adb_direct.c revision 1.21.2.5 1 /* $NetBSD: adb_direct.c,v 1.21.2.5 1999/12/16 22:45:02 he Exp $ */
2
3 /* From: adb_direct.c 2.02 4/18/97 jpw */
4
5 /*
6 * Copyright (C) 1996, 1997 John P. Wittkoski
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by John P. Wittkoski.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*
36 * This code is rather messy, but I don't have time right now
37 * to clean it up as much as I would like.
38 * But it works, so I'm happy. :-) jpw
39 */
40
41 /*
42 * TO DO:
43 * - We could reduce the time spent in the adb_intr_* routines
44 * by having them save the incoming and outgoing data directly
45 * in the adbInbound and adbOutbound queues, as it would reduce
46 * the number of times we need to copy the data around. It
47 * would also make the code more readable and easier to follow.
48 * - (Related to above) Use the header part of adbCommand to
49 * reduce the number of copies we have to do of the data.
50 * - (Related to above) Actually implement the adbOutbound queue.
51 * This is fairly easy once you switch all the intr routines
52 * over to using adbCommand structs directly.
53 * - There is a bug in the state machine of adb_intr_cuda
54 * code that causes hangs, especially on 030 machines, probably
55 * because of some timing issues. Because I have been unable to
56 * determine the exact cause of this bug, I used the timeout function
57 * to check for and recover from this condition. If anyone finds
58 * the actual cause of this bug, the calls to timeout and the
59 * adb_cuda_tickle routine can be removed.
60 */
61
62 #ifdef __NetBSD__
63 #include "opt_adb.h"
64
65 #include <sys/param.h>
66 #include <sys/cdefs.h>
67 #include <sys/systm.h>
68
69 #include <machine/viareg.h>
70 #include <machine/param.h>
71 #include <machine/cpu.h>
72 #include <machine/adbsys.h> /* required for adbvar.h */
73
74 #include <mac68k/mac68k/macrom.h>
75 #include <mac68k/dev/adbvar.h>
76 #define printf_intr printf
77 #else /* !__NetBSD__, i.e. Mac OS */
78 #include "via.h" /* for macos based testing */
79 /* #define ADB_DEBUG */ /* more verbose for testing */
80
81 /* Types of ADB hardware that we support */
82 #define ADB_HW_UNKNOWN 0x0 /* don't know */
83 #define ADB_HW_II 0x1 /* Mac II series */
84 #define ADB_HW_IISI 0x2 /* Mac IIsi series */
85 #define ADB_HW_PB 0x3 /* PowerBook series */
86 #define ADB_HW_CUDA 0x4 /* Machines with a Cuda chip */
87 #endif /* __NetBSD__ */
88
89 /* some misc. leftovers */
90 #define vPB 0x0000
91 #define vPB3 0x08
92 #define vPB4 0x10
93 #define vPB5 0x20
94 #define vSR_INT 0x04
95 #define vSR_OUT 0x10
96
97 /* the type of ADB action that we are currently preforming */
98 #define ADB_ACTION_NOTREADY 0x1 /* has not been initialized yet */
99 #define ADB_ACTION_IDLE 0x2 /* the bus is currently idle */
100 #define ADB_ACTION_OUT 0x3 /* sending out a command */
101 #define ADB_ACTION_IN 0x4 /* receiving data */
102 #define ADB_ACTION_POLLING 0x5 /* polling - II only */
103
104 /*
105 * These describe the state of the ADB bus itself, although they
106 * don't necessarily correspond directly to ADB states.
107 * Note: these are not really used in the IIsi code.
108 */
109 #define ADB_BUS_UNKNOWN 0x1 /* we don't know yet - all models */
110 #define ADB_BUS_IDLE 0x2 /* bus is idle - all models */
111 #define ADB_BUS_CMD 0x3 /* starting a command - II models */
112 #define ADB_BUS_ODD 0x4 /* the "odd" state - II models */
113 #define ADB_BUS_EVEN 0x5 /* the "even" state - II models */
114 #define ADB_BUS_ACTIVE 0x6 /* active state - IIsi models */
115 #define ADB_BUS_ACK 0x7 /* currently ACKing - IIsi models */
116
117 /*
118 * Shortcuts for setting or testing the VIA bit states.
119 * Not all shortcuts are used for every type of ADB hardware.
120 */
121 #define ADB_SET_STATE_IDLE_II() via_reg(VIA1, vBufB) |= (vPB4 | vPB5)
122 #define ADB_SET_STATE_IDLE_IISI() via_reg(VIA1, vBufB) &= ~(vPB4 | vPB5)
123 #define ADB_SET_STATE_IDLE_CUDA() via_reg(VIA1, vBufB) |= (vPB4 | vPB5)
124 #define ADB_SET_STATE_CMD() via_reg(VIA1, vBufB) &= ~(vPB4 | vPB5)
125 #define ADB_SET_STATE_EVEN() via_reg(VIA1, vBufB) = ((via_reg(VIA1, \
126 vBufB) | vPB4) & ~vPB5)
127 #define ADB_SET_STATE_ODD() via_reg(VIA1, vBufB) = ((via_reg(VIA1, \
128 vBufB) | vPB5) & ~vPB4)
129 #define ADB_SET_STATE_ACTIVE() via_reg(VIA1, vBufB) |= vPB5
130 #define ADB_SET_STATE_INACTIVE() via_reg(VIA1, vBufB) &= ~vPB5
131 #define ADB_SET_STATE_TIP() via_reg(VIA1, vBufB) &= ~vPB5
132 #define ADB_CLR_STATE_TIP() via_reg(VIA1, vBufB) |= vPB5
133 #define ADB_SET_STATE_ACKON() via_reg(VIA1, vBufB) |= vPB4
134 #define ADB_SET_STATE_ACKOFF() via_reg(VIA1, vBufB) &= ~vPB4
135 #define ADB_TOGGLE_STATE_ACK_CUDA() via_reg(VIA1, vBufB) ^= vPB4
136 #define ADB_SET_STATE_ACKON_CUDA() via_reg(VIA1, vBufB) &= ~vPB4
137 #define ADB_SET_STATE_ACKOFF_CUDA() via_reg(VIA1, vBufB) |= vPB4
138 #define ADB_SET_SR_INPUT() via_reg(VIA1, vACR) &= ~vSR_OUT
139 #define ADB_SET_SR_OUTPUT() via_reg(VIA1, vACR) |= vSR_OUT
140 #define ADB_SR() via_reg(VIA1, vSR)
141 #define ADB_VIA_INTR_ENABLE() via_reg(VIA1, vIER) = 0x84
142 #define ADB_VIA_INTR_DISABLE() via_reg(VIA1, vIER) = 0x04
143 #define ADB_VIA_CLR_INTR() via_reg(VIA1, vIFR) = 0x04
144 #define ADB_INTR_IS_OFF (vPB3 == (via_reg(VIA1, vBufB) & vPB3))
145 #define ADB_INTR_IS_ON (0 == (via_reg(VIA1, vBufB) & vPB3))
146 #define ADB_SR_INTR_IS_OFF (0 == (via_reg(VIA1, vIFR) & vSR_INT))
147 #define ADB_SR_INTR_IS_ON (vSR_INT == (via_reg(VIA1, \
148 vIFR) & vSR_INT))
149
150 /*
151 * This is the delay that is required (in uS) between certain
152 * ADB transactions. The actual timing delay for for each uS is
153 * calculated at boot time to account for differences in machine speed.
154 */
155 #define ADB_DELAY 150
156
157 /*
158 * Maximum ADB message length; includes space for data, result, and
159 * device code - plus a little for safety.
160 */
161 #define ADB_MAX_MSG_LENGTH 16
162 #define ADB_MAX_HDR_LENGTH 8
163
164 #define ADB_QUEUE 32
165 #define ADB_TICKLE_TICKS 4
166
167 /*
168 * A structure for storing information about each ADB device.
169 */
170 struct ADBDevEntry {
171 void (*ServiceRtPtr) __P((void));
172 void *DataAreaAddr;
173 int devType;
174 int origAddr;
175 int currentAddr;
176 };
177
178 /*
179 * Used to hold ADB commands that are waiting to be sent out.
180 */
181 struct adbCmdHoldEntry {
182 u_char outBuf[ADB_MAX_MSG_LENGTH]; /* our message */
183 u_char *saveBuf; /* buffer to know where to save result */
184 u_char *compRout; /* completion routine pointer */
185 u_char *data; /* completion routine data pointer */
186 };
187
188 /*
189 * Eventually used for two separate queues, the queue between
190 * the upper and lower halves, and the outgoing packet queue.
191 * TO DO: adbCommand can replace all of adbCmdHoldEntry eventually
192 */
193 struct adbCommand {
194 u_char header[ADB_MAX_HDR_LENGTH]; /* not used yet */
195 u_char data[ADB_MAX_MSG_LENGTH]; /* packet data only */
196 u_char *saveBuf; /* where to save result */
197 u_char *compRout; /* completion routine pointer */
198 u_char *compData; /* completion routine data pointer */
199 u_int cmd; /* the original command for this data */
200 u_int unsol; /* 1 if packet was unsolicited */
201 u_int ack_only; /* 1 for no special processing */
202 };
203
204 /*
205 * Text representations of each hardware class
206 */
207 char *adbHardwareDescr[MAX_ADB_HW + 1] = {
208 "unknown",
209 "II series",
210 "IIsi series",
211 "PowerBook",
212 "Cuda",
213 };
214
215 /*
216 * A few variables that we need and their initial values.
217 */
218 int adbHardware = ADB_HW_UNKNOWN;
219 int adbActionState = ADB_ACTION_NOTREADY;
220 int adbBusState = ADB_BUS_UNKNOWN;
221 int adbWaiting = 0; /* waiting for return data from the device */
222 int adbWriteDelay = 0; /* working on (or waiting to do) a write */
223 int adbOutQueueHasData = 0; /* something in the queue waiting to go out */
224 int adbNextEnd = 0; /* the next incoming bute is the last (II) */
225 int adbSoftPower = 0; /* machine supports soft power */
226
227 int adbWaitingCmd = 0; /* ADB command we are waiting for */
228 u_char *adbBuffer = (long)0; /* pointer to user data area */
229 void *adbCompRout = (long)0; /* pointer to the completion routine */
230 void *adbCompData = (long)0; /* pointer to the completion routine data */
231 long adbFakeInts = 0; /* keeps track of fake ADB interrupts for
232 * timeouts (II) */
233 int adbStarting = 1; /* doing ADBReInit so do polling differently */
234 int adbSendTalk = 0; /* the intr routine is sending the talk, not
235 * the user (II) */
236 int adbPolling = 0; /* we are polling for service request */
237 int adbPollCmd = 0; /* the last poll command we sent */
238
239 u_char adbInputBuffer[ADB_MAX_MSG_LENGTH]; /* data input buffer */
240 u_char adbOutputBuffer[ADB_MAX_MSG_LENGTH]; /* data output buffer */
241 struct adbCmdHoldEntry adbOutQueue; /* our 1 entry output queue */
242
243 int adbSentChars = 0; /* how many characters we have sent */
244 int adbLastDevice = 0; /* last ADB dev we heard from (II ONLY) */
245 int adbLastDevIndex = 0; /* last ADB dev loc in dev table (II ONLY) */
246 int adbLastCommand = 0; /* the last ADB command we sent (II) */
247
248 struct ADBDevEntry ADBDevTable[16]; /* our ADB device table */
249 int ADBNumDevices; /* num. of ADB devices found with ADBReInit */
250
251 struct adbCommand adbInbound[ADB_QUEUE]; /* incoming queue */
252 volatile int adbInCount = 0; /* how many packets in in queue */
253 int adbInHead = 0; /* head of in queue */
254 int adbInTail = 0; /* tail of in queue */
255 struct adbCommand adbOutbound[ADB_QUEUE]; /* outgoing queue - not used yet */
256 int adbOutCount = 0; /* how many packets in out queue */
257 int adbOutHead = 0; /* head of out queue */
258 int adbOutTail = 0; /* tail of out queue */
259
260 int tickle_count = 0; /* how many tickles seen for this packet? */
261 int tickle_serial = 0; /* the last packet tickled */
262 int adb_cuda_serial = 0; /* the current packet */
263
264 extern struct mac68k_machine_S mac68k_machine;
265
266 void pm_setup_adb __P((void));
267 void pm_check_adb_devices __P((int));
268 void pm_intr __P((void));
269 int pm_adb_op __P((u_char *, void *, void *, int));
270 void pm_init_adb_device __P((void));
271
272 /*
273 * The following are private routines.
