adb_direct.c revision 1.21 1 /* $NetBSD: adb_direct.c,v 1.21 1999/03/18 09:10:19 scottr Exp $ */
2
3 /* From: adb_direct.c 2.02 4/18/97 jpw */
4
5 /*
6 * Copyright (C) 1996, 1997 John P. Wittkoski
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by John P. Wittkoski.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*
36 * This code is rather messy, but I don't have time right now
37 * to clean it up as much as I would like.
38 * But it works, so I'm happy. :-) jpw
39 */
40
41 /*
42 * TO DO:
43 * - We could reduce the time spent in the adb_intr_* routines
44 * by having them save the incoming and outgoing data directly
45 * in the adbInbound and adbOutbound queues, as it would reduce
46 * the number of times we need to copy the data around. It
47 * would also make the code more readable and easier to follow.
48 * - (Related to above) Use the header part of adbCommand to
49 * reduce the number of copies we have to do of the data.
50 * - (Related to above) Actually implement the adbOutbound queue.
51 * This is fairly easy once you switch all the intr routines
52 * over to using adbCommand structs directly.
53 * - There is a bug in the state machine of adb_intr_cuda
54 * code that causes hangs, especially on 030 machines, probably
55 * because of some timing issues. Because I have been unable to
56 * determine the exact cause of this bug, I used the timeout function
57 * to check for and recover from this condition. If anyone finds
58 * the actual cause of this bug, the calls to timeout and the
59 * adb_cuda_tickle routine can be removed.
60 */
61
62 #ifdef __NetBSD__
63 #include "opt_adb.h"
64
65 #include <sys/param.h>
66 #include <sys/cdefs.h>
67 #include <sys/systm.h>
68
69 #include <machine/viareg.h>
70 #include <machine/param.h>
71 #include <machine/cpu.h>
72 #include <machine/adbsys.h> /* required for adbvar.h */
73
74 #include <mac68k/mac68k/macrom.h>
75 #include <mac68k/dev/adbvar.h>
76 #define printf_intr printf
77 #else /* !__NetBSD__, i.e. Mac OS */
78 #include "via.h" /* for macos based testing */
79 /* #define ADB_DEBUG */ /* more verbose for testing */
80
81 /* Types of ADB hardware that we support */
82 #define ADB_HW_UNKNOWN 0x0 /* don't know */
83 #define ADB_HW_II 0x1 /* Mac II series */
84 #define ADB_HW_IISI 0x2 /* Mac IIsi series */
85 #define ADB_HW_PB 0x3 /* PowerBook series */
86 #define ADB_HW_CUDA 0x4 /* Machines with a Cuda chip */
87 #endif /* __NetBSD__ */
88
89 /* some misc. leftovers */
90 #define vPB 0x0000
91 #define vPB3 0x08
92 #define vPB4 0x10
93 #define vPB5 0x20
94 #define vSR_INT 0x04
95 #define vSR_OUT 0x10
96
97 /* the type of ADB action that we are currently preforming */
98 #define ADB_ACTION_NOTREADY 0x1 /* has not been initialized yet */
99 #define ADB_ACTION_IDLE 0x2 /* the bus is currently idle */
100 #define ADB_ACTION_OUT 0x3 /* sending out a command */
101 #define ADB_ACTION_IN 0x4 /* receiving data */
102 #define ADB_ACTION_POLLING 0x5 /* polling - II only */
103
104 /*
105 * These describe the state of the ADB bus itself, although they
106 * don't necessarily correspond directly to ADB states.
107 * Note: these are not really used in the IIsi code.
108 */
109 #define ADB_BUS_UNKNOWN 0x1 /* we don't know yet - all models */
110 #define ADB_BUS_IDLE 0x2 /* bus is idle - all models */
111 #define ADB_BUS_CMD 0x3 /* starting a command - II models */
112 #define ADB_BUS_ODD 0x4 /* the "odd" state - II models */
113 #define ADB_BUS_EVEN 0x5 /* the "even" state - II models */
114 #define ADB_BUS_ACTIVE 0x6 /* active state - IIsi models */
115 #define ADB_BUS_ACK 0x7 /* currently ACKing - IIsi models */
116
117 /*
118 * Shortcuts for setting or testing the VIA bit states.
119 * Not all shortcuts are used for every type of ADB hardware.
120 */
121 #define ADB_SET_STATE_IDLE_II() via_reg(VIA1, vBufB) |= (vPB4 | vPB5)
122 #define ADB_SET_STATE_IDLE_IISI() via_reg(VIA1, vBufB) &= ~(vPB4 | vPB5)
123 #define ADB_SET_STATE_IDLE_CUDA() via_reg(VIA1, vBufB) |= (vPB4 | vPB5)
124 #define ADB_SET_STATE_CMD() via_reg(VIA1, vBufB) &= ~(vPB4 | vPB5)
125 #define ADB_SET_STATE_EVEN() via_reg(VIA1, vBufB) = ((via_reg(VIA1, \
126 vBufB) | vPB4) & ~vPB5)
127 #define ADB_SET_STATE_ODD() via_reg(VIA1, vBufB) = ((via_reg(VIA1, \
128 vBufB) | vPB5) & ~vPB4)
129 #define ADB_SET_STATE_ACTIVE() via_reg(VIA1, vBufB) |= vPB5
130 #define ADB_SET_STATE_INACTIVE() via_reg(VIA1, vBufB) &= ~vPB5
131 #define ADB_SET_STATE_TIP() via_reg(VIA1, vBufB) &= ~vPB5
132 #define ADB_CLR_STATE_TIP() via_reg(VIA1, vBufB) |= vPB5
133 #define ADB_SET_STATE_ACKON() via_reg(VIA1, vBufB) |= vPB4
134 #define ADB_SET_STATE_ACKOFF() via_reg(VIA1, vBufB) &= ~vPB4
135 #define ADB_TOGGLE_STATE_ACK_CUDA() via_reg(VIA1, vBufB) ^= vPB4
136 #define ADB_SET_STATE_ACKON_CUDA() via_reg(VIA1, vBufB) &= ~vPB4
137 #define ADB_SET_STATE_ACKOFF_CUDA() via_reg(VIA1, vBufB) |= vPB4
138 #define ADB_SET_SR_INPUT() via_reg(VIA1, vACR) &= ~vSR_OUT
139 #define ADB_SET_SR_OUTPUT() via_reg(VIA1, vACR) |= vSR_OUT
140 #define ADB_SR() via_reg(VIA1, vSR)
141 #define ADB_VIA_INTR_ENABLE() via_reg(VIA1, vIER) = 0x84
142 #define ADB_VIA_INTR_DISABLE() via_reg(VIA1, vIER) = 0x04
143 #define ADB_VIA_CLR_INTR() via_reg(VIA1, vIFR) = 0x04
144 #define ADB_INTR_IS_OFF (vPB3 == (via_reg(VIA1, vBufB) & vPB3))
145 #define ADB_INTR_IS_ON (0 == (via_reg(VIA1, vBufB) & vPB3))
146 #define ADB_SR_INTR_IS_OFF (0 == (via_reg(VIA1, vIFR) & vSR_INT))
147 #define ADB_SR_INTR_IS_ON (vSR_INT == (via_reg(VIA1, \
148 vIFR) & vSR_INT))
149
150 /*
151 * This is the delay that is required (in uS) between certain
152 * ADB transactions. The actual timing delay for for each uS is
153 * calculated at boot time to account for differences in machine speed.
154 */
155 #define ADB_DELAY 150
156
157 /*
158 * Maximum ADB message length; includes space for data, result, and
159 * device code - plus a little for safety.
160 */
161 #define ADB_MAX_MSG_LENGTH 16
162 #define ADB_MAX_HDR_LENGTH 8
163
164 #define ADB_QUEUE 32
165 #define ADB_TICKLE_TICKS 4
166
167 /*
168 * A structure for storing information about each ADB device.
169 */
170 struct ADBDevEntry {
171 void (*ServiceRtPtr) __P((void));
172 void *DataAreaAddr;
173 int devType;
174 int origAddr;
175 int currentAddr;
176 };
177
178 /*
179 * Used to hold ADB commands that are waiting to be sent out.
180 */
181 struct adbCmdHoldEntry {
182 u_char outBuf[ADB_MAX_MSG_LENGTH]; /* our message */
183 u_char *saveBuf; /* buffer to know where to save result */
184 u_char *compRout; /* completion routine pointer */
185 u_char *data; /* completion routine data pointer */
186 };
187
188 /*
189 * Eventually used for two separate queues, the queue between
190 * the upper and lower halves, and the outgoing packet queue.
191 * TO DO: adbCommand can replace all of adbCmdHoldEntry eventually
192 */
193 struct adbCommand {
194 u_char header[ADB_MAX_HDR_LENGTH]; /* not used yet */
195 u_char data[ADB_MAX_MSG_LENGTH]; /* packet data only */
196 u_char *saveBuf; /* where to save result */
197 u_char *compRout; /* completion routine pointer */
198 u_char *compData; /* completion routine data pointer */
199 u_int cmd; /* the original command for this data */
200 u_int unsol; /* 1 if packet was unsolicited */
201 u_int ack_only; /* 1 for no special processing */
202 };
203
204 /*
205 * Text representations of each hardware class
206 */
207 char *adbHardwareDescr[MAX_ADB_HW + 1] = {
208 "unknown",
209 "II series",
210 "IIsi series",
211 "PowerBook",
212 "Cuda",
213 };
214
215 /*
216 * A few variables that we need and their initial values.
217 */
218 int adbHardware = ADB_HW_UNKNOWN;
219 int adbActionState = ADB_ACTION_NOTREADY;
220 int adbBusState = ADB_BUS_UNKNOWN;
221 int adbWaiting = 0; /* waiting for return data from the device */
222 int adbWriteDelay = 0; /* working on (or waiting to do) a write */
223 int adbOutQueueHasData = 0; /* something in the queue waiting to go out */
224 int adbNextEnd = 0; /* the next incoming bute is the last (II) */
225 int adbSoftPower = 0; /* machine supports soft power */
226
227 int adbWaitingCmd = 0; /* ADB command we are waiting for */
228 u_char *adbBuffer = (long)0; /* pointer to user data area */
229 void *adbCompRout = (long)0; /* pointer to the completion routine */
230 void *adbCompData = (long)0; /* pointer to the completion routine data */
231 long adbFakeInts = 0; /* keeps track of fake ADB interrupts for
232 * timeouts (II) */
233 int adbStarting = 1; /* doing ADBReInit so do polling differently */
234 int adbSendTalk = 0; /* the intr routine is sending the talk, not
235 * the user (II) */
236 int adbPolling = 0; /* we are polling for service request */
237 int adbPollCmd = 0; /* the last poll command we sent */
238
239 u_char adbInputBuffer[ADB_MAX_MSG_LENGTH]; /* data input buffer */
240 u_char adbOutputBuffer[ADB_MAX_MSG_LENGTH]; /* data output buffer */
241 struct adbCmdHoldEntry adbOutQueue; /* our 1 entry output queue */
242
243 int adbSentChars = 0; /* how many characters we have sent */
244 int adbLastDevice = 0; /* last ADB dev we heard from (II ONLY) */
245 int adbLastDevIndex = 0; /* last ADB dev loc in dev table (II ONLY) */
246 int adbLastCommand = 0; /* the last ADB command we sent (II) */
247
248 struct ADBDevEntry ADBDevTable[16]; /* our ADB device table */
249 int ADBNumDevices; /* num. of ADB devices found with ADBReInit */
250
251 struct adbCommand adbInbound[ADB_QUEUE]; /* incoming queue */
252 int adbInCount = 0; /* how many packets in in queue */
253 int adbInHead = 0; /* head of in queue */
254 int adbInTail = 0; /* tail of in queue */
255 struct adbCommand adbOutbound[ADB_QUEUE]; /* outgoing queue - not used yet */
256 int adbOutCount = 0; /* how many packets in out queue */
257 int adbOutHead = 0; /* head of out queue */
258 int adbOutTail = 0; /* tail of out queue */
259
260 int tickle_count = 0; /* how many tickles seen for this packet? */
261 int tickle_serial = 0; /* the last packet tickled */
262 int adb_cuda_serial = 0; /* the current packet */
263
264 extern struct mac68k_machine_S mac68k_machine;
265 extern int ite_polling; /* Are we polling? (Debugger mode) */
266
267 void pm_setup_adb __P((void));
268 void pm_check_adb_devices __P((int));
269 void pm_intr __P((void));
270 int pm_adb_op __P((u_char *, void *, void *, int));
271 void pm_init_adb_device __P((void));
272
273 /*
274 * The following are private routines.
