4
145 #define ADB_SET_SR_INPUT() via_reg(VIA1, vACR) &= ~vSR_OUT
146 #define ADB_SET_SR_OUTPUT() via_reg(VIA1, vACR) |= vSR_OUT
147 #define ADB_SR() via_reg(VIA1, vSR)
148 #define ADB_VIA_INTR_ENABLE() via_reg(VIA1, vIER) = 0x84
149 #define ADB_VIA_INTR_DISABLE() via_reg(VIA1, vIER) = 0x04
150 #define ADB_VIA_CLR_INTR() via_reg(VIA1, vIFR) = 0x04
151 #define ADB_INTR_IS_OFF (vPB3 == (via_reg(VIA1, vBufB) & vPB3))
152 #define ADB_INTR_IS_ON (0 == (via_reg(VIA1, vBufB) & vPB3))
153 #define ADB_SR_INTR_IS_OFF (0 == (via_reg(VIA1, vIFR) & vSR_INT))
154 #define ADB_SR_INTR_IS_ON (vSR_INT == (via_reg(VIA1, \
155 vIFR) & vSR_INT))
156
157 /*
158 * This is the delay that is required (in uS) between certain
159 * ADB transactions. The actual timing delay for for each uS is
160 * calculated at boot time to account for differences in machine speed.
161 */
162 #define ADB_DELAY 150
163
164 /*
165 * Maximum ADB message length; includes space for data, result, and
166 * device code - plus a little for safety.
167 */
168 #define ADB_MAX_MSG_LENGTH 16
169 #define ADB_MAX_HDR_LENGTH 8
170
171 #define ADB_QUEUE 32
172 #define ADB_TICKLE_TICKS 4
173
174 /*
175 * A structure for storing information about each ADB device.
176 */
177 struct ADBDevEntry {
178 void (*ServiceRtPtr) __P((void));
179 void *DataAreaAddr;
180 char devType;
181 char origAddr;
182 char currentAddr;
183 };
184
185 /*
186 * Used to hold ADB commands that are waiting to be sent out.
187 */
188 struct adbCmdHoldEntry {
189 u_char outBuf[ADB_MAX_MSG_LENGTH]; /* our message */
190 u_char *saveBuf; /* buffer to know where to save result */
191 u_char *compRout; /* completion routine pointer */
192 u_char *data; /* completion routine data pointer */
193 };
194
195 /*
196 * Eventually used for two separate queues, the queue between
197 * the upper and lower halves, and the outgoing packet queue.
198 * TO DO: adbCommand can replace all of adbCmdHoldEntry eventually
199 */
200 struct adbCommand {
201 u_char header[ADB_MAX_HDR_LENGTH]; /* not used yet */
202 u_char data[ADB_MAX_MSG_LENGTH]; /* packet data only */
203 u_char *saveBuf; /* where to save result */
204 u_char *compRout; /* completion routine pointer */
205 u_char *compData; /* completion routine data pointer */
206 u_int cmd; /* the original command for this data */
207 u_int unsol; /* 1 if packet was unsolicited */
208 u_int ack_only; /* 1 for no special processing */
209 };
210
211 /*
212 * A few variables that we need and their initial values.
213 */
214 int adbHardware = ADB_HW_UNKNOWN;
215 int adbActionState = ADB_ACTION_NOTREADY;
216 int adbBusState = ADB_BUS_UNKNOWN;
217 int adbWaiting = 0; /* waiting for return data from the device */
218 int adbWriteDelay = 0; /* working on (or waiting to do) a write */
219 int adbOutQueueHasData = 0; /* something in the queue waiting to go out */
220 int adbNextEnd = 0; /* the next incoming bute is the last (II) */
221 int adbSoftPower = 0; /* machine supports soft power */
222
223 int adbWaitingCmd = 0; /* ADB command we are waiting for */
224 u_char *adbBuffer = (long)0; /* pointer to user data area */
225 void *adbCompRout = (long)0; /* pointer to the completion routine */
226 void *adbCompData = (long)0; /* pointer to the completion routine data */
227 long adbFakeInts = 0; /* keeps track of fake ADB interrupts for
228 * timeouts (II) */
229 int adbStarting = 1; /* doing ADBReInit so do polling differently */
230 int adbSendTalk = 0; /* the intr routine is sending the talk, not
231 * the user (II) */
232 int adbPolling = 0; /* we are polling for service request */
233 int adbPollCmd = 0; /* the last poll command we sent */
234
235 u_char adbInputBuffer[ADB_MAX_MSG_LENGTH]; /* data input buffer */
236 u_char adbOutputBuffer[ADB_MAX_MSG_LENGTH]; /* data output buffer */
237 struct adbCmdHoldEntry adbOutQueue; /* our 1 entry output queue */
238
239 int adbSentChars = 0; /* how many characters we have sent */
240 int adbLastDevice = 0; /* last ADB dev we heard from (II ONLY) */
241 int adbLastDevIndex = 0; /* last ADB dev loc in dev table (II ONLY) */
242 int adbLastCommand = 0; /* the last ADB command we sent (II) */
243
244 struct ADBDevEntry ADBDevTable[16]; /* our ADB device table */
245 int ADBNumDevices; /* num. of ADB devices found with ADBReInit */
246
247 struct adbCommand adbInbound[ADB_QUEUE]; /* incoming queue */
248 int adbInCount = 0; /* how many packets in in queue */
249 int adbInHead = 0; /* head of in queue */
250 int adbInTail = 0; /* tail of in queue */
251 struct adbCommand adbOutbound[ADB_QUEUE]; /* outgoing queue - not used yet */
252 int adbOutCount = 0; /* how many packets in out queue */
253 int adbOutHead = 0; /* head of out queue */
254 int adbOutTail = 0; /* tail of out queue */
255
256 int tickle_count = 0; /* how many tickles seen for this packet? */
257 int tickle_serial = 0; /* the last packet tickled */
258 int adb_cuda_serial = 0; /* the current packet */
259
260 extern struct mac68k_machine_S mac68k_machine;
261
262 #if 0
263 int zshard __P((int));
264 #endif
265
266 void pm_setup_adb __P((void));
267 void pm_check_adb_devices __P((int));
268 void pm_intr __P((void));
269 int pm_adb_op __P((u_char *, void *, void *, int));
270 void pm_init_adb_device __P((void));
271
272 /*
273 * The following are private routines.
274 */
275 void print_single __P((u_char *));
276 void adb_intr __P((void));
277 void adb_intr_II __P((void));
278 void adb_intr_IIsi __P((void));
279 void adb_intr_cuda __P((void));
280 void adb_soft_intr __P((void));
281 int send_adb_II __P((u_char *, u_char *, void *, void *, int));
282 int send_adb_IIsi __P((u_char *, u_char *, void *, void *, int));
283 int send_adb_cuda __P((u_char *, u_char *, void *, void *, int));
284 void adb_intr_cuda_test __P((void));
285 void adb_cuda_tickle __P((void));
286 void adb_pass_up __P((struct adbCommand *));
287 void adb_op_comprout __P((void));
288 void adb_reinit __P((void));
289 int count_adbs __P((void));
290 int get_ind_adb_info __P((ADBDataBlock *, int));
291 int get_adb_info __P((ADBDataBlock *, int));
292 int set_adb_info __P((ADBSetInfoBlock *, int));
293 void adb_setup_hw_type __P((void));
294 int adb_op __P((Ptr, Ptr, Ptr, short));
295 int adb_op_sync __P((Ptr, Ptr, Ptr, short));
296 void adb_read_II __P((u_char *));
297 void adb_hw_setup __P((void));
298 void adb_hw_setup_IIsi __P((u_char *));
299 void adb_comp_exec __P((void));
300 int adb_cmd_result __P((u_char *));
301 int adb_cmd_extra __P((u_char *));
302 int adb_guess_next_device __P((void));
303 int adb_prog_switch_enable __P((void));
304 int adb_prog_switch_disable __P((void));
305 /* we should create this and it will be the public version */
306 int send_adb __P((u_char *, void *, void *));
307
308 /*
309 * print_single
310 * Diagnostic display routine. Displays the hex values of the
311 * specified elements of the u_char. The length of the "string"
312 * is in [0].
313 */
314 void
315 print_single(thestring)
316 u_char *thestring;
317 {
318 int x;
319
320 if ((int)(thestring[0]) == 0) {
321 printf_intr("nothing returned\n");
322 return;
323 }
324 if (thestring == 0) {
325 printf_intr("no data - null pointer\n");
326 return;
327 }
328 if (thestring[0] > 20) {
329 printf_intr("ADB: ACK > 20 no way!\n");
330 thestring[0] = 20;
331 }
332 printf_intr("(length=0x%x):", thestring[0]);
333 for (x = 0; x < thestring[0]; x++)
334 printf_intr(" 0x%02x", thestring[x + 1]);
335 printf_intr("\n");
336 }
337
338 void
339 adb_cuda_tickle(void)
340 {
341 volatile int s;
342
343 if (adbActionState == ADB_ACTION_IN) {
344 if (tickle_serial == adb_cuda_serial) {
345 if (++tickle_count > 0) {
346 s = splhigh();
347 adbActionState = ADB_ACTION_IDLE;
348 adbInputBuffer[0] = 0;
349 ADB_SET_STATE_IDLE_CUDA();
350 splx(s);
351 }
352 } else {
353 tickle_serial = adb_cuda_serial;
354 tickle_count = 0;
355 }
356 } else {
357 tickle_serial = adb_cuda_serial;
358 tickle_count = 0;
359 }
360
361 timeout((void *)adb_cuda_tickle, 0, ADB_TICKLE_TICKS);
362 }
363
364 /*
365 * called when when an adb interrupt happens
366 *
367 * Cuda version of adb_intr
368 * TO DO: do we want to add some zshard calls in here?
369 */
370 void
371 adb_intr_cuda(void)
372 {
373 volatile int i, ending;
374 volatile unsigned int s;
375 struct adbCommand packet;
376
377 s = splhigh(); /* can't be too careful - might be called */
378 /* from a routine, NOT an interrupt */
379
380 ADB_VIA_CLR_INTR(); /* clear interrupt */
381 ADB_VIA_INTR_DISABLE(); /* disable ADB interrupt on IIs. */
382
383 switch_start:
384 switch (adbActionState) {
385 case ADB_ACTION_IDLE:
386 /*
387 * This is an unexpected packet, so grab the first (dummy)
388 * byte, set up the proper vars, and tell the chip we are
389 * starting to receive the packet by setting the TIP bit.
390 */
391 adbInputBuffer[1] = ADB_SR();
392 adb_cuda_serial++;
393 if (ADB_INTR_IS_OFF) /* must have been a fake start */
394 break;
395
396 ADB_SET_SR_INPUT();
397 ADB_SET_STATE_TIP();
398
399 adbInputBuffer[0] = 1;
400 adbActionState = ADB_ACTION_IN;
401 #ifdef ADB_DEBUG
402 if (adb_debug)
403 printf_intr("idle 0x%02x ", adbInputBuffer[1]);
404 #endif
405 break;
406
407 case ADB_ACTION_IN:
408 adbInputBuffer[++adbInputBuffer[0]] = ADB_SR();
409 /* intr off means this is the last byte (end of frame) */
410 if (ADB_INTR_IS_OFF)
411 ending = 1;
412 else
413 ending = 0;
414
415 if (1 == ending) { /* end of message? */
416 #ifdef ADB_DEBUG
417 if (adb_debug) {
418 printf_intr("in end 0x%02x ",
419 adbInputBuffer[adbInputBuffer[0]]);
420 print_single(adbInputBuffer);
421 }
422 #endif
423
424 /*
425 * Are we waiting AND does this packet match what we
426 * are waiting for AND is it coming from either the
427 * ADB or RTC/PRAM sub-device? This section _should_
428 * recognize all ADB and RTC/PRAM type commands, but
429 * there may be more... NOTE: commands are always at
430 * [4], even for RTC/PRAM commands.