274 */
275 #ifdef ADB_DEBUG
276 void print_single __P((u_char *));
277 #endif
278 void adb_intr __P((void));
279 void adb_intr_II __P((void));
280 void adb_intr_IIsi __P((void));
281 void adb_intr_cuda __P((void));
282 void adb_soft_intr __P((void));
283 int send_adb_II __P((u_char *, u_char *, void *, void *, int));
284 int send_adb_IIsi __P((u_char *, u_char *, void *, void *, int));
285 int send_adb_cuda __P((u_char *, u_char *, void *, void *, int));
286 void adb_intr_cuda_test __P((void));
287 void adb_cuda_tickle __P((void));
288 void adb_pass_up __P((struct adbCommand *));
289 void adb_op_comprout __P((void));
290 void adb_reinit __P((void));
291 int count_adbs __P((void));
292 int get_ind_adb_info __P((ADBDataBlock *, int));
293 int get_adb_info __P((ADBDataBlock *, int));
294 int set_adb_info __P((ADBSetInfoBlock *, int));
295 void adb_setup_hw_type __P((void));
296 int adb_op __P((Ptr, Ptr, Ptr, short));
297 int adb_op_sync __P((Ptr, Ptr, Ptr, short));
298 void adb_read_II __P((u_char *));
299 void adb_hw_setup __P((void));
300 void adb_hw_setup_IIsi __P((u_char *));
301 void adb_comp_exec __P((void));
302 int adb_cmd_result __P((u_char *));
303 int adb_cmd_extra __P((u_char *));
304 int adb_guess_next_device __P((void));
305 int adb_prog_switch_enable __P((void));
306 int adb_prog_switch_disable __P((void));
307 /* we should create this and it will be the public version */
308 int send_adb __P((u_char *, void *, void *));
309
310 #ifdef ADB_DEBUG
311 /*
312 * print_single
313 * Diagnostic display routine. Displays the hex values of the
314 * specified elements of the u_char. The length of the "string"
315 * is in [0].
316 */
317 void
318 print_single(str)
319 u_char *str;
320 {
321 int x;
322
323 if (str == 0) {
324 printf_intr("no data - null pointer\n");
325 return;
326 }
327 if (*str == 0) {
328 printf_intr("nothing returned\n");
329 return;
330 }
331 if (*str > 20) {
332 printf_intr("ADB: ACK > 20 no way!\n");
333 *str = (u_char)20;
334 }
335 printf_intr("(length=0x%x):", (u_int)*str);
336 for (x = 1; x <= *str; x++)
337 printf_intr(" 0x%02x", (u_int)*(str + x));
338 printf_intr("\n");
339 }
340 #endif
341
342 void
343 adb_cuda_tickle(void)
344 {
345 volatile int s;
346
347 if (adbActionState == ADB_ACTION_IN) {
348 if (tickle_serial == adb_cuda_serial) {
349 if (++tickle_count > 0) {
350 s = splhigh();
351 adbActionState = ADB_ACTION_IDLE;
352 adbInputBuffer[0] = 0;
353 ADB_SET_STATE_IDLE_CUDA();
354 splx(s);
355 }
356 } else {
357 tickle_serial = adb_cuda_serial;
358 tickle_count = 0;
359 }
360 } else {
361 tickle_serial = adb_cuda_serial;
362 tickle_count = 0;
363 }
364
365 timeout((void *)adb_cuda_tickle, 0, ADB_TICKLE_TICKS);
366 }
367
368 /*
369 * called when when an adb interrupt happens
370 *
371 * Cuda version of adb_intr
372 * TO DO: do we want to add some calls to intr_dispatch() here to
373 * grab serial interrupts?
374 */
375 void
376 adb_intr_cuda(void)
377 {
378 volatile int i, ending;
379 volatile unsigned int s;
380 struct adbCommand packet;
381
382 s = splhigh(); /* can't be too careful - might be called */
383 /* from a routine, NOT an interrupt */
384
385 ADB_VIA_CLR_INTR(); /* clear interrupt */
386 ADB_VIA_INTR_DISABLE(); /* disable ADB interrupt on IIs. */
387
388 switch_start:
389 switch (adbActionState) {
390 case ADB_ACTION_IDLE:
391 /*
392 * This is an unexpected packet, so grab the first (dummy)
393 * byte, set up the proper vars, and tell the chip we are
394 * starting to receive the packet by setting the TIP bit.
395 */
396 adbInputBuffer[1] = ADB_SR();
397 adb_cuda_serial++;
398 if (ADB_INTR_IS_OFF) /* must have been a fake start */
399 break;
400
401 ADB_SET_SR_INPUT();
402 ADB_SET_STATE_TIP();
403
404 adbInputBuffer[0] = 1;
405 adbActionState = ADB_ACTION_IN;
406 #ifdef ADB_DEBUG
407 if (adb_debug)
408 printf_intr("idle 0x%02x ", adbInputBuffer[1]);
409 #endif
410 break;
411
412 case ADB_ACTION_IN:
413 adbInputBuffer[++adbInputBuffer[0]] = ADB_SR();
414 /* intr off means this is the last byte (end of frame) */
415 if (ADB_INTR_IS_OFF)
416 ending = 1;
417 else
418 ending = 0;
419
420 if (1 == ending) { /* end of message? */
421 #ifdef ADB_DEBUG
422 if (adb_debug) {
423 printf_intr("in end 0x%02x ",
424 adbInputBuffer[adbInputBuffer[0]]);
425 print_single(adbInputBuffer);
426 }
427 #endif
428
429 /*
430 * Are we waiting AND does this packet match what we
431 * are waiting for AND is it coming from either the
432 * ADB or RTC/PRAM sub-device? This section _should_
433 * recognize all ADB and RTC/PRAM type commands, but
434 * there may be more... NOTE: commands are always at
435 * [4], even for RTC/PRAM commands.
436 */
437 /* set up data for adb_pass_up */
438 memcpy(packet.data, adbInputBuffer, adbInputBuffer[0] + 1);
439
440 if ((adbWaiting == 1) &&
441 (adbInputBuffer[4] == adbWaitingCmd) &&
442 ((adbInputBuffer[2] == 0x00) ||
443 (adbInputBuffer[2] == 0x01))) {
444 packet.saveBuf = adbBuffer;
445 packet.compRout = adbCompRout;
446 packet.compData = adbCompData;
447 packet.unsol = 0;
448 packet.ack_only = 0;
449 adb_pass_up(&packet);
450
451 adbWaitingCmd = 0; /* reset "waiting" vars */
452 adbWaiting = 0;
453 adbBuffer = (long)0;
454 adbCompRout = (long)0;
455 adbCompData = (long)0;
456 } else {
457 packet.unsol = 1;
458 packet.ack_only = 0;
459 adb_pass_up(&packet);
460 }
461
462
463 /* reset vars and signal the end of this frame */
464 adbActionState = ADB_ACTION_IDLE;
465 adbInputBuffer[0] = 0;
466 ADB_SET_STATE_IDLE_CUDA();
467 /*ADB_SET_SR_INPUT();*/
468
469 /*
470 * If there is something waiting to be sent out,
471 * the set everything up and send the first byte.
472 */
473 if (adbWriteDelay == 1) {
474 delay(ADB_DELAY); /* required */
475 adbSentChars = 0;
476 adbActionState = ADB_ACTION_OUT;
477 /*
478 * If the interrupt is on, we were too slow
479 * and the chip has already started to send
480 * something to us, so back out of the write
481 * and start a read cycle.
482 */
483 if (ADB_INTR_IS_ON) {
484 ADB_SET_SR_INPUT();
485 ADB_SET_STATE_IDLE_CUDA();
486 adbSentChars = 0;
487 adbActionState = ADB_ACTION_IDLE;
488 adbInputBuffer[0] = 0;
489 break;
490 }
491 /*
492 * If we got here, it's ok to start sending
493 * so load the first byte and tell the chip
494 * we want to send.
495 */
496 ADB_SET_STATE_TIP();
497 ADB_SET_SR_OUTPUT();
498 ADB_SR() = adbOutputBuffer[adbSentChars + 1];
499 }
500 } else {
501 ADB_TOGGLE_STATE_ACK_CUDA();
502 #ifdef ADB_DEBUG
503 if (adb_debug)
504 printf_intr("in 0x%02x ",
505 adbInputBuffer[adbInputBuffer[0]]);
506 #endif
507 }
508 break;
509
510 case ADB_ACTION_OUT:
511 i = ADB_SR(); /* reset SR-intr in IFR */
512 #ifdef ADB_DEBUG
513 if (adb_debug)
514 printf_intr("intr out 0x%02x ", i);
515 #endif
516
517 adbSentChars++;
518 if (ADB_INTR_IS_ON) { /* ADB intr low during write */
519 #ifdef ADB_DEBUG
520 if (adb_debug)
521 printf_intr("intr was on ");
522 #endif
523 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
524 ADB_SET_STATE_IDLE_CUDA();
525 adbSentChars = 0; /* must start all over */
526 adbActionState = ADB_ACTION_IDLE; /* new state */
527 adbInputBuffer[0] = 0;
528 adbWriteDelay = 1; /* must retry when done with
529 * read */
530 delay(ADB_DELAY);
531 goto switch_start; /* process next state right
532 * now */
533 break;
534 }
535 if (adbOutputBuffer[0] == adbSentChars) { /* check for done */
536 if (0 == adb_cmd_result(adbOutputBuffer)) { /* do we expect data
537 * back? */
538 adbWaiting = 1; /* signal waiting for return */
539 adbWaitingCmd = adbOutputBuffer[2]; /* save waiting command */
540 } else { /* no talk, so done */
541 /* set up stuff for adb_pass_up */
542 memcpy(packet.data, adbInputBuffer, adbInputBuffer[0] + 1);
543 packet.saveBuf = adbBuffer;
544 packet.compRout = adbCompRout;
545 packet.compData = adbCompData;
546 packet.cmd = adbWaitingCmd;
547 packet.unsol = 0;
548 packet.ack_only = 1;
549 adb_pass_up(&packet);
550
551 /* reset "waiting" vars, just in case */
552 adbWaitingCmd = 0;
553 adbBuffer = (long)0;
554 adbCompRout = (long)0;
555 adbCompData = (long)0;
556 }
557
558 adbWriteDelay = 0; /* done writing */
559 adbActionState = ADB_ACTION_IDLE; /* signal bus is idle */
560 ADB_SET_SR_INPUT();
561 ADB_SET_STATE_IDLE_CUDA();
562 #ifdef ADB_DEBUG
563 if (adb_debug)
564 printf_intr("write done ");
565 #endif
566 } else {
567 ADB_SR() = adbOutputBuffer[adbSentChars + 1]; /* send next byte */
568 ADB_TOGGLE_STATE_ACK_CUDA(); /* signal byte ready to
569 * shift */
570 #ifdef ADB_DEBUG
571 if (adb_debug)
572 printf_intr("toggle ");
573 #endif
574 }
575 break;
576
577 case ADB_ACTION_NOTREADY:
578 #ifdef ADB_DEBUG
579 if (adb_debug)
580 printf_intr("adb: not yet initialized\n");
581 #endif
582 break;
583
584 default:
585 #ifdef ADB_DEBUG
586 if (adb_debug)
587 printf_intr("intr: unknown ADB state\n");
588 #endif
589 }
590
591 ADB_VIA_INTR_ENABLE(); /* enable ADB interrupt on IIs. */
592
593 splx(s); /* restore */
594
595 return;
596 } /* end adb_intr_cuda */
597
598
599 int
600 send_adb_cuda(u_char * in, u_char * buffer, void *compRout, void *data, int
601 command)
602 {
603 int s, len;
604
605 #ifdef ADB_DEBUG
606 if (adb_debug)
607 printf_intr("SEND\n");
608 #endif
609
610 if (adbActionState == ADB_ACTION_NOTREADY)
611 return 1;
612
613 /* Don't interrupt while we are messing with the ADB */
614 s = splhigh();
615
616 if ((adbActionState == ADB_ACTION_IDLE) && /* ADB available? */
617 (ADB_INTR_IS_OFF)) { /* and no incoming interrupt? */
618 } else
619 if (adbWriteDelay == 0) /* it's busy, but is anything waiting? */
620 adbWriteDelay = 1; /* if no, then we'll "queue"
621 * it up */
622 else {
623 splx(s);
624 return 1; /* really busy! */
625 }
626
627 #ifdef ADB_DEBUG
628 if (adb_debug)
629 printf_intr("QUEUE\n");
630 #endif
631 if ((long)in == (long)0) { /* need to convert? */
632 /*
633 * Don't need to use adb_cmd_extra here because this section
634 * will be called ONLY when it is an ADB command (no RTC or
635 * PRAM)
636 */
637 if ((command & 0x0c) == 0x08) /* copy addl data ONLY if
638 * doing a listen! */
639 len = buffer[0]; /* length of additional data */
640 else
641 len = 0;/* no additional data */
642
643 adbOutputBuffer[0] = 2 + len; /* dev. type + command + addl.