275 */
276 #ifdef ADB_DEBUG
277 void print_single __P((u_char *));
278 #endif
279 void adb_intr __P((void));
280 void adb_intr_II __P((void));
281 void adb_intr_IIsi __P((void));
282 void adb_intr_cuda __P((void));
283 void adb_soft_intr __P((void));
284 int send_adb_II __P((u_char *, u_char *, void *, void *, int));
285 int send_adb_IIsi __P((u_char *, u_char *, void *, void *, int));
286 int send_adb_cuda __P((u_char *, u_char *, void *, void *, int));
287 void adb_intr_cuda_test __P((void));
288 void adb_cuda_tickle __P((void));
289 void adb_pass_up __P((struct adbCommand *));
290 void adb_op_comprout __P((void));
291 void adb_reinit __P((void));
292 int count_adbs __P((void));
293 int get_ind_adb_info __P((ADBDataBlock *, int));
294 int get_adb_info __P((ADBDataBlock *, int));
295 int set_adb_info __P((ADBSetInfoBlock *, int));
296 void adb_setup_hw_type __P((void));
297 int adb_op __P((Ptr, Ptr, Ptr, short));
298 int adb_op_sync __P((Ptr, Ptr, Ptr, short));
299 void adb_read_II __P((u_char *));
300 void adb_hw_setup __P((void));
301 void adb_hw_setup_IIsi __P((u_char *));
302 void adb_comp_exec __P((void));
303 int adb_cmd_result __P((u_char *));
304 int adb_cmd_extra __P((u_char *));
305 int adb_guess_next_device __P((void));
306 int adb_prog_switch_enable __P((void));
307 int adb_prog_switch_disable __P((void));
308 /* we should create this and it will be the public version */
309 int send_adb __P((u_char *, void *, void *));
310
311 #ifdef ADB_DEBUG
312 /*
313 * print_single
314 * Diagnostic display routine. Displays the hex values of the
315 * specified elements of the u_char. The length of the "string"
316 * is in [0].
317 */
318 void
319 print_single(thestring)
320 u_char *thestring;
321 {
322 int x;
323
324 if ((int)(thestring[0]) == 0) {
325 printf_intr("nothing returned\n");
326 return;
327 }
328 if (thestring == 0) {
329 printf_intr("no data - null pointer\n");
330 return;
331 }
332 if (thestring[0] > 20) {
333 printf_intr("ADB: ACK > 20 no way!\n");
334 thestring[0] = 20;
335 }
336 printf_intr("(length=0x%x):", thestring[0]);
337 for (x = 0; x < thestring[0]; x++)
338 printf_intr(" 0x%02x", thestring[x + 1]);
339 printf_intr("\n");
340 }
341 #endif
342
343 void
344 adb_cuda_tickle(void)
345 {
346 volatile int s;
347
348 if (adbActionState == ADB_ACTION_IN) {
349 if (tickle_serial == adb_cuda_serial) {
350 if (++tickle_count > 0) {
351 s = splhigh();
352 adbActionState = ADB_ACTION_IDLE;
353 adbInputBuffer[0] = 0;
354 ADB_SET_STATE_IDLE_CUDA();
355 splx(s);
356 }
357 } else {
358 tickle_serial = adb_cuda_serial;
359 tickle_count = 0;
360 }
361 } else {
362 tickle_serial = adb_cuda_serial;
363 tickle_count = 0;
364 }
365
366 timeout((void *)adb_cuda_tickle, 0, ADB_TICKLE_TICKS);
367 }
368
369 /*
370 * called when when an adb interrupt happens
371 *
372 * Cuda version of adb_intr
373 * TO DO: do we want to add some calls to intr_dispatch() here to
374 * grab serial interrupts?
375 */
376 void
377 adb_intr_cuda(void)
378 {
379 volatile int i, ending;
380 volatile unsigned int s;
381 struct adbCommand packet;
382
383 s = splhigh(); /* can't be too careful - might be called */
384 /* from a routine, NOT an interrupt */
385
386 ADB_VIA_CLR_INTR(); /* clear interrupt */
387 ADB_VIA_INTR_DISABLE(); /* disable ADB interrupt on IIs. */
388
389 switch_start:
390 switch (adbActionState) {
391 case ADB_ACTION_IDLE:
392 /*
393 * This is an unexpected packet, so grab the first (dummy)
394 * byte, set up the proper vars, and tell the chip we are
395 * starting to receive the packet by setting the TIP bit.
396 */
397 adbInputBuffer[1] = ADB_SR();
398 adb_cuda_serial++;
399 if (ADB_INTR_IS_OFF) /* must have been a fake start */
400 break;
401
402 ADB_SET_SR_INPUT();
403 ADB_SET_STATE_TIP();
404
405 adbInputBuffer[0] = 1;
406 adbActionState = ADB_ACTION_IN;
407 #ifdef ADB_DEBUG
408 if (adb_debug)
409 printf_intr("idle 0x%02x ", adbInputBuffer[1]);
410 #endif
411 break;
412
413 case ADB_ACTION_IN:
414 adbInputBuffer[++adbInputBuffer[0]] = ADB_SR();
415 /* intr off means this is the last byte (end of frame) */
416 if (ADB_INTR_IS_OFF)
417 ending = 1;
418 else
419 ending = 0;
420
421 if (1 == ending) { /* end of message? */
422 #ifdef ADB_DEBUG
423 if (adb_debug) {
424 printf_intr("in end 0x%02x ",
425 adbInputBuffer[adbInputBuffer[0]]);
426 print_single(adbInputBuffer);
427 }
428 #endif
429
430 /*
431 * Are we waiting AND does this packet match what we
432 * are waiting for AND is it coming from either the
433 * ADB or RTC/PRAM sub-device? This section _should_
434 * recognize all ADB and RTC/PRAM type commands, but
435 * there may be more... NOTE: commands are always at
436 * [4], even for RTC/PRAM commands.
437 */
438 /* set up data for adb_pass_up */
439 for (i = 0; i <= adbInputBuffer[0]; i++)
440 packet.data[i] = adbInputBuffer[i];
441
442 if ((adbWaiting == 1) &&
443 (adbInputBuffer[4] == adbWaitingCmd) &&
444 ((adbInputBuffer[2] == 0x00) ||
445 (adbInputBuffer[2] == 0x01))) {
446 packet.saveBuf = adbBuffer;
447 packet.compRout = adbCompRout;
448 packet.compData = adbCompData;
449 packet.unsol = 0;
450 packet.ack_only = 0;
451 adb_pass_up(&packet);
452
453 adbWaitingCmd = 0; /* reset "waiting" vars */
454 adbWaiting = 0;
455 adbBuffer = (long)0;
456 adbCompRout = (long)0;
457 adbCompData = (long)0;
458 } else {
459 packet.unsol = 1;
460 packet.ack_only = 0;
461 adb_pass_up(&packet);
462 }
463
464
465 /* reset vars and signal the end of this frame */
466 adbActionState = ADB_ACTION_IDLE;
467 adbInputBuffer[0] = 0;
468 ADB_SET_STATE_IDLE_CUDA();
469 /*ADB_SET_SR_INPUT();*/
470
471 /*
472 * If there is something waiting to be sent out,
473 * the set everything up and send the first byte.
474 */
475 if (adbWriteDelay == 1) {
476 delay(ADB_DELAY); /* required */
477 adbSentChars = 0;
478 adbActionState = ADB_ACTION_OUT;
479 /*
480 * If the interrupt is on, we were too slow
481 * and the chip has already started to send
482 * something to us, so back out of the write
483 * and start a read cycle.
484 */
485 if (ADB_INTR_IS_ON) {
486 ADB_SET_SR_INPUT();
487 ADB_SET_STATE_IDLE_CUDA();
488 adbSentChars = 0;
489 adbActionState = ADB_ACTION_IDLE;
490 adbInputBuffer[0] = 0;
491 break;
492 }
493 /*
494 * If we got here, it's ok to start sending
495 * so load the first byte and tell the chip
496 * we want to send.
497 */
498 ADB_SET_STATE_TIP();
499 ADB_SET_SR_OUTPUT();
500 ADB_SR() = adbOutputBuffer[adbSentChars + 1];
501 }
502 } else {
503 ADB_TOGGLE_STATE_ACK_CUDA();
504 #ifdef ADB_DEBUG
505 if (adb_debug)
506 printf_intr("in 0x%02x ",
507 adbInputBuffer[adbInputBuffer[0]]);
508 #endif
509 }
510 break;
511
512 case ADB_ACTION_OUT:
513 i = ADB_SR(); /* reset SR-intr in IFR */
514 #ifdef ADB_DEBUG
515 if (adb_debug)
516 printf_intr("intr out 0x%02x ", i);
517 #endif
518
519 adbSentChars++;
520 if (ADB_INTR_IS_ON) { /* ADB intr low during write */
521 #ifdef ADB_DEBUG
522 if (adb_debug)
523 printf_intr("intr was on ");
524 #endif
525 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
526 ADB_SET_STATE_IDLE_CUDA();
527 adbSentChars = 0; /* must start all over */
528 adbActionState = ADB_ACTION_IDLE; /* new state */
529 adbInputBuffer[0] = 0;
530 adbWriteDelay = 1; /* must retry when done with
531 * read */
532 delay(ADB_DELAY);
533 goto switch_start; /* process next state right
534 * now */
535 break;
536 }
537 if (adbOutputBuffer[0] == adbSentChars) { /* check for done */
538 if (0 == adb_cmd_result(adbOutputBuffer)) { /* do we expect data
539 * back? */
540 adbWaiting = 1; /* signal waiting for return */
541 adbWaitingCmd = adbOutputBuffer[2]; /* save waiting command */
542 } else { /* no talk, so done */
543 /* set up stuff for adb_pass_up */
544 for (i = 0; i <= adbInputBuffer[0]; i++)
545 packet.data[i] = adbInputBuffer[i];
546 packet.saveBuf = adbBuffer;
547 packet.compRout = adbCompRout;
548 packet.compData = adbCompData;
549 packet.cmd = adbWaitingCmd;
550 packet.unsol = 0;
551 packet.ack_only = 1;
552 adb_pass_up(&packet);
553
554 /* reset "waiting" vars, just in case */
555 adbWaitingCmd = 0;
556 adbBuffer = (long)0;
557 adbCompRout = (long)0;
558 adbCompData = (long)0;
559 }
560
561 adbWriteDelay = 0; /* done writing */
562 adbActionState = ADB_ACTION_IDLE; /* signal bus is idle */
563 ADB_SET_SR_INPUT();
564 ADB_SET_STATE_IDLE_CUDA();
565 #ifdef ADB_DEBUG
566 if (adb_debug)
567 printf_intr("write done ");
568 #endif
569 } else {
570 ADB_SR() = adbOutputBuffer[adbSentChars + 1]; /* send next byte */
571 ADB_TOGGLE_STATE_ACK_CUDA(); /* signal byte ready to
572 * shift */
573 #ifdef ADB_DEBUG
574 if (adb_debug)
575 printf_intr("toggle ");
576 #endif
577 }
578 break;
579
580 case ADB_ACTION_NOTREADY:
581 #ifdef ADB_DEBUG
582 if (adb_debug)
583 printf_intr("adb: not yet initialized\n");
584 #endif
585 break;
586
587 default:
588 #ifdef ADB_DEBUG
589 if (adb_debug)
590 printf_intr("intr: unknown ADB state\n");
591 #endif
592 }
593
594 ADB_VIA_INTR_ENABLE(); /* enable ADB interrupt on IIs. */
595
596 splx(s); /* restore */
597
598 return;
599 } /* end adb_intr_cuda */
600
601
602 int
603 send_adb_cuda(u_char * in, u_char * buffer, void *compRout, void *data, int
604 command)
605 {
606 int i, s, len;
607
608 #ifdef ADB_DEBUG
609 if (adb_debug)
610 printf_intr("SEND\n");
611 #endif
612
613 if (adbActionState == ADB_ACTION_NOTREADY)
614 return 1;
615
616 /* Don't interrupt while we are messing with the ADB */
617 s = splhigh();
618
619 if ((adbActionState == ADB_ACTION_IDLE) && /* ADB available? */
620 (ADB_INTR_IS_OFF)) { /* and no incoming interrupt? */
621 } else
622 if (adbWriteDelay == 0) /* it's busy, but is anything waiting? */
623 adbWriteDelay = 1; /* if no, then we'll "queue"
624 * it up */
625 else {
626 splx(s);
627 return 1; /* really busy! */
628 }
629
630 #ifdef ADB_DEBUG
631 if (adb_debug)
632 printf_intr("QUEUE\n");
633 #endif
634 if ((long)in == (long)0) { /* need to convert? */
635 /*
636 * Don't need to use adb_cmd_extra here because this section
637 * will be called ONLY when it is an ADB command (no RTC or
638 * PRAM)
639 */
640 if ((command & 0x0c) == 0x08) /* copy addl data ONLY if
641 * doing a listen! */
642 len = buffer[0]; /* length of additional data */
643 else
644 len = 0;/* no additional data */
645
646 adbOutputBuffer[0] = 2 + len; /* dev. type + command + addl.