431 */
432 /* set up data for adb_pass_up */
433 for (i = 0; i <= adbInputBuffer[0]; i++)
434 packet.data[i] = adbInputBuffer[i];
435
436 if ((adbWaiting == 1) &&
437 (adbInputBuffer[4] == adbWaitingCmd) &&
438 ((adbInputBuffer[2] == 0x00) ||
439 (adbInputBuffer[2] == 0x01))) {
440 packet.saveBuf = adbBuffer;
441 packet.compRout = adbCompRout;
442 packet.compData = adbCompData;
443 packet.unsol = 0;
444 packet.ack_only = 0;
445 adb_pass_up(&packet);
446
447 adbWaitingCmd = 0; /* reset "waiting" vars */
448 adbWaiting = 0;
449 adbBuffer = (long)0;
450 adbCompRout = (long)0;
451 adbCompData = (long)0;
452 } else {
453 packet.unsol = 1;
454 packet.ack_only = 0;
455 adb_pass_up(&packet);
456 }
457
458
459 /* reset vars and signal the end of this frame */
460 adbActionState = ADB_ACTION_IDLE;
461 adbInputBuffer[0] = 0;
462 ADB_SET_STATE_IDLE_CUDA();
463 /*ADB_SET_SR_INPUT();*/
464
465 /*
466 * If there is something waiting to be sent out,
467 * the set everything up and send the first byte.
468 */
469 if (adbWriteDelay == 1) {
470 delay(ADB_DELAY); /* required */
471 adbSentChars = 0;
472 adbActionState = ADB_ACTION_OUT;
473 /*
474 * If the interrupt is on, we were too slow
475 * and the chip has already started to send
476 * something to us, so back out of the write
477 * and start a read cycle.
478 */
479 if (ADB_INTR_IS_ON) {
480 ADB_SET_SR_INPUT();
481 ADB_SET_STATE_IDLE_CUDA();
482 adbSentChars = 0;
483 adbActionState = ADB_ACTION_IDLE;
484 adbInputBuffer[0] = 0;
485 break;
486 }
487 /*
488 * If we got here, it's ok to start sending
489 * so load the first byte and tell the chip
490 * we want to send.
491 */
492 ADB_SET_STATE_TIP();
493 ADB_SET_SR_OUTPUT();
494 ADB_SR() = adbOutputBuffer[adbSentChars + 1];
495 }
496 } else {
497 ADB_TOGGLE_STATE_ACK_CUDA();
498 #ifdef ADB_DEBUG
499 if (adb_debug)
500 printf_intr("in 0x%02x ",
501 adbInputBuffer[adbInputBuffer[0]]);
502 #endif
503 }
504 break;
505
506 case ADB_ACTION_OUT:
507 i = ADB_SR(); /* reset SR-intr in IFR */
508 #ifdef ADB_DEBUG
509 if (adb_debug)
510 printf_intr("intr out 0x%02x ", i);
511 #endif
512
513 adbSentChars++;
514 if (ADB_INTR_IS_ON) { /* ADB intr low during write */
515 #ifdef ADB_DEBUG
516 if (adb_debug)
517 printf_intr("intr was on ");
518 #endif
519 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
520 ADB_SET_STATE_IDLE_CUDA();
521 adbSentChars = 0; /* must start all over */
522 adbActionState = ADB_ACTION_IDLE; /* new state */
523 adbInputBuffer[0] = 0;
524 adbWriteDelay = 1; /* must retry when done with
525 * read */
526 delay(ADB_DELAY);
527 goto switch_start; /* process next state right
528 * now */
529 break;
530 }
531 if (adbOutputBuffer[0] == adbSentChars) { /* check for done */
532 if (0 == adb_cmd_result(adbOutputBuffer)) { /* do we expect data
533 * back? */
534 adbWaiting = 1; /* signal waiting for return */
535 adbWaitingCmd = adbOutputBuffer[2]; /* save waiting command */
536 } else { /* no talk, so done */
537 /* set up stuff for adb_pass_up */
538 for (i = 0; i <= adbInputBuffer[0]; i++)
539 packet.data[i] = adbInputBuffer[i];
540 packet.saveBuf = adbBuffer;
541 packet.compRout = adbCompRout;
542 packet.compData = adbCompData;
543 packet.cmd = adbWaitingCmd;
544 packet.unsol = 0;
545 packet.ack_only = 1;
546 adb_pass_up(&packet);
547
548 /* reset "waiting" vars, just in case */
549 adbWaitingCmd = 0;
550 adbBuffer = (long)0;
551 adbCompRout = (long)0;
552 adbCompData = (long)0;
553 }
554
555 adbWriteDelay = 0; /* done writing */
556 adbActionState = ADB_ACTION_IDLE; /* signal bus is idle */
557 ADB_SET_SR_INPUT();
558 ADB_SET_STATE_IDLE_CUDA();
559 #ifdef ADB_DEBUG
560 if (adb_debug)
561 printf_intr("write done ");
562 #endif
563 } else {
564 ADB_SR() = adbOutputBuffer[adbSentChars + 1]; /* send next byte */
565 ADB_TOGGLE_STATE_ACK_CUDA(); /* signal byte ready to
566 * shift */
567 #ifdef ADB_DEBUG
568 if (adb_debug)
569 printf_intr("toggle ");
570 #endif
571 }
572 break;
573
574 case ADB_ACTION_NOTREADY:
575 printf_intr("adb: not yet initialized\n");
576 break;
577
578 default:
579 printf_intr("intr: unknown ADB state\n");
580 }
581
582 ADB_VIA_INTR_ENABLE(); /* enable ADB interrupt on IIs. */
583
584 splx(s); /* restore */
585
586 return;
587 } /* end adb_intr_cuda */
588
589
590 int
591 send_adb_cuda(u_char * in, u_char * buffer, void *compRout, void *data, int
592 command)
593 {
594 int i, s, len;
595
596 #ifdef ADB_DEBUG
597 if (adb_debug)
598 printf_intr("SEND\n");
599 #endif
600
601 if (adbActionState == ADB_ACTION_NOTREADY)
602 return 1;
603
604 /* Don't interrupt while we are messing with the ADB */
605 s = splhigh();
606
607 if ((adbActionState == ADB_ACTION_IDLE) && /* ADB available? */
608 (ADB_INTR_IS_OFF)) { /* and no incoming interrupt? */
609 } else
610 if (adbWriteDelay == 0) /* it's busy, but is anything waiting? */
611 adbWriteDelay = 1; /* if no, then we'll "queue"
612 * it up */
613 else {
614 splx(s);
615 return 1; /* really busy! */
616 }
617
618 #ifdef ADB_DEBUG
619 if (adb_debug)
620 printf_intr("QUEUE\n");
621 #endif
622 if ((long)in == (long)0) { /* need to convert? */
623 /*
624 * Don't need to use adb_cmd_extra here because this section
625 * will be called ONLY when it is an ADB command (no RTC or
626 * PRAM)
627 */
628 if ((command & 0x0c) == 0x08) /* copy addl data ONLY if
629 * doing a listen! */
630 len = buffer[0]; /* length of additional data */
631 else
632 len = 0;/* no additional data */
633
634 adbOutputBuffer[0] = 2 + len; /* dev. type + command + addl.
635 * data */
636 adbOutputBuffer[1] = 0x00; /* mark as an ADB command */
637 adbOutputBuffer[2] = (u_char)command; /* load command */
638
639 for (i = 1; i <= len; i++) /* copy additional output
640 * data, if any */
641 adbOutputBuffer[2 + i] = buffer[i];
642 } else
643 for (i = 0; i <= (adbOutputBuffer[0] + 1); i++)
644 adbOutputBuffer[i] = in[i];
645
646 adbSentChars = 0; /* nothing sent yet */
647 adbBuffer = buffer; /* save buffer to know where to save result */
648 adbCompRout = compRout; /* save completion routine pointer */
649 adbCompData = data; /* save completion routine data pointer */
650 adbWaitingCmd = adbOutputBuffer[2]; /* save wait command */
651
652 if (adbWriteDelay != 1) { /* start command now? */
653 #ifdef ADB_DEBUG
654 if (adb_debug)
655 printf_intr("out start NOW");
656 #endif
657 delay(ADB_DELAY);
658 adbActionState = ADB_ACTION_OUT; /* set next state */
659 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
660 ADB_SR() = adbOutputBuffer[adbSentChars + 1]; /* load byte for output */
661 ADB_SET_STATE_ACKOFF_CUDA();
662 ADB_SET_STATE_TIP(); /* tell ADB that we want to send */
663 }
664 adbWriteDelay = 1; /* something in the write "queue" */
665
666 splx(s);
667
668 if (0x0100 <= (s & 0x0700)) /* were VIA1 interrupts blocked ? */
669 /* poll until byte done */
670 while ((adbActionState != ADB_ACTION_IDLE) || (ADB_INTR_IS_ON)
671 || (adbWaiting == 1))
672 if (ADB_SR_INTR_IS_ON) { /* wait for "interrupt" */
673 adb_intr_cuda(); /* process it */
674 adb_soft_intr();
675 }
676
677 return 0;
678 } /* send_adb_cuda */
679
680
681 void
682 adb_intr_II(void)
683 {
684 struct adbCommand packet;
685 int i, intr_on = 0;
686 int send = 0;
687 unsigned int s;
688
689 s = splhigh(); /* can't be too careful - might be called */
690 /* from a routine, NOT an interrupt */
691
692 ADB_VIA_CLR_INTR(); /* clear interrupt */
693
694 ADB_VIA_INTR_DISABLE(); /* disable ADB interrupt on IIs. */
695
696 delay(ADB_DELAY); /* yuck (don't remove) */
697 #if 0
698 zshard(0); /* grab any serial interrupts */
699 #else
700 (void)intr_dispatch(0x70);
701 #endif
702
703 if (ADB_INTR_IS_ON)
704 intr_on = 1; /* save for later */
705
706 switch_start:
707 switch (adbActionState) {
708 case ADB_ACTION_POLLING:
709 if (!intr_on) {
710 if (adbOutQueueHasData) {
711 #ifdef ADB_DEBUG
712 if (adb_debug & 0x80)
713 printf_intr("POLL-doing-out-queue. ");
714 #endif
715 /* copy over data */
716 ADB_SET_STATE_IDLE_II();
717 delay(ADB_DELAY);
718 for (i = 0; i <= (adbOutQueue.outBuf[0] + 1); i++)
719 adbOutputBuffer[i] = adbOutQueue.outBuf[i];
720 adbBuffer = adbOutQueue.saveBuf; /* user data area */
721 adbCompRout = adbOutQueue.compRout; /* completion routine */
722 adbCompData = adbOutQueue.data; /* comp. rout. data */
723 adbOutQueueHasData = 0; /* currently processing
724 * "queue" entry */
725 adbSentChars = 0; /* nothing sent yet */
726 adbActionState = ADB_ACTION_OUT; /* set next state */
727 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
728 ADB_SR() = adbOutputBuffer[1]; /* load byte for output */
729 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */
730 ADB_SET_STATE_CMD(); /* tell ADB that we want to
731 * send */
732 break;
733 } else {
734 #ifdef ADB_DEBUG
735 if (adb_debug)
736 printf_intr("pIDLE ");
737 #endif
738 adbActionState = ADB_ACTION_IDLE;
739 }
740 } else {
741 #ifdef ADB_DEBUG
742 if (adb_debug & 0x80)
743 printf_intr("pIN ");
744 #endif
745 adbActionState = ADB_ACTION_IN;
746 }
747 delay(ADB_DELAY);
748 #if 0
749 zshard(0); /* grab any serial interrupts */
750 #else
751 (void)intr_dispatch(0x70);
752 #endif
753 goto switch_start;
754 break;
755 case ADB_ACTION_IDLE:
756 if (!intr_on) {
757 i = ADB_SR();
758 adbBusState = ADB_BUS_IDLE;
759 adbActionState = ADB_ACTION_IDLE;
760 ADB_SET_STATE_IDLE_II();
761 break;
762 }
763 adbInputBuffer[0] = 1;
764 adbInputBuffer[1] = ADB_SR(); /* get first byte */
765 #ifdef ADB_DEBUG
766 if (adb_debug & 0x80)
767 printf_intr("idle 0x%02x ", adbInputBuffer[1]);
768 #endif
769 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
770 adbActionState = ADB_ACTION_IN; /* set next state */
771 ADB_SET_STATE_EVEN(); /* set bus state to even */
772 adbBusState = ADB_BUS_EVEN;
773 break;
774
775 case ADB_ACTION_IN:
776 adbInputBuffer[++adbInputBuffer[0]] = ADB_SR(); /* get byte */
777 #ifdef ADB_DEBUG
778 if (adb_debug & 0x80)
779 printf_intr("in 0x%02x ",
780 adbInputBuffer[adbInputBuffer[0]]);
781 #endif
782 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
783
784 if (intr_on) { /* process last byte of packet */
785 adbInputBuffer[0]--; /* minus one */
786 /*
787 * If intr_on was true, and it's the second byte, then
788 * the byte we just discarded is really valid, so
789 * adjust the count
790 */
791 if (adbInputBuffer[0] == 2) {
792 adbInputBuffer[0]++;
793 }
794
795 #ifdef ADB_DEBUG
796 if (adb_debug & 0x80) {
797 printf_intr("done: ");
798 print_single(adbInputBuffer);
799 }
800 #endif
801
802 adbLastDevice = (adbInputBuffer[1] & 0xf0) >> 4;
803
804 if (adbInputBuffer[0] == 1 && !adbWaiting) { /* SRQ!!!*/
805 #ifdef ADB_DEBUG
806 if (adb_debug & 0x80)
807 printf_intr(" xSRQ! ");
808 #endif
809 adb_guess_next_device();
810 #ifdef ADB_DEBUG
811 if (adb_debug & 0x80)
812 printf_intr("try 0x%0x ",
813 adbLastDevice);
814 #endif
815 adbOutputBuffer[0] = 1;
816 adbOutputBuffer[1] =
817 ((adbLastDevice & 0x0f) << 4) | 0x0c;
818
819 adbSentChars = 0; /* nothing sent yet */
820 adbActionState = ADB_ACTION_POLLING; /* set next state */
821 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
822 ADB_SR() = adbOutputBuffer[1]; /* load byte for output */
823 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */
824 ADB_SET_STATE_CMD(); /* tell ADB that we want to */
825 break;
826 }
827
828 /* set up data for adb_pass_up */
829 for (i = 0; i <= adbInputBuffer[0]; i++)
830 packet.data[i] = adbInputBuffer[i];
831
832 if (!adbWaiting && (adbInputBuffer[0] != 0)) {
833 packet.unsol = 1;
834 packet.ack_only = 0;
835 adb_pass_up(&packet);
836 } else {
837 packet.saveBuf = adbBuffer;
838 packet.compRout = adbCompRout;
839 packet.compData = adbCompData;
840 packet.unsol = 0;
841 packet.ack_only = 0;
842 adb_pass_up(&packet);
843 }
844
845 adbWaiting = 0;
846 adbInputBuffer[0] = 0;
847 adbBuffer = (long)0;
848 adbCompRout = (long)0;
849 adbCompData = (long)0;
850 /*
851 * Since we are done, check whether there is any data
852 * waiting to do out. If so, start the sending the data.