644 * data */
645 adbOutputBuffer[1] = 0x00; /* mark as an ADB command */
646 adbOutputBuffer[2] = (u_char)command; /* load command */
647
648 /* copy additional output data, if any */
649 memcpy(adbOutputBuffer + 3, buffer + 1, len);
650 } else
651 /* if data ready, just copy over */
652 memcpy(adbOutputBuffer, in, in[0] + 2);
653
654 adbSentChars = 0; /* nothing sent yet */
655 adbBuffer = buffer; /* save buffer to know where to save result */
656 adbCompRout = compRout; /* save completion routine pointer */
657 adbCompData = data; /* save completion routine data pointer */
658 adbWaitingCmd = adbOutputBuffer[2]; /* save wait command */
659
660 if (adbWriteDelay != 1) { /* start command now? */
661 #ifdef ADB_DEBUG
662 if (adb_debug)
663 printf_intr("out start NOW");
664 #endif
665 delay(ADB_DELAY);
666 adbActionState = ADB_ACTION_OUT; /* set next state */
667 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
668 ADB_SR() = adbOutputBuffer[adbSentChars + 1]; /* load byte for output */
669 ADB_SET_STATE_ACKOFF_CUDA();
670 ADB_SET_STATE_TIP(); /* tell ADB that we want to send */
671 }
672 adbWriteDelay = 1; /* something in the write "queue" */
673
674 splx(s);
675
676 if (0x0100 <= (s & 0x0700)) /* were VIA1 interrupts blocked? */
677 /* poll until byte done */
678 while ((adbActionState != ADB_ACTION_IDLE) || (ADB_INTR_IS_ON)
679 || (adbWaiting == 1))
680 if (ADB_SR_INTR_IS_ON) { /* wait for "interrupt" */
681 adb_intr_cuda(); /* go process it */
682 if (adb_polling)
683 adb_soft_intr();
684 }
685
686 return 0;
687 } /* send_adb_cuda */
688
689
690 void
691 adb_intr_II(void)
692 {
693 struct adbCommand packet;
694 int i, intr_on = 0;
695 int send = 0;
696 unsigned int s;
697
698 s = splhigh(); /* can't be too careful - might be called */
699 /* from a routine, NOT an interrupt */
700
701 ADB_VIA_CLR_INTR(); /* clear interrupt */
702
703 ADB_VIA_INTR_DISABLE(); /* disable ADB interrupt on IIs. */
704
705 delay(ADB_DELAY); /* yuck (don't remove) */
706 (void)intr_dispatch(0x70); /* grab any serial interrupts */
707
708 if (ADB_INTR_IS_ON)
709 intr_on = 1; /* save for later */
710
711 switch_start:
712 switch (adbActionState) {
713 case ADB_ACTION_POLLING:
714 if (!intr_on) {
715 if (adbOutQueueHasData) {
716 #ifdef ADB_DEBUG
717 if (adb_debug & 0x80)
718 printf_intr("POLL-doing-out-queue. ");
719 #endif
720 ADB_SET_STATE_IDLE_II();
721 delay(ADB_DELAY);
722
723 /* copy over data */
724 memcpy(adbOutputBuffer, adbOutQueue.outBuf,
725 adbOutQueue.outBuf[0] + 2);
726
727 adbBuffer = adbOutQueue.saveBuf; /* user data area */
728 adbCompRout = adbOutQueue.compRout; /* completion routine */
729 adbCompData = adbOutQueue.data; /* comp. rout. data */
730 adbOutQueueHasData = 0; /* currently processing
731 * "queue" entry */
732 adbSentChars = 0; /* nothing sent yet */
733 adbActionState = ADB_ACTION_OUT; /* set next state */
734 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
735 ADB_SR() = adbOutputBuffer[1]; /* load byte for output */
736 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */
737 ADB_SET_STATE_CMD(); /* tell ADB that we want to send */
738 break;
739 } else {
740 #ifdef ADB_DEBUG
741 if (adb_debug)
742 printf_intr("pIDLE ");
743 #endif
744 adbActionState = ADB_ACTION_IDLE;
745 }
746 } else {
747 #ifdef ADB_DEBUG
748 if (adb_debug & 0x80)
749 printf_intr("pIN ");
750 #endif
751 adbActionState = ADB_ACTION_IN;
752 }
753 delay(ADB_DELAY);
754 (void)intr_dispatch(0x70); /* grab any serial interrupts */
755 goto switch_start;
756 break;
757 case ADB_ACTION_IDLE:
758 if (!intr_on) {
759 i = ADB_SR();
760 adbBusState = ADB_BUS_IDLE;
761 adbActionState = ADB_ACTION_IDLE;
762 ADB_SET_STATE_IDLE_II();
763 break;
764 }
765 adbInputBuffer[0] = 1;
766 adbInputBuffer[1] = ADB_SR(); /* get first byte */
767 #ifdef ADB_DEBUG
768 if (adb_debug & 0x80)
769 printf_intr("idle 0x%02x ", adbInputBuffer[1]);
770 #endif
771 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
772 adbActionState = ADB_ACTION_IN; /* set next state */
773 ADB_SET_STATE_EVEN(); /* set bus state to even */
774 adbBusState = ADB_BUS_EVEN;
775 break;
776
777 case ADB_ACTION_IN:
778 adbInputBuffer[++adbInputBuffer[0]] = ADB_SR(); /* get byte */
779 #ifdef ADB_DEBUG
780 if (adb_debug & 0x80)
781 printf_intr("in 0x%02x ",
782 adbInputBuffer[adbInputBuffer[0]]);
783 #endif
784 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
785
786 if (intr_on) { /* process last byte of packet */
787 adbInputBuffer[0]--; /* minus one */
788 /*
789 * If intr_on was true, and it's the second byte, then
790 * the byte we just discarded is really valid, so
791 * adjust the count
792 */
793 if (adbInputBuffer[0] == 2) {
794 adbInputBuffer[0]++;
795 }
796
797 #ifdef ADB_DEBUG
798 if (adb_debug & 0x80) {
799 printf_intr("done: ");
800 print_single(adbInputBuffer);
801 }
802 #endif
803
804 adbLastDevice = (adbInputBuffer[1] & 0xf0) >> 4;
805
806 if (adbInputBuffer[0] == 1 && !adbWaiting) { /* SRQ!!!*/
807 #ifdef ADB_DEBUG
808 if (adb_debug & 0x80)
809 printf_intr(" xSRQ! ");
810 #endif
811 adb_guess_next_device();
812 #ifdef ADB_DEBUG
813 if (adb_debug & 0x80)
814 printf_intr("try 0x%0x ",
815 adbLastDevice);
816 #endif
817 adbOutputBuffer[0] = 1;
818 adbOutputBuffer[1] =
819 ((adbLastDevice & 0x0f) << 4) | 0x0c;
820
821 adbSentChars = 0; /* nothing sent yet */
822 adbActionState = ADB_ACTION_POLLING; /* set next state */
823 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
824 ADB_SR() = adbOutputBuffer[1]; /* load byte for output */
825 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */
826 ADB_SET_STATE_CMD(); /* tell ADB that we want to */
827 break;
828 }
829
830 /* set up data for adb_pass_up */
831 memcpy(packet.data, adbInputBuffer, adbInputBuffer[0] + 1);
832
833 if (!adbWaiting && (adbInputBuffer[0] != 0)) {
834 packet.unsol = 1;
835 packet.ack_only = 0;
836 adb_pass_up(&packet);
837 } else {
838 packet.saveBuf = adbBuffer;
839 packet.compRout = adbCompRout;
840 packet.compData = adbCompData;
841 packet.unsol = 0;
842 packet.ack_only = 0;
843 adb_pass_up(&packet);
844 }
845
846 adbWaiting = 0;
847 adbInputBuffer[0] = 0;
848 adbBuffer = (long)0;
849 adbCompRout = (long)0;
850 adbCompData = (long)0;
851 /*
852 * Since we are done, check whether there is any data
853 * waiting to do out. If so, start the sending the data.
854 */
855 if (adbOutQueueHasData == 1) {
856 #ifdef ADB_DEBUG
857 if (adb_debug & 0x80)
858 printf_intr("XXX: DOING OUT QUEUE\n");
859 #endif
860 /* copy over data */
861 memcpy(adbOutputBuffer, adbOutQueue.outBuf,
862 adbOutQueue.outBuf[0] + 2);
863 adbBuffer = adbOutQueue.saveBuf; /* user data area */
864 adbCompRout = adbOutQueue.compRout; /* completion routine */
865 adbCompData = adbOutQueue.data; /* comp. rout. data */
866 adbOutQueueHasData = 0; /* currently processing
867 * "queue" entry */
868 send = 1;
869 } else {
870 #ifdef ADB_DEBUG
871 if (adb_debug & 0x80)
872 printf_intr("XXending ");
873 #endif
874 adb_guess_next_device();
875 adbOutputBuffer[0] = 1;
876 adbOutputBuffer[1] = ((adbLastDevice & 0x0f) << 4) | 0x0c;
877 adbSentChars = 0; /* nothing sent yet */
878 adbActionState = ADB_ACTION_POLLING; /* set next state */
879 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
880 ADB_SR() = adbOutputBuffer[1]; /* load byte for output */
881 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */
882 ADB_SET_STATE_CMD(); /* tell ADB that we want to */
883 break;
884 }
885 }
886
887 /*
888 * If send is true then something above determined that
889 * the message has ended and we need to start sending out
890 * a new message immediately. This could be because there
891 * is data waiting to go out or because an SRQ was seen.
892 */
893 if (send) {
894 adbSentChars = 0; /* nothing sent yet */
895 adbActionState = ADB_ACTION_OUT; /* set next state */
896 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
897 ADB_SR() = adbOutputBuffer[1]; /* load byte for output */
898 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */
899 ADB_SET_STATE_CMD(); /* tell ADB that we want to
900 * send */
901 break;
902 }
903 /* We only get this far if the message hasn't ended yet. */
904 switch (adbBusState) { /* set to next state */
905 case ADB_BUS_EVEN:
906 ADB_SET_STATE_ODD(); /* set state to odd */
907 adbBusState = ADB_BUS_ODD;
908 break;
909
910 case ADB_BUS_ODD:
911 ADB_SET_STATE_EVEN(); /* set state to even */
912 adbBusState = ADB_BUS_EVEN;
913 break;
914 default:
915 printf_intr("strange state!!!\n"); /* huh? */
916 break;
917 }
918 break;
919
920 case ADB_ACTION_OUT:
921 i = ADB_SR(); /* clear interrupt */
922 adbSentChars++;
923 /*
924 * If the outgoing data was a TALK, we must
925 * switch to input mode to get the result.
926 */
927 if ((adbOutputBuffer[1] & 0x0c) == 0x0c) {
928 adbInputBuffer[0] = 1;
929 adbInputBuffer[1] = i;
930 adbActionState = ADB_ACTION_IN;
931 ADB_SET_SR_INPUT();
932 adbBusState = ADB_BUS_EVEN;
933 ADB_SET_STATE_EVEN();
934 #ifdef ADB_DEBUG
935 if (adb_debug & 0x80)
936 printf_intr("talk out 0x%02x ", i);
937 #endif
938 /* we want something back */
939 adbWaiting = 1;
940 break;
941 }
942 /*
943 * If it's not a TALK, check whether all data has been sent.
944 * If so, call the completion routine and clean up. If not,
945 * advance to the next state.
946 */
947 #ifdef ADB_DEBUG
948 if (adb_debug & 0x80)
949 printf_intr("non-talk out 0x%0x ", i);
950 #endif
951 ADB_SET_SR_OUTPUT();
952 if (adbOutputBuffer[0] == adbSentChars) { /* check for done */
953 #ifdef ADB_DEBUG
954 if (adb_debug & 0x80)
955 printf_intr("done \n");
956 #endif
957 /* set up stuff for adb_pass_up */
958 memcpy(packet.data, adbOutputBuffer, adbOutputBuffer[0] + 1);
959 packet.saveBuf = adbBuffer;
960 packet.compRout = adbCompRout;
961 packet.compData = adbCompData;
962 packet.cmd = adbWaitingCmd;
963 packet.unsol = 0;
964 packet.ack_only = 1;
965 adb_pass_up(&packet);
966
967 /* reset "waiting" vars, just in case */
968 adbBuffer = (long)0;
969 adbCompRout = (long)0;
970 adbCompData = (long)0;
971 if (adbOutQueueHasData == 1) {
972 /* copy over data */
973 memcpy(adbOutputBuffer, adbOutQueue.outBuf,
974 adbOutQueue.outBuf[0] + 2);
975 adbBuffer = adbOutQueue.saveBuf; /* user data area */
976 adbCompRout = adbOutQueue.compRout; /* completion routine */
977 adbCompData = adbOutQueue.data; /* comp. rout. data */
978 adbOutQueueHasData = 0; /* currently processing
979 * "queue" entry */
980 adbSentChars = 0; /* nothing sent yet */
981 adbActionState = ADB_ACTION_OUT; /* set next state */
982 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
983 ADB_SR() = adbOutputBuffer[1]; /* load byte for output */
984 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */
985 ADB_SET_STATE_CMD(); /* tell ADB that we want to
986 * send */
987 break;
988 } else {
989 /* send talk to last device instead */
990 adbOutputBuffer[0] = 1;
991 adbOutputBuffer[1] = (adbOutputBuffer[1] & 0xf0) | 0x0c;
992
993 adbSentChars = 0; /* nothing sent yet */
994 adbActionState = ADB_ACTION_IDLE; /* set next state */
995 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
996 ADB_SR() = adbOutputBuffer[1]; /* load byte for output */
997 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */
998 ADB_SET_STATE_CMD(); /* tell ADB that we want to */
999 break;
1000 }
1001 }
1002 ADB_SR() = adbOutputBuffer[adbSentChars + 1];
1003 switch (adbBusState) { /* advance to next state */
1004 case ADB_BUS_EVEN:
1005 ADB_SET_STATE_ODD(); /* set state to odd */
1006 adbBusState = ADB_BUS_ODD;
1007 break;
1008
1009 case ADB_BUS_CMD:
1010 case ADB_BUS_ODD:
1011 ADB_SET_STATE_EVEN(); /* set state to even */
1012 adbBusState = ADB_BUS_EVEN;
1013 break;
1014
1015 default:
1016 #ifdef ADB_DEBUG
1017 if (adb_debug) {
1018 printf_intr("strange state!!! (0x%x)\n",
1019 adbBusState);
1020 }
1021 #endif
1022 break;
1023 }
1024 break;
1025
1026 default:
1027 #ifdef ADB_DEBUG
1028 if (adb_debug)
1029 printf_intr("adb: unknown ADB state (during intr)\n");
1030 #endif
1031 }
1032
1033 ADB_VIA_INTR_ENABLE(); /* enable ADB interrupt on IIs. */
1034
1035 splx(s); /* restore */
1036
1037 return;
1038
1039 }
1040
1041
1042 /*
1043 * send_adb version for II series machines
1044 */
1045 int
1046 send_adb_II(u_char * in, u_char * buffer, void *compRout, void *data, int command)
1047 {
1048 int s, len;
1049
1050 if (adbActionState == ADB_ACTION_NOTREADY) /* return if ADB not
1051 * available */
1052 return 1;
1053
1054 /* Don't interrupt while we are messing with the ADB */
1055 s = splhigh();
1056
1057 if (0 != adbOutQueueHasData) { /* right now, "has data" means "full" */
1058 splx(s); /* sorry, try again later */
1059 return 1;
1060 }
1061 if ((long)in == (long)0) { /* need to convert? */
1062 /*
1063 * Don't need to use adb_cmd_extra here because this section
1064 * will be called ONLY when it is an ADB command (no RTC or
1065 * PRAM), especially on II series!