647 * data */
648 adbOutputBuffer[1] = 0x00; /* mark as an ADB command */
649 adbOutputBuffer[2] = (u_char)command; /* load command */
650
651 for (i = 1; i <= len; i++) /* copy additional output
652 * data, if any */
653 adbOutputBuffer[2 + i] = buffer[i];
654 } else
655 for (i = 0; i <= (in[0] + 1); i++)
656 adbOutputBuffer[i] = in[i];
657
658 adbSentChars = 0; /* nothing sent yet */
659 adbBuffer = buffer; /* save buffer to know where to save result */
660 adbCompRout = compRout; /* save completion routine pointer */
661 adbCompData = data; /* save completion routine data pointer */
662 adbWaitingCmd = adbOutputBuffer[2]; /* save wait command */
663
664 if (adbWriteDelay != 1) { /* start command now? */
665 #ifdef ADB_DEBUG
666 if (adb_debug)
667 printf_intr("out start NOW");
668 #endif
669 delay(ADB_DELAY);
670 adbActionState = ADB_ACTION_OUT; /* set next state */
671 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
672 ADB_SR() = adbOutputBuffer[adbSentChars + 1]; /* load byte for output */
673 ADB_SET_STATE_ACKOFF_CUDA();
674 ADB_SET_STATE_TIP(); /* tell ADB that we want to send */
675 }
676 adbWriteDelay = 1; /* something in the write "queue" */
677
678 splx(s);
679
680 if (0x0100 <= (s & 0x0700)) /* were VIA1 interrupts blocked ? */
681 /* poll until byte done */
682 while ((adbActionState != ADB_ACTION_IDLE) || (ADB_INTR_IS_ON)
683 || (adbWaiting == 1))
684 if (ADB_SR_INTR_IS_ON) { /* wait for "interrupt" */
685 adb_intr_cuda(); /* process it */
686 adb_soft_intr();
687 }
688
689 return 0;
690 } /* send_adb_cuda */
691
692
693 void
694 adb_intr_II(void)
695 {
696 struct adbCommand packet;
697 int i, intr_on = 0;
698 int send = 0;
699 unsigned int s;
700
701 s = splhigh(); /* can't be too careful - might be called */
702 /* from a routine, NOT an interrupt */
703
704 ADB_VIA_CLR_INTR(); /* clear interrupt */
705
706 ADB_VIA_INTR_DISABLE(); /* disable ADB interrupt on IIs. */
707
708 delay(ADB_DELAY); /* yuck (don't remove) */
709 (void)intr_dispatch(0x70); /* grab any serial interrupts */
710
711 if (ADB_INTR_IS_ON)
712 intr_on = 1; /* save for later */
713
714 switch_start:
715 switch (adbActionState) {
716 case ADB_ACTION_POLLING:
717 if (!intr_on) {
718 if (adbOutQueueHasData) {
719 #ifdef ADB_DEBUG
720 if (adb_debug & 0x80)
721 printf_intr("POLL-doing-out-queue. ");
722 #endif
723 /* copy over data */
724 ADB_SET_STATE_IDLE_II();
725 delay(ADB_DELAY);
726 for (i = 0; i <= (adbOutQueue.outBuf[0] + 1); i++)
727 adbOutputBuffer[i] = adbOutQueue.outBuf[i];
728 adbBuffer = adbOutQueue.saveBuf; /* user data area */
729 adbCompRout = adbOutQueue.compRout; /* completion routine */
730 adbCompData = adbOutQueue.data; /* comp. rout. data */
731 adbOutQueueHasData = 0; /* currently processing
732 * "queue" entry */
733 adbSentChars = 0; /* nothing sent yet */
734 adbActionState = ADB_ACTION_OUT; /* set next state */
735 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
736 ADB_SR() = adbOutputBuffer[1]; /* load byte for output */
737 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */
738 ADB_SET_STATE_CMD(); /* tell ADB that we want to
739 * send */
740 break;
741 } else {
742 #ifdef ADB_DEBUG
743 if (adb_debug)
744 printf_intr("pIDLE ");
745 #endif
746 adbActionState = ADB_ACTION_IDLE;
747 }
748 } else {
749 #ifdef ADB_DEBUG
750 if (adb_debug & 0x80)
751 printf_intr("pIN ");
752 #endif
753 adbActionState = ADB_ACTION_IN;
754 }
755 delay(ADB_DELAY);
756 (void)intr_dispatch(0x70); /* grab any serial interrupts */
757 goto switch_start;
758 break;
759 case ADB_ACTION_IDLE:
760 if (!intr_on) {
761 i = ADB_SR();
762 adbBusState = ADB_BUS_IDLE;
763 adbActionState = ADB_ACTION_IDLE;
764 ADB_SET_STATE_IDLE_II();
765 break;
766 }
767 adbInputBuffer[0] = 1;
768 adbInputBuffer[1] = ADB_SR(); /* get first byte */
769 #ifdef ADB_DEBUG
770 if (adb_debug & 0x80)
771 printf_intr("idle 0x%02x ", adbInputBuffer[1]);
772 #endif
773 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
774 adbActionState = ADB_ACTION_IN; /* set next state */
775 ADB_SET_STATE_EVEN(); /* set bus state to even */
776 adbBusState = ADB_BUS_EVEN;
777 break;
778
779 case ADB_ACTION_IN:
780 adbInputBuffer[++adbInputBuffer[0]] = ADB_SR(); /* get byte */
781 #ifdef ADB_DEBUG
782 if (adb_debug & 0x80)
783 printf_intr("in 0x%02x ",
784 adbInputBuffer[adbInputBuffer[0]]);
785 #endif
786 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
787
788 if (intr_on) { /* process last byte of packet */
789 adbInputBuffer[0]--; /* minus one */
790 /*
791 * If intr_on was true, and it's the second byte, then
792 * the byte we just discarded is really valid, so
793 * adjust the count
794 */
795 if (adbInputBuffer[0] == 2) {
796 adbInputBuffer[0]++;
797 }
798
799 #ifdef ADB_DEBUG
800 if (adb_debug & 0x80) {
801 printf_intr("done: ");
802 print_single(adbInputBuffer);
803 }
804 #endif
805
806 adbLastDevice = (adbInputBuffer[1] & 0xf0) >> 4;
807
808 if (adbInputBuffer[0] == 1 && !adbWaiting) { /* SRQ!!!*/
809 #ifdef ADB_DEBUG
810 if (adb_debug & 0x80)
811 printf_intr(" xSRQ! ");
812 #endif
813 adb_guess_next_device();
814 #ifdef ADB_DEBUG
815 if (adb_debug & 0x80)
816 printf_intr("try 0x%0x ",
817 adbLastDevice);
818 #endif
819 adbOutputBuffer[0] = 1;
820 adbOutputBuffer[1] =
821 ((adbLastDevice & 0x0f) << 4) | 0x0c;
822
823 adbSentChars = 0; /* nothing sent yet */
824 adbActionState = ADB_ACTION_POLLING; /* set next state */
825 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
826 ADB_SR() = adbOutputBuffer[1]; /* load byte for output */
827 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */
828 ADB_SET_STATE_CMD(); /* tell ADB that we want to */
829 break;
830 }
831
832 /* set up data for adb_pass_up */
833 for (i = 0; i <= adbInputBuffer[0]; i++)
834 packet.data[i] = adbInputBuffer[i];
835
836 if (!adbWaiting && (adbInputBuffer[0] != 0)) {
837 packet.unsol = 1;
838 packet.ack_only = 0;
839 adb_pass_up(&packet);
840 } else {
841 packet.saveBuf = adbBuffer;
842 packet.compRout = adbCompRout;
843 packet.compData = adbCompData;
844 packet.unsol = 0;
845 packet.ack_only = 0;
846 adb_pass_up(&packet);
847 }
848
849 adbWaiting = 0;
850 adbInputBuffer[0] = 0;
851 adbBuffer = (long)0;
852 adbCompRout = (long)0;
853 adbCompData = (long)0;
854 /*
855 * Since we are done, check whether there is any data
856 * waiting to do out. If so, start the sending the data.
857 */
858 if (adbOutQueueHasData == 1) {
859 #ifdef ADB_DEBUG
860 if (adb_debug & 0x80)
861 printf_intr("XXX: DOING OUT QUEUE\n");
862 #endif
863 /* copy over data */
864 for (i = 0; i <= (adbOutQueue.outBuf[0] + 1); i++)
865 adbOutputBuffer[i] = adbOutQueue.outBuf[i];
866 adbBuffer = adbOutQueue.saveBuf; /* user data area */
867 adbCompRout = adbOutQueue.compRout; /* completion routine */
868 adbCompData = adbOutQueue.data; /* comp. rout. data */
869 adbOutQueueHasData = 0; /* currently processing
870 * "queue" entry */
871 send = 1;
872 } else {
873 #ifdef ADB_DEBUG
874 if (adb_debug & 0x80)
875 printf_intr("XXending ");
876 #endif
877 adb_guess_next_device();
878 adbOutputBuffer[0] = 1;
879 adbOutputBuffer[1] = ((adbLastDevice & 0x0f) << 4) | 0x0c;
880 adbSentChars = 0; /* nothing sent yet */
881 adbActionState = ADB_ACTION_POLLING; /* set next state */
882 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
883 ADB_SR() = adbOutputBuffer[1]; /* load byte for output */
884 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */
885 ADB_SET_STATE_CMD(); /* tell ADB that we want to */
886 break;
887 }
888 }
889
890 /*
891 * If send is true then something above determined that
892 * the message has ended and we need to start sending out
893 * a new message immediately. This could be because there
894 * is data waiting to go out or because an SRQ was seen.
895 */
896 if (send) {
897 adbSentChars = 0; /* nothing sent yet */
898 adbActionState = ADB_ACTION_OUT; /* set next state */
899 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
900 ADB_SR() = adbOutputBuffer[1]; /* load byte for output */
901 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */
902 ADB_SET_STATE_CMD(); /* tell ADB that we want to
903 * send */
904 break;
905 }
906 /* We only get this far if the message hasn't ended yet. */
907 switch (adbBusState) { /* set to next state */
908 case ADB_BUS_EVEN:
909 ADB_SET_STATE_ODD(); /* set state to odd */
910 adbBusState = ADB_BUS_ODD;
911 break;
912
913 case ADB_BUS_ODD:
914 ADB_SET_STATE_EVEN(); /* set state to even */
915 adbBusState = ADB_BUS_EVEN;
916 break;
917 default:
918 printf_intr("strange state!!!\n"); /* huh? */
919 break;
920 }
921 break;
922
923 case ADB_ACTION_OUT:
924 i = ADB_SR(); /* clear interrupt */
925 adbSentChars++;
926 /*
927 * If the outgoing data was a TALK, we must
928 * switch to input mode to get the result.
929 */
930 if ((adbOutputBuffer[1] & 0x0c) == 0x0c) {
931 adbInputBuffer[0] = 1;
932 adbInputBuffer[1] = i;
933 adbActionState = ADB_ACTION_IN;
934 ADB_SET_SR_INPUT();
935 adbBusState = ADB_BUS_EVEN;
936 ADB_SET_STATE_EVEN();
937 #ifdef ADB_DEBUG
938 if (adb_debug & 0x80)
939 printf_intr("talk out 0x%02x ", i);
940 #endif
941 /* we want something back */
942 adbWaiting = 1;
943 break;
944 }
945 /*
946 * If it's not a TALK, check whether all data has been sent.
947 * If so, call the completion routine and clean up. If not,
948 * advance to the next state.
949 */
950 #ifdef ADB_DEBUG
951 if (adb_debug & 0x80)
952 printf_intr("non-talk out 0x%0x ", i);
953 #endif
954 ADB_SET_SR_OUTPUT();
955 if (adbOutputBuffer[0] == adbSentChars) { /* check for done */
956 #ifdef ADB_DEBUG
957 if (adb_debug & 0x80)
958 printf_intr("done \n");
959 #endif
960 /* set up stuff for adb_pass_up */
961 for (i = 0; i <= adbOutputBuffer[0]; i++)
962 packet.data[i] = adbOutputBuffer[i];
963 packet.saveBuf = adbBuffer;
964 packet.compRout = adbCompRout;
965 packet.compData = adbCompData;
966 packet.cmd = adbWaitingCmd;
967 packet.unsol = 0;
968 packet.ack_only = 1;
969 adb_pass_up(&packet);
970
971 /* reset "waiting" vars, just in case */
972 adbBuffer = (long)0;
973 adbCompRout = (long)0;
974 adbCompData = (long)0;
975 if (adbOutQueueHasData == 1) {
976 /* copy over data */
977 for (i = 0; i <= (adbOutQueue.outBuf[0] + 1); i++)
978 adbOutputBuffer[i] = adbOutQueue.outBuf[i];
979 adbBuffer = adbOutQueue.saveBuf; /* user data area */
980 adbCompRout = adbOutQueue.compRout; /* completion routine */
981 adbCompData = adbOutQueue.data; /* comp. rout. data */
982 adbOutQueueHasData = 0; /* currently processing
983 * "queue" entry */
984 adbSentChars = 0; /* nothing sent yet */
985 adbActionState = ADB_ACTION_OUT; /* set next state */
986 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
987 ADB_SR() = adbOutputBuffer[1]; /* load byte for output */
988 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */
989 ADB_SET_STATE_CMD(); /* tell ADB that we want to
990 * send */
991 break;
992 } else {
993 /* send talk to last device instead */
994 adbOutputBuffer[0] = 1;
995 adbOutputBuffer[1] = (adbOutputBuffer[1] & 0xf0) | 0x0c;
996
997 adbSentChars = 0; /* nothing sent yet */
998 adbActionState = ADB_ACTION_IDLE; /* set next state */
999 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
1000 ADB_SR() = adbOutputBuffer[1]; /* load byte for output */
1001 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */
1002 ADB_SET_STATE_CMD(); /* tell ADB that we want to */
1003 break;
1004 }
1005 }
1006 ADB_SR() = adbOutputBuffer[adbSentChars + 1];
1007 switch (adbBusState) { /* advance to next state */
1008 case ADB_BUS_EVEN:
1009 ADB_SET_STATE_ODD(); /* set state to odd */
1010 adbBusState = ADB_BUS_ODD;
1011 break;
1012
1013 case ADB_BUS_CMD:
1014 case ADB_BUS_ODD:
1015 ADB_SET_STATE_EVEN(); /* set state to even */
1016 adbBusState = ADB_BUS_EVEN;
1017 break;
1018
1019 default:
1020 #ifdef ADB_DEBUG
1021 if (adb_debug) {
1022 printf_intr("strange state!!! (0x%x)\n",
1023 adbBusState);
1024 }
1025 #endif
1026 break;
1027 }
1028 break;
1029
1030 default:
1031 #ifdef ADB_DEBUG
1032 if (adb_debug)
1033 printf_intr("adb: unknown ADB state (during intr)\n");
1034 #endif
1035 }
1036
1037 ADB_VIA_INTR_ENABLE(); /* enable ADB interrupt on IIs. */
1038
1039 splx(s); /* restore */
1040
1041 return;
1042
1043 }
1044
1045
1046 /*
1047 * send_adb version for II series machines
1048 */
1049 int
1050 send_adb_II(u_char * in, u_char * buffer, void *compRout, void *data, int command)
1051 {
1052 int i, s, len;
1053
1054 if (adbActionState == ADB_ACTION_NOTREADY) /* return if ADB not
1055 * available */
1056 return 1;
1057
1058 /* Don't interrupt while we are messing with the ADB */
1059 s = splhigh();
1060
1061 if (0 != adbOutQueueHasData) { /* right now, "has data" means "full" */
1062 splx(s); /* sorry, try again later */
1063 return 1;
1064 }
1065 if ((long)in == (long)0) { /* need to convert? */
1066 /*
1067 * Don't need to use adb_cmd_extra here because this section
1068 * will be called ONLY when it is an ADB command (no RTC or
1069 * PRAM), especially on II series!