853 */
854 if (adbOutQueueHasData == 1) {
855 #ifdef ADB_DEBUG
856 if (adb_debug & 0x80)
857 printf_intr("XXX: DOING OUT QUEUE\n");
858 #endif
859 /* copy over data */
860 for (i = 0; i <= (adbOutQueue.outBuf[0] + 1); i++)
861 adbOutputBuffer[i] = adbOutQueue.outBuf[i];
862 adbBuffer = adbOutQueue.saveBuf; /* user data area */
863 adbCompRout = adbOutQueue.compRout; /* completion routine */
864 adbCompData = adbOutQueue.data; /* comp. rout. data */
865 adbOutQueueHasData = 0; /* currently processing
866 * "queue" entry */
867 send = 1;
868 } else {
869 #ifdef ADB_DEBUG
870 if (adb_debug & 0x80)
871 printf_intr("XXending ");
872 #endif
873 adb_guess_next_device();
874 adbOutputBuffer[0] = 1;
875 adbOutputBuffer[1] = ((adbLastDevice & 0x0f) << 4) | 0x0c;
876 adbSentChars = 0; /* nothing sent yet */
877 adbActionState = ADB_ACTION_POLLING; /* set next state */
878 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
879 ADB_SR() = adbOutputBuffer[1]; /* load byte for output */
880 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */
881 ADB_SET_STATE_CMD(); /* tell ADB that we want to */
882 break;
883 }
884 }
885
886 /*
887 * If send is true then something above determined that
888 * the message has ended and we need to start sending out
889 * a new message immediately. This could be because there
890 * is data waiting to go out or because an SRQ was seen.
891 */
892 if (send) {
893 adbSentChars = 0; /* nothing sent yet */
894 adbActionState = ADB_ACTION_OUT; /* set next state */
895 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
896 ADB_SR() = adbOutputBuffer[1]; /* load byte for output */
897 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */
898 ADB_SET_STATE_CMD(); /* tell ADB that we want to
899 * send */
900 break;
901 }
902 /* We only get this far if the message hasn't ended yet. */
903 switch (adbBusState) { /* set to next state */
904 case ADB_BUS_EVEN:
905 ADB_SET_STATE_ODD(); /* set state to odd */
906 adbBusState = ADB_BUS_ODD;
907 break;
908
909 case ADB_BUS_ODD:
910 ADB_SET_STATE_EVEN(); /* set state to even */
911 adbBusState = ADB_BUS_EVEN;
912 break;
913 default:
914 printf_intr("strange state!!!\n"); /* huh? */
915 break;
916 }
917 break;
918
919 case ADB_ACTION_OUT:
920 i = ADB_SR(); /* clear interrupt */
921 adbSentChars++;
922 /*
923 * If the outgoing data was a TALK, we must
924 * switch to input mode to get the result.
925 */
926 if ((adbOutputBuffer[1] & 0x0c) == 0x0c) {
927 adbInputBuffer[0] = 1;
928 adbInputBuffer[1] = i;
929 adbActionState = ADB_ACTION_IN;
930 ADB_SET_SR_INPUT();
931 adbBusState = ADB_BUS_EVEN;
932 ADB_SET_STATE_EVEN();
933 #ifdef ADB_DEBUG
934 if (adb_debug & 0x80)
935 printf_intr("talk out 0x%02x ", i);
936 #endif
937 /* we want something back */
938 adbWaiting = 1;
939 break;
940 }
941 /*
942 * If it's not a TALK, check whether all data has been sent.
943 * If so, call the completion routine and clean up. If not,
944 * advance to the next state.
945 */
946 #ifdef ADB_DEBUG
947 if (adb_debug & 0x80)
948 printf_intr("non-talk out 0x%0x ", i);
949 #endif
950 ADB_SET_SR_OUTPUT();
951 if (adbOutputBuffer[0] == adbSentChars) { /* check for done */
952 #ifdef ADB_DEBUG
953 if (adb_debug & 0x80)
954 printf_intr("done \n");
955 #endif
956 /* set up stuff for adb_pass_up */
957 for (i = 0; i <= adbOutputBuffer[0]; i++)
958 packet.data[i] = adbOutputBuffer[i];
959 packet.saveBuf = adbBuffer;
960 packet.compRout = adbCompRout;
961 packet.compData = adbCompData;
962 packet.cmd = adbWaitingCmd;
963 packet.unsol = 0;
964 packet.ack_only = 1;
965 adb_pass_up(&packet);
966
967 /* reset "waiting" vars, just in case */
968 adbBuffer = (long)0;
969 adbCompRout = (long)0;
970 adbCompData = (long)0;
971 if (adbOutQueueHasData == 1) {
972 /* copy over data */
973 for (i = 0; i <= (adbOutQueue.outBuf[0] + 1); i++)
974 adbOutputBuffer[i] = adbOutQueue.outBuf[i];
975 adbBuffer = adbOutQueue.saveBuf; /* user data area */
976 adbCompRout = adbOutQueue.compRout; /* completion routine */
977 adbCompData = adbOutQueue.data; /* comp. rout. data */
978 adbOutQueueHasData = 0; /* currently processing
979 * "queue" entry */
980 adbSentChars = 0; /* nothing sent yet */
981 adbActionState = ADB_ACTION_OUT; /* set next state */
982 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
983 ADB_SR() = adbOutputBuffer[1]; /* load byte for output */
984 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */
985 ADB_SET_STATE_CMD(); /* tell ADB that we want to
986 * send */
987 break;
988 } else {
989 /* send talk to last device instead */
990 adbOutputBuffer[0] = 1;
991 adbOutputBuffer[1] = (adbOutputBuffer[1] & 0xf0) | 0x0c;
992
993 adbSentChars = 0; /* nothing sent yet */
994 adbActionState = ADB_ACTION_IDLE; /* set next state */
995 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
996 ADB_SR() = adbOutputBuffer[1]; /* load byte for output */
997 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */
998 ADB_SET_STATE_CMD(); /* tell ADB that we want to */
999 break;
1000 }
1001 }
1002 ADB_SR() = adbOutputBuffer[adbSentChars + 1];
1003 switch (adbBusState) { /* advance to next state */
1004 case ADB_BUS_EVEN:
1005 ADB_SET_STATE_ODD(); /* set state to odd */
1006 adbBusState = ADB_BUS_ODD;
1007 break;
1008
1009 case ADB_BUS_CMD:
1010 case ADB_BUS_ODD:
1011 ADB_SET_STATE_EVEN(); /* set state to even */
1012 adbBusState = ADB_BUS_EVEN;
1013 break;
1014
1015 default:
1016 printf_intr("strange state!!! (0x%x)\n", adbBusState);
1017 break;
1018 }
1019 break;
1020
1021 default:
1022 printf_intr("adb: unknown ADB state (during intr)\n");
1023 }
1024
1025 ADB_VIA_INTR_ENABLE(); /* enable ADB interrupt on IIs. */
1026
1027 splx(s); /* restore */
1028
1029 return;
1030
1031 }
1032
1033
1034 /*
1035 * send_adb version for II series machines
1036 */
1037 int
1038 send_adb_II(u_char * in, u_char * buffer, void *compRout, void *data, int command)
1039 {
1040 int i, s, len;
1041
1042 if (adbActionState == ADB_ACTION_NOTREADY) /* return if ADB not
1043 * available */
1044 return 1;
1045
1046 /* Don't interrupt while we are messing with the ADB */
1047 s = splhigh();
1048
1049 if (0 != adbOutQueueHasData) { /* right now, "has data" means "full" */
1050 splx(s); /* sorry, try again later */
1051 return 1;
1052 }
1053 if ((long)in == (long)0) { /* need to convert? */
1054 /*
1055 * Don't need to use adb_cmd_extra here because this section
1056 * will be called ONLY when it is an ADB command (no RTC or
1057 * PRAM), especially on II series!
1058 */
1059 if ((command & 0x0c) == 0x08) /* copy addl data ONLY if
1060 * doing a listen! */
1061 len = buffer[0]; /* length of additional data */
1062 else
1063 len = 0;/* no additional data */
1064
1065 adbOutQueue.outBuf[0] = 1 + len; /* command + addl. data */
1066 adbOutQueue.outBuf[1] = (u_char)command; /* load command */
1067
1068 for (i = 1; i <= len; i++) /* copy additional output
1069 * data, if any */
1070 adbOutQueue.outBuf[1 + i] = buffer[i];
1071 } else
1072 /* if data ready, just copy over */
1073 for (i = 0; i <= (adbOutQueue.outBuf[0] + 1); i++)
1074 adbOutQueue.outBuf[i] = in[i];
1075
1076 adbOutQueue.saveBuf = buffer; /* save buffer to know where to save
1077 * result */
1078 adbOutQueue.compRout = compRout; /* save completion routine
1079 * pointer */
1080 adbOutQueue.data = data;/* save completion routine data pointer */
1081
1082 if ((adbActionState == ADB_ACTION_IDLE) && /* is ADB available? */
1083 (ADB_INTR_IS_OFF)) { /* and no incoming interrupts? */
1084 /* then start command now */
1085 for (i = 0; i <= (adbOutQueue.outBuf[0] + 1); i++) /* copy over data */
1086 adbOutputBuffer[i] = adbOutQueue.outBuf[i];
1087
1088 adbBuffer = adbOutQueue.saveBuf; /* pointer to user data
1089 * area */
1090 adbCompRout = adbOutQueue.compRout; /* pointer to the
1091 * completion routine */
1092 adbCompData = adbOutQueue.data; /* pointer to the completion
1093 * routine data */
1094
1095 adbSentChars = 0; /* nothing sent yet */
1096 adbActionState = ADB_ACTION_OUT; /* set next state */
1097 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */
1098
1099 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
1100
1101 ADB_SR() = adbOutputBuffer[adbSentChars + 1]; /* load byte for output */
1102 ADB_SET_STATE_CMD(); /* tell ADB that we want to send */
1103 adbOutQueueHasData = 0; /* currently processing "queue" entry */
1104 } else
1105 adbOutQueueHasData = 1; /* something in the write "queue" */
1106
1107 splx(s);
1108
1109 if (0x0100 <= (s & 0x0700)) /* were VIA1 interrupts blocked? */
1110 /* poll until message done */
1111 while ((adbActionState != ADB_ACTION_IDLE) || (ADB_INTR_IS_ON)
1112 || (adbWaiting == 1))
1113 if (ADB_SR_INTR_IS_ON) { /* wait for "interrupt" */
1114 adb_intr_II(); /* go process "interrupt" */
1115 adb_soft_intr();
1116 }
1117
1118 return 0;
1119 }
1120
1121
1122 /*
1123 * This routine is called from the II series interrupt routine
1124 * to determine what the "next" device is that should be polled.