1066 */
1067 if ((command & 0x0c) == 0x08) /* copy addl data ONLY if
1068 * doing a listen! */
1069 len = buffer[0]; /* length of additional data */
1070 else
1071 len = 0;/* no additional data */
1072
1073 adbOutQueue.outBuf[0] = 1 + len; /* command + addl. data */
1074 adbOutQueue.outBuf[1] = (u_char)command; /* load command */
1075
1076 /* copy additional output data, if any */
1077 memcpy(adbOutQueue.outBuf + 2, buffer + 1, len);
1078 } else
1079 /* if data ready, just copy over */
1080 memcpy(adbOutQueue.outBuf, in, in[0] + 2);
1081
1082 adbOutQueue.saveBuf = buffer; /* save buffer to know where to save
1083 * result */
1084 adbOutQueue.compRout = compRout; /* save completion routine
1085 * pointer */
1086 adbOutQueue.data = data;/* save completion routine data pointer */
1087
1088 if ((adbActionState == ADB_ACTION_IDLE) && /* is ADB available? */
1089 (ADB_INTR_IS_OFF)) { /* and no incoming interrupts? */
1090 /* then start command now */
1091 memcpy(adbOutputBuffer, adbOutQueue.outBuf,
1092 adbOutQueue.outBuf[0] + 2); /* copy over data */
1093
1094 adbBuffer = adbOutQueue.saveBuf; /* pointer to user data
1095 * area */
1096 adbCompRout = adbOutQueue.compRout; /* pointer to the
1097 * completion routine */
1098 adbCompData = adbOutQueue.data; /* pointer to the completion
1099 * routine data */
1100
1101 adbSentChars = 0; /* nothing sent yet */
1102 adbActionState = ADB_ACTION_OUT; /* set next state */
1103 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */
1104
1105 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
1106
1107 ADB_SR() = adbOutputBuffer[adbSentChars + 1]; /* load byte for output */
1108 ADB_SET_STATE_CMD(); /* tell ADB that we want to send */
1109 adbOutQueueHasData = 0; /* currently processing "queue" entry */
1110 } else
1111 adbOutQueueHasData = 1; /* something in the write "queue" */
1112
1113 splx(s);
1114
1115 if (0x0100 <= (s & 0x0700)) /* were VIA1 interrupts blocked? */
1116 /* poll until message done */
1117 while ((adbActionState != ADB_ACTION_IDLE) || (ADB_INTR_IS_ON)
1118 || (adbWaiting == 1))
1119 if (ADB_SR_INTR_IS_ON) { /* wait for "interrupt" */
1120 adb_intr_II(); /* go process it */
1121 if (adb_polling)
1122 adb_soft_intr();
1123 }
1124
1125 return 0;
1126 }
1127
1128
1129 /*
1130 * This routine is called from the II series interrupt routine
1131 * to determine what the "next" device is that should be polled.
1132 */
1133 int
1134 adb_guess_next_device(void)
1135 {
1136 int last, i, dummy;
1137
1138 if (adbStarting) {
1139 /*
1140 * Start polling EVERY device, since we can't be sure there is
1141 * anything in the device table yet
1142 */
1143 if (adbLastDevice < 1 || adbLastDevice > 15)
1144 adbLastDevice = 1;
1145 if (++adbLastDevice > 15) /* point to next one */
1146 adbLastDevice = 1;
1147 } else {
1148 /* find the next device using the device table */
1149 if (adbLastDevice < 1 || adbLastDevice > 15) /* let's be parinoid */
1150 adbLastDevice = 2;
1151 last = 1; /* default index location */
1152
1153 for (i = 1; i < 16; i++) /* find index entry */
1154 if (ADBDevTable[i].currentAddr == adbLastDevice) { /* look for device */
1155 last = i; /* found it */
1156 break;
1157 }
1158 dummy = last; /* index to start at */
1159 for (;;) { /* find next device in index */
1160 if (++dummy > 15) /* wrap around if needed */
1161 dummy = 1;
1162 if (dummy == last) { /* didn't find any other
1163 * device! This can happen if
1164 * there are no devices on the
1165 * bus */
1166 dummy = 1;
1167 break;
1168 }
1169 /* found the next device */
1170 if (ADBDevTable[dummy].devType != 0)
1171 break;
1172 }
1173 adbLastDevice = ADBDevTable[dummy].currentAddr;
1174 }
1175 return adbLastDevice;
1176 }
1177
1178
1179 /*
1180 * Called when when an adb interrupt happens.
1181 * This routine simply transfers control over to the appropriate
1182 * code for the machine we are running on.
1183 */
1184 void
1185 adb_intr(void)
1186 {
1187 switch (adbHardware) {
1188 case ADB_HW_II:
1189 adb_intr_II();
1190 break;
1191
1192 case ADB_HW_IISI:
1193 adb_intr_IIsi();
1194 break;
1195
1196 case ADB_HW_PB:
1197 break;
1198
1199 case ADB_HW_CUDA:
1200 adb_intr_cuda();
1201 break;
1202
1203 case ADB_HW_UNKNOWN:
1204 break;
1205 }
1206 }
1207
1208
1209 /*
1210 * called when when an adb interrupt happens
1211 *
1212 * IIsi version of adb_intr
1213 *
1214 */
1215 void
1216 adb_intr_IIsi(void)
1217 {
1218 struct adbCommand packet;
1219 int i, ending;
1220 unsigned int s;
1221
1222 s = splhigh(); /* can't be too careful - might be called */
1223 /* from a routine, NOT an interrupt */
1224
1225 ADB_VIA_CLR_INTR(); /* clear interrupt */
1226
1227 ADB_VIA_INTR_DISABLE(); /* disable ADB interrupt on IIs. */
1228
1229 switch_start:
1230 switch (adbActionState) {
1231 case ADB_ACTION_IDLE:
1232 delay(ADB_DELAY); /* short delay is required before the
1233 * first byte */
1234
1235 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
1236 ADB_SET_STATE_ACTIVE(); /* signal start of data frame */
1237 adbInputBuffer[1] = ADB_SR(); /* get byte */
1238 adbInputBuffer[0] = 1;
1239 adbActionState = ADB_ACTION_IN; /* set next state */
1240
1241 ADB_SET_STATE_ACKON(); /* start ACK to ADB chip */
1242 delay(ADB_DELAY); /* delay */
1243 ADB_SET_STATE_ACKOFF(); /* end ACK to ADB chip */
1244 (void)intr_dispatch(0x70); /* grab any serial interrupts */
1245 break;
1246
1247 case ADB_ACTION_IN:
1248 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
1249 adbInputBuffer[++adbInputBuffer[0]] = ADB_SR(); /* get byte */
1250 if (ADB_INTR_IS_OFF) /* check for end of frame */
1251 ending = 1;
1252 else
1253 ending = 0;
1254
1255 ADB_SET_STATE_ACKON(); /* start ACK to ADB chip */
1256 delay(ADB_DELAY); /* delay */
1257 ADB_SET_STATE_ACKOFF(); /* end ACK to ADB chip */
1258 (void)intr_dispatch(0x70); /* grab any serial interrupts */
1259
1260 if (1 == ending) { /* end of message? */
1261 ADB_SET_STATE_INACTIVE(); /* signal end of frame */
1262 /*
1263 * This section _should_ handle all ADB and RTC/PRAM
1264 * type commands, but there may be more... Note:
1265 * commands are always at [4], even for rtc/pram
1266 * commands
1267 */
1268 /* set up data for adb_pass_up */
1269 memcpy(packet.data, adbInputBuffer, adbInputBuffer[0] + 1);
1270
1271 if ((adbWaiting == 1) && /* are we waiting AND */
1272 (adbInputBuffer[4] == adbWaitingCmd) && /* the cmd we sent AND */
1273 ((adbInputBuffer[2] == 0x00) || /* it's from the ADB
1274 * device OR */
1275 (adbInputBuffer[2] == 0x01))) { /* it's from the
1276 * PRAM/RTC device */
1277
1278 packet.saveBuf = adbBuffer;
1279 packet.compRout = adbCompRout;
1280 packet.compData = adbCompData;
1281 packet.unsol = 0;
1282 packet.ack_only = 0;
1283 adb_pass_up(&packet);
1284
1285 adbWaitingCmd = 0; /* reset "waiting" vars */
1286 adbWaiting = 0;
1287 adbBuffer = (long)0;
1288 adbCompRout = (long)0;
1289 adbCompData = (long)0;
1290 } else {
1291 packet.unsol = 1;
1292 packet.ack_only = 0;
1293 adb_pass_up(&packet);
1294 }
1295
1296 adbActionState = ADB_ACTION_IDLE;
1297 adbInputBuffer[0] = 0; /* reset length */
1298
1299 if (adbWriteDelay == 1) { /* were we waiting to
1300 * write? */
1301 adbSentChars = 0; /* nothing sent yet */
1302 adbActionState = ADB_ACTION_OUT; /* set next state */
1303
1304 delay(ADB_DELAY); /* delay */
1305 (void)intr_dispatch(0x70); /* grab any serial interrupts */
1306
1307 if (ADB_INTR_IS_ON) { /* ADB intr low during
1308 * write */
1309 ADB_SET_STATE_IDLE_IISI(); /* reset */
1310 ADB_SET_SR_INPUT(); /* make sure SR is set
1311 * to IN */
1312 adbSentChars = 0; /* must start all over */
1313 adbActionState = ADB_ACTION_IDLE; /* new state */
1314 adbInputBuffer[0] = 0;
1315 /* may be able to take this out later */
1316 delay(ADB_DELAY); /* delay */
1317 break;
1318 }
1319 ADB_SET_STATE_ACTIVE(); /* tell ADB that we want
1320 * to send */
1321 ADB_SET_STATE_ACKOFF(); /* make sure */
1322 ADB_SET_SR_OUTPUT(); /* set shift register
1323 * for OUT */
1324 ADB_SR() = adbOutputBuffer[adbSentChars + 1];
1325 ADB_SET_STATE_ACKON(); /* tell ADB byte ready
1326 * to shift */
1327 }
1328 }
1329 break;
1330
1331 case ADB_ACTION_OUT:
1332 i = ADB_SR(); /* reset SR-intr in IFR */
1333 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
1334
1335 ADB_SET_STATE_ACKOFF(); /* finish ACK */
1336 adbSentChars++;
1337 if (ADB_INTR_IS_ON) { /* ADB intr low during write */
1338 ADB_SET_STATE_IDLE_IISI(); /* reset */
1339 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
1340 adbSentChars = 0; /* must start all over */
1341 adbActionState = ADB_ACTION_IDLE; /* new state */
1342 adbInputBuffer[0] = 0;
1343 adbWriteDelay = 1; /* must retry when done with
1344 * read */
1345 delay(ADB_DELAY); /* delay */
1346 (void)intr_dispatch(0x70); /* grab any serial interrupts */
1347 goto switch_start; /* process next state right
1348 * now */
1349 break;
1350 }
1351 delay(ADB_DELAY); /* required delay */
1352 (void)intr_dispatch(0x70); /* grab any serial interrupts */
1353
1354 if (adbOutputBuffer[0] == adbSentChars) { /* check for done */
1355 if (0 == adb_cmd_result(adbOutputBuffer)) { /* do we expect data
1356 * back? */
1357 adbWaiting = 1; /* signal waiting for return */
1358 adbWaitingCmd = adbOutputBuffer[2]; /* save waiting command */
1359 } else {/* no talk, so done */
1360 /* set up stuff for adb_pass_up */
1361 memcpy(packet.data, adbInputBuffer,
1362 adbInputBuffer[0] + 1);
1363 packet.saveBuf = adbBuffer;
1364 packet.compRout = adbCompRout;
1365 packet.compData = adbCompData;
1366 packet.cmd = adbWaitingCmd;
1367 packet.unsol = 0;
1368 packet.ack_only = 1;
1369 adb_pass_up(&packet);
1370
1371 /* reset "waiting" vars, just in case */
1372 adbWaitingCmd = 0;
1373 adbBuffer = (long)0;
1374 adbCompRout = (long)0;
1375 adbCompData = (long)0;
1376 }
1377
1378 adbWriteDelay = 0; /* done writing */
1379 adbActionState = ADB_ACTION_IDLE; /* signal bus is idle */
1380 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
1381 ADB_SET_STATE_INACTIVE(); /* end of frame */
1382 } else {
1383 ADB_SR() = adbOutputBuffer[adbSentChars + 1]; /* send next byte */
1384 ADB_SET_STATE_ACKON(); /* signal byte ready to shift */
1385 }
1386 break;
1387
1388 case ADB_ACTION_NOTREADY:
1389 #ifdef ADB_DEBUG
1390 if (adb_debug)
1391 printf_intr("adb: not yet initialized\n");
1392 #endif
1393 break;
1394
1395 default:
1396 #ifdef ADB_DEBUG
1397 if (adb_debug)
1398 printf_intr("intr: unknown ADB state\n");
1399 #endif
1400 }
1401
1402 ADB_VIA_INTR_ENABLE(); /* enable ADB interrupt on IIs. */
1403
1404 splx(s); /* restore */
1405
1406 return;
1407 } /* end adb_intr_IIsi */
1408
1409
1410 /*****************************************************************************
1411 * if the device is currently busy, and there is no data waiting to go out, then
1412 * the data is "queued" in the outgoing buffer. If we are already waiting, then
1413 * we return.