1070 */
1071 if ((command & 0x0c) == 0x08) /* copy addl data ONLY if
1072 * doing a listen! */
1073 len = buffer[0]; /* length of additional data */
1074 else
1075 len = 0;/* no additional data */
1076
1077 adbOutQueue.outBuf[0] = 1 + len; /* command + addl. data */
1078 adbOutQueue.outBuf[1] = (u_char)command; /* load command */
1079
1080 for (i = 1; i <= len; i++) /* copy additional output
1081 * data, if any */
1082 adbOutQueue.outBuf[1 + i] = buffer[i];
1083 } else
1084 /* if data ready, just copy over */
1085 for (i = 0; i <= (adbOutQueue.outBuf[0] + 1); i++)
1086 adbOutQueue.outBuf[i] = in[i];
1087
1088 adbOutQueue.saveBuf = buffer; /* save buffer to know where to save
1089 * result */
1090 adbOutQueue.compRout = compRout; /* save completion routine
1091 * pointer */
1092 adbOutQueue.data = data;/* save completion routine data pointer */
1093
1094 if ((adbActionState == ADB_ACTION_IDLE) && /* is ADB available? */
1095 (ADB_INTR_IS_OFF)) { /* and no incoming interrupts? */
1096 /* then start command now */
1097 for (i = 0; i <= (adbOutQueue.outBuf[0] + 1); i++) /* copy over data */
1098 adbOutputBuffer[i] = adbOutQueue.outBuf[i];
1099
1100 adbBuffer = adbOutQueue.saveBuf; /* pointer to user data
1101 * area */
1102 adbCompRout = adbOutQueue.compRout; /* pointer to the
1103 * completion routine */
1104 adbCompData = adbOutQueue.data; /* pointer to the completion
1105 * routine data */
1106
1107 adbSentChars = 0; /* nothing sent yet */
1108 adbActionState = ADB_ACTION_OUT; /* set next state */
1109 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */
1110
1111 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
1112
1113 ADB_SR() = adbOutputBuffer[adbSentChars + 1]; /* load byte for output */
1114 ADB_SET_STATE_CMD(); /* tell ADB that we want to send */
1115 adbOutQueueHasData = 0; /* currently processing "queue" entry */
1116 } else
1117 adbOutQueueHasData = 1; /* something in the write "queue" */
1118
1119 splx(s);
1120
1121 if (0x0100 <= (s & 0x0700)) /* were VIA1 interrupts blocked? */
1122 /* poll until message done */
1123 while ((adbActionState != ADB_ACTION_IDLE) || (ADB_INTR_IS_ON)
1124 || (adbWaiting == 1))
1125 if (ADB_SR_INTR_IS_ON) { /* wait for "interrupt" */
1126 adb_intr_II(); /* go process "interrupt" */
1127 adb_soft_intr();
1128 }
1129
1130 return 0;
1131 }
1132
1133
1134 /*
1135 * This routine is called from the II series interrupt routine
1136 * to determine what the "next" device is that should be polled.
1137 */
1138 int
1139 adb_guess_next_device(void)
1140 {
1141 int last, i, dummy;
1142
1143 if (adbStarting) {
1144 /*
1145 * Start polling EVERY device, since we can't be sure there is
1146 * anything in the device table yet
1147 */
1148 if (adbLastDevice < 1 || adbLastDevice > 15)
1149 adbLastDevice = 1;
1150 if (++adbLastDevice > 15) /* point to next one */
1151 adbLastDevice = 1;
1152 } else {
1153 /* find the next device using the device table */
1154 if (adbLastDevice < 1 || adbLastDevice > 15) /* let's be parinoid */
1155 adbLastDevice = 2;
1156 last = 1; /* default index location */
1157
1158 for (i = 1; i < 16; i++) /* find index entry */
1159 if (ADBDevTable[i].currentAddr == adbLastDevice) { /* look for device */
1160 last = i; /* found it */
1161 break;
1162 }
1163 dummy = last; /* index to start at */
1164 for (;;) { /* find next device in index */
1165 if (++dummy > 15) /* wrap around if needed */
1166 dummy = 1;
1167 if (dummy == last) { /* didn't find any other
1168 * device! This can happen if
1169 * there are no devices on the
1170 * bus */
1171 dummy = 2;
1172 break;
1173 }
1174 /* found the next device */
1175 if (ADBDevTable[dummy].devType != 0)
1176 break;
1177 }
1178 adbLastDevice = ADBDevTable[dummy].currentAddr;
1179 }
1180 return adbLastDevice;
1181 }
1182
1183
1184 /*
1185 * Called when when an adb interrupt happens.
1186 * This routine simply transfers control over to the appropriate
1187 * code for the machine we are running on.
1188 */
1189 void
1190 adb_intr(void)
1191 {
1192 switch (adbHardware) {
1193 case ADB_HW_II:
1194 adb_intr_II();
1195 break;
1196
1197 case ADB_HW_IISI:
1198 adb_intr_IIsi();
1199 break;
1200
1201 case ADB_HW_PB:
1202 break;
1203
1204 case ADB_HW_CUDA:
1205 adb_intr_cuda();
1206 break;
1207
1208 case ADB_HW_UNKNOWN:
1209 break;
1210 }
1211 }
1212
1213
1214 /*
1215 * called when when an adb interrupt happens
1216 *
1217 * IIsi version of adb_intr
1218 *
1219 */
1220 void
1221 adb_intr_IIsi(void)
1222 {
1223 struct adbCommand packet;
1224 int i, ending;
1225 unsigned int s;
1226
1227 s = splhigh(); /* can't be too careful - might be called */
1228 /* from a routine, NOT an interrupt */
1229
1230 ADB_VIA_CLR_INTR(); /* clear interrupt */
1231
1232 ADB_VIA_INTR_DISABLE(); /* disable ADB interrupt on IIs. */
1233
1234 switch_start:
1235 switch (adbActionState) {
1236 case ADB_ACTION_IDLE:
1237 delay(ADB_DELAY); /* short delay is required before the
1238 * first byte */
1239
1240 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
1241 ADB_SET_STATE_ACTIVE(); /* signal start of data frame */
1242 adbInputBuffer[1] = ADB_SR(); /* get byte */
1243 adbInputBuffer[0] = 1;
1244 adbActionState = ADB_ACTION_IN; /* set next state */
1245
1246 ADB_SET_STATE_ACKON(); /* start ACK to ADB chip */
1247 delay(ADB_DELAY); /* delay */
1248 ADB_SET_STATE_ACKOFF(); /* end ACK to ADB chip */
1249 (void)intr_dispatch(0x70); /* grab any serial interrupts */
1250 break;
1251
1252 case ADB_ACTION_IN:
1253 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
1254 adbInputBuffer[++adbInputBuffer[0]] = ADB_SR(); /* get byte */
1255 if (ADB_INTR_IS_OFF) /* check for end of frame */
1256 ending = 1;
1257 else
1258 ending = 0;
1259
1260 ADB_SET_STATE_ACKON(); /* start ACK to ADB chip */
1261 delay(ADB_DELAY); /* delay */
1262 ADB_SET_STATE_ACKOFF(); /* end ACK to ADB chip */
1263 (void)intr_dispatch(0x70); /* grab any serial interrupts */
1264
1265 if (1 == ending) { /* end of message? */
1266 ADB_SET_STATE_INACTIVE(); /* signal end of frame */
1267 /*
1268 * This section _should_ handle all ADB and RTC/PRAM
1269 * type commands, but there may be more... Note:
1270 * commands are always at [4], even for rtc/pram
1271 * commands
1272 */
1273 /* set up data for adb_pass_up */
1274 for (i = 0; i <= adbInputBuffer[0]; i++)
1275 packet.data[i] = adbInputBuffer[i];
1276
1277 if ((adbWaiting == 1) && /* are we waiting AND */
1278 (adbInputBuffer[4] == adbWaitingCmd) && /* the cmd we sent AND */
1279 ((adbInputBuffer[2] == 0x00) || /* it's from the ADB
1280 * device OR */
1281 (adbInputBuffer[2] == 0x01))) { /* it's from the
1282 * PRAM/RTC device */
1283
1284 packet.saveBuf = adbBuffer;
1285 packet.compRout = adbCompRout;
1286 packet.compData = adbCompData;
1287 packet.unsol = 0;
1288 packet.ack_only = 0;
1289 adb_pass_up(&packet);
1290
1291 adbWaitingCmd = 0; /* reset "waiting" vars */
1292 adbWaiting = 0;
1293 adbBuffer = (long)0;
1294 adbCompRout = (long)0;
1295 adbCompData = (long)0;
1296 } else {
1297 packet.unsol = 1;
1298 packet.ack_only = 0;
1299 adb_pass_up(&packet);
1300 }
1301
1302 adbActionState = ADB_ACTION_IDLE;
1303 adbInputBuffer[0] = 0; /* reset length */
1304
1305 if (adbWriteDelay == 1) { /* were we waiting to
1306 * write? */
1307 adbSentChars = 0; /* nothing sent yet */
1308 adbActionState = ADB_ACTION_OUT; /* set next state */
1309
1310 delay(ADB_DELAY); /* delay */
1311 (void)intr_dispatch(0x70); /* grab any serial interrupts */
1312
1313 if (ADB_INTR_IS_ON) { /* ADB intr low during
1314 * write */
1315 ADB_SET_STATE_IDLE_IISI(); /* reset */
1316 ADB_SET_SR_INPUT(); /* make sure SR is set
1317 * to IN */
1318 adbSentChars = 0; /* must start all over */
1319 adbActionState = ADB_ACTION_IDLE; /* new state */
1320 adbInputBuffer[0] = 0;
1321 /* may be able to take this out later */
1322 delay(ADB_DELAY); /* delay */
1323 break;
1324 }
1325 ADB_SET_STATE_ACTIVE(); /* tell ADB that we want
1326 * to send */
1327 ADB_SET_STATE_ACKOFF(); /* make sure */
1328 ADB_SET_SR_OUTPUT(); /* set shift register
1329 * for OUT */
1330 ADB_SR() = adbOutputBuffer[adbSentChars + 1];
1331 ADB_SET_STATE_ACKON(); /* tell ADB byte ready
1332 * to shift */
1333 }
1334 }
1335 break;
1336
1337 case ADB_ACTION_OUT:
1338 i = ADB_SR(); /* reset SR-intr in IFR */
1339 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
1340
1341 ADB_SET_STATE_ACKOFF(); /* finish ACK */
1342 adbSentChars++;
1343 if (ADB_INTR_IS_ON) { /* ADB intr low during write */
1344 ADB_SET_STATE_IDLE_IISI(); /* reset */
1345 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
1346 adbSentChars = 0; /* must start all over */
1347 adbActionState = ADB_ACTION_IDLE; /* new state */
1348 adbInputBuffer[0] = 0;
1349 adbWriteDelay = 1; /* must retry when done with
1350 * read */
1351 delay(ADB_DELAY); /* delay */
1352 (void)intr_dispatch(0x70); /* grab any serial interrupts */
1353 goto switch_start; /* process next state right
1354 * now */
1355 break;
1356 }
1357 delay(ADB_DELAY); /* required delay */
1358 (void)intr_dispatch(0x70); /* grab any serial interrupts */
1359
1360 if (adbOutputBuffer[0] == adbSentChars) { /* check for done */
1361 if (0 == adb_cmd_result(adbOutputBuffer)) { /* do we expect data
1362 * back? */
1363 adbWaiting = 1; /* signal waiting for return */
1364 adbWaitingCmd = adbOutputBuffer[2]; /* save waiting command */
1365 } else {/* no talk, so done */
1366 /* set up stuff for adb_pass_up */
1367 for (i = 0; i <= adbInputBuffer[0]; i++)
1368 packet.data[i] = adbInputBuffer[i];
1369 packet.saveBuf = adbBuffer;
1370 packet.compRout = adbCompRout;
1371 packet.compData = adbCompData;
1372 packet.cmd = adbWaitingCmd;
1373 packet.unsol = 0;
1374 packet.ack_only = 1;
1375 adb_pass_up(&packet);
1376
1377 /* reset "waiting" vars, just in case */
1378 adbWaitingCmd = 0;
1379 adbBuffer = (long)0;
1380 adbCompRout = (long)0;
1381 adbCompData = (long)0;
1382 }
1383
1384 adbWriteDelay = 0; /* done writing */
1385 adbActionState = ADB_ACTION_IDLE; /* signal bus is idle */
1386 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
1387 ADB_SET_STATE_INACTIVE(); /* end of frame */
1388 } else {
1389 ADB_SR() = adbOutputBuffer[adbSentChars + 1]; /* send next byte */
1390 ADB_SET_STATE_ACKON(); /* signal byte ready to shift */
1391 }
1392 break;
1393
1394 case ADB_ACTION_NOTREADY:
1395 #ifdef ADB_DEBUG
1396 if (adb_debug)
1397 printf_intr("adb: not yet initialized\n");
1398 #endif
1399 break;
1400
1401 default:
1402 #ifdef ADB_DEBUG
1403 if (adb_debug)
1404 printf_intr("intr: unknown ADB state\n");
1405 #endif
1406 }
1407
1408 ADB_VIA_INTR_ENABLE(); /* enable ADB interrupt on IIs. */
1409
1410 splx(s); /* restore */
1411
1412 return;
1413 } /* end adb_intr_IIsi */
1414
1415
1416 /*****************************************************************************
1417 * if the device is currently busy, and there is no data waiting to go out, then
1418 * the data is "queued" in the outgoing buffer. If we are already waiting, then
1419 * we return.