1125 */
1126 int
1127 adb_guess_next_device(void)
1128 {
1129 int last, i, dummy;
1130
1131 if (adbStarting) {
1132 /*
1133 * Start polling EVERY device, since we can't be sure there is
1134 * anything in the device table yet
1135 */
1136 if (adbLastDevice < 1 || adbLastDevice > 15)
1137 adbLastDevice = 1;
1138 if (++adbLastDevice > 15) /* point to next one */
1139 adbLastDevice = 1;
1140 } else {
1141 /* find the next device using the device table */
1142 if (adbLastDevice < 1 || adbLastDevice > 15) /* let's be parinoid */
1143 adbLastDevice = 2;
1144 last = 1; /* default index location */
1145
1146 for (i = 1; i < 16; i++) /* find index entry */
1147 if (ADBDevTable[i].currentAddr == adbLastDevice) { /* look for device */
1148 last = i; /* found it */
1149 break;
1150 }
1151 dummy = last; /* index to start at */
1152 for (;;) { /* find next device in index */
1153 if (++dummy > 15) /* wrap around if needed */
1154 dummy = 1;
1155 if (dummy == last) { /* didn't find any other
1156 * device! This can happen if
1157 * there are no devices on the
1158 * bus */
1159 dummy = 2;
1160 break;
1161 }
1162 /* found the next device */
1163 if (ADBDevTable[dummy].devType != 0)
1164 break;
1165 }
1166 adbLastDevice = ADBDevTable[dummy].currentAddr;
1167 }
1168 return adbLastDevice;
1169 }
1170
1171
1172 /*
1173 * Called when when an adb interrupt happens.
1174 * This routine simply transfers control over to the appropriate
1175 * code for the machine we are running on.
1176 */
1177 void
1178 adb_intr(void)
1179 {
1180 switch (adbHardware) {
1181 case ADB_HW_II:
1182 adb_intr_II();
1183 break;
1184
1185 case ADB_HW_IISI:
1186 adb_intr_IIsi();
1187 break;
1188
1189 case ADB_HW_PB:
1190 break;
1191
1192 case ADB_HW_CUDA:
1193 adb_intr_cuda();
1194 break;
1195
1196 case ADB_HW_UNKNOWN:
1197 break;
1198 }
1199 }
1200
1201
1202 /*
1203 * called when when an adb interrupt happens
1204 *
1205 * IIsi version of adb_intr
1206 *
1207 */
1208 void
1209 adb_intr_IIsi(void)
1210 {
1211 struct adbCommand packet;
1212 int i, ending;
1213 unsigned int s;
1214
1215 s = splhigh(); /* can't be too careful - might be called */
1216 /* from a routine, NOT an interrupt */
1217
1218 ADB_VIA_CLR_INTR(); /* clear interrupt */
1219
1220 ADB_VIA_INTR_DISABLE(); /* disable ADB interrupt on IIs. */
1221
1222 switch_start:
1223 switch (adbActionState) {
1224 case ADB_ACTION_IDLE:
1225 delay(ADB_DELAY); /* short delay is required before the
1226 * first byte */
1227
1228 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
1229 ADB_SET_STATE_ACTIVE(); /* signal start of data frame */
1230 adbInputBuffer[1] = ADB_SR(); /* get byte */
1231 adbInputBuffer[0] = 1;
1232 adbActionState = ADB_ACTION_IN; /* set next state */
1233
1234 ADB_SET_STATE_ACKON(); /* start ACK to ADB chip */
1235 delay(ADB_DELAY); /* delay */
1236 ADB_SET_STATE_ACKOFF(); /* end ACK to ADB chip */
1237 #if 0
1238 zshard(0); /* grab any serial interrupts */
1239 #else
1240 (void)intr_dispatch(0x70);
1241 #endif
1242 break;
1243
1244 case ADB_ACTION_IN:
1245 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
1246 adbInputBuffer[++adbInputBuffer[0]] = ADB_SR(); /* get byte */
1247 if (ADB_INTR_IS_OFF) /* check for end of frame */
1248 ending = 1;
1249 else
1250 ending = 0;
1251
1252 ADB_SET_STATE_ACKON(); /* start ACK to ADB chip */
1253 delay(ADB_DELAY); /* delay */
1254 ADB_SET_STATE_ACKOFF(); /* end ACK to ADB chip */
1255 #if 0
1256 zshard(0); /* grab any serial interrupts */
1257 #else
1258 (void)intr_dispatch(0x70);
1259 #endif
1260
1261 if (1 == ending) { /* end of message? */
1262 ADB_SET_STATE_INACTIVE(); /* signal end of frame */
1263 /*
1264 * This section _should_ handle all ADB and RTC/PRAM
1265 * type commands, but there may be more... Note:
1266 * commands are always at [4], even for rtc/pram
1267 * commands
1268 */
1269 /* set up data for adb_pass_up */
1270 for (i = 0; i <= adbInputBuffer[0]; i++)
1271 packet.data[i] = adbInputBuffer[i];
1272
1273 if ((adbWaiting == 1) && /* are we waiting AND */
1274 (adbInputBuffer[4] == adbWaitingCmd) && /* the cmd we sent AND */
1275 ((adbInputBuffer[2] == 0x00) || /* it's from the ADB
1276 * device OR */
1277 (adbInputBuffer[2] == 0x01))) { /* it's from the
1278 * PRAM/RTC device */
1279
1280 packet.saveBuf = adbBuffer;
1281 packet.compRout = adbCompRout;
1282 packet.compData = adbCompData;
1283 packet.unsol = 0;
1284 packet.ack_only = 0;
1285 adb_pass_up(&packet);
1286
1287 adbWaitingCmd = 0; /* reset "waiting" vars */
1288 adbWaiting = 0;
1289 adbBuffer = (long)0;
1290 adbCompRout = (long)0;
1291 adbCompData = (long)0;
1292 } else {
1293 packet.unsol = 1;
1294 packet.ack_only = 0;
1295 adb_pass_up(&packet);
1296 }
1297
1298 adbActionState = ADB_ACTION_IDLE;
1299 adbInputBuffer[0] = 0; /* reset length */
1300
1301 if (adbWriteDelay == 1) { /* were we waiting to
1302 * write? */
1303 adbSentChars = 0; /* nothing sent yet */
1304 adbActionState = ADB_ACTION_OUT; /* set next state */
1305
1306 delay(ADB_DELAY); /* delay */
1307 #if 0
1308 zshard(0); /* grab any serial interrupts */
1309 #else
1310 (void)intr_dispatch(0x70);
1311 #endif
1312
1313 if (ADB_INTR_IS_ON) { /* ADB intr low during
1314 * write */
1315 ADB_SET_STATE_IDLE_IISI(); /* reset */
1316 ADB_SET_SR_INPUT(); /* make sure SR is set
1317 * to IN */
1318 adbSentChars = 0; /* must start all over */
1319 adbActionState = ADB_ACTION_IDLE; /* new state */
1320 adbInputBuffer[0] = 0;
1321 /* may be able to take this out later */
1322 delay(ADB_DELAY); /* delay */
1323 break;
1324 }
1325 ADB_SET_STATE_ACTIVE(); /* tell ADB that we want
1326 * to send */
1327 ADB_SET_STATE_ACKOFF(); /* make sure */
1328 ADB_SET_SR_OUTPUT(); /* set shift register
1329 * for OUT */
1330 ADB_SR() = adbOutputBuffer[adbSentChars + 1];
1331 ADB_SET_STATE_ACKON(); /* tell ADB byte ready
1332 * to shift */
1333 }
1334 }
1335 break;
1336
1337 case ADB_ACTION_OUT:
1338 i = ADB_SR(); /* reset SR-intr in IFR */
1339 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
1340
1341 ADB_SET_STATE_ACKOFF(); /* finish ACK */
1342 adbSentChars++;
1343 if (ADB_INTR_IS_ON) { /* ADB intr low during write */
1344 ADB_SET_STATE_IDLE_IISI(); /* reset */
1345 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
1346 adbSentChars = 0; /* must start all over */
1347 adbActionState = ADB_ACTION_IDLE; /* new state */
1348 adbInputBuffer[0] = 0;
1349 adbWriteDelay = 1; /* must retry when done with
1350 * read */
1351 delay(ADB_DELAY); /* delay */
1352 #if 0
1353 zshard(0); /* grab any serial interrupts */
1354 #else
1355 (void)intr_dispatch(0x70);
1356 #endif
1357 goto switch_start; /* process next state right
1358 * now */
1359 break;
1360 }
1361 delay(ADB_DELAY); /* required delay */
1362 #if 0
1363 zshard(0); /* grab any serial interrupts */
1364 #else
1365 (void)intr_dispatch(0x70);
1366 #endif
1367
1368 if (adbOutputBuffer[0] == adbSentChars) { /* check for done */
1369 if (0 == adb_cmd_result(adbOutputBuffer)) { /* do we expect data
1370 * back? */
1371 adbWaiting = 1; /* signal waiting for return */
1372 adbWaitingCmd = adbOutputBuffer[2]; /* save waiting command */
1373 } else {/* no talk, so done */
1374 /* set up stuff for adb_pass_up */
1375 for (i = 0; i <= adbInputBuffer[0]; i++)
1376 packet.data[i] = adbInputBuffer[i];
1377 packet.saveBuf = adbBuffer;
1378 packet.compRout = adbCompRout;
1379 packet.compData = adbCompData;
1380 packet.cmd = adbWaitingCmd;
1381 packet.unsol = 0;
1382 packet.ack_only = 1;
1383 adb_pass_up(&packet);
1384
1385 /* reset "waiting" vars, just in case */
1386 adbWaitingCmd = 0;
1387 adbBuffer = (long)0;
1388 adbCompRout = (long)0;
1389 adbCompData = (long)0;
1390 }
1391
1392 adbWriteDelay = 0; /* done writing */
1393 adbActionState = ADB_ACTION_IDLE; /* signal bus is idle */
1394 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
1395 ADB_SET_STATE_INACTIVE(); /* end of frame */
1396 } else {
1397 ADB_SR() = adbOutputBuffer[adbSentChars + 1]; /* send next byte */
1398 ADB_SET_STATE_ACKON(); /* signal byte ready to shift */
1399 }
1400 break;
1401
1402 case ADB_ACTION_NOTREADY:
1403 printf_intr("adb: not yet initialized\n");
1404 break;
1405
1406 default:
1407 printf_intr("intr: unknown ADB state\n");
1408 }
1409
1410 ADB_VIA_INTR_ENABLE(); /* enable ADB interrupt on IIs. */
1411
1412 splx(s); /* restore */
1413
1414 return;
1415 } /* end adb_intr_IIsi */
1416
1417
1418 /*****************************************************************************
1419 * if the device is currently busy, and there is no data waiting to go out, then
1420 * the data is "queued" in the outgoing buffer. If we are already waiting, then
1421 * we return.