1414 * in: if (in == 0) then the command string is built from command and buffer
1415 * if (in != 0) then in is used as the command string
1416 * buffer: additional data to be sent (used only if in == 0)
1417 * this is also where return data is stored
1418 * compRout: the completion routine that is called when then return value
1419 * is received (if a return value is expected)
1420 * data: a data pointer that can be used by the completion routine
1421 * command: an ADB command to be sent (used only if in == 0)
1422 *
1423 */
1424 int
1425 send_adb_IIsi(u_char * in, u_char * buffer, void *compRout, void *data, int
1426 command)
1427 {
1428 int s, len;
1429
1430 if (adbActionState == ADB_ACTION_NOTREADY)
1431 return 1;
1432
1433 /* Don't interrupt while we are messing with the ADB */
1434 s = splhigh();
1435
1436 if ((adbActionState == ADB_ACTION_IDLE) && /* ADB available? */
1437 (ADB_INTR_IS_OFF)) {/* and no incoming interrupt? */
1438
1439 } else
1440 if (adbWriteDelay == 0) /* it's busy, but is anything waiting? */
1441 adbWriteDelay = 1; /* if no, then we'll "queue"
1442 * it up */
1443 else {
1444 splx(s);
1445 return 1; /* really busy! */
1446 }
1447
1448 if ((long)in == (long)0) { /* need to convert? */
1449 /*
1450 * Don't need to use adb_cmd_extra here because this section
1451 * will be called ONLY when it is an ADB command (no RTC or
1452 * PRAM)
1453 */
1454 if ((command & 0x0c) == 0x08) /* copy addl data ONLY if
1455 * doing a listen! */
1456 len = buffer[0]; /* length of additional data */
1457 else
1458 len = 0;/* no additional data */
1459
1460 adbOutputBuffer[0] = 2 + len; /* dev. type + command + addl.
1461 * data */
1462 adbOutputBuffer[1] = 0x00; /* mark as an ADB command */
1463 adbOutputBuffer[2] = (u_char)command; /* load command */
1464
1465 /* copy additional output data, if any */
1466 memcpy(adbOutputBuffer + 3, buffer + 1, len);
1467 } else
1468 /* if data ready, just copy over */
1469 memcpy(adbOutputBuffer, in, in[0] + 2);
1470
1471 adbSentChars = 0; /* nothing sent yet */
1472 adbBuffer = buffer; /* save buffer to know where to save result */
1473 adbCompRout = compRout; /* save completion routine pointer */
1474 adbCompData = data; /* save completion routine data pointer */
1475 adbWaitingCmd = adbOutputBuffer[2]; /* save wait command */
1476
1477 if (adbWriteDelay != 1) { /* start command now? */
1478 adbActionState = ADB_ACTION_OUT; /* set next state */
1479
1480 ADB_SET_STATE_ACTIVE(); /* tell ADB that we want to send */
1481 ADB_SET_STATE_ACKOFF(); /* make sure */
1482
1483 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
1484
1485 ADB_SR() = adbOutputBuffer[adbSentChars + 1]; /* load byte for output */
1486
1487 ADB_SET_STATE_ACKON(); /* tell ADB byte ready to shift */
1488 }
1489 adbWriteDelay = 1; /* something in the write "queue" */
1490
1491 splx(s);
1492
1493 if (0x0100 <= (s & 0x0700)) /* were VIA1 interrupts blocked? */
1494 /* poll until byte done */
1495 while ((adbActionState != ADB_ACTION_IDLE) || (ADB_INTR_IS_ON)
1496 || (adbWaiting == 1))
1497 if (ADB_SR_INTR_IS_ON) { /* wait for "interrupt" */
1498 adb_intr_IIsi(); /* go process it */
1499 if (adb_polling)
1500 adb_soft_intr();
1501 }
1502
1503 return 0;
1504 } /* send_adb_IIsi */
1505
1506 /*
1507 * adb_pass_up is called by the interrupt-time routines.
1508 * It takes the raw packet data that was received from the
1509 * device and puts it into the queue that the upper half
1510 * processes. It then signals for a soft ADB interrupt which
1511 * will eventually call the upper half routine (adb_soft_intr).
1512 *
1513 * If in->unsol is 0, then this is either the notification
1514 * that the packet was sent (on a LISTEN, for example), or the
1515 * response from the device (on a TALK). The completion routine
1516 * is called only if the user specified one.
1517 *
1518 * If in->unsol is 1, then this packet was unsolicited and
1519 * so we look up the device in the ADB device table to determine
1520 * what it's default service routine is.
1521 *
1522 * If in->ack_only is 1, then we really only need to call
1523 * the completion routine, so don't do any other stuff.
1524 *
1525 * Note that in->data contains the packet header AND data,
1526 * while adbInbound[]->data contains ONLY data.
1527 *
1528 * Note: Called only at interrupt time. Assumes this.
1529 */
1530 void
1531 adb_pass_up(struct adbCommand *in)
1532 {
1533 int start = 0, len = 0, cmd = 0;
1534 ADBDataBlock block;
1535
1536 /* temp for testing */
1537 /*u_char *buffer = 0;*/
1538 /*u_char *compdata = 0;*/
1539 /*u_char *comprout = 0;*/
1540
1541 if (adbInCount >= ADB_QUEUE) {
1542 #ifdef ADB_DEBUG
1543 if (adb_debug)
1544 printf_intr("adb: ring buffer overflow\n");
1545 #endif
1546 return;
1547 }
1548
1549 if (in->ack_only) {
1550 len = in->data[0];
1551 cmd = in->cmd;
1552 start = 0;
1553 } else {
1554 switch (adbHardware) {
1555 case ADB_HW_II:
1556 cmd = in->data[1];
1557 if (in->data[0] < 2)
1558 len = 0;
1559 else
1560 len = in->data[0]-1;
1561 start = 1;
1562 break;
1563
1564 case ADB_HW_IISI:
1565 case ADB_HW_CUDA:
1566 /* If it's unsolicited, accept only ADB data for now */
1567 if (in->unsol)
1568 if (0 != in->data[2])
1569 return;
1570 cmd = in->data[4];
1571 if (in->data[0] < 5)
1572 len = 0;
1573 else
1574 len = in->data[0]-4;
1575 start = 4;
1576 break;
1577
1578 case ADB_HW_PB:
1579 cmd = in->data[1];
1580 if (in->data[0] < 2)
1581 len = 0;
1582 else
1583 len = in->data[0]-1;
1584 start = 1;
1585 break;
1586
1587 case ADB_HW_UNKNOWN:
1588 return;
1589 }
1590
1591 /* Make sure there is a valid device entry for this device */
1592 if (in->unsol) {
1593 /* ignore unsolicited data during adbreinit */
1594 if (adbStarting)
1595 return;
1596 /* get device's comp. routine and data area */
1597 if (-1 == get_adb_info(&block, ((cmd & 0xf0) >> 4)))
1598 return;
1599 }
1600 }
1601
1602 /*
1603 * If this is an unsolicited packet, we need to fill in
1604 * some info so adb_soft_intr can process this packet
1605 * properly. If it's not unsolicited, then use what
1606 * the caller sent us.
1607 */
1608 if (in->unsol) {
1609 adbInbound[adbInTail].compRout = (void *)block.dbServiceRtPtr;
1610 adbInbound[adbInTail].compData = (void *)block.dbDataAreaAddr;
1611 adbInbound[adbInTail].saveBuf = (void *)adbInbound[adbInTail].data;
1612 } else {
1613 adbInbound[adbInTail].compRout = (void *)in->compRout;
1614 adbInbound[adbInTail].compData = (void *)in->compData;
1615 adbInbound[adbInTail].saveBuf = (void *)in->saveBuf;
1616 }
1617
1618 #ifdef ADB_DEBUG
1619 if (adb_debug && in->data[1] == 2)
1620 printf_intr("adb: caught error\n");
1621 #endif
1622
1623 /* copy the packet data over */
1624 /*
1625 * TO DO: If the *_intr routines fed their incoming data
1626 * directly into an adbCommand struct, which is passed to
1627 * this routine, then we could eliminate this copy.
1628 */
1629 memcpy(adbInbound[adbInTail].data + 1, in->data + start + 1, len);
1630 adbInbound[adbInTail].data[0] = len;
1631 adbInbound[adbInTail].cmd = cmd;
1632
1633 adbInCount++;
1634 if (++adbInTail >= ADB_QUEUE)
1635 adbInTail = 0;
1636
1637 /*
1638 * If the debugger is running, call upper half manually.
1639 * Otherwise, trigger a soft interrupt to handle the rest later.
1640 */
1641 if (adb_polling)
1642 adb_soft_intr();
1643 else
1644 setsoftadb();
1645
1646 return;
1647 }
1648
1649
1650 /*
1651 * Called to process the packets after they have been
1652 * placed in the incoming queue.
1653 *
1654 */
1655 void
1656 adb_soft_intr(void)
1657 {
1658 int s;
1659 int cmd = 0;
1660 u_char *buffer = 0;
1661 u_char *comprout = 0;
1662 u_char *compdata = 0;
1663
1664 #if 0
1665 s = splhigh();
1666 printf_intr("sr: %x\n", (s & 0x0700));
1667 splx(s);
1668 #endif
1669
1670 /*delay(2*ADB_DELAY);*/
1671
1672 while (adbInCount) {
1673 #ifdef ADB_DEBUG
1674 if (adb_debug & 0x80)
1675 printf_intr("%x %x %x ",
1676 adbInCount, adbInHead, adbInTail);
1677 #endif
1678 /* get the data we need from the queue */
1679 buffer = adbInbound[adbInHead].saveBuf;
1680 comprout = adbInbound[adbInHead].compRout;
1681 compdata = adbInbound[adbInHead].compData;
1682 cmd = adbInbound[adbInHead].cmd;
1683
1684 /* copy over data to data area if it's valid */
1685 /*
1686 * Note that for unsol packets we don't want to copy the
1687 * data anywhere, so buffer was already set to 0.
1688 * For ack_only buffer was set to 0, so don't copy.
1689 */
1690 if (buffer)
1691 memcpy(buffer, adbInbound[adbInHead].data,
1692 adbInbound[adbInHead].data[0] + 1);
1693
1694 #ifdef ADB_DEBUG
1695 if (adb_debug & 0x80) {
1696 printf_intr("%p %p %p %x ",
1697 buffer, comprout, compdata, (short)cmd);
1698 printf_intr("buf: ");
1699 print_single(adbInbound[adbInHead].data);
1700 }
1701 #endif
1702
1703 /* call default completion routine if it's valid */
1704 if (comprout) {
1705 #ifdef __NetBSD__
1706 asm(" movml #0xffff,sp@- | save all registers
1707 movl %0,a2 | compdata
1708 movl %1,a1 | comprout
1709 movl %2,a0 | buffer
1710 movl %3,d0 | cmd
1711 jbsr a1@ | go call the routine
1712 movml sp@+,#0xffff | restore all registers"
1713 :
1714 : "g"(compdata), "g"(comprout),
1715 "g"(buffer), "g"(cmd)
1716 : "d0", "a0", "a1", "a2");
1717 #else /* for macos based testing */
1718 asm
1719 {
1720 movem.l a0/a1/a2/d0, -(a7)
1721 move.l compdata, a2
1722 move.l comprout, a1
1723 move.l buffer, a0
1724 move.w cmd, d0
1725 jsr(a1)
1726 movem.l(a7)+, d0/a2/a1/a0
1727 }
1728 #endif
1729 }
1730
1731 s = splhigh();
1732 adbInCount--;
1733 if (++adbInHead >= ADB_QUEUE)
1734 adbInHead = 0;
1735 splx(s);
1736
1737 }
1738 return;
1739 }
1740
1741
1742 /*
1743 * This is my version of the ADBOp routine. It mainly just calls the
1744 * hardware-specific routine.