1420 * in: if (in == 0) then the command string is built from command and buffer
1421 * if (in != 0) then in is used as the command string
1422 * buffer: additional data to be sent (used only if in == 0)
1423 * this is also where return data is stored
1424 * compRout: the completion routine that is called when then return value
1425 * is received (if a return value is expected)
1426 * data: a data pointer that can be used by the completion routine
1427 * command: an ADB command to be sent (used only if in == 0)
1428 *
1429 */
1430 int
1431 send_adb_IIsi(u_char * in, u_char * buffer, void *compRout, void *data, int
1432 command)
1433 {
1434 int i, s, len;
1435
1436 if (adbActionState == ADB_ACTION_NOTREADY)
1437 return 1;
1438
1439 /* Don't interrupt while we are messing with the ADB */
1440 s = splhigh();
1441
1442 if ((adbActionState == ADB_ACTION_IDLE) && /* ADB available? */
1443 (ADB_INTR_IS_OFF)) {/* and no incoming interrupt? */
1444
1445 } else
1446 if (adbWriteDelay == 0) /* it's busy, but is anything waiting? */
1447 adbWriteDelay = 1; /* if no, then we'll "queue"
1448 * it up */
1449 else {
1450 splx(s);
1451 return 1; /* really busy! */
1452 }
1453
1454 if ((long)in == (long)0) { /* need to convert? */
1455 /*
1456 * Don't need to use adb_cmd_extra here because this section
1457 * will be called ONLY when it is an ADB command (no RTC or
1458 * PRAM)
1459 */
1460 if ((command & 0x0c) == 0x08) /* copy addl data ONLY if
1461 * doing a listen! */
1462 len = buffer[0]; /* length of additional data */
1463 else
1464 len = 0;/* no additional data */
1465
1466 adbOutputBuffer[0] = 2 + len; /* dev. type + command + addl.
1467 * data */
1468 adbOutputBuffer[1] = 0x00; /* mark as an ADB command */
1469 adbOutputBuffer[2] = (u_char)command; /* load command */
1470
1471 for (i = 1; i <= len; i++) /* copy additional output
1472 * data, if any */
1473 adbOutputBuffer[2 + i] = buffer[i];
1474 } else
1475 for (i = 0; i <= (adbOutputBuffer[0] + 1); i++)
1476 adbOutputBuffer[i] = in[i];
1477
1478 adbSentChars = 0; /* nothing sent yet */
1479 adbBuffer = buffer; /* save buffer to know where to save result */
1480 adbCompRout = compRout; /* save completion routine pointer */
1481 adbCompData = data; /* save completion routine data pointer */
1482 adbWaitingCmd = adbOutputBuffer[2]; /* save wait command */
1483
1484 if (adbWriteDelay != 1) { /* start command now? */
1485 adbActionState = ADB_ACTION_OUT; /* set next state */
1486
1487 ADB_SET_STATE_ACTIVE(); /* tell ADB that we want to send */
1488 ADB_SET_STATE_ACKOFF(); /* make sure */
1489
1490 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
1491
1492 ADB_SR() = adbOutputBuffer[adbSentChars + 1]; /* load byte for output */
1493
1494 ADB_SET_STATE_ACKON(); /* tell ADB byte ready to shift */
1495 }
1496 adbWriteDelay = 1; /* something in the write "queue" */
1497
1498 splx(s);
1499
1500 if (0x0100 <= (s & 0x0700)) /* were VIA1 interrupts blocked ? */
1501 /* poll until byte done */
1502 while ((adbActionState != ADB_ACTION_IDLE) || (ADB_INTR_IS_ON)
1503 || (adbWaiting == 1))
1504 if (ADB_SR_INTR_IS_ON) { /* wait for "interrupt" */
1505 adb_intr_IIsi(); /* process it */
1506 adb_soft_intr();
1507 }
1508
1509 return 0;
1510 } /* send_adb_IIsi */
1511
1512
1513 /*
1514 * adb_pass_up is called by the interrupt-time routines.
1515 * It takes the raw packet data that was received from the
1516 * device and puts it into the queue that the upper half
1517 * processes. It then signals for a soft ADB interrupt which
1518 * will eventually call the upper half routine (adb_soft_intr).
1519 *
1520 * If in->unsol is 0, then this is either the notification
1521 * that the packet was sent (on a LISTEN, for example), or the
1522 * response from the device (on a TALK). The completion routine
1523 * is called only if the user specified one.
1524 *
1525 * If in->unsol is 1, then this packet was unsolicited and
1526 * so we look up the device in the ADB device table to determine
1527 * what it's default service routine is.
1528 *
1529 * If in->ack_only is 1, then we really only need to call
1530 * the completion routine, so don't do any other stuff.
1531 *
1532 * Note that in->data contains the packet header AND data,
1533 * while adbInbound[]->data contains ONLY data.
1534 *
1535 * Note: Called only at interrupt time. Assumes this.
1536 */
1537 void
1538 adb_pass_up(struct adbCommand *in)
1539 {
1540 int i, start = 0, len = 0, cmd = 0;
1541 ADBDataBlock block;
1542
1543 /* temp for testing */
1544 /*u_char *buffer = 0;*/
1545 /*u_char *compdata = 0;*/
1546 /*u_char *comprout = 0;*/
1547
1548 if (adbInCount >= ADB_QUEUE) {
1549 #ifdef ADB_DEBUG
1550 if (adb_debug)
1551 printf_intr("adb: ring buffer overflow\n");
1552 #endif
1553 return;
1554 }
1555
1556 if (in->ack_only) {
1557 len = in->data[0];
1558 cmd = in->cmd;
1559 start = 0;
1560 } else {
1561 switch (adbHardware) {
1562 case ADB_HW_II:
1563 cmd = in->data[1];
1564 if (in->data[0] < 2)
1565 len = 0;
1566 else
1567 len = in->data[0]-1;
1568 start = 1;
1569 break;
1570
1571 case ADB_HW_IISI:
1572 case ADB_HW_CUDA:
1573 /* If it's unsolicited, accept only ADB data for now */
1574 if (in->unsol)
1575 if (0 != in->data[2])
1576 return;
1577 cmd = in->data[4];
1578 if (in->data[0] < 5)
1579 len = 0;
1580 else
1581 len = in->data[0]-4;
1582 start = 4;
1583 break;
1584
1585 case ADB_HW_PB:
1586 cmd = in->data[1];
1587 if (in->data[0] < 2)
1588 len = 0;
1589 else
1590 len = in->data[0]-1;
1591 start = 1;
1592 break;
1593
1594 case ADB_HW_UNKNOWN:
1595 return;
1596 }
1597
1598 /* Make sure there is a valid device entry for this device */
1599 if (in->unsol) {
1600 /* ignore unsolicited data during adbreinit */
1601 if (adbStarting)
1602 return;
1603 /* get device's comp. routine and data area */
1604 if (-1 == get_adb_info(&block, ((cmd & 0xf0) >> 4)))
1605 return;
1606 }
1607 }
1608
1609 /*
1610 * If this is an unsolicited packet, we need to fill in
1611 * some info so adb_soft_intr can process this packet
1612 * properly. If it's not unsolicited, then use what
1613 * the caller sent us.
1614 */
1615 if (in->unsol) {
1616 adbInbound[adbInTail].compRout = (void *)block.dbServiceRtPtr;
1617 adbInbound[adbInTail].compData = (void *)block.dbDataAreaAddr;
1618 adbInbound[adbInTail].saveBuf = (void *)adbInbound[adbInTail].data;
1619 } else {
1620 adbInbound[adbInTail].compRout = (void *)in->compRout;
1621 adbInbound[adbInTail].compData = (void *)in->compData;
1622 adbInbound[adbInTail].saveBuf = (void *)in->saveBuf;
1623 }
1624
1625 #ifdef ADB_DEBUG
1626 if (adb_debug && in->data[1] == 2)
1627 printf_intr("adb: caught error\n");
1628 #endif
1629
1630 /* copy the packet data over */
1631 /*
1632 * TO DO: If the *_intr routines fed their incoming data
1633 * directly into an adbCommand struct, which is passed to
1634 * this routine, then we could eliminate this copy.
1635 */
1636 for (i = 1; i <= len; i++)
1637 adbInbound[adbInTail].data[i] = in->data[start+i];
1638
1639 adbInbound[adbInTail].data[0] = len;
1640 adbInbound[adbInTail].cmd = cmd;
1641
1642 adbInCount++;
1643 if (++adbInTail >= ADB_QUEUE)
1644 adbInTail = 0;
1645
1646 /*
1647 * If the debugger is running, call upper half manually.
1648 * Otherwise, trigger a soft interrupt to handle the rest later.
1649 */
1650 if (ite_polling)
1651 adb_soft_intr();
1652 else
1653 setsoftadb();
1654
1655 return;
1656 }
1657
1658
1659 /*
1660 * Called to process the packets after they have been
1661 * placed in the incoming queue.
1662 *
1663 */
1664 void
1665 adb_soft_intr(void)
1666 {
1667 int s, i;
1668 int cmd = 0;
1669 u_char *buffer = 0;
1670 u_char *comprout = 0;
1671 u_char *compdata = 0;
1672
1673 #if 0
1674 s = splhigh();
1675 printf_intr("sr: %x\n", (s & 0x0700));
1676 splx(s);
1677 #endif
1678
1679 /*delay(2*ADB_DELAY);*/
1680
1681 while (adbInCount) {
1682 #ifdef ADB_DEBUG
1683 if (adb_debug & 0x80)
1684 printf_intr("%x %x %x ",
1685 adbInCount, adbInHead, adbInTail);
1686 #endif
1687 /* get the data we need from the queue */
1688 buffer = adbInbound[adbInHead].saveBuf;
1689 comprout = adbInbound[adbInHead].compRout;
1690 compdata = adbInbound[adbInHead].compData;
1691 cmd = adbInbound[adbInHead].cmd;
1692
1693 /* copy over data to data area if it's valid */
1694 /*
1695 * Note that for unsol packets we don't want to copy the
1696 * data anywhere, so buffer was already set to 0.
1697 * For ack_only buffer was set to 0, so don't copy.
1698 */
1699 if (buffer)
1700 for (i = 0; i <= adbInbound[adbInHead].data[0]; i++)
1701 *(buffer+i) = adbInbound[adbInHead].data[i];
1702
1703 #ifdef ADB_DEBUG
1704 if (adb_debug & 0x80) {
1705 printf_intr("%p %p %p %x ",
1706 buffer, comprout, compdata, (short)cmd);
1707 printf_intr("buf: ");
1708 print_single(adbInbound[adbInHead].data);
1709 }
1710 #endif
1711
1712 /* call default completion routine if it's valid */
1713 if (comprout) {
1714 #ifdef __NetBSD__
1715 asm(" movml #0xffff,sp@- | save all registers
1716 movl %0,a2 | compdata
1717 movl %1,a1 | comprout
1718 movl %2,a0 | buffer
1719 movl %3,d0 | cmd
1720 jbsr a1@ | go call the routine
1721 movml sp@+,#0xffff | restore all registers"
1722 :
1723 : "g"(compdata), "g"(comprout),
1724 "g"(buffer), "g"(cmd)
1725 : "d0", "a0", "a1", "a2");
1726 #else /* for macos based testing */
1727 asm
1728 {
1729 movem.l a0/a1/a2/d0, -(a7)
1730 move.l compdata, a2
1731 move.l comprout, a1
1732 move.l buffer, a0
1733 move.w cmd, d0
1734 jsr(a1)
1735 movem.l(a7)+, d0/a2/a1/a0
1736 }
1737 #endif
1738 }
1739
1740 s = splhigh();
1741 adbInCount--;
1742 if (++adbInHead >= ADB_QUEUE)
1743 adbInHead = 0;
1744 splx(s);
1745
1746 }
1747 return;
1748 }
1749
1750
1751 /*
1752 * This is my version of the ADBOp routine. It mainly just calls the
1753 * hardware-specific routine.