1422 * in: if (in == 0) then the command string is built from command and buffer
1423 * if (in != 0) then in is used as the command string
1424 * buffer: additional data to be sent (used only if in == 0)
1425 * this is also where return data is stored
1426 * compRout: the completion routine that is called when then return value
1427 * is received (if a return value is expected)
1428 * data: a data pointer that can be used by the completion routine
1429 * command: an ADB command to be sent (used only if in == 0)
1430 *
1431 */
1432 int
1433 send_adb_IIsi(u_char * in, u_char * buffer, void *compRout, void *data, int
1434 command)
1435 {
1436 int i, s, len;
1437
1438 if (adbActionState == ADB_ACTION_NOTREADY)
1439 return 1;
1440
1441 /* Don't interrupt while we are messing with the ADB */
1442 s = splhigh();
1443
1444 if ((adbActionState == ADB_ACTION_IDLE) && /* ADB available? */
1445 (ADB_INTR_IS_OFF)) {/* and no incoming interrupt? */
1446
1447 } else
1448 if (adbWriteDelay == 0) /* it's busy, but is anything waiting? */
1449 adbWriteDelay = 1; /* if no, then we'll "queue"
1450 * it up */
1451 else {
1452 splx(s);
1453 return 1; /* really busy! */
1454 }
1455
1456 if ((long)in == (long)0) { /* need to convert? */
1457 /*
1458 * Don't need to use adb_cmd_extra here because this section
1459 * will be called ONLY when it is an ADB command (no RTC or
1460 * PRAM)
1461 */
1462 if ((command & 0x0c) == 0x08) /* copy addl data ONLY if
1463 * doing a listen! */
1464 len = buffer[0]; /* length of additional data */
1465 else
1466 len = 0;/* no additional data */
1467
1468 adbOutputBuffer[0] = 2 + len; /* dev. type + command + addl.
1469 * data */
1470 adbOutputBuffer[1] = 0x00; /* mark as an ADB command */
1471 adbOutputBuffer[2] = (u_char)command; /* load command */
1472
1473 for (i = 1; i <= len; i++) /* copy additional output
1474 * data, if any */
1475 adbOutputBuffer[2 + i] = buffer[i];
1476 } else
1477 for (i = 0; i <= (adbOutputBuffer[0] + 1); i++)
1478 adbOutputBuffer[i] = in[i];
1479
1480 adbSentChars = 0; /* nothing sent yet */
1481 adbBuffer = buffer; /* save buffer to know where to save result */
1482 adbCompRout = compRout; /* save completion routine pointer */
1483 adbCompData = data; /* save completion routine data pointer */
1484 adbWaitingCmd = adbOutputBuffer[2]; /* save wait command */
1485
1486 if (adbWriteDelay != 1) { /* start command now? */
1487 adbActionState = ADB_ACTION_OUT; /* set next state */
1488
1489 ADB_SET_STATE_ACTIVE(); /* tell ADB that we want to send */
1490 ADB_SET_STATE_ACKOFF(); /* make sure */
1491
1492 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
1493
1494 ADB_SR() = adbOutputBuffer[adbSentChars + 1]; /* load byte for output */
1495
1496 ADB_SET_STATE_ACKON(); /* tell ADB byte ready to shift */
1497 }
1498 adbWriteDelay = 1; /* something in the write "queue" */
1499
1500 splx(s);
1501
1502 if (0x0100 <= (s & 0x0700)) /* were VIA1 interrupts blocked ? */
1503 /* poll until byte done */
1504 while ((adbActionState != ADB_ACTION_IDLE) || (ADB_INTR_IS_ON)
1505 || (adbWaiting == 1))
1506 if (ADB_SR_INTR_IS_ON) { /* wait for "interrupt" */
1507 adb_intr_IIsi(); /* process it */
1508 adb_soft_intr();
1509 }
1510
1511 return 0;
1512 } /* send_adb_IIsi */
1513
1514
1515 /*
1516 * adb_pass_up is called by the interrupt-time routines.
1517 * It takes the raw packet data that was received from the
1518 * device and puts it into the queue that the upper half
1519 * processes. It then signals for a soft ADB interrupt which
1520 * will eventually call the upper half routine (adb_soft_intr).
1521 *
1522 * If in->unsol is 0, then this is either the notification
1523 * that the packet was sent (on a LISTEN, for example), or the
1524 * response from the device (on a TALK). The completion routine
1525 * is called only if the user specified one.
1526 *
1527 * If in->unsol is 1, then this packet was unsolicited and
1528 * so we look up the device in the ADB device table to determine
1529 * what it's default service routine is.
1530 *
1531 * If in->ack_only is 1, then we really only need to call
1532 * the completion routine, so don't do any other stuff.
1533 *
1534 * Note that in->data contains the packet header AND data,
1535 * while adbInbound[]->data contains ONLY data.
1536 *
1537 * Note: Called only at interrupt time. Assumes this.
1538 */
1539 void
1540 adb_pass_up(struct adbCommand *in)
1541 {
1542 int i, start = 0, len = 0, cmd = 0;
1543 ADBDataBlock block;
1544
1545 /* temp for testing */
1546 /*u_char *buffer = 0;*/
1547 /*u_char *compdata = 0;*/
1548 /*u_char *comprout = 0;*/
1549
1550 if (adbInCount >= ADB_QUEUE) {
1551 printf_intr("adb: ring buffer overflow\n");
1552 return;
1553 }
1554
1555 if (in->ack_only) {
1556 len = in->data[0];
1557 cmd = in->cmd;
1558 start = 0;
1559 } else {
1560 switch (adbHardware) {
1561 case ADB_HW_II:
1562 cmd = in->data[1];
1563 if (in->data[0] < 2)
1564 len = 0;
1565 else
1566 len = in->data[0]-1;
1567 start = 1;
1568 break;
1569
1570 case ADB_HW_IISI:
1571 case ADB_HW_CUDA:
1572 /* If it's unsolicited, accept only ADB data for now */
1573 if (in->unsol)
1574 if (0 != in->data[2])
1575 return;
1576 cmd = in->data[4];
1577 if (in->data[0] < 5)
1578 len = 0;
1579 else
1580 len = in->data[0]-4;
1581 start = 4;
1582 break;
1583
1584 case ADB_HW_PB:
1585 cmd = in->data[1];
1586 if (in->data[0] < 2)
1587 len = 0;
1588 else
1589 len = in->data[0]-1;
1590 start = 1;
1591 break;
1592
1593 case ADB_HW_UNKNOWN:
1594 return;
1595 }
1596
1597 /* Make sure there is a valid device entry for this device */
1598 if (in->unsol) {
1599 /* ignore unsolicited data during adbreinit */
1600 if (adbStarting)
1601 return;
1602 /* get device's comp. routine and data area */
1603 if (-1 == get_adb_info(&block, ((cmd & 0xf0) >> 4)))
1604 return;
1605 }
1606 }
1607
1608 /*
1609 * If this is an unsolicited packet, we need to fill in
1610 * some info so adb_soft_intr can process this packet
1611 * properly. If it's not unsolicited, then use what
1612 * the caller sent us.
1613 */
1614 if (in->unsol) {
1615 adbInbound[adbInTail].compRout = (void *)block.dbServiceRtPtr;
1616 adbInbound[adbInTail].compData = (void *)block.dbDataAreaAddr;
1617 adbInbound[adbInTail].saveBuf = (void *)adbInbound[adbInTail].data;
1618 } else {
1619 adbInbound[adbInTail].compRout = (void *)in->compRout;
1620 adbInbound[adbInTail].compData = (void *)in->compData;
1621 adbInbound[adbInTail].saveBuf = (void *)in->saveBuf;
1622 }
1623
1624 #ifdef ADB_DEBUG
1625 if (adb_debug && in->data[1] == 2)
1626 printf_intr("adb: caught error\n");
1627 #endif
1628
1629 /* copy the packet data over */
1630 /*
1631 * TO DO: If the *_intr routines fed their incoming data
1632 * directly into an adbCommand struct, which is passed to
1633 * this routine, then we could eliminate this copy.
1634 */
1635 for (i = 1; i <= len; i++)
1636 adbInbound[adbInTail].data[i] = in->data[start+i];
1637
1638 adbInbound[adbInTail].data[0] = len;
1639 adbInbound[adbInTail].cmd = cmd;
1640
1641 adbInCount++;
1642 if (++adbInTail >= ADB_QUEUE)
1643 adbInTail = 0;
1644
1645 /*
1646 * If the debugger is running, call upper half manually.
1647 * Otherwise, trigger a soft interrupt to handle the rest later.
1648 */
1649 if (adb_polling)
1650 adb_soft_intr();
1651 else
1652 setsoftadb();
1653
1654 return;
1655 }
1656
1657
1658 /*
1659 * Called to process the packets after they have been
1660 * placed in the incoming queue.
1661 *
1662 */
1663 void
1664 adb_soft_intr(void)
1665 {
1666 int s, i;
1667 int cmd = 0;
1668 u_char *buffer = 0;
1669 u_char *comprout = 0;
1670 u_char *compdata = 0;
1671
1672 #if 0
1673 s = splhigh();
1674 printf_intr("sr: %x\n", (s & 0x0700));
1675 splx(s);
1676 #endif
1677
1678 /*delay(2*ADB_DELAY);*/
1679
1680 while (adbInCount) {
1681 #ifdef ADB_DEBUG
1682 if (adb_debug & 0x80)
1683 printf_intr("%x %x %x ",
1684 adbInCount, adbInHead, adbInTail);
1685 #endif
1686 /* get the data we need from the queue */
1687 buffer = adbInbound[adbInHead].saveBuf;
1688 comprout = adbInbound[adbInHead].compRout;
1689 compdata = adbInbound[adbInHead].compData;
1690 cmd = adbInbound[adbInHead].cmd;
1691
1692 /* copy over data to data area if it's valid */
1693 /*
1694 * Note that for unsol packets we don't want to copy the
1695 * data anywhere, so buffer was already set to 0.
1696 * For ack_only buffer was set to 0, so don't copy.
1697 */
1698 if (buffer)
1699 for (i = 0; i <= adbInbound[adbInHead].data[0]; i++)
1700 *(buffer+i) = adbInbound[adbInHead].data[i];
1701
1702 #ifdef ADB_DEBUG
1703 if (adb_debug & 0x80) {
1704 printf_intr("%p %p %p %x ",
1705 buffer, comprout, compdata, (short)cmd);
1706 printf_intr("buf: ");
1707 print_single(adbInbound[adbInHead].data);
1708 }
1709 #endif
1710
1711 /* call default completion routine if it's valid */
1712 if (comprout) {
1713 #ifdef __NetBSD__
1714 asm(" movml #0xffff,sp@- | save all registers
1715 movl %0,a2 | compdata
1716 movl %1,a1 | comprout
1717 movl %2,a0 | buffer
1718 movl %3,d0 | cmd
1719 jbsr a1@ | go call the routine
1720 movml sp@+,#0xffff | restore all registers"
1721 :
1722 : "g"(compdata), "g"(comprout),
1723 "g"(buffer), "g"(cmd)
1724 : "d0", "a0", "a1", "a2");
1725 #else /* for macos based testing */
1726 asm
1727 {
1728 movem.l a0/a1/a2/d0, -(a7)
1729 move.l compdata, a2
1730 move.l comprout, a1
1731 move.l buffer, a0
1732 move.w cmd, d0
1733 jsr(a1)
1734 movem.l(a7)+, d0/a2/a1/a0
1735 }
1736 #endif
1737 }
1738
1739 s = splhigh();
1740 adbInCount--;
1741 if (++adbInHead >= ADB_QUEUE)
1742 adbInHead = 0;
1743 splx(s);
1744
1745 }
1746 return;
1747 }
1748
1749
1750 /*
1751 * This is my version of the ADBOp routine. It mainly just calls the
1752 * hardware-specific routine.
1753 *
1754 * data : pointer to data area to be used by compRout
1755 * compRout : completion routine
1756 * buffer : for LISTEN: points to data to send - MAX 8 data bytes,
1757 * byte 0 = # of bytes
1758 * : for TALK: points to place to save return data
1759 * command : the adb command to send
1760 * result : 0 = success
1761 * : -1 = could not complete
1762 */
1763 int
1764 adb_op(Ptr buffer, Ptr compRout, Ptr data, short command)
1765 {
1766 int result;
1767
1768 switch (adbHardware) {
1769 case ADB_HW_II:
1770 result = send_adb_II((u_char *)0, (u_char *)buffer,
1771 (void *)compRout, (void *)data, (int)command);
1772 if (result == 0)
1773 return 0;
1774 else
1775 return -1;
1776 break;
1777
1778 case ADB_HW_IISI:
1779 result = send_adb_IIsi((u_char *)0, (u_char *)buffer,
1780 (void *)compRout, (void *)data, (int)command);
1781 /*
1782 * I wish I knew why this delay is needed. It usually needs to
1783 * be here when several commands are sent in close succession,
1784 * especially early in device probes when doing collision
1785 * detection. It must be some race condition. Sigh. - jpw
1786 */
1787 delay(100);
1788 if (result == 0)
1789 return 0;
1790 else
1791 return -1;
1792 break;
1793
1794 case ADB_HW_PB:
1795 result = pm_adb_op((u_char *)buffer, (void *)compRout,
1796 (void *)data, (int)command);
1797
1798 if (result == 0)
1799 return 0;
1800 else
1801 return -1;
1802 break;
1803
1804 case ADB_HW_CUDA:
1805 result = send_adb_cuda((u_char *)0, (u_char *)buffer,
1806 (void *)compRout, (void *)data, (int)command);
1807 if (result == 0)
1808 return 0;
1809 else
1810 return -1;
1811 break;
1812
1813 case ADB_HW_UNKNOWN:
1814 default:
1815 return -1;
1816 }
1817 }
1818
1819
1820 /*
1821 * adb_hw_setup
1822 * This routine sets up the possible machine specific hardware
1823 * config (mainly VIA settings) for the various models.