1745 *
1746 * data : pointer to data area to be used by compRout
1747 * compRout : completion routine
1748 * buffer : for LISTEN: points to data to send - MAX 8 data bytes,
1749 * byte 0 = # of bytes
1750 * : for TALK: points to place to save return data
1751 * command : the adb command to send
1752 * result : 0 = success
1753 * : -1 = could not complete
1754 */
1755 int
1756 adb_op(Ptr buffer, Ptr compRout, Ptr data, short command)
1757 {
1758 int result;
1759
1760 switch (adbHardware) {
1761 case ADB_HW_II:
1762 result = send_adb_II((u_char *)0, (u_char *)buffer,
1763 (void *)compRout, (void *)data, (int)command);
1764 if (result == 0)
1765 return 0;
1766 else
1767 return -1;
1768 break;
1769
1770 case ADB_HW_IISI:
1771 result = send_adb_IIsi((u_char *)0, (u_char *)buffer,
1772 (void *)compRout, (void *)data, (int)command);
1773 /*
1774 * I wish I knew why this delay is needed. It usually needs to
1775 * be here when several commands are sent in close succession,
1776 * especially early in device probes when doing collision
1777 * detection. It must be some race condition. Sigh. - jpw
1778 */
1779 delay(100);
1780 if (result == 0)
1781 return 0;
1782 else
1783 return -1;
1784 break;
1785
1786 case ADB_HW_PB:
1787 result = pm_adb_op((u_char *)buffer, (void *)compRout,
1788 (void *)data, (int)command);
1789
1790 if (result == 0)
1791 return 0;
1792 else
1793 return -1;
1794 break;
1795
1796 case ADB_HW_CUDA:
1797 result = send_adb_cuda((u_char *)0, (u_char *)buffer,
1798 (void *)compRout, (void *)data, (int)command);
1799 if (result == 0)
1800 return 0;
1801 else
1802 return -1;
1803 break;
1804
1805 case ADB_HW_UNKNOWN:
1806 default:
1807 return -1;
1808 }
1809 }
1810
1811
1812 /*
1813 * adb_hw_setup
1814 * This routine sets up the possible machine specific hardware
1815 * config (mainly VIA settings) for the various models.
1816 */
1817 void
1818 adb_hw_setup(void)
1819 {
1820 volatile int i;
1821 u_char send_string[ADB_MAX_MSG_LENGTH];
1822
1823 switch (adbHardware) {
1824 case ADB_HW_II:
1825 via_reg(VIA1, vDirB) |= 0x30; /* register B bits 4 and 5:
1826 * outputs */
1827 via_reg(VIA1, vDirB) &= 0xf7; /* register B bit 3: input */
1828 via_reg(VIA1, vACR) &= ~vSR_OUT; /* make sure SR is set
1829 * to IN (II, IIsi) */
1830 adbActionState = ADB_ACTION_IDLE; /* used by all types of
1831 * hardware (II, IIsi) */
1832 adbBusState = ADB_BUS_IDLE; /* this var. used in II-series
1833 * code only */
1834 via_reg(VIA1, vIER) = 0x84; /* make sure VIA interrupts
1835 * are on (II, IIsi) */
1836 ADB_SET_STATE_IDLE_II(); /* set ADB bus state to idle */
1837
1838 ADB_VIA_CLR_INTR(); /* clear interrupt */
1839 break;
1840
1841 case ADB_HW_IISI:
1842 via_reg(VIA1, vDirB) |= 0x30; /* register B bits 4 and 5:
1843 * outputs */
1844 via_reg(VIA1, vDirB) &= 0xf7; /* register B bit 3: input */
1845 via_reg(VIA1, vACR) &= ~vSR_OUT; /* make sure SR is set
1846 * to IN (II, IIsi) */
1847 adbActionState = ADB_ACTION_IDLE; /* used by all types of
1848 * hardware (II, IIsi) */
1849 adbBusState = ADB_BUS_IDLE; /* this var. used in II-series
1850 * code only */
1851 via_reg(VIA1, vIER) = 0x84; /* make sure VIA interrupts
1852 * are on (II, IIsi) */
1853 ADB_SET_STATE_IDLE_IISI(); /* set ADB bus state to idle */
1854
1855 /* get those pesky clock ticks we missed while booting */
1856 for (i = 0; i < 30; i++) {
1857 delay(ADB_DELAY);
1858 adb_hw_setup_IIsi(send_string);
1859 #ifdef ADB_DEBUG
1860 if (adb_debug) {
1861 printf_intr("adb: cleanup: ");
1862 print_single(send_string);
1863 }
1864 #endif
1865 delay(ADB_DELAY);
1866 if (ADB_INTR_IS_OFF)
1867 break;
1868 }
1869 break;
1870
1871 case ADB_HW_PB:
1872 /*
1873 * XXX - really PM_VIA_CLR_INTR - should we put it in
1874 * pm_direct.h?
1875 */
1876 via_reg(VIA1, vIFR) = 0x90; /* clear interrupt */
1877 break;
1878
1879 case ADB_HW_CUDA:
1880 via_reg(VIA1, vDirB) |= 0x30; /* register B bits 4 and 5:
1881 * outputs */
1882 via_reg(VIA1, vDirB) &= 0xf7; /* register B bit 3: input */
1883 via_reg(VIA1, vACR) &= ~vSR_OUT; /* make sure SR is set
1884 * to IN */
1885 via_reg(VIA1, vACR) = (via_reg(VIA1, vACR) | 0x0c) & ~0x10;
1886 adbActionState = ADB_ACTION_IDLE; /* used by all types of
1887 * hardware */
1888 adbBusState = ADB_BUS_IDLE; /* this var. used in II-series
1889 * code only */
1890 via_reg(VIA1, vIER) = 0x84; /* make sure VIA interrupts
1891 * are on */
1892 ADB_SET_STATE_IDLE_CUDA(); /* set ADB bus state to idle */
1893
1894 /* sort of a device reset */
1895 i = ADB_SR(); /* clear interrupt */
1896 ADB_VIA_INTR_DISABLE(); /* no interrupts while clearing */
1897 ADB_SET_STATE_IDLE_CUDA(); /* reset state to idle */
1898 delay(ADB_DELAY);
1899 ADB_SET_STATE_TIP(); /* signal start of frame */
1900 delay(ADB_DELAY);
1901 ADB_TOGGLE_STATE_ACK_CUDA();
1902 delay(ADB_DELAY);
1903 ADB_CLR_STATE_TIP();
1904 delay(ADB_DELAY);
1905 ADB_SET_STATE_IDLE_CUDA(); /* back to idle state */
1906 i = ADB_SR(); /* clear interrupt */
1907 ADB_VIA_INTR_ENABLE(); /* ints ok now */
1908 break;
1909
1910 case ADB_HW_UNKNOWN:
1911 default:
1912 via_reg(VIA1, vIER) = 0x04; /* turn interrupts off - TO
1913 * DO: turn PB ints off? */
1914 return;
1915 break;
1916 }
1917 }
1918
1919
1920 /*
1921 * adb_hw_setup_IIsi
1922 * This is sort of a "read" routine that forces the adb hardware through a read cycle
1923 * if there is something waiting. This helps "clean up" any commands that may have gotten
1924 * stuck or stopped during the boot process.
1925 *
1926 */
1927 void
1928 adb_hw_setup_IIsi(u_char * buffer)
1929 {
1930 int i;
1931 int dummy;
1932 int s;
1933 long my_time;
1934 int endofframe;
1935
1936 delay(ADB_DELAY);
1937
1938 i = 1; /* skip over [0] */
1939 s = splhigh(); /* block ALL interrupts while we are working */
1940 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
1941 ADB_VIA_INTR_DISABLE(); /* disable ADB interrupt on IIs. */
1942 /* this is required, especially on faster machines */
1943 delay(ADB_DELAY);
1944
1945 if (ADB_INTR_IS_ON) {
1946 ADB_SET_STATE_ACTIVE(); /* signal start of data frame */
1947
1948 endofframe = 0;
1949 while (0 == endofframe) {
1950 /*
1951 * Poll for ADB interrupt and watch for timeout.
1952 * If time out, keep going in hopes of not hanging
1953 * the ADB chip - I think
1954 */
1955 my_time = ADB_DELAY * 5;
1956 while ((ADB_SR_INTR_IS_OFF) && (my_time-- > 0))
1957 dummy = via_reg(VIA1, vBufB);
1958
1959 buffer[i++] = ADB_SR(); /* reset interrupt flag by
1960 * reading vSR */
1961 /*
1962 * Perhaps put in a check here that ignores all data
1963 * after the first ADB_MAX_MSG_LENGTH bytes ???
1964 */
1965 if (ADB_INTR_IS_OFF) /* check for end of frame */
1966 endofframe = 1;
1967
1968 ADB_SET_STATE_ACKON(); /* send ACK to ADB chip */
1969 delay(ADB_DELAY); /* delay */
1970 ADB_SET_STATE_ACKOFF(); /* send ACK to ADB chip */
1971 }
1972 ADB_SET_STATE_INACTIVE(); /* signal end of frame and
1973 * delay */
1974
1975 /* probably don't need to delay this long */
1976 delay(ADB_DELAY);
1977 }
1978 buffer[0] = --i; /* [0] is length of message */
1979 ADB_VIA_INTR_ENABLE(); /* enable ADB interrupt on IIs. */
1980 splx(s); /* restore interrupts */
1981
1982 return;
1983 } /* adb_hw_setup_IIsi */
1984
1985
1986
1987 /*
1988 * adb_reinit sets up the adb stuff
1989 *
1990 */
1991 void
1992 adb_reinit(void)
1993 {
1994 u_char send_string[ADB_MAX_MSG_LENGTH];
1995 ADBDataBlock data; /* temp. holder for getting device info */
1996 volatile int i, x;
1997 int s;
1998 int command;
1999 int result;
2000 int saveptr; /* point to next free relocation address */
2001 int device;
2002 int nonewtimes; /* times thru loop w/o any new devices */
2003
2004 /* Make sure we are not interrupted while building the table. */
2005 if (adbHardware != ADB_HW_PB) /* ints must be on for PB? */
2006 s = splhigh();
2007 else
2008 s = 0; /* XXX shut the compiler up*/
2009
2010 ADBNumDevices = 0; /* no devices yet */
2011
2012 /* Let intr routines know we are running reinit */
2013 adbStarting = 1;
2014
2015 /*
2016 * Initialize the ADB table. For now, we'll always use the same table
2017 * that is defined at the beginning of this file - no mallocs.
2018 */
2019 for (i = 0; i < 16; i++)
2020 ADBDevTable[i].devType = 0;
2021
2022 adb_setup_hw_type(); /* setup hardware type */
2023
2024 adb_hw_setup(); /* init the VIA bits and hard reset ADB */
2025
2026 delay(1000);
2027
2028 /* send an ADB reset first */
2029 adb_op_sync((Ptr)0, (Ptr)0, (Ptr)0, (short)0x00);
2030 delay(3000);
2031
2032 /*
2033 * Probe for ADB devices. Probe devices 1-15 quickly to determine
2034 * which device addresses are in use and which are free. For each
2035 * address that is in use, move the device at that address to a higher
2036 * free address. Continue doing this at that address until no device
2037 * responds at that address. Then move the last device that was moved
2038 * back to the original address. Do this for the remaining addresses
2039 * that we determined were in use.
2040 *
2041 * When finished, do this entire process over again with the updated
2042 * list of in use addresses. Do this until no new devices have been
2043 * found in 20 passes though the in use address list. (This probably
2044 * seems long and complicated, but it's the best way to detect multiple
2045 * devices at the same address - sometimes it takes a couple of tries
2046 * before the collision is detected.)