1754 *
1755 * data : pointer to data area to be used by compRout
1756 * compRout : completion routine
1757 * buffer : for LISTEN: points to data to send - MAX 8 data bytes,
1758 * byte 0 = # of bytes
1759 * : for TALK: points to place to save return data
1760 * command : the adb command to send
1761 * result : 0 = success
1762 * : -1 = could not complete
1763 */
1764 int
1765 adb_op(Ptr buffer, Ptr compRout, Ptr data, short command)
1766 {
1767 int result;
1768
1769 switch (adbHardware) {
1770 case ADB_HW_II:
1771 result = send_adb_II((u_char *)0, (u_char *)buffer,
1772 (void *)compRout, (void *)data, (int)command);
1773 if (result == 0)
1774 return 0;
1775 else
1776 return -1;
1777 break;
1778
1779 case ADB_HW_IISI:
1780 result = send_adb_IIsi((u_char *)0, (u_char *)buffer,
1781 (void *)compRout, (void *)data, (int)command);
1782 /*
1783 * I wish I knew why this delay is needed. It usually needs to
1784 * be here when several commands are sent in close succession,
1785 * especially early in device probes when doing collision
1786 * detection. It must be some race condition. Sigh. - jpw
1787 */
1788 delay(100);
1789 if (result == 0)
1790 return 0;
1791 else
1792 return -1;
1793 break;
1794
1795 case ADB_HW_PB:
1796 result = pm_adb_op((u_char *)buffer, (void *)compRout,
1797 (void *)data, (int)command);
1798
1799 if (result == 0)
1800 return 0;
1801 else
1802 return -1;
1803 break;
1804
1805 case ADB_HW_CUDA:
1806 result = send_adb_cuda((u_char *)0, (u_char *)buffer,
1807 (void *)compRout, (void *)data, (int)command);
1808 if (result == 0)
1809 return 0;
1810 else
1811 return -1;
1812 break;
1813
1814 case ADB_HW_UNKNOWN:
1815 default:
1816 return -1;
1817 }
1818 }
1819
1820
1821 /*
1822 * adb_hw_setup
1823 * This routine sets up the possible machine specific hardware
1824 * config (mainly VIA settings) for the various models.
1825 */
1826 void
1827 adb_hw_setup(void)
1828 {
1829 volatile int i;
1830 u_char send_string[ADB_MAX_MSG_LENGTH];
1831
1832 switch (adbHardware) {
1833 case ADB_HW_II:
1834 via_reg(VIA1, vDirB) |= 0x30; /* register B bits 4 and 5:
1835 * outputs */
1836 via_reg(VIA1, vDirB) &= 0xf7; /* register B bit 3: input */
1837 via_reg(VIA1, vACR) &= ~vSR_OUT; /* make sure SR is set
1838 * to IN (II, IIsi) */
1839 adbActionState = ADB_ACTION_IDLE; /* used by all types of
1840 * hardware (II, IIsi) */
1841 adbBusState = ADB_BUS_IDLE; /* this var. used in II-series
1842 * code only */
1843 via_reg(VIA1, vIER) = 0x84; /* make sure VIA interrupts
1844 * are on (II, IIsi) */
1845 ADB_SET_STATE_IDLE_II(); /* set ADB bus state to idle */
1846
1847 ADB_VIA_CLR_INTR(); /* clear interrupt */
1848 break;
1849
1850 case ADB_HW_IISI:
1851 via_reg(VIA1, vDirB) |= 0x30; /* register B bits 4 and 5:
1852 * outputs */
1853 via_reg(VIA1, vDirB) &= 0xf7; /* register B bit 3: input */
1854 via_reg(VIA1, vACR) &= ~vSR_OUT; /* make sure SR is set
1855 * to IN (II, IIsi) */
1856 adbActionState = ADB_ACTION_IDLE; /* used by all types of
1857 * hardware (II, IIsi) */
1858 adbBusState = ADB_BUS_IDLE; /* this var. used in II-series
1859 * code only */
1860 via_reg(VIA1, vIER) = 0x84; /* make sure VIA interrupts
1861 * are on (II, IIsi) */
1862 ADB_SET_STATE_IDLE_IISI(); /* set ADB bus state to idle */
1863
1864 /* get those pesky clock ticks we missed while booting */
1865 for (i = 0; i < 30; i++) {
1866 delay(ADB_DELAY);
1867 adb_hw_setup_IIsi(send_string);
1868 #ifdef ADB_DEBUG
1869 if (adb_debug) {
1870 printf_intr("adb: cleanup: ");
1871 print_single(send_string);
1872 }
1873 #endif
1874 delay(ADB_DELAY);
1875 if (ADB_INTR_IS_OFF)
1876 break;
1877 }
1878 break;
1879
1880 case ADB_HW_PB:
1881 /*
1882 * XXX - really PM_VIA_CLR_INTR - should we put it in
1883 * pm_direct.h?
1884 */
1885 via_reg(VIA1, vIFR) = 0x90; /* clear interrupt */
1886 break;
1887
1888 case ADB_HW_CUDA:
1889 via_reg(VIA1, vDirB) |= 0x30; /* register B bits 4 and 5:
1890 * outputs */
1891 via_reg(VIA1, vDirB) &= 0xf7; /* register B bit 3: input */
1892 via_reg(VIA1, vACR) &= ~vSR_OUT; /* make sure SR is set
1893 * to IN */
1894 via_reg(VIA1, vACR) = (via_reg(VIA1, vACR) | 0x0c) & ~0x10;
1895 adbActionState = ADB_ACTION_IDLE; /* used by all types of
1896 * hardware */
1897 adbBusState = ADB_BUS_IDLE; /* this var. used in II-series
1898 * code only */
1899 via_reg(VIA1, vIER) = 0x84; /* make sure VIA interrupts
1900 * are on */
1901 ADB_SET_STATE_IDLE_CUDA(); /* set ADB bus state to idle */
1902
1903 /* sort of a device reset */
1904 i = ADB_SR(); /* clear interrupt */
1905 ADB_VIA_INTR_DISABLE(); /* no interrupts while clearing */
1906 ADB_SET_STATE_IDLE_CUDA(); /* reset state to idle */
1907 delay(ADB_DELAY);
1908 ADB_SET_STATE_TIP(); /* signal start of frame */
1909 delay(ADB_DELAY);
1910 ADB_TOGGLE_STATE_ACK_CUDA();
1911 delay(ADB_DELAY);
1912 ADB_CLR_STATE_TIP();
1913 delay(ADB_DELAY);
1914 ADB_SET_STATE_IDLE_CUDA(); /* back to idle state */
1915 i = ADB_SR(); /* clear interrupt */
1916 ADB_VIA_INTR_ENABLE(); /* ints ok now */
1917 break;
1918
1919 case ADB_HW_UNKNOWN:
1920 default:
1921 via_reg(VIA1, vIER) = 0x04; /* turn interrupts off - TO
1922 * DO: turn PB ints off? */
1923 return;
1924 break;
1925 }
1926 }
1927
1928
1929 /*
1930 * adb_hw_setup_IIsi
1931 * This is sort of a "read" routine that forces the adb hardware through a read cycle
1932 * if there is something waiting. This helps "clean up" any commands that may have gotten
1933 * stuck or stopped during the boot process.
1934 *
1935 */
1936 void
1937 adb_hw_setup_IIsi(u_char * buffer)
1938 {
1939 int i;
1940 int dummy;
1941 int s;
1942 long my_time;
1943 int endofframe;
1944
1945 delay(ADB_DELAY);
1946
1947 i = 1; /* skip over [0] */
1948 s = splhigh(); /* block ALL interrupts while we are working */
1949 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
1950 ADB_VIA_INTR_DISABLE(); /* disable ADB interrupt on IIs. */
1951 /* this is required, especially on faster machines */
1952 delay(ADB_DELAY);
1953
1954 if (ADB_INTR_IS_ON) {
1955 ADB_SET_STATE_ACTIVE(); /* signal start of data frame */
1956
1957 endofframe = 0;
1958 while (0 == endofframe) {
1959 /*
1960 * Poll for ADB interrupt and watch for timeout.
1961 * If time out, keep going in hopes of not hanging
1962 * the ADB chip - I think
1963 */
1964 my_time = ADB_DELAY * 5;
1965 while ((ADB_SR_INTR_IS_OFF) && (my_time-- > 0))
1966 dummy = via_reg(VIA1, vBufB);
1967
1968 buffer[i++] = ADB_SR(); /* reset interrupt flag by
1969 * reading vSR */
1970 /*
1971 * Perhaps put in a check here that ignores all data
1972 * after the first ADB_MAX_MSG_LENGTH bytes ???
1973 */
1974 if (ADB_INTR_IS_OFF) /* check for end of frame */
1975 endofframe = 1;
1976
1977 ADB_SET_STATE_ACKON(); /* send ACK to ADB chip */
1978 delay(ADB_DELAY); /* delay */
1979 ADB_SET_STATE_ACKOFF(); /* send ACK to ADB chip */
1980 }
1981 ADB_SET_STATE_INACTIVE(); /* signal end of frame and
1982 * delay */
1983
1984 /* probably don't need to delay this long */
1985 delay(ADB_DELAY);
1986 }
1987 buffer[0] = --i; /* [0] is length of message */
1988 ADB_VIA_INTR_ENABLE(); /* enable ADB interrupt on IIs. */
1989 splx(s); /* restore interrupts */
1990
1991 return;
1992 } /* adb_hw_setup_IIsi */
1993
1994
1995
1996 /*
1997 * adb_reinit sets up the adb stuff
1998 *
1999 */
2000 void
2001 adb_reinit(void)
2002 {
2003 u_char send_string[ADB_MAX_MSG_LENGTH];
2004 int s = 0;
2005 volatile int i, x;
2006 int command;
2007 int result;
2008 int saveptr; /* point to next free relocation address */
2009 int device;
2010 int nonewtimes; /* times thru loop w/o any new devices */
2011 ADBDataBlock data; /* temp. holder for getting device info */
2012
2013 (void)(&s); /* work around lame GCC bug */
2014
2015 /* Make sure we are not interrupted while building the table. */
2016 if (adbHardware != ADB_HW_PB) /* ints must be on for PB? */
2017 s = splhigh();
2018
2019 ADBNumDevices = 0; /* no devices yet */
2020
2021 /* Let intr routines know we are running reinit */
2022 adbStarting = 1;
2023
2024 /*
2025 * Initialize the ADB table. For now, we'll always use the same table
2026 * that is defined at the beginning of this file - no mallocs.
2027 */
2028 for (i = 0; i < 16; i++)
2029 ADBDevTable[i].devType = 0;
2030
2031 adb_setup_hw_type(); /* setup hardware type */
2032
2033 adb_hw_setup(); /* init the VIA bits and hard reset ADB */
2034
2035 /* send an ADB reset first */
2036 adb_op_sync((Ptr)0, (Ptr)0, (Ptr)0, (short)0x00);
2037 delay(3000);
2038
2039 /*
2040 * Probe for ADB devices. Probe devices 1-15 quickly to determine
2041 * which device addresses are in use and which are free. For each
2042 * address that is in use, move the device at that address to a higher
2043 * free address. Continue doing this at that address until no device
2044 * responds at that address. Then move the last device that was moved
2045 * back to the original address. Do this for the remaining addresses
2046 * that we determined were in use.
2047 *
2048 * When finished, do this entire process over again with the updated
2049 * list of in use addresses. Do this until no new devices have been
2050 * found in 20 passes though the in use address list. (This probably
2051 * seems long and complicated, but it's the best way to detect multiple
2052 * devices at the same address - sometimes it takes a couple of tries
2053 * before the collision is detected.)