1824 */
1825 void
1826 adb_hw_setup(void)
1827 {
1828 volatile int i;
1829 u_char send_string[ADB_MAX_MSG_LENGTH];
1830
1831 switch (adbHardware) {
1832 case ADB_HW_II:
1833 via_reg(VIA1, vDirB) |= 0x30; /* register B bits 4 and 5:
1834 * outputs */
1835 via_reg(VIA1, vDirB) &= 0xf7; /* register B bit 3: input */
1836 via_reg(VIA1, vACR) &= ~vSR_OUT; /* make sure SR is set
1837 * to IN (II, IIsi) */
1838 adbActionState = ADB_ACTION_IDLE; /* used by all types of
1839 * hardware (II, IIsi) */
1840 adbBusState = ADB_BUS_IDLE; /* this var. used in II-series
1841 * code only */
1842 via_reg(VIA1, vIER) = 0x84; /* make sure VIA interrupts
1843 * are on (II, IIsi) */
1844 ADB_SET_STATE_IDLE_II(); /* set ADB bus state to idle */
1845
1846 ADB_VIA_CLR_INTR(); /* clear interrupt */
1847 break;
1848
1849 case ADB_HW_IISI:
1850 via_reg(VIA1, vDirB) |= 0x30; /* register B bits 4 and 5:
1851 * outputs */
1852 via_reg(VIA1, vDirB) &= 0xf7; /* register B bit 3: input */
1853 via_reg(VIA1, vACR) &= ~vSR_OUT; /* make sure SR is set
1854 * to IN (II, IIsi) */
1855 adbActionState = ADB_ACTION_IDLE; /* used by all types of
1856 * hardware (II, IIsi) */
1857 adbBusState = ADB_BUS_IDLE; /* this var. used in II-series
1858 * code only */
1859 via_reg(VIA1, vIER) = 0x84; /* make sure VIA interrupts
1860 * are on (II, IIsi) */
1861 ADB_SET_STATE_IDLE_IISI(); /* set ADB bus state to idle */
1862
1863 /* get those pesky clock ticks we missed while booting */
1864 for (i = 0; i < 30; i++) {
1865 delay(ADB_DELAY);
1866 adb_hw_setup_IIsi(send_string);
1867 printf_intr("adb: cleanup: ");
1868 print_single(send_string);
1869 delay(ADB_DELAY);
1870 if (ADB_INTR_IS_OFF)
1871 break;
1872 }
1873 break;
1874
1875 case ADB_HW_PB:
1876 /*
1877 * XXX - really PM_VIA_CLR_INTR - should we put it in
1878 * pm_direct.h?
1879 */
1880 via_reg(VIA1, vIFR) = 0x90; /* clear interrupt */
1881 break;
1882
1883 case ADB_HW_CUDA:
1884 via_reg(VIA1, vDirB) |= 0x30; /* register B bits 4 and 5:
1885 * outputs */
1886 via_reg(VIA1, vDirB) &= 0xf7; /* register B bit 3: input */
1887 via_reg(VIA1, vACR) &= ~vSR_OUT; /* make sure SR is set
1888 * to IN */
1889 via_reg(VIA1, vACR) = (via_reg(VIA1, vACR) | 0x0c) & ~0x10;
1890 adbActionState = ADB_ACTION_IDLE; /* used by all types of
1891 * hardware */
1892 adbBusState = ADB_BUS_IDLE; /* this var. used in II-series
1893 * code only */
1894 via_reg(VIA1, vIER) = 0x84; /* make sure VIA interrupts
1895 * are on */
1896 ADB_SET_STATE_IDLE_CUDA(); /* set ADB bus state to idle */
1897
1898 /* sort of a device reset */
1899 i = ADB_SR(); /* clear interrupt */
1900 ADB_VIA_INTR_DISABLE(); /* no interrupts while clearing */
1901 ADB_SET_STATE_IDLE_CUDA(); /* reset state to idle */
1902 delay(ADB_DELAY);
1903 ADB_SET_STATE_TIP(); /* signal start of frame */
1904 delay(ADB_DELAY);
1905 ADB_TOGGLE_STATE_ACK_CUDA();
1906 delay(ADB_DELAY);
1907 ADB_CLR_STATE_TIP();
1908 delay(ADB_DELAY);
1909 ADB_SET_STATE_IDLE_CUDA(); /* back to idle state */
1910 i = ADB_SR(); /* clear interrupt */
1911 ADB_VIA_INTR_ENABLE(); /* ints ok now */
1912 break;
1913
1914 case ADB_HW_UNKNOWN:
1915 default:
1916 via_reg(VIA1, vIER) = 0x04; /* turn interrupts off - TO
1917 * DO: turn PB ints off? */
1918 return;
1919 break;
1920 }
1921 }
1922
1923
1924 /*
1925 * adb_hw_setup_IIsi
1926 * This is sort of a "read" routine that forces the adb hardware through a read cycle
1927 * if there is something waiting. This helps "clean up" any commands that may have gotten
1928 * stuck or stopped during the boot process.
1929 *
1930 */
1931 void
1932 adb_hw_setup_IIsi(u_char * buffer)
1933 {
1934 int i;
1935 int dummy;
1936 int s;
1937 long my_time;
1938 int endofframe;
1939
1940 delay(ADB_DELAY);
1941
1942 i = 1; /* skip over [0] */
1943 s = splhigh(); /* block ALL interrupts while we are working */
1944 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
1945 ADB_VIA_INTR_DISABLE(); /* disable ADB interrupt on IIs. */
1946 /* this is required, especially on faster machines */
1947 delay(ADB_DELAY);
1948
1949 if (ADB_INTR_IS_ON) {
1950 ADB_SET_STATE_ACTIVE(); /* signal start of data frame */
1951
1952 endofframe = 0;
1953 while (0 == endofframe) {
1954 /*
1955 * Poll for ADB interrupt and watch for timeout.
1956 * If time out, keep going in hopes of not hanging
1957 * the ADB chip - I think
1958 */
1959 my_time = ADB_DELAY * 5;
1960 while ((ADB_SR_INTR_IS_OFF) && (my_time-- > 0))
1961 dummy = via_reg(VIA1, vBufB);
1962
1963 buffer[i++] = ADB_SR(); /* reset interrupt flag by
1964 * reading vSR */
1965 /*
1966 * Perhaps put in a check here that ignores all data
1967 * after the first ADB_MAX_MSG_LENGTH bytes ???
1968 */
1969 if (ADB_INTR_IS_OFF) /* check for end of frame */
1970 endofframe = 1;
1971
1972 ADB_SET_STATE_ACKON(); /* send ACK to ADB chip */
1973 delay(ADB_DELAY); /* delay */
1974 ADB_SET_STATE_ACKOFF(); /* send ACK to ADB chip */
1975 }
1976 ADB_SET_STATE_INACTIVE(); /* signal end of frame and
1977 * delay */
1978
1979 /* probably don't need to delay this long */
1980 delay(ADB_DELAY);
1981 }
1982 buffer[0] = --i; /* [0] is length of message */
1983 ADB_VIA_INTR_ENABLE(); /* enable ADB interrupt on IIs. */
1984 splx(s); /* restore interrupts */
1985
1986 return;
1987 } /* adb_hw_setup_IIsi */
1988
1989
1990
1991 /*
1992 * adb_reinit sets up the adb stuff
1993 *
1994 */
1995 void
1996 adb_reinit(void)
1997 {
1998 u_char send_string[ADB_MAX_MSG_LENGTH];
1999 int s = 0;
2000 volatile int i, x;
2001 int command;
2002 int result;
2003 int saveptr; /* point to next free relocation address */
2004 int device;
2005 int nonewtimes; /* times thru loop w/o any new devices */
2006 ADBDataBlock data; /* temp. holder for getting device info */
2007
2008 (void)(&s); /* work around lame GCC bug */
2009
2010 /* Make sure we are not interrupted while building the table. */
2011 if (adbHardware != ADB_HW_PB) /* ints must be on for PB? */
2012 s = splhigh();
2013
2014 ADBNumDevices = 0; /* no devices yet */
2015
2016 /* Let intr routines know we are running reinit */
2017 adbStarting = 1;
2018
2019 /*
2020 * Initialize the ADB table. For now, we'll always use the same table
2021 * that is defined at the beginning of this file - no mallocs.
2022 */
2023 for (i = 0; i < 16; i++)
2024 ADBDevTable[i].devType = 0;
2025
2026 adb_setup_hw_type(); /* setup hardware type */
2027
2028 adb_hw_setup(); /* init the VIA bits and hard reset ADB */
2029
2030 /* send an ADB reset first */
2031 adb_op_sync((Ptr)0, (Ptr)0, (Ptr)0, (short)0x00);
2032 delay(3000);
2033
2034 /*
2035 * Probe for ADB devices. Probe devices 1-15 quickly to determine
2036 * which device addresses are in use and which are free. For each
2037 * address that is in use, move the device at that address to a higher
2038 * free address. Continue doing this at that address until no device
2039 * responds at that address. Then move the last device that was moved
2040 * back to the original address. Do this for the remaining addresses
2041 * that we determined were in use.
2042 *
2043 * When finished, do this entire process over again with the updated
2044 * list of in use addresses. Do this until no new devices have been
2045 * found in 20 passes though the in use address list. (This probably
2046 * seems long and complicated, but it's the best way to detect multiple
2047 * devices at the same address - sometimes it takes a couple of tries
2048 * before the collision is detected.)