2047 */
2048
2049 /* initial scan through the devices */
2050 for (i = 1; i < 16; i++) {
2051 command = (int)(0x0f | ((int)(i & 0x000f) << 4)); /* talk R3 */
2052 result = adb_op_sync((Ptr)send_string, (Ptr)0,
2053 (Ptr)0, (short)command);
2054 if (0x00 != send_string[0]) { /* anything come back ?? */
2055 ADBDevTable[++ADBNumDevices].devType =
2056 (int)(send_string[2]);
2057 ADBDevTable[ADBNumDevices].origAddr = i;
2058 ADBDevTable[ADBNumDevices].currentAddr = i;
2059 ADBDevTable[ADBNumDevices].DataAreaAddr =
2060 (long)0;
2061 ADBDevTable[ADBNumDevices].ServiceRtPtr = (void *)0;
2062 pm_check_adb_devices(i); /* tell pm driver device
2063 * is here */
2064 }
2065 }
2066
2067 /* find highest unused address */
2068 for (saveptr = 15; saveptr > 0; saveptr--)
2069 if (-1 == get_adb_info(&data, saveptr))
2070 break;
2071
2072 if (saveptr == 0) /* no free addresses??? */
2073 saveptr = 15;
2074
2075 #ifdef ADB_DEBUG
2076 if (adb_debug & 0x80) {
2077 printf_intr("first free is: 0x%02x\n", saveptr);
2078 printf_intr("devices: %i\n", ADBNumDevices);
2079 }
2080 #endif
2081
2082 nonewtimes = 0; /* no loops w/o new devices */
2083 while (nonewtimes++ < 11) {
2084 for (i = 1; i <= ADBNumDevices; i++) {
2085 device = ADBDevTable[i].currentAddr;
2086 #ifdef ADB_DEBUG
2087 if (adb_debug & 0x80)
2088 printf_intr("moving device 0x%02x to 0x%02x "
2089 "(index 0x%02x) ", device, saveptr, i);
2090 #endif
2091
2092 /* send TALK R3 to address */
2093 command = (int)(0x0f | ((int)(device & 0x000f) << 4));
2094 adb_op_sync((Ptr)send_string, (Ptr)0,
2095 (Ptr)0, (short)command);
2096
2097 /* move device to higher address */
2098 command = (int)(0x0b | ((int)(device & 0x000f) << 4));
2099 send_string[0] = 2;
2100 send_string[1] = (u_char)(saveptr | 0x60);
2101 send_string[2] = 0xfe;
2102 adb_op_sync((Ptr)send_string, (Ptr)0,
2103 (Ptr)0, (short)command);
2104 delay(500);
2105
2106 /* send TALK R3 - anything at old address? */
2107 command = (int)(0x0f | ((int)(device & 0x000f) << 4));
2108 result = adb_op_sync((Ptr)send_string, (Ptr)0,
2109 (Ptr)0, (short)command);
2110 if (send_string[0] != 0) {
2111 /* new device found */
2112 /* update data for previously moved device */
2113 ADBDevTable[i].currentAddr = saveptr;
2114 #ifdef ADB_DEBUG
2115 if (adb_debug & 0x80)
2116 printf_intr("old device at index %i\n",i);
2117 #endif
2118 /* add new device in table */
2119 #ifdef ADB_DEBUG
2120 if (adb_debug & 0x80)
2121 printf_intr("new device found\n");
2122 #endif
2123 ADBDevTable[++ADBNumDevices].devType =
2124 (int)(send_string[2]);
2125 ADBDevTable[ADBNumDevices].origAddr = device;
2126 ADBDevTable[ADBNumDevices].currentAddr = device;
2127 /* These will be set correctly in adbsys.c */
2128 /* Until then, unsol. data will be ignored. */
2129 ADBDevTable[ADBNumDevices].DataAreaAddr =
2130 (long)0;
2131 ADBDevTable[ADBNumDevices].ServiceRtPtr =
2132 (void *)0;
2133 /* find next unused address */
2134 for (x = saveptr; x > 0; x--)
2135 if (-1 == get_adb_info(&data, x)) {
2136 saveptr = x;
2137 break;
2138 }
2139 #ifdef ADB_DEBUG
2140 if (adb_debug & 0x80)
2141 printf_intr("new free is 0x%02x\n",
2142 saveptr);
2143 #endif
2144 nonewtimes = 0;
2145 /* tell pm driver device is here */
2146 pm_check_adb_devices(device);
2147 } else {
2148 #ifdef ADB_DEBUG
2149 if (adb_debug & 0x80)
2150 printf_intr("moving back...\n");
2151 #endif
2152 /* move old device back */
2153 command = (int)(0x0b | ((int)(saveptr & 0x000f) << 4));
2154 send_string[0] = 2;
2155 send_string[1] = (u_char)(device | 0x60);
2156 send_string[2] = 0xfe;
2157 adb_op_sync((Ptr)send_string, (Ptr)0,
2158 (Ptr)0, (short)command);
2159 delay(1000);
2160 }
2161 }
2162 }
2163
2164 #ifdef ADB_DEBUG
2165 if (adb_debug) {
2166 for (i = 1; i <= ADBNumDevices; i++) {
2167 x = get_ind_adb_info(&data, i);
2168 if (x != -1)
2169 printf_intr("index 0x%x, addr 0x%x, type 0x%hx\n",
2170 i, x, data.devType);
2171 }
2172 }
2173 #endif
2174
2175 #ifndef MRG_ADB
2176 /* enable the programmer's switch, if we have one */
2177 adb_prog_switch_enable();
2178 #endif
2179
2180 #ifdef ADB_DEBUG
2181 if (adb_debug) {
2182 if (0 == ADBNumDevices) /* tell user if no devices found */
2183 printf_intr("adb: no devices found\n");
2184 }
2185 #endif
2186
2187 adbStarting = 0; /* not starting anymore */
2188 #ifdef ADB_DEBUG
2189 if (adb_debug)
2190 printf_intr("adb: ADBReInit complete\n");
2191 #endif
2192
2193 if (adbHardware == ADB_HW_CUDA)
2194 timeout((void *)adb_cuda_tickle, 0, ADB_TICKLE_TICKS);
2195
2196 if (adbHardware != ADB_HW_PB) /* ints must be on for PB? */
2197 splx(s);
2198
2199 return;
2200 }
2201
2202
2203 /*
2204 * adb_comp_exec
2205 * This is a general routine that calls the completion routine if there is one.
2206 * NOTE: This routine is now only used by pm_direct.c
2207 * All the code in this file (adb_direct.c) uses
2208 * the adb_pass_up routine now.
2209 */
2210 void
2211 adb_comp_exec(void)
2212 {
2213 if ((long)0 != adbCompRout) /* don't call if empty return location */
2214 #ifdef __NetBSD__
2215 asm(" movml #0xffff,sp@- | save all registers
2216 movl %0,a2 | adbCompData
2217 movl %1,a1 | adbCompRout
2218 movl %2,a0 | adbBuffer
2219 movl %3,d0 | adbWaitingCmd
2220 jbsr a1@ | go call the routine
2221 movml sp@+,#0xffff | restore all registers"
2222 :
2223 : "g"(adbCompData), "g"(adbCompRout),
2224 "g"(adbBuffer), "g"(adbWaitingCmd)
2225 : "d0", "a0", "a1", "a2");
2226 #else /* for Mac OS-based testing */
2227 asm {
2228 movem.l a0/a1/a2/d0, -(a7)
2229 move.l adbCompData, a2
2230 move.l adbCompRout, a1
2231 move.l adbBuffer, a0
2232 move.w adbWaitingCmd, d0
2233 jsr(a1)
2234 movem.l(a7) +, d0/a2/a1/a0
2235 }
2236 #endif
2237 }
2238
2239
2240 /*
2241 * adb_cmd_result
2242 *
2243 * This routine lets the caller know whether the specified adb command string
2244 * should expect a returned result, such as a TALK command.
2245 *
2246 * returns: 0 if a result should be expected
2247 * 1 if a result should NOT be expected
2248 */
2249 int
2250 adb_cmd_result(u_char *in)
2251 {
2252 switch (adbHardware) {
2253 case ADB_HW_II:
2254 /* was it an ADB talk command? */
2255 if ((in[1] & 0x0c) == 0x0c)
2256 return 0;
2257 return 1;
2258
2259 case ADB_HW_IISI:
2260 case ADB_HW_CUDA:
2261 /* was it an ADB talk command? */
2262 if ((in[1] == 0x00) && ((in[2] & 0x0c) == 0x0c))
2263 return 0;
2264 /* was it an RTC/PRAM read date/time? */
2265 if ((in[1] == 0x01) && (in[2] == 0x03))
2266 return 0;
2267 return 1;
2268
2269 case ADB_HW_PB:
2270 return 1;
2271
2272 case ADB_HW_UNKNOWN:
2273 default:
2274 return 1;
2275 }
2276 }
2277
2278
2279 /*
2280 * adb_cmd_extra
2281 *
2282 * This routine lets the caller know whether the specified adb command string
2283 * may have extra data appended to the end of it, such as a LISTEN command.
2284 *
2285 * returns: 0 if extra data is allowed
2286 * 1 if extra data is NOT allowed
2287 */
2288 int
2289 adb_cmd_extra(u_char *in)
2290 {
2291 switch (adbHardware) {
2292 case ADB_HW_II:
2293 if ((in[1] & 0x0c) == 0x08) /* was it a listen command? */
2294 return 0;
2295 return 1;
2296
2297 case ADB_HW_IISI:
2298 case ADB_HW_CUDA:
2299 /*
2300 * TO DO: support needs to be added to recognize RTC and PRAM
2301 * commands
2302 */
2303 if ((in[2] & 0x0c) == 0x08) /* was it a listen command? */
2304 return 0;
2305 /* add others later */
2306 return 1;
2307
2308 case ADB_HW_PB:
2309 return 1;
2310
2311 case ADB_HW_UNKNOWN:
2312 default:
2313 return 1;
2314 }
2315 }
2316
2317
2318 /*
2319 * adb_op_sync
2320 *
2321 * This routine does exactly what the adb_op routine does, except that after
2322 * the adb_op is called, it waits until the return value is present before
2323 * returning.
2324 *
2325 * NOTE: The user specified compRout is ignored, since this routine specifies
2326 * it's own to adb_op, which is why you really called this in the first place
2327 * anyway.
2328 */
2329 int
2330 adb_op_sync(Ptr buffer, Ptr compRout, Ptr data, short command)
2331 {
2332 int result;
2333 volatile int flag = 0;
2334
2335 result = adb_op(buffer, (void *)adb_op_comprout,
2336 (void *)&flag, command); /* send command */
2337 if (result == 0) /* send ok? */
2338 while (0 == flag)
2339 /* wait for compl. routine */;
2340
2341 return result;
2342 }
2343
2344
2345 /*
2346 * adb_op_comprout
2347 *
2348 * This function is used by the adb_op_sync routine so it knows when the
2349 * function is done.
2350 */
2351 void
2352 adb_op_comprout(void)
2353 {
2354 #ifdef __NetBSD__
2355 asm("movw #1,a2@ | update flag value");
2356 #else /* for macos based testing */
2357 asm {
2358 move.w #1,(a2) } /* update flag value */
2359 #endif
2360 }
2361
2362 void
2363 adb_setup_hw_type(void)
2364 {
2365 long response;
2366
2367 response = mac68k_machine.machineid;
2368
2369 /*
2370 * Determine what type of ADB hardware we are running on.
2371 */
2372 switch (response) {
2373 case MACH_MACC610: /* Centris 610 */
2374 case MACH_MACC650: /* Centris 650 */
2375 case MACH_MACII: /* II */
2376 case MACH_MACIICI: /* IIci */
2377 case MACH_MACIICX: /* IIcx */
2378 case MACH_MACIIX: /* IIx */
2379 case MACH_MACQ610: /* Quadra 610 */
2380 case MACH_MACQ650: /* Quadra 650 */
2381 case MACH_MACQ700: /* Quadra 700 */
2382 case MACH_MACQ800: /* Quadra 800 */
2383 case MACH_MACSE30: /* SE/30 */
2384 adbHardware = ADB_HW_II;
2385 #ifdef ADB_DEBUG
2386 if (adb_debug)
2387 printf_intr("adb: using II series hardware support\n");
2388 #endif
2389 break;
2390
2391 case MACH_MACCLASSICII: /* Classic II */
2392 case MACH_MACLCII: /* LC II, Performa 400/405/430 */
2393 case MACH_MACLCIII: /* LC III, Performa 450 */
2394 case MACH_MACIISI: /* IIsi */
2395 case MACH_MACIIVI: /* IIvi */
2396 case MACH_MACIIVX: /* IIvx */
2397 case MACH_MACP460: /* Performa 460/465/467 */
2398 case MACH_MACP600: /* Performa 600 */
2399 case MACH_MACQ900: /* Quadra 900 - XXX not sure */
2400 case MACH_MACQ950: /* Quadra 950 - XXX not sure */
2401 adbHardware = ADB_HW_IISI;
2402 #ifdef ADB_DEBUG
2403 if (adb_debug)
2404 printf_intr("adb: using IIsi series hardware support\n");
2405 #endif
2406 break;
2407
2408 case MACH_MACPB140: /* PowerBook 140 */
2409 case MACH_MACPB145: /* PowerBook 145 */
2410 case MACH_MACPB150: /* PowerBook 150 */
2411 case MACH_MACPB160: /* PowerBook 160 */
2412 case MACH_MACPB165: /* PowerBook 165 */
2413 case MACH_MACPB165C: /* PowerBook 165c */
2414 case MACH_MACPB170: /* PowerBook 170 */
2415 case MACH_MACPB180: /* PowerBook 180 */
2416 case MACH_MACPB180C: /* PowerBook 180c */
2417 adbHardware = ADB_HW_PB;
2418 pm_setup_adb();
2419 #ifdef ADB_DEBUG
2420 if (adb_debug)
2421 printf_intr("adb: using PowerBook 100-series hardware support\n");
2422 #endif
2423 break;
2424
2425 case MACH_MACPB210: /* PowerBook Duo 210 */
2426 case MACH_MACPB230: /* PowerBook Duo 230 */
2427 case MACH_MACPB250: /* PowerBook Duo 250 */
2428 case MACH_MACPB270: /* PowerBook Duo 270 */
2429 case MACH_MACPB280: /* PowerBook Duo 280 */
2430 case MACH_MACPB280C: /* PowerBook Duo 280c */
2431 case MACH_MACPB500: /* PowerBook 500 series */
2432 adbHardware = ADB_HW_PB;
2433 pm_setup_adb();
2434 #ifdef ADB_DEBUG
2435 if (adb_debug)
2436 printf_intr("adb: using PowerBook Duo-series and PowerBook 500-series hardware support\n");
2437 #endif
2438 break;
2439
2440 case MACH_MACC660AV: /* Centris 660AV */
2441 case MACH_MACCCLASSIC: /* Color Classic */
2442 case MACH_MACCCLASSICII: /* Color Classic II */
2443 case MACH_MACLC475: /* LC 475, Performa 475/476 */
2444 case MACH_MACLC475_33: /* Clock-chipped 47x */
2445 case MACH_MACLC520: /* LC 520 */
2446 case MACH_MACLC575: /* LC 575, Performa 575/577/578 */
2447 case MACH_MACP550: /* LC 550, Performa 550 */
2448 case MACH_MACP580: /* Performa 580/588 */
2449 case MACH_MACQ605: /* Quadra 605 */
2450 case MACH_MACQ605_33: /* Clock-chipped Quadra 605 */
2451 case MACH_MACQ630: /* LC 630, Performa 630, Quadra 630 */
2452 case MACH_MACQ840AV: /* Quadra 840AV */
2453 adbHardware = ADB_HW_CUDA;
2454 #ifdef ADB_DEBUG
2455 if (adb_debug)
2456 printf_intr("adb: using Cuda series hardware support\n");
2457 #endif
2458 break;
2459 default:
2460 adbHardware = ADB_HW_UNKNOWN;
2461 #ifdef ADB_DEBUG
2462 if (adb_debug) {
2463 printf_intr("adb: hardware type unknown for this machine\n");
2464 printf_intr("adb: ADB support is disabled\n");
2465 }
2466 #endif
2467 break;
2468 }
2469
2470 /*
2471 * Determine whether this machine has ADB based soft power.