2054 */
2055
2056 /* initial scan through the devices */
2057 for (i = 1; i < 16; i++) {
2058 command = (int)(0x0f | ((int)(i & 0x000f) << 4)); /* talk R3 */
2059 result = adb_op_sync((Ptr)send_string, (Ptr)0,
2060 (Ptr)0, (short)command);
2061 if (0x00 != send_string[0]) { /* anything come back ?? */
2062 ADBDevTable[++ADBNumDevices].devType =
2063 (int)(send_string[2]);
2064 ADBDevTable[ADBNumDevices].origAddr = i;
2065 ADBDevTable[ADBNumDevices].currentAddr = i;
2066 ADBDevTable[ADBNumDevices].DataAreaAddr =
2067 (long)0;
2068 ADBDevTable[ADBNumDevices].ServiceRtPtr = (void *)0;
2069 pm_check_adb_devices(i); /* tell pm driver device
2070 * is here */
2071 }
2072 }
2073
2074 /* find highest unused address */
2075 for (saveptr = 15; saveptr > 0; saveptr--)
2076 if (-1 == get_adb_info(&data, saveptr))
2077 break;
2078
2079 if (saveptr == 0) /* no free addresses??? */
2080 saveptr = 15;
2081
2082 #ifdef ADB_DEBUG
2083 if (adb_debug & 0x80) {
2084 printf_intr("first free is: 0x%02x\n", saveptr);
2085 printf_intr("devices: %i\n", ADBNumDevices);
2086 }
2087 #endif
2088
2089 nonewtimes = 0; /* no loops w/o new devices */
2090 while (nonewtimes++ < 11) {
2091 for (i = 1; i <= ADBNumDevices; i++) {
2092 device = ADBDevTable[i].currentAddr;
2093 #ifdef ADB_DEBUG
2094 if (adb_debug & 0x80)
2095 printf_intr("moving device 0x%02x to 0x%02x "
2096 "(index 0x%02x) ", device, saveptr, i);
2097 #endif
2098
2099 /* send TALK R3 to address */
2100 command = (int)(0x0f | ((int)(device & 0x000f) << 4));
2101 adb_op_sync((Ptr)send_string, (Ptr)0,
2102 (Ptr)0, (short)command);
2103
2104 /* move device to higher address */
2105 command = (int)(0x0b | ((int)(device & 0x000f) << 4));
2106 send_string[0] = 2;
2107 send_string[1] = (u_char)(saveptr | 0x60);
2108 send_string[2] = 0xfe;
2109 adb_op_sync((Ptr)send_string, (Ptr)0,
2110 (Ptr)0, (short)command);
2111
2112 /* send TALK R3 - anything at old address? */
2113 command = (int)(0x0f | ((int)(device & 0x000f) << 4));
2114 result = adb_op_sync((Ptr)send_string, (Ptr)0,
2115 (Ptr)0, (short)command);
2116 if (send_string[0] != 0) {
2117 /* new device found */
2118 /* update data for previously moved device */
2119 ADBDevTable[i].currentAddr = saveptr;
2120 #ifdef ADB_DEBUG
2121 if (adb_debug & 0x80)
2122 printf_intr("old device at index %i\n",i);
2123 #endif
2124 /* add new device in table */
2125 #ifdef ADB_DEBUG
2126 if (adb_debug & 0x80)
2127 printf_intr("new device found\n");
2128 #endif
2129 ADBDevTable[++ADBNumDevices].devType =
2130 (int)(send_string[2]);
2131 ADBDevTable[ADBNumDevices].origAddr = device;
2132 ADBDevTable[ADBNumDevices].currentAddr = device;
2133 /* These will be set correctly in adbsys.c */
2134 /* Until then, unsol. data will be ignored. */
2135 ADBDevTable[ADBNumDevices].DataAreaAddr =
2136 (long)0;
2137 ADBDevTable[ADBNumDevices].ServiceRtPtr =
2138 (void *)0;
2139 /* find next unused address */
2140 for (x = saveptr; x > 0; x--)
2141 if (-1 == get_adb_info(&data, x)) {
2142 saveptr = x;
2143 break;
2144 }
2145 #ifdef ADB_DEBUG
2146 if (adb_debug & 0x80)
2147 printf_intr("new free is 0x%02x\n",
2148 saveptr);
2149 #endif
2150 nonewtimes = 0;
2151 /* tell pm driver device is here */
2152 pm_check_adb_devices(device);
2153 } else {
2154 #ifdef ADB_DEBUG
2155 if (adb_debug & 0x80)
2156 printf_intr("moving back...\n");
2157 #endif
2158 /* move old device back */
2159 command = (int)(0x0b | ((int)(saveptr & 0x000f) << 4));
2160 send_string[0] = 2;
2161 send_string[1] = (u_char)(device | 0x60);
2162 send_string[2] = 0xfe;
2163 adb_op_sync((Ptr)send_string, (Ptr)0,
2164 (Ptr)0, (short)command);
2165 }
2166 }
2167 }
2168
2169 #ifdef ADB_DEBUG
2170 if (adb_debug) {
2171 for (i = 1; i <= ADBNumDevices; i++) {
2172 x = get_ind_adb_info(&data, i);
2173 if (x != -1)
2174 printf_intr("index 0x%x, addr 0x%x, type 0x%hx\n",
2175 i, x, data.devType);
2176 }
2177 }
2178 #endif
2179
2180 #ifndef MRG_ADB
2181 /* enable the programmer's switch, if we have one */
2182 adb_prog_switch_enable();
2183 #endif
2184
2185 #ifdef ADB_DEBUG
2186 if (adb_debug) {
2187 if (0 == ADBNumDevices) /* tell user if no devices found */
2188 printf_intr("adb: no devices found\n");
2189 }
2190 #endif
2191
2192 adbStarting = 0; /* not starting anymore */
2193 #ifdef ADB_DEBUG
2194 if (adb_debug)
2195 printf_intr("adb: ADBReInit complete\n");
2196 #endif
2197
2198 if (adbHardware == ADB_HW_CUDA)
2199 timeout((void *)adb_cuda_tickle, 0, ADB_TICKLE_TICKS);
2200
2201 if (adbHardware != ADB_HW_PB) /* ints must be on for PB? */
2202 splx(s);
2203 return;
2204 }
2205
2206
2207 /*
2208 * adb_comp_exec
2209 * This is a general routine that calls the completion routine if there is one.
2210 * NOTE: This routine is now only used by pm_direct.c
2211 * All the code in this file (adb_direct.c) uses
2212 * the adb_pass_up routine now.
2213 */
2214 void
2215 adb_comp_exec(void)
2216 {
2217 if ((long)0 != adbCompRout) /* don't call if empty return location */
2218 #ifdef __NetBSD__
2219 asm(" movml #0xffff,sp@- | save all registers
2220 movl %0,a2 | adbCompData
2221 movl %1,a1 | adbCompRout
2222 movl %2,a0 | adbBuffer
2223 movl %3,d0 | adbWaitingCmd
2224 jbsr a1@ | go call the routine
2225 movml sp@+,#0xffff | restore all registers"
2226 :
2227 : "g"(adbCompData), "g"(adbCompRout),
2228 "g"(adbBuffer), "g"(adbWaitingCmd)
2229 : "d0", "a0", "a1", "a2");
2230 #else /* for Mac OS-based testing */
2231 asm {
2232 movem.l a0/a1/a2/d0, -(a7)
2233 move.l adbCompData, a2
2234 move.l adbCompRout, a1
2235 move.l adbBuffer, a0
2236 move.w adbWaitingCmd, d0
2237 jsr(a1)
2238 movem.l(a7) +, d0/a2/a1/a0
2239 }
2240 #endif
2241 }
2242
2243
2244 /*
2245 * adb_cmd_result
2246 *
2247 * This routine lets the caller know whether the specified adb command string
2248 * should expect a returned result, such as a TALK command.
2249 *
2250 * returns: 0 if a result should be expected
2251 * 1 if a result should NOT be expected
2252 */
2253 int
2254 adb_cmd_result(u_char *in)
2255 {
2256 switch (adbHardware) {
2257 case ADB_HW_II:
2258 /* was it an ADB talk command? */
2259 if ((in[1] & 0x0c) == 0x0c)
2260 return 0;
2261 return 1;
2262
2263 case ADB_HW_IISI:
2264 case ADB_HW_CUDA:
2265 /* was it an ADB talk command? */
2266 if ((in[1] == 0x00) && ((in[2] & 0x0c) == 0x0c))
2267 return 0;
2268 /* was it an RTC/PRAM read date/time? */
2269 if ((in[1] == 0x01) && (in[2] == 0x03))
2270 return 0;
2271 return 1;
2272
2273 case ADB_HW_PB:
2274 return 1;
2275
2276 case ADB_HW_UNKNOWN:
2277 default:
2278 return 1;
2279 }
2280 }
2281
2282
2283 /*
2284 * adb_cmd_extra
2285 *
2286 * This routine lets the caller know whether the specified adb command string
2287 * may have extra data appended to the end of it, such as a LISTEN command.
2288 *
2289 * returns: 0 if extra data is allowed
2290 * 1 if extra data is NOT allowed
2291 */
2292 int
2293 adb_cmd_extra(u_char *in)
2294 {
2295 switch (adbHardware) {
2296 case ADB_HW_II:
2297 if ((in[1] & 0x0c) == 0x08) /* was it a listen command? */
2298 return 0;
2299 return 1;
2300
2301 case ADB_HW_IISI:
2302 case ADB_HW_CUDA:
2303 /*
2304 * TO DO: support needs to be added to recognize RTC and PRAM
2305 * commands
2306 */
2307 if ((in[2] & 0x0c) == 0x08) /* was it a listen command? */
2308 return 0;
2309 /* add others later */
2310 return 1;
2311
2312 case ADB_HW_PB:
2313 return 1;
2314
2315 case ADB_HW_UNKNOWN:
2316 default:
2317 return 1;
2318 }
2319 }
2320
2321
2322 /*
2323 * adb_op_sync
2324 *
2325 * This routine does exactly what the adb_op routine does, except that after
2326 * the adb_op is called, it waits until the return value is present before
2327 * returning.
2328 *
2329 * NOTE: The user specified compRout is ignored, since this routine specifies
2330 * it's own to adb_op, which is why you really called this in the first place
2331 * anyway.
2332 */
2333 int
2334 adb_op_sync(Ptr buffer, Ptr compRout, Ptr data, short command)
2335 {
2336 int result;
2337 volatile int flag = 0;
2338
2339 result = adb_op(buffer, (void *)adb_op_comprout,
2340 (void *)&flag, command); /* send command */
2341 if (result == 0) /* send ok? */
2342 while (0 == flag)
2343 /* wait for compl. routine */;
2344
2345 return result;
2346 }
2347
2348
2349 /*
2350 * adb_op_comprout
2351 *
2352 * This function is used by the adb_op_sync routine so it knows when the
2353 * function is done.
2354 */
2355 void
2356 adb_op_comprout(void)
2357 {
2358 #ifdef __NetBSD__
2359 asm("movw #1,a2@ | update flag value");
2360 #else /* for macos based testing */
2361 asm {
2362 move.w #1,(a2) } /* update flag value */
2363 #endif
2364 }
2365
2366 void
2367 adb_setup_hw_type(void)
2368 {
2369 long response;
2370
2371 response = mac68k_machine.machineid;
2372
2373 /*
2374 * Determine what type of ADB hardware we are running on.
2375 */
2376 switch (response) {
2377 case MACH_MACC610: /* Centris 610 */
2378 case MACH_MACC650: /* Centris 650 */
2379 case MACH_MACII: /* II */
2380 case MACH_MACIICI: /* IIci */
2381 case MACH_MACIICX: /* IIcx */
2382 case MACH_MACIIX: /* IIx */
2383 case MACH_MACQ610: /* Quadra 610 */
2384 case MACH_MACQ650: /* Quadra 650 */
2385 case MACH_MACQ700: /* Quadra 700 */
2386 case MACH_MACQ800: /* Quadra 800 */
2387 case MACH_MACSE30: /* SE/30 */
2388 adbHardware = ADB_HW_II;
2389 #ifdef ADB_DEBUG
2390 if (adb_debug)
2391 printf_intr("adb: using II series hardware support\n");
2392 #endif
2393 break;
2394
2395 case MACH_MACCLASSICII: /* Classic II */
2396 case MACH_MACLCII: /* LC II, Performa 400/405/430 */
2397 case MACH_MACLCIII: /* LC III, Performa 450 */
2398 case MACH_MACIISI: /* IIsi */
2399 case MACH_MACIIVI: /* IIvi */
2400 case MACH_MACIIVX: /* IIvx */
2401 case MACH_MACP460: /* Performa 460/465/467 */
2402 case MACH_MACP600: /* Performa 600 */
2403 case MACH_MACQ900: /* Quadra 900 - XXX not sure */
2404 case MACH_MACQ950: /* Quadra 950 - XXX not sure */
2405 adbHardware = ADB_HW_IISI;
2406 #ifdef ADB_DEBUG
2407 if (adb_debug)
2408 printf_intr("adb: using IIsi series hardware support\n");
2409 #endif
2410 break;
2411
2412 case MACH_MACPB140: /* PowerBook 140 */
2413 case MACH_MACPB145: /* PowerBook 145 */
2414 case MACH_MACPB150: /* PowerBook 150 */
2415 case MACH_MACPB160: /* PowerBook 160 */
2416 case MACH_MACPB165: /* PowerBook 165 */
2417 case MACH_MACPB165C: /* PowerBook 165c */
2418 case MACH_MACPB170: /* PowerBook 170 */
2419 case MACH_MACPB180: /* PowerBook 180 */
2420 case MACH_MACPB180C: /* PowerBook 180c */
2421 adbHardware = ADB_HW_PB;
2422 pm_setup_adb();
2423 #ifdef ADB_DEBUG
2424 if (adb_debug)
2425 printf_intr("adb: using PowerBook 100-series hardware support\n");
2426 #endif
2427 break;
2428
2429 case MACH_MACPB210: /* PowerBook Duo 210 */
2430 case MACH_MACPB230: /* PowerBook Duo 230 */
2431 case MACH_MACPB250: /* PowerBook Duo 250 */
2432 case MACH_MACPB270: /* PowerBook Duo 270 */
2433 case MACH_MACPB280: /* PowerBook Duo 280 */
2434 case MACH_MACPB280C: /* PowerBook Duo 280c */
2435 case MACH_MACPB500: /* PowerBook 500 series */
2436 adbHardware = ADB_HW_PB;
2437 pm_setup_adb();
2438 #ifdef ADB_DEBUG
2439 if (adb_debug)
2440 printf_intr("adb: using PowerBook Duo-series and PowerBook 500-series hardware support\n");
2441 #endif
2442 break;
2443
2444 case MACH_MACC660AV: /* Centris 660AV */
2445 case MACH_MACCCLASSIC: /* Color Classic */
2446 case MACH_MACCCLASSICII: /* Color Classic II */
2447 case MACH_MACLC475: /* LC 475, Performa 475/476 */
2448 case MACH_MACLC475_33: /* Clock-chipped 47x */
2449 case MACH_MACLC520: /* LC 520 */
2450 case MACH_MACLC575: /* LC 575, Performa 575/577/578 */
2451 case MACH_MACP550: /* LC 550, Performa 550 */
2452 case MACH_MACP580: /* Performa 580/588 */
2453 case MACH_MACQ605: /* Quadra 605 */
2454 case MACH_MACQ605_33: /* Clock-chipped Quadra 605 */
2455 case MACH_MACQ630: /* LC 630, Performa 630, Quadra 630 */
2456 case MACH_MACQ840AV: /* Quadra 840AV */
2457 adbHardware = ADB_HW_CUDA;
2458 #ifdef ADB_DEBUG
2459 if (adb_debug)
2460 printf_intr("adb: using Cuda series hardware support\n");
2461 #endif
2462 break;
2463 default:
2464 adbHardware = ADB_HW_UNKNOWN;
2465 #ifdef ADB_DEBUG
2466 if (adb_debug) {
2467 printf_intr("adb: hardware type unknown for this machine\n");
2468 printf_intr("adb: ADB support is disabled\n");
2469 }
2470 #endif
2471 break;
2472 }
2473
2474 /*
2475 * Determine whether this machine has ADB based soft power.