2049 */
2050
2051 /* initial scan through the devices */
2052 for (i = 1; i < 16; i++) {
2053 command = (int)(0x0f | ((int)(i & 0x000f) << 4)); /* talk R3 */
2054 result = adb_op_sync((Ptr)send_string, (Ptr)0,
2055 (Ptr)0, (short)command);
2056 if (0x00 != send_string[0]) { /* anything come back ?? */
2057 ADBDevTable[++ADBNumDevices].devType =
2058 (u_char)send_string[2];
2059 ADBDevTable[ADBNumDevices].origAddr = i;
2060 ADBDevTable[ADBNumDevices].currentAddr = i;
2061 ADBDevTable[ADBNumDevices].DataAreaAddr =
2062 (long)0;
2063 ADBDevTable[ADBNumDevices].ServiceRtPtr = (void *)0;
2064 pm_check_adb_devices(i); /* tell pm driver device
2065 * is here */
2066 }
2067 }
2068
2069 /* find highest unused address */
2070 for (saveptr = 15; saveptr > 0; saveptr--)
2071 if (-1 == get_adb_info(&data, saveptr))
2072 break;
2073
2074 if (saveptr == 0) /* no free addresses??? */
2075 saveptr = 15;
2076
2077 #ifdef ADB_DEBUG
2078 if (adb_debug & 0x80) {
2079 printf_intr("first free is: 0x%02x\n", saveptr);
2080 printf_intr("devices: %i\n", ADBNumDevices);
2081 }
2082 #endif
2083
2084 nonewtimes = 0; /* no loops w/o new devices */
2085 while (nonewtimes++ < 11) {
2086 for (i = 1; i <= ADBNumDevices; i++) {
2087 device = ADBDevTable[i].currentAddr;
2088 #ifdef ADB_DEBUG
2089 if (adb_debug & 0x80)
2090 printf_intr("moving device 0x%02x to 0x%02x "
2091 "(index 0x%02x) ", device, saveptr, i);
2092 #endif
2093
2094 /* send TALK R3 to address */
2095 command = (int)(0x0f | ((int)(device & 0x000f) << 4));
2096 adb_op_sync((Ptr)send_string, (Ptr)0,
2097 (Ptr)0, (short)command);
2098
2099 /* move device to higher address */
2100 command = (int)(0x0b | ((int)(device & 0x000f) << 4));
2101 send_string[0] = 2;
2102 send_string[1] = (u_char)(saveptr | 0x60);
2103 send_string[2] = 0xfe;
2104 adb_op_sync((Ptr)send_string, (Ptr)0,
2105 (Ptr)0, (short)command);
2106
2107 /* send TALK R3 - anything at old address? */
2108 command = (int)(0x0f | ((int)(device & 0x000f) << 4));
2109 result = adb_op_sync((Ptr)send_string, (Ptr)0,
2110 (Ptr)0, (short)command);
2111 if (send_string[0] != 0) {
2112 /* new device found */
2113 /* update data for previously moved device */
2114 ADBDevTable[i].currentAddr = saveptr;
2115 #ifdef ADB_DEBUG
2116 if (adb_debug & 0x80)
2117 printf_intr("old device at index %i\n",i);
2118 #endif
2119 /* add new device in table */
2120 #ifdef ADB_DEBUG
2121 if (adb_debug & 0x80)
2122 printf_intr("new device found\n");
2123 #endif
2124 ADBDevTable[++ADBNumDevices].devType =
2125 (u_char)send_string[2];
2126 ADBDevTable[ADBNumDevices].origAddr = device;
2127 ADBDevTable[ADBNumDevices].currentAddr = device;
2128 /* These will be set correctly in adbsys.c */
2129 /* Until then, unsol. data will be ignored. */
2130 ADBDevTable[ADBNumDevices].DataAreaAddr =
2131 (long)0;
2132 ADBDevTable[ADBNumDevices].ServiceRtPtr =
2133 (void *)0;
2134 /* find next unused address */
2135 for (x = saveptr; x > 0; x--)
2136 if (-1 == get_adb_info(&data, x)) {
2137 saveptr = x;
2138 break;
2139 }
2140 #ifdef ADB_DEBUG
2141 if (adb_debug & 0x80)
2142 printf_intr("new free is 0x%02x\n",
2143 saveptr);
2144 #endif
2145 nonewtimes = 0;
2146 /* tell pm driver device is here */
2147 pm_check_adb_devices(device);
2148 } else {
2149 #ifdef ADB_DEBUG
2150 if (adb_debug & 0x80)
2151 printf_intr("moving back...\n");
2152 #endif
2153 /* move old device back */
2154 command = (int)(0x0b | ((int)(saveptr & 0x000f) << 4));
2155 send_string[0] = 2;
2156 send_string[1] = (u_char)(device | 0x60);
2157 send_string[2] = 0xfe;
2158 adb_op_sync((Ptr)send_string, (Ptr)0,
2159 (Ptr)0, (short)command);
2160 }
2161 }
2162 }
2163
2164 #ifdef ADB_DEBUG
2165 if (adb_debug) {
2166 for (i = 1; i <= ADBNumDevices; i++) {
2167 x = get_ind_adb_info(&data, i);
2168 if (x != -1)
2169 printf_intr("index 0x%x, addr 0x%x, type 0x%x\n",
2170 i, x, data.devType);
2171 }
2172 }
2173 #endif
2174
2175 /* enable the programmer's switch, if we have one */
2176 adb_prog_switch_enable();
2177
2178 if (0 == ADBNumDevices) /* tell user if no devices found */
2179 printf_intr("adb: no devices found\n");
2180
2181 adbStarting = 0; /* not starting anymore */
2182 printf_intr("adb: ADBReInit complete\n");
2183
2184 if (adbHardware == ADB_HW_CUDA)
2185 timeout((void *)adb_cuda_tickle, 0, ADB_TICKLE_TICKS);
2186
2187 if (adbHardware != ADB_HW_PB) /* ints must be on for PB? */
2188 splx(s);
2189 return;
2190 }
2191
2192
2193 /*
2194 * adb_comp_exec
2195 * This is a general routine that calls the completion routine if there is one.
2196 * NOTE: This routine is now only used by pm_direct.c
2197 * All the code in this file (adb_direct.c) uses
2198 * the adb_pass_up routine now.
2199 */
2200 void
2201 adb_comp_exec(void)
2202 {
2203 if ((long)0 != adbCompRout) /* don't call if empty return location */
2204 #ifdef __NetBSD__
2205 asm(" movml #0xffff,sp@- | save all registers
2206 movl %0,a2 | adbCompData
2207 movl %1,a1 | adbCompRout
2208 movl %2,a0 | adbBuffer
2209 movl %3,d0 | adbWaitingCmd
2210 jbsr a1@ | go call the routine
2211 movml sp@+,#0xffff | restore all registers"
2212 :
2213 : "g"(adbCompData), "g"(adbCompRout),
2214 "g"(adbBuffer), "g"(adbWaitingCmd)
2215 : "d0", "a0", "a1", "a2");
2216 #else /* for Mac OS-based testing */
2217 asm {
2218 movem.l a0/a1/a2/d0, -(a7)
2219 move.l adbCompData, a2
2220 move.l adbCompRout, a1
2221 move.l adbBuffer, a0
2222 move.w adbWaitingCmd, d0
2223 jsr(a1)
2224 movem.l(a7) +, d0/a2/a1/a0
2225 }
2226 #endif
2227 }
2228
2229
2230 /*
2231 * adb_cmd_result
2232 *
2233 * This routine lets the caller know whether the specified adb command string
2234 * should expect a returned result, such as a TALK command.
2235 *
2236 * returns: 0 if a result should be expected
2237 * 1 if a result should NOT be expected
2238 */
2239 int
2240 adb_cmd_result(u_char *in)
2241 {
2242 switch (adbHardware) {
2243 case ADB_HW_II:
2244 /* was it an ADB talk command? */
2245 if ((in[1] & 0x0c) == 0x0c)
2246 return 0;
2247 return 1;
2248
2249 case ADB_HW_IISI:
2250 case ADB_HW_CUDA:
2251 /* was it an ADB talk command? */
2252 if ((in[1] == 0x00) && ((in[2] & 0x0c) == 0x0c))
2253 return 0;
2254 /* was it an RTC/PRAM read date/time? */
2255 if ((in[1] == 0x01) && (in[2] == 0x03))
2256 return 0;
2257 return 1;
2258
2259 case ADB_HW_PB:
2260 return 1;
2261
2262 case ADB_HW_UNKNOWN:
2263 default:
2264 return 1;
2265 }
2266 }
2267
2268
2269 /*
2270 * adb_cmd_extra
2271 *
2272 * This routine lets the caller know whether the specified adb command string
2273 * may have extra data appended to the end of it, such as a LISTEN command.
2274 *
2275 * returns: 0 if extra data is allowed
2276 * 1 if extra data is NOT allowed
2277 */
2278 int
2279 adb_cmd_extra(u_char *in)
2280 {
2281 switch (adbHardware) {
2282 case ADB_HW_II:
2283 if ((in[1] & 0x0c) == 0x08) /* was it a listen command? */
2284 return 0;
2285 return 1;
2286
2287 case ADB_HW_IISI:
2288 case ADB_HW_CUDA:
2289 /*
2290 * TO DO: support needs to be added to recognize RTC and PRAM
2291 * commands
2292 */
2293 if ((in[2] & 0x0c) == 0x08) /* was it a listen command? */
2294 return 0;
2295 /* add others later */
2296 return 1;
2297
2298 case ADB_HW_PB:
2299 return 1;
2300
2301 case ADB_HW_UNKNOWN:
2302 default:
2303 return 1;
2304 }
2305 }
2306
2307
2308 /*
2309 * adb_op_sync
2310 *
2311 * This routine does exactly what the adb_op routine does, except that after
2312 * the adb_op is called, it waits until the return value is present before
2313 * returning.
2314 *
2315 * NOTE: The user specified compRout is ignored, since this routine specifies
2316 * it's own to adb_op, which is why you really called this in the first place
2317 * anyway.
2318 */
2319 int
2320 adb_op_sync(Ptr buffer, Ptr compRout, Ptr data, short command)
2321 {
2322 int result;
2323 volatile int flag = 0;
2324
2325 result = adb_op(buffer, (void *)adb_op_comprout,
2326 (void *)&flag, command); /* send command */
2327 if (result == 0) /* send ok? */
2328 while (0 == flag)
2329 /* wait for compl. routine */;
2330
2331 return result;
2332 }
2333
2334
2335 /*
2336 * adb_op_comprout
2337 *
2338 * This function is used by the adb_op_sync routine so it knows when the
2339 * function is done.
2340 */
2341 void
2342 adb_op_comprout(void)
2343 {
2344 #ifdef __NetBSD__
2345 asm("movw #1,a2@ | update flag value");
2346 #else /* for macos based testing */
2347 asm {
2348 move.w #1,(a2) } /* update flag value */
2349 #endif
2350 }
2351
2352 void
2353 adb_setup_hw_type(void)
2354 {
2355 long response;
2356
2357 response = mac68k_machine.machineid;
2358
2359 /*
2360 * Determine what type of ADB hardware we are running on.
2361 */
2362 switch (response) {
2363 case 6: /* II */
2364 case 7: /* IIx */
2365 case 8: /* IIcx */
2366 case 9: /* SE/30 */
2367 case 11: /* IIci */
2368 case 22: /* Quadra 700 */
2369 case 30: /* Centris 650 */
2370 case 35: /* Quadra 800 */
2371 case 36: /* Quadra 650 */
2372 case 52: /* Centris 610 */
2373 case 53: /* Quadra 610 */
2374 adbHardware = ADB_HW_II;
2375 printf_intr("adb: using II series hardware support\n");
2376 break;
2377 case 18: /* IIsi */
2378 case 20: /* Quadra 900 - not sure if IIsi or not */
2379 case 23: /* Classic II */
2380 case 26: /* Quadra 950 - not sure if IIsi or not */
2381 case 27: /* LC III, Performa 450 */
2382 case 37: /* LC II, Performa 400/405/430 */
2383 case 44: /* IIvi */
2384 case 45: /* Performa 600 */
2385 case 48: /* IIvx */
2386 case 62: /* Performa 460/465/467 */
2387 adbHardware = ADB_HW_IISI;
2388 printf_intr("adb: using IIsi series hardware support\n");
2389 break;
2390 case 21: /* PowerBook 170 */
2391 case 25: /* PowerBook 140 */
2392 case 54: /* PowerBook 145 */
2393 case 34: /* PowerBook 160 */
2394 case 84: /* PowerBook 165 */
2395 case 50: /* PowerBook 165c */
2396 case 33: /* PowerBook 180 */
2397 case 71: /* PowerBook 180c */
2398 case 115: /* PowerBook 150 */
2399 adbHardware = ADB_HW_PB;
2400 pm_setup_adb();
2401 printf_intr("adb: using PowerBook 100-series hardware support\n");
2402 break;
2403 case 29: /* PowerBook Duo 210 */
2404 case 32: /* PowerBook Duo 230 */
2405 case 38: /* PowerBook Duo 250 */
2406 case 72: /* PowerBook 500 series */
2407 case 77: /* PowerBook Duo 270 */
2408 case 102: /* PowerBook Duo 280 */
2409 case 103: /* PowerBook Duo 280c */
2410 adbHardware = ADB_HW_PB;
2411 pm_setup_adb();
2412 printf_intr("adb: using PowerBook Duo-series and PowerBook 500-series hardware support\n");
2413 break;
2414 case 49: /* Color Classic */
2415 case 56: /* LC 520 */
2416 case 60: /* Centris 660AV */
2417 case 78: /* Quadra 840AV */
2418 case 80: /* LC 550, Performa 550 */
2419 case 83: /* Color Classic II */
2420 case 89: /* LC 475, Performa 475/476 */
2421 case 92: /* LC 575, Performa 575/577/578 */
2422 case 94: /* Quadra 605 */
2423 case 98: /* LC 630, Performa 630, Quadra 630 */
2424 case 99: /* Performa 580(?)/588 */
2425 adbHardware = ADB_HW_CUDA;
2426 printf_intr("adb: using Cuda series hardware support\n");
2427 break;
2428 default:
2429 adbHardware = ADB_HW_UNKNOWN;
2430 printf_intr("adb: hardware type unknown for this machine\n");
2431 printf_intr("adb: ADB support is disabled\n");
2432 break;
2433 }
2434
2435 /*
2436 * Determine whether this machine has ADB based soft power.