2472 */
2473 switch (response) {
2474 case MACH_MACCCLASSIC: /* Color Classic */
2475 case MACH_MACCCLASSICII: /* Color Classic II */
2476 case MACH_MACIISI: /* IIsi */
2477 case MACH_MACIIVI: /* IIvi */
2478 case MACH_MACIIVX: /* IIvx */
2479 case MACH_MACLC520: /* LC 520 */
2480 case MACH_MACLC575: /* LC 575, Performa 575/577/578 */
2481 case MACH_MACP550: /* LC 550, Performa 550 */
2482 case MACH_MACP580: /* Performa 580/588 */
2483 case MACH_MACP600: /* Performa 600 */
2484 case MACH_MACQ630: /* LC 630, Performa 630, Quadra 630 */
2485 case MACH_MACQ840AV: /* Quadra 840AV */
2486 case MACH_MACQ900: /* Quadra 900 - XXX not sure */
2487 case MACH_MACQ950: /* Quadra 950 - XXX not sure */
2488 adbSoftPower = 1;
2489 break;
2490 }
2491 }
2492
2493 int
2494 count_adbs(void)
2495 {
2496 int i;
2497 int found;
2498
2499 found = 0;
2500
2501 for (i = 1; i < 16; i++)
2502 if (0 != ADBDevTable[i].devType)
2503 found++;
2504
2505 return found;
2506 }
2507
2508 int
2509 get_ind_adb_info(ADBDataBlock * info, int index)
2510 {
2511 if ((index < 1) || (index > 15)) /* check range 1-15 */
2512 return (-1);
2513
2514 #ifdef ADB_DEBUG
2515 if (adb_debug & 0x80)
2516 printf_intr("index 0x%x devType is: 0x%x\n", index,
2517 ADBDevTable[index].devType);
2518 #endif
2519 if (0 == ADBDevTable[index].devType) /* make sure it's a valid entry */
2520 return (-1);
2521
2522 info->devType = (unsigned char)(ADBDevTable[index].devType);
2523 info->origADBAddr = (unsigned char)(ADBDevTable[index].origAddr);
2524 info->dbServiceRtPtr = (Ptr)ADBDevTable[index].ServiceRtPtr;
2525 info->dbDataAreaAddr = (Ptr)ADBDevTable[index].DataAreaAddr;
2526
2527 return (ADBDevTable[index].currentAddr);
2528 }
2529
2530 int
2531 get_adb_info(ADBDataBlock * info, int adbAddr)
2532 {
2533 int i;
2534
2535 if ((adbAddr < 1) || (adbAddr > 15)) /* check range 1-15 */
2536 return (-1);
2537
2538 for (i = 1; i < 15; i++)
2539 if (ADBDevTable[i].currentAddr == adbAddr) {
2540 info->devType = (unsigned char)(ADBDevTable[i].devType);
2541 info->origADBAddr = (unsigned char)(ADBDevTable[i].origAddr);
2542 info->dbServiceRtPtr = (Ptr)ADBDevTable[i].ServiceRtPtr;
2543 info->dbDataAreaAddr = ADBDevTable[i].DataAreaAddr;
2544 return 0; /* found */
2545 }
2546
2547 return (-1); /* not found */
2548 }
2549
2550 int
2551 set_adb_info(ADBSetInfoBlock * info, int adbAddr)
2552 {
2553 int i;
2554
2555 if ((adbAddr < 1) || (adbAddr > 15)) /* check range 1-15 */
2556 return (-1);
2557
2558 for (i = 1; i < 15; i++)
2559 if (ADBDevTable[i].currentAddr == adbAddr) {
2560 ADBDevTable[i].ServiceRtPtr =
2561 (void *)(info->siServiceRtPtr);
2562 ADBDevTable[i].DataAreaAddr = info->siDataAreaAddr;
2563 return 0; /* found */
2564 }
2565
2566 return (-1); /* not found */
2567
2568 }
2569
2570 #ifndef MRG_ADB
2571 long
2572 mrg_adbintr(void)
2573 {
2574 adb_intr();
2575 return 1; /* mimic mrg_adbintr in macrom.h just in case */
2576 }
2577
2578 long
2579 mrg_pmintr(void)
2580 {
2581 pm_intr();
2582 return 1; /* mimic mrg_pmintr in macrom.h just in case */
2583 }
2584
2585 /* caller should really use machine-independant version: getPramTime */
2586 /* this version does pseudo-adb access only */
2587 int
2588 adb_read_date_time(unsigned long *time)
2589 {
2590 u_char output[ADB_MAX_MSG_LENGTH];
2591 int result;
2592 volatile int flag = 0;
2593
2594 switch (adbHardware) {
2595 case ADB_HW_II:
2596 return -1;
2597
2598 case ADB_HW_IISI:
2599 output[0] = 0x02; /* 2 byte message */
2600 output[1] = 0x01; /* to pram/rtc device */
2601 output[2] = 0x03; /* read date/time */
2602 result = send_adb_IIsi((u_char *)output, (u_char *)output,
2603 (void *)adb_op_comprout, (int *)&flag, (int)0);
2604 if (result != 0) /* exit if not sent */
2605 return -1;
2606
2607 while (0 == flag) /* wait for result */
2608 ;
2609
2610 *time = (long)(*(long *)(output + 1));
2611 return 0;
2612
2613 case ADB_HW_PB:
2614 return -1;
2615
2616 case ADB_HW_CUDA:
2617 output[0] = 0x02; /* 2 byte message */
2618 output[1] = 0x01; /* to pram/rtc device */
2619 output[2] = 0x03; /* read date/time */
2620 result = send_adb_cuda((u_char *)output, (u_char *)output,
2621 (void *)adb_op_comprout, (void *)&flag, (int)0);
2622 if (result != 0) /* exit if not sent */
2623 return -1;
2624
2625 while (0 == flag) /* wait for result */
2626 ;
2627
2628 *time = (long)(*(long *)(output + 1));
2629 return 0;
2630
2631 case ADB_HW_UNKNOWN:
2632 default:
2633 return -1;
2634 }
2635 }
2636
2637 /* caller should really use machine-independant version: setPramTime */
2638 /* this version does pseudo-adb access only */
2639 int
2640 adb_set_date_time(unsigned long time)
2641 {
2642 u_char output[ADB_MAX_MSG_LENGTH];
2643 int result;
2644 volatile int flag = 0;
2645
2646 switch (adbHardware) {
2647 case ADB_HW_II:
2648 return -1;
2649
2650 case ADB_HW_IISI:
2651 output[0] = 0x06; /* 6 byte message */
2652 output[1] = 0x01; /* to pram/rtc device */
2653 output[2] = 0x09; /* set date/time */
2654 output[3] = (u_char)(time >> 24);
2655 output[4] = (u_char)(time >> 16);
2656 output[5] = (u_char)(time >> 8);
2657 output[6] = (u_char)(time);
2658 result = send_adb_IIsi((u_char *)output, (u_char *)0,
2659 (void *)adb_op_comprout, (void *)&flag, (int)0);
2660 if (result != 0) /* exit if not sent */
2661 return -1;
2662
2663 while (0 == flag) /* wait for send to finish */
2664 ;
2665
2666 return 0;
2667
2668 case ADB_HW_PB:
2669 return -1;
2670
2671 case ADB_HW_CUDA:
2672 output[0] = 0x06; /* 6 byte message */
2673 output[1] = 0x01; /* to pram/rtc device */
2674 output[2] = 0x09; /* set date/time */
2675 output[3] = (u_char)(time >> 24);
2676 output[4] = (u_char)(time >> 16);
2677 output[5] = (u_char)(time >> 8);
2678 output[6] = (u_char)(time);
2679 result = send_adb_cuda((u_char *)output, (u_char *)0,
2680 (void *)adb_op_comprout, (void *)&flag, (int)0);
2681 if (result != 0) /* exit if not sent */
2682 return -1;
2683
2684 while (0 == flag) /* wait for send to finish */
2685 ;
2686
2687 return 0;
2688
2689 case ADB_HW_UNKNOWN:
2690 default:
2691 return -1;
2692 }
2693 }
2694
2695
2696 int
2697 adb_poweroff(void)
2698 {
2699 u_char output[ADB_MAX_MSG_LENGTH];
2700 int result;
2701
2702 if (!adbSoftPower)
2703 return -1;
2704
2705 adb_polling = 1;
2706
2707 switch (adbHardware) {
2708 case ADB_HW_IISI:
2709 output[0] = 0x02; /* 2 byte message */
2710 output[1] = 0x01; /* to pram/rtc/soft-power device */
2711 output[2] = 0x0a; /* set date/time */
2712 result = send_adb_IIsi((u_char *)output, (u_char *)0,
2713 (void *)0, (void *)0, (int)0);
2714 if (result != 0) /* exit if not sent */
2715 return -1;
2716
2717 for (;;); /* wait for power off */
2718
2719 return 0;
2720
2721 case ADB_HW_PB:
2722 return -1;
2723
2724 case ADB_HW_CUDA:
2725 output[0] = 0x02; /* 2 byte message */
2726 output[1] = 0x01; /* to pram/rtc/soft-power device */
2727 output[2] = 0x0a; /* set date/time */
2728 result = send_adb_cuda((u_char *)output, (u_char *)0,
2729 (void *)0, (void *)0, (int)0);
2730 if (result != 0) /* exit if not sent */
2731 return -1;
2732
2733 for (;;); /* wait for power off */
2734
2735 return 0;
2736
2737 case ADB_HW_II: /* II models don't do ADB soft power */
2738 case ADB_HW_UNKNOWN:
2739 default:
2740 return -1;
2741 }
2742 }
2743
2744 int
2745 adb_prog_switch_enable(void)
2746 {
2747 u_char output[ADB_MAX_MSG_LENGTH];
2748 int result;
2749 volatile int flag = 0;
2750
2751 switch (adbHardware) {
2752 case ADB_HW_IISI:
2753 output[0] = 0x03; /* 3 byte message */
2754 output[1] = 0x01; /* to pram/rtc/soft-power device */
2755 output[2] = 0x1c; /* prog. switch control */
2756 output[3] = 0x01; /* enable */
2757 result = send_adb_IIsi((u_char *)output, (u_char *)0,
2758 (void *)adb_op_comprout, (void *)&flag, (int)0);
2759 if (result != 0) /* exit if not sent */
2760 return -1;
2761
2762 while (0 == flag) /* wait for send to finish */
2763 ;
2764
2765 return 0;
2766
2767 case ADB_HW_PB:
2768 return -1;
2769
2770 case ADB_HW_II: /* II models don't do prog. switch */
2771 case ADB_HW_CUDA: /* cuda doesn't do prog. switch TO DO: verify this */
2772 case ADB_HW_UNKNOWN:
2773 default:
2774 return -1;
2775 }
2776 }
2777
2778 int
2779 adb_prog_switch_disable(void)
2780 {
2781 u_char output[ADB_MAX_MSG_LENGTH];
2782 int result;
2783 volatile int flag = 0;
2784
2785 switch (adbHardware) {
2786 case ADB_HW_IISI:
2787 output[0] = 0x03; /* 3 byte message */
2788 output[1] = 0x01; /* to pram/rtc/soft-power device */
2789 output[2] = 0x1c; /* prog. switch control */
2790 output[3] = 0x01; /* disable */
2791 result = send_adb_IIsi((u_char *)output, (u_char *)0,
2792 (void *)adb_op_comprout, (void *)&flag, (int)0);
2793 if (result != 0) /* exit if not sent */
2794 return -1;
2795
2796 while (0 == flag) /* wait for send to finish */
2797 ;
2798
2799 return 0;
2800
2801 case ADB_HW_PB:
2802 return -1;
2803
2804 case ADB_HW_II: /* II models don't do prog. switch */
2805 case ADB_HW_CUDA: /* cuda doesn't do prog. switch */
2806 case ADB_HW_UNKNOWN:
2807 default:
2808 return -1;
2809 }
2810 }
2811
2812 int
2813 CountADBs(void)
2814 {
2815 return (count_adbs());
2816 }
2817
2818 void
2819 ADBReInit(void)
2820 {
2821 adb_reinit();
2822 }
2823
2824 int
2825 GetIndADB(ADBDataBlock * info, int index)
2826 {
2827 return (get_ind_adb_info(info, index));
2828 }
2829
2830 int
2831 GetADBInfo(ADBDataBlock * info, int adbAddr)
2832 {
2833 return (get_adb_info(info, adbAddr));
2834 }
2835
2836 int
2837 SetADBInfo(ADBSetInfoBlock * info, int adbAddr)
2838 {
2839 return (set_adb_info(info, adbAddr));
2840 }
2841
2842 int
2843 ADBOp(Ptr buffer, Ptr compRout, Ptr data, short commandNum)
2844 {
2845 return (adb_op(buffer, compRout, data, commandNum));
2846 }
2847
2848 #endif
2849