2476 */
2477 switch (response) {
2478 case MACH_MACCCLASSIC: /* Color Classic */
2479 case MACH_MACCCLASSICII: /* Color Classic II */
2480 case MACH_MACIISI: /* IIsi */
2481 case MACH_MACIIVI: /* IIvi */
2482 case MACH_MACIIVX: /* IIvx */
2483 case MACH_MACLC520: /* LC 520 */
2484 case MACH_MACLC575: /* LC 575, Performa 575/577/578 */
2485 case MACH_MACP550: /* LC 550, Performa 550 */
2486 case MACH_MACP600: /* Performa 600 */
2487 case MACH_MACQ630: /* LC 630, Performa 630, Quadra 630 */
2488 case MACH_MACQ840AV: /* Quadra 840AV */
2489 case MACH_MACQ900: /* Quadra 900 - XXX not sure */
2490 case MACH_MACQ950: /* Quadra 950 - XXX not sure */
2491 adbSoftPower = 1;
2492 break;
2493 }
2494 }
2495
2496 int
2497 count_adbs(void)
2498 {
2499 int i;
2500 int found;
2501
2502 found = 0;
2503
2504 for (i = 1; i < 16; i++)
2505 if (0 != ADBDevTable[i].devType)
2506 found++;
2507
2508 return found;
2509 }
2510
2511 int
2512 get_ind_adb_info(ADBDataBlock * info, int index)
2513 {
2514 if ((index < 1) || (index > 15)) /* check range 1-15 */
2515 return (-1);
2516
2517 #ifdef ADB_DEBUG
2518 if (adb_debug & 0x80)
2519 printf_intr("index 0x%x devType is: 0x%x\n", index,
2520 ADBDevTable[index].devType);
2521 #endif
2522 if (0 == ADBDevTable[index].devType) /* make sure it's a valid entry */
2523 return (-1);
2524
2525 info->devType = (unsigned char)(ADBDevTable[index].devType);
2526 info->origADBAddr = (unsigned char)(ADBDevTable[index].origAddr);
2527 info->dbServiceRtPtr = (Ptr)ADBDevTable[index].ServiceRtPtr;
2528 info->dbDataAreaAddr = (Ptr)ADBDevTable[index].DataAreaAddr;
2529
2530 return (ADBDevTable[index].currentAddr);
2531 }
2532
2533 int
2534 get_adb_info(ADBDataBlock * info, int adbAddr)
2535 {
2536 int i;
2537
2538 if ((adbAddr < 1) || (adbAddr > 15)) /* check range 1-15 */
2539 return (-1);
2540
2541 for (i = 1; i < 15; i++)
2542 if (ADBDevTable[i].currentAddr == adbAddr) {
2543 info->devType = (unsigned char)(ADBDevTable[i].devType);
2544 info->origADBAddr = (unsigned char)(ADBDevTable[i].origAddr);
2545 info->dbServiceRtPtr = (Ptr)ADBDevTable[i].ServiceRtPtr;
2546 info->dbDataAreaAddr = ADBDevTable[i].DataAreaAddr;
2547 return 0; /* found */
2548 }
2549
2550 return (-1); /* not found */
2551 }
2552
2553 int
2554 set_adb_info(ADBSetInfoBlock * info, int adbAddr)
2555 {
2556 int i;
2557
2558 if ((adbAddr < 1) || (adbAddr > 15)) /* check range 1-15 */
2559 return (-1);
2560
2561 for (i = 1; i < 15; i++)
2562 if (ADBDevTable[i].currentAddr == adbAddr) {
2563 ADBDevTable[i].ServiceRtPtr =
2564 (void *)(info->siServiceRtPtr);
2565 ADBDevTable[i].DataAreaAddr = info->siDataAreaAddr;
2566 return 0; /* found */
2567 }
2568
2569 return (-1); /* not found */
2570
2571 }
2572
2573 #ifndef MRG_ADB
2574 long
2575 mrg_adbintr(void)
2576 {
2577 adb_intr();
2578 return 1; /* mimic mrg_adbintr in macrom.h just in case */
2579 }
2580
2581 long
2582 mrg_pmintr(void)
2583 {
2584 pm_intr();
2585 return 1; /* mimic mrg_pmintr in macrom.h just in case */
2586 }
2587
2588 /* caller should really use machine-independant version: getPramTime */
2589 /* this version does pseudo-adb access only */
2590 int
2591 adb_read_date_time(unsigned long *time)
2592 {
2593 u_char output[ADB_MAX_MSG_LENGTH];
2594 int result;
2595 volatile int flag = 0;
2596
2597 switch (adbHardware) {
2598 case ADB_HW_II:
2599 return -1;
2600
2601 case ADB_HW_IISI:
2602 output[0] = 0x02; /* 2 byte message */
2603 output[1] = 0x01; /* to pram/rtc device */
2604 output[2] = 0x03; /* read date/time */
2605 result = send_adb_IIsi((u_char *)output, (u_char *)output,
2606 (void *)adb_op_comprout, (int *)&flag, (int)0);
2607 if (result != 0) /* exit if not sent */
2608 return -1;
2609
2610 while (0 == flag) /* wait for result */
2611 ;
2612
2613 *time = (long)(*(long *)(output + 1));
2614 return 0;
2615
2616 case ADB_HW_PB:
2617 return -1;
2618
2619 case ADB_HW_CUDA:
2620 output[0] = 0x02; /* 2 byte message */
2621 output[1] = 0x01; /* to pram/rtc device */
2622 output[2] = 0x03; /* read date/time */
2623 result = send_adb_cuda((u_char *)output, (u_char *)output,
2624 (void *)adb_op_comprout, (void *)&flag, (int)0);
2625 if (result != 0) /* exit if not sent */
2626 return -1;
2627
2628 while (0 == flag) /* wait for result */
2629 ;
2630
2631 *time = (long)(*(long *)(output + 1));
2632 return 0;
2633
2634 case ADB_HW_UNKNOWN:
2635 default:
2636 return -1;
2637 }
2638 }
2639
2640 /* caller should really use machine-independant version: setPramTime */
2641 /* this version does pseudo-adb access only */
2642 int
2643 adb_set_date_time(unsigned long time)
2644 {
2645 u_char output[ADB_MAX_MSG_LENGTH];
2646 int result;
2647 volatile int flag = 0;
2648
2649 switch (adbHardware) {
2650 case ADB_HW_II:
2651 return -1;
2652
2653 case ADB_HW_IISI:
2654 output[0] = 0x06; /* 6 byte message */
2655 output[1] = 0x01; /* to pram/rtc device */
2656 output[2] = 0x09; /* set date/time */
2657 output[3] = (u_char)(time >> 24);
2658 output[4] = (u_char)(time >> 16);
2659 output[5] = (u_char)(time >> 8);
2660 output[6] = (u_char)(time);
2661 result = send_adb_IIsi((u_char *)output, (u_char *)0,
2662 (void *)adb_op_comprout, (void *)&flag, (int)0);
2663 if (result != 0) /* exit if not sent */
2664 return -1;
2665
2666 while (0 == flag) /* wait for send to finish */
2667 ;
2668
2669 return 0;
2670
2671 case ADB_HW_PB:
2672 return -1;
2673
2674 case ADB_HW_CUDA:
2675 output[0] = 0x06; /* 6 byte message */
2676 output[1] = 0x01; /* to pram/rtc device */
2677 output[2] = 0x09; /* set date/time */
2678 output[3] = (u_char)(time >> 24);
2679 output[4] = (u_char)(time >> 16);
2680 output[5] = (u_char)(time >> 8);
2681 output[6] = (u_char)(time);
2682 result = send_adb_cuda((u_char *)output, (u_char *)0,
2683 (void *)adb_op_comprout, (void *)&flag, (int)0);
2684 if (result != 0) /* exit if not sent */
2685 return -1;
2686
2687 while (0 == flag) /* wait for send to finish */
2688 ;
2689
2690 return 0;
2691
2692 case ADB_HW_UNKNOWN:
2693 default:
2694 return -1;
2695 }
2696 }
2697
2698
2699 int
2700 adb_poweroff(void)
2701 {
2702 u_char output[ADB_MAX_MSG_LENGTH];
2703 int result;
2704
2705 if (!adbSoftPower)
2706 return -1;
2707
2708 switch (adbHardware) {
2709 case ADB_HW_IISI:
2710 output[0] = 0x02; /* 2 byte message */
2711 output[1] = 0x01; /* to pram/rtc/soft-power device */
2712 output[2] = 0x0a; /* set date/time */
2713 result = send_adb_IIsi((u_char *)output, (u_char *)0,
2714 (void *)0, (void *)0, (int)0);
2715 if (result != 0) /* exit if not sent */
2716 return -1;
2717
2718 for (;;); /* wait for power off */
2719
2720 return 0;
2721
2722 case ADB_HW_PB:
2723 return -1;
2724
2725 case ADB_HW_CUDA:
2726 output[0] = 0x02; /* 2 byte message */
2727 output[1] = 0x01; /* to pram/rtc/soft-power device */
2728 output[2] = 0x0a; /* set date/time */
2729 result = send_adb_cuda((u_char *)output, (u_char *)0,
2730 (void *)0, (void *)0, (int)0);
2731 if (result != 0) /* exit if not sent */
2732 return -1;
2733
2734 for (;;); /* wait for power off */
2735
2736 return 0;
2737
2738 case ADB_HW_II: /* II models don't do ADB soft power */
2739 case ADB_HW_UNKNOWN:
2740 default:
2741 return -1;
2742 }
2743 }
2744
2745 int
2746 adb_prog_switch_enable(void)
2747 {
2748 u_char output[ADB_MAX_MSG_LENGTH];
2749 int result;
2750 volatile int flag = 0;
2751
2752 switch (adbHardware) {
2753 case ADB_HW_IISI:
2754 output[0] = 0x03; /* 3 byte message */
2755 output[1] = 0x01; /* to pram/rtc/soft-power device */
2756 output[2] = 0x1c; /* prog. switch control */
2757 output[3] = 0x01; /* enable */
2758 result = send_adb_IIsi((u_char *)output, (u_char *)0,
2759 (void *)adb_op_comprout, (void *)&flag, (int)0);
2760 if (result != 0) /* exit if not sent */
2761 return -1;
2762
2763 while (0 == flag) /* wait for send to finish */
2764 ;
2765
2766 return 0;
2767
2768 case ADB_HW_PB:
2769 return -1;
2770
2771 case ADB_HW_II: /* II models don't do prog. switch */
2772 case ADB_HW_CUDA: /* cuda doesn't do prog. switch TO DO: verify this */
2773 case ADB_HW_UNKNOWN:
2774 default:
2775 return -1;
2776 }
2777 }
2778
2779 int
2780 adb_prog_switch_disable(void)
2781 {
2782 u_char output[ADB_MAX_MSG_LENGTH];
2783 int result;
2784 volatile int flag = 0;
2785
2786 switch (adbHardware) {
2787 case ADB_HW_IISI:
2788 output[0] = 0x03; /* 3 byte message */
2789 output[1] = 0x01; /* to pram/rtc/soft-power device */
2790 output[2] = 0x1c; /* prog. switch control */
2791 output[3] = 0x01; /* disable */
2792 result = send_adb_IIsi((u_char *)output, (u_char *)0,
2793 (void *)adb_op_comprout, (void *)&flag, (int)0);
2794 if (result != 0) /* exit if not sent */
2795 return -1;
2796
2797 while (0 == flag) /* wait for send to finish */
2798 ;
2799
2800 return 0;
2801
2802 case ADB_HW_PB:
2803 return -1;
2804
2805 case ADB_HW_II: /* II models don't do prog. switch */
2806 case ADB_HW_CUDA: /* cuda doesn't do prog. switch */
2807 case ADB_HW_UNKNOWN:
2808 default:
2809 return -1;
2810 }
2811 }
2812
2813 int
2814 CountADBs(void)
2815 {
2816 return (count_adbs());
2817 }
2818
2819 void
2820 ADBReInit(void)
2821 {
2822 adb_reinit();
2823 }
2824
2825 int
2826 GetIndADB(ADBDataBlock * info, int index)
2827 {
2828 return (get_ind_adb_info(info, index));
2829 }
2830
2831 int
2832 GetADBInfo(ADBDataBlock * info, int adbAddr)
2833 {
2834 return (get_adb_info(info, adbAddr));
2835 }
2836
2837 int
2838 SetADBInfo(ADBSetInfoBlock * info, int adbAddr)
2839 {
2840 return (set_adb_info(info, adbAddr));
2841 }
2842
2843 int
2844 ADBOp(Ptr buffer, Ptr compRout, Ptr data, short commandNum)
2845 {
2846 return (adb_op(buffer, compRout, data, commandNum));
2847 }
2848
2849 #endif
2850