2437 */
2438 switch (response) {
2439 case 18: /* IIsi */
2440 case 20: /* Quadra 900 - not sure if IIsi or not */
2441 case 26: /* Quadra 950 - not sure if IIsi or not */
2442 case 44: /* IIvi */
2443 case 45: /* Performa 600 */
2444 case 48: /* IIvx */
2445 case 49: /* Color Classic */
2446 case 83: /* Color Classic II */
2447 case 56: /* LC 520 */
2448 case 78: /* Quadra 840AV */
2449 case 80: /* LC 550, Performa 550 */
2450 case 92: /* LC 575, Performa 575/577/578 */
2451 case 98: /* LC 630, Performa 630, Quadra 630 */
2452 adbSoftPower = 1;
2453 break;
2454 }
2455 }
2456
2457 int
2458 count_adbs(void)
2459 {
2460 int i;
2461 int found;
2462
2463 found = 0;
2464
2465 for (i = 1; i < 16; i++)
2466 if (0 != ADBDevTable[i].devType)
2467 found++;
2468
2469 return found;
2470 }
2471
2472 int
2473 get_ind_adb_info(ADBDataBlock * info, int index)
2474 {
2475 if ((index < 1) || (index > 15)) /* check range 1-15 */
2476 return (-1);
2477
2478 #ifdef ADB_DEBUG
2479 if (adb_debug & 0x80)
2480 printf_intr("index 0x%x devType is: 0x%x\n", index,
2481 ADBDevTable[index].devType);
2482 #endif
2483 if (0 == ADBDevTable[index].devType) /* make sure it's a valid entry */
2484 return (-1);
2485
2486 info->devType = ADBDevTable[index].devType;
2487 info->origADBAddr = ADBDevTable[index].origAddr;
2488 info->dbServiceRtPtr = (Ptr)ADBDevTable[index].ServiceRtPtr;
2489 info->dbDataAreaAddr = (Ptr)ADBDevTable[index].DataAreaAddr;
2490
2491 return (ADBDevTable[index].currentAddr);
2492 }
2493
2494 int
2495 get_adb_info(ADBDataBlock * info, int adbAddr)
2496 {
2497 int i;
2498
2499 if ((adbAddr < 1) || (adbAddr > 15)) /* check range 1-15 */
2500 return (-1);
2501
2502 for (i = 1; i < 15; i++)
2503 if (ADBDevTable[i].currentAddr == adbAddr) {
2504 info->devType = ADBDevTable[i].devType;
2505 info->origADBAddr = ADBDevTable[i].origAddr;
2506 info->dbServiceRtPtr = (Ptr)ADBDevTable[i].ServiceRtPtr;
2507 info->dbDataAreaAddr = ADBDevTable[i].DataAreaAddr;
2508 return 0; /* found */
2509 }
2510
2511 return (-1); /* not found */
2512 }
2513
2514 int
2515 set_adb_info(ADBSetInfoBlock * info, int adbAddr)
2516 {
2517 int i;
2518
2519 if ((adbAddr < 1) || (adbAddr > 15)) /* check range 1-15 */
2520 return (-1);
2521
2522 for (i = 1; i < 15; i++)
2523 if (ADBDevTable[i].currentAddr == adbAddr) {
2524 ADBDevTable[i].ServiceRtPtr =
2525 (void *)(info->siServiceRtPtr);
2526 ADBDevTable[i].DataAreaAddr = info->siDataAreaAddr;
2527 return 0; /* found */
2528 }
2529
2530 return (-1); /* not found */
2531
2532 }
2533
2534 #ifndef MRG_ADB
2535 long
2536 mrg_adbintr(void)
2537 {
2538 adb_intr();
2539 return 1; /* mimic mrg_adbintr in macrom.h just in case */
2540 }
2541
2542 long
2543 mrg_pmintr(void)
2544 {
2545 pm_intr();
2546 return 1; /* mimic mrg_pmintr in macrom.h just in case */
2547 }
2548 #endif
2549
2550 /* caller should really use machine-independant version: getPramTime */
2551 /* this version does pseudo-adb access only */
2552 int
2553 adb_read_date_time(unsigned long *time)
2554 {
2555 u_char output[ADB_MAX_MSG_LENGTH];
2556 int result;
2557 volatile int flag = 0;
2558
2559 switch (adbHardware) {
2560 case ADB_HW_II:
2561 return -1;
2562
2563 case ADB_HW_IISI:
2564 output[0] = 0x02; /* 2 byte message */
2565 output[1] = 0x01; /* to pram/rtc device */
2566 output[2] = 0x03; /* read date/time */
2567 result = send_adb_IIsi((u_char *)output, (u_char *)output,
2568 (void *)adb_op_comprout, (int *)&flag, (int)0);
2569 if (result != 0) /* exit if not sent */
2570 return -1;
2571
2572 while (0 == flag) /* wait for result */
2573 ;
2574
2575 *time = (long)(*(long *)(output + 1));
2576 return 0;
2577
2578 case ADB_HW_PB:
2579 return -1;
2580
2581 case ADB_HW_CUDA:
2582 output[0] = 0x02; /* 2 byte message */
2583 output[1] = 0x01; /* to pram/rtc device */
2584 output[2] = 0x03; /* read date/time */
2585 result = send_adb_cuda((u_char *)output, (u_char *)output,
2586 (void *)adb_op_comprout, (void *)&flag, (int)0);
2587 if (result != 0) /* exit if not sent */
2588 return -1;
2589
2590 while (0 == flag) /* wait for result */
2591 ;
2592
2593 *time = (long)(*(long *)(output + 1));
2594 return 0;
2595
2596 case ADB_HW_UNKNOWN:
2597 default:
2598 return -1;
2599 }
2600 }
2601
2602 /* caller should really use machine-independant version: setPramTime */
2603 /* this version does pseudo-adb access only */
2604 int
2605 adb_set_date_time(unsigned long time)
2606 {
2607 u_char output[ADB_MAX_MSG_LENGTH];
2608 int result;
2609 volatile int flag = 0;
2610
2611 switch (adbHardware) {
2612 case ADB_HW_II:
2613 return -1;
2614
2615 case ADB_HW_IISI:
2616 output[0] = 0x06; /* 6 byte message */
2617 output[1] = 0x01; /* to pram/rtc device */
2618 output[2] = 0x09; /* set date/time */
2619 output[3] = (u_char)(time >> 24);
2620 output[4] = (u_char)(time >> 16);
2621 output[5] = (u_char)(time >> 8);
2622 output[6] = (u_char)(time);
2623 result = send_adb_IIsi((u_char *)output, (u_char *)0,
2624 (void *)adb_op_comprout, (void *)&flag, (int)0);
2625 if (result != 0) /* exit if not sent */
2626 return -1;
2627
2628 while (0 == flag) /* wait for send to finish */
2629 ;
2630
2631 return 0;
2632
2633 case ADB_HW_PB:
2634 return -1;
2635
2636 case ADB_HW_CUDA:
2637 output[0] = 0x06; /* 6 byte message */
2638 output[1] = 0x01; /* to pram/rtc device */
2639 output[2] = 0x09; /* set date/time */
2640 output[3] = (u_char)(time >> 24);
2641 output[4] = (u_char)(time >> 16);
2642 output[5] = (u_char)(time >> 8);
2643 output[6] = (u_char)(time);
2644 result = send_adb_cuda((u_char *)output, (u_char *)0,
2645 (void *)adb_op_comprout, (void *)&flag, (int)0);
2646 if (result != 0) /* exit if not sent */
2647 return -1;
2648
2649 while (0 == flag) /* wait for send to finish */
2650 ;
2651
2652 return 0;
2653
2654 case ADB_HW_UNKNOWN:
2655 default:
2656 return -1;
2657 }
2658 }
2659
2660
2661 int
2662 adb_poweroff(void)
2663 {
2664 u_char output[ADB_MAX_MSG_LENGTH];
2665 int result;
2666
2667 if (!adbSoftPower)
2668 return -1;
2669
2670 switch (adbHardware) {
2671 case ADB_HW_IISI:
2672 output[0] = 0x02; /* 2 byte message */
2673 output[1] = 0x01; /* to pram/rtc/soft-power device */
2674 output[2] = 0x0a; /* set date/time */
2675 result = send_adb_IIsi((u_char *)output, (u_char *)0,
2676 (void *)0, (void *)0, (int)0);
2677 if (result != 0) /* exit if not sent */
2678 return -1;
2679
2680 for (;;); /* wait for power off */
2681
2682 return 0;
2683
2684 case ADB_HW_PB:
2685 return -1;
2686
2687 case ADB_HW_CUDA:
2688 output[0] = 0x02; /* 2 byte message */
2689 output[1] = 0x01; /* to pram/rtc/soft-power device */
2690 output[2] = 0x0a; /* set date/time */
2691 result = send_adb_cuda((u_char *)output, (u_char *)0,
2692 (void *)0, (void *)0, (int)0);
2693 if (result != 0) /* exit if not sent */
2694 return -1;
2695
2696 for (;;); /* wait for power off */
2697
2698 return 0;
2699
2700 case ADB_HW_II: /* II models don't do ADB soft power */
2701 case ADB_HW_UNKNOWN:
2702 default:
2703 return -1;
2704 }
2705 }
2706
2707 int
2708 adb_prog_switch_enable(void)
2709 {
2710 u_char output[ADB_MAX_MSG_LENGTH];
2711 int result;
2712 volatile int flag = 0;
2713
2714 switch (adbHardware) {
2715 case ADB_HW_IISI:
2716 output[0] = 0x03; /* 3 byte message */
2717 output[1] = 0x01; /* to pram/rtc/soft-power device */
2718 output[2] = 0x1c; /* prog. switch control */
2719 output[3] = 0x01; /* enable */
2720 result = send_adb_IIsi((u_char *)output, (u_char *)0,
2721 (void *)adb_op_comprout, (void *)&flag, (int)0);
2722 if (result != 0) /* exit if not sent */
2723 return -1;
2724
2725 while (0 == flag) /* wait for send to finish */
2726 ;
2727
2728 return 0;
2729
2730 case ADB_HW_PB:
2731 return -1;
2732
2733 case ADB_HW_II: /* II models don't do prog. switch */
2734 case ADB_HW_CUDA: /* cuda doesn't do prog. switch TO DO: verify this */
2735 case ADB_HW_UNKNOWN:
2736 default:
2737 return -1;
2738 }
2739 }
2740
2741 int
2742 adb_prog_switch_disable(void)
2743 {
2744 u_char output[ADB_MAX_MSG_LENGTH];
2745 int result;
2746 volatile int flag = 0;
2747
2748 switch (adbHardware) {
2749 case ADB_HW_IISI:
2750 output[0] = 0x03; /* 3 byte message */
2751 output[1] = 0x01; /* to pram/rtc/soft-power device */
2752 output[2] = 0x1c; /* prog. switch control */
2753 output[3] = 0x01; /* disable */
2754 result = send_adb_IIsi((u_char *)output, (u_char *)0,
2755 (void *)adb_op_comprout, (void *)&flag, (int)0);
2756 if (result != 0) /* exit if not sent */
2757 return -1;
2758
2759 while (0 == flag) /* wait for send to finish */
2760 ;
2761
2762 return 0;
2763
2764 case ADB_HW_PB:
2765 return -1;
2766
2767 case ADB_HW_II: /* II models don't do prog. switch */
2768 case ADB_HW_CUDA: /* cuda doesn't do prog. switch */
2769 case ADB_HW_UNKNOWN:
2770 default:
2771 return -1;
2772 }
2773 }
2774
2775 #ifndef MRG_ADB
2776
2777 int
2778 CountADBs(void)
2779 {
2780 return (count_adbs());
2781 }
2782
2783 void
2784 ADBReInit(void)
2785 {
2786 adb_reinit();
2787 }
2788
2789 int
2790 GetIndADB(ADBDataBlock * info, int index)
2791 {
2792 return (get_ind_adb_info(info, index));
2793 }
2794
2795 int
2796 GetADBInfo(ADBDataBlock * info, int adbAddr)
2797 {
2798 return (get_adb_info(info, adbAddr));
2799 }
2800
2801 int
2802 SetADBInfo(ADBSetInfoBlock * info, int adbAddr)
2803 {
2804 return (set_adb_info(info, adbAddr));
2805 }
2806
2807 int
2808 ADBOp(Ptr buffer, Ptr compRout, Ptr data, short commandNum)
2809 {
2810 return (adb_op(buffer, compRout, data, commandNum));
2811 }
2812
2813 #endif
2814