adb_direct.c revision 1.26 1 /* $NetBSD: adb_direct.c,v 1.26 1999/11/06 22:25:20 scottr Exp $ */
2
3 /* From: adb_direct.c 2.02 4/18/97 jpw */
4
5 /*
6 * Copyright (C) 1996, 1997 John P. Wittkoski
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by John P. Wittkoski.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*
36 * This code is rather messy, but I don't have time right now
37 * to clean it up as much as I would like.
38 * But it works, so I'm happy. :-) jpw
39 */
40
41 /*
42 * TO DO:
43 * - We could reduce the time spent in the adb_intr_* routines
44 * by having them save the incoming and outgoing data directly
45 * in the adbInbound and adbOutbound queues, as it would reduce
46 * the number of times we need to copy the data around. It
47 * would also make the code more readable and easier to follow.
48 * - (Related to above) Use the header part of adbCommand to
49 * reduce the number of copies we have to do of the data.
50 * - (Related to above) Actually implement the adbOutbound queue.
51 * This is fairly easy once you switch all the intr routines
52 * over to using adbCommand structs directly.
53 * - There is a bug in the state machine of adb_intr_cuda
54 * code that causes hangs, especially on 030 machines, probably
55 * because of some timing issues. Because I have been unable to
56 * determine the exact cause of this bug, I used the timeout function
57 * to check for and recover from this condition. If anyone finds
58 * the actual cause of this bug, the calls to timeout and the
59 * adb_cuda_tickle routine can be removed.
60 */
61
62 #ifdef __NetBSD__
63 #include "opt_adb.h"
64
65 #include <sys/param.h>
66 #include <sys/cdefs.h>
67 #include <sys/systm.h>
68
69 #include <machine/viareg.h>
70 #include <machine/param.h>
71 #include <machine/cpu.h>
72 #include <machine/adbsys.h> /* required for adbvar.h */
73 #include <machine/iopreg.h> /* required for IOP support */
74
75 #include <mac68k/mac68k/macrom.h>
76 #include <mac68k/dev/adbvar.h>
77 #define printf_intr printf
78 #else /* !__NetBSD__, i.e. Mac OS */
79 #include "via.h" /* for macos based testing */
80 /* #define ADB_DEBUG */ /* more verbose for testing */
81
82 /* Types of ADB hardware that we support */
83 #define ADB_HW_UNKNOWN 0x0 /* don't know */
84 #define ADB_HW_II 0x1 /* Mac II series */
85 #define ADB_HW_IISI 0x2 /* Mac IIsi series */
86 #define ADB_HW_PB 0x3 /* PowerBook series */
87 #define ADB_HW_CUDA 0x4 /* Machines with a Cuda chip */
88 #endif /* __NetBSD__ */
89
90 /* some misc. leftovers */
91 #define vPB 0x0000
92 #define vPB3 0x08
93 #define vPB4 0x10
94 #define vPB5 0x20
95 #define vSR_INT 0x04
96 #define vSR_OUT 0x10
97
98 /* the type of ADB action that we are currently preforming */
99 #define ADB_ACTION_NOTREADY 0x1 /* has not been initialized yet */
100 #define ADB_ACTION_IDLE 0x2 /* the bus is currently idle */
101 #define ADB_ACTION_OUT 0x3 /* sending out a command */
102 #define ADB_ACTION_IN 0x4 /* receiving data */
103 #define ADB_ACTION_POLLING 0x5 /* polling - II only */
104 #define ADB_ACTION_RUNNING 0x6 /* running - IOP only */
105
106 /*
107 * These describe the state of the ADB bus itself, although they
108 * don't necessarily correspond directly to ADB states.
109 * Note: these are not really used in the IIsi code.
110 */
111 #define ADB_BUS_UNKNOWN 0x1 /* we don't know yet - all models */
112 #define ADB_BUS_IDLE 0x2 /* bus is idle - all models */
113 #define ADB_BUS_CMD 0x3 /* starting a command - II models */
114 #define ADB_BUS_ODD 0x4 /* the "odd" state - II models */
115 #define ADB_BUS_EVEN 0x5 /* the "even" state - II models */
116 #define ADB_BUS_ACTIVE 0x6 /* active state - IIsi models */
117 #define ADB_BUS_ACK 0x7 /* currently ACKing - IIsi models */
118
119 /*
120 * Shortcuts for setting or testing the VIA bit states.
121 * Not all shortcuts are used for every type of ADB hardware.
122 */
123 #define ADB_SET_STATE_IDLE_II() via_reg(VIA1, vBufB) |= (vPB4 | vPB5)
124 #define ADB_SET_STATE_IDLE_IISI() via_reg(VIA1, vBufB) &= ~(vPB4 | vPB5)
125 #define ADB_SET_STATE_IDLE_CUDA() via_reg(VIA1, vBufB) |= (vPB4 | vPB5)
126 #define ADB_SET_STATE_CMD() via_reg(VIA1, vBufB) &= ~(vPB4 | vPB5)
127 #define ADB_SET_STATE_EVEN() via_reg(VIA1, vBufB) = ((via_reg(VIA1, \
128 vBufB) | vPB4) & ~vPB5)
129 #define ADB_SET_STATE_ODD() via_reg(VIA1, vBufB) = ((via_reg(VIA1, \
130 vBufB) | vPB5) & ~vPB4)
131 #define ADB_SET_STATE_ACTIVE() via_reg(VIA1, vBufB) |= vPB5
132 #define ADB_SET_STATE_INACTIVE() via_reg(VIA1, vBufB) &= ~vPB5
133 #define ADB_SET_STATE_TIP() via_reg(VIA1, vBufB) &= ~vPB5
134 #define ADB_CLR_STATE_TIP() via_reg(VIA1, vBufB) |= vPB5
135 #define ADB_SET_STATE_ACKON() via_reg(VIA1, vBufB) |= vPB4
136 #define ADB_SET_STATE_ACKOFF() via_reg(VIA1, vBufB) &= ~vPB4
137 #define ADB_TOGGLE_STATE_ACK_CUDA() via_reg(VIA1, vBufB) ^= vPB4
138 #define ADB_SET_STATE_ACKON_CUDA() via_reg(VIA1, vBufB) &= ~vPB4
139 #define ADB_SET_STATE_ACKOFF_CUDA() via_reg(VIA1, vBufB) |= vPB4
140 #define ADB_SET_SR_INPUT() via_reg(VIA1, vACR) &= ~vSR_OUT
141 #define ADB_SET_SR_OUTPUT() via_reg(VIA1, vACR) |= vSR_OUT
142 #define ADB_SR() via_reg(VIA1, vSR)
143 #define ADB_VIA_INTR_ENABLE() via_reg(VIA1, vIER) = 0x84
144 #define ADB_VIA_INTR_DISABLE() via_reg(VIA1, vIER) = 0x04
145 #define ADB_VIA_CLR_INTR() via_reg(VIA1, vIFR) = 0x04
146 #define ADB_INTR_IS_OFF (vPB3 == (via_reg(VIA1, vBufB) & vPB3))
147 #define ADB_INTR_IS_ON (0 == (via_reg(VIA1, vBufB) & vPB3))
148 #define ADB_SR_INTR_IS_OFF (0 == (via_reg(VIA1, vIFR) & vSR_INT))
149 #define ADB_SR_INTR_IS_ON (vSR_INT == (via_reg(VIA1, \
150 vIFR) & vSR_INT))
151
152 /*
153 * This is the delay that is required (in uS) between certain
154 * ADB transactions. The actual timing delay for for each uS is
155 * calculated at boot time to account for differences in machine speed.
156 */
157 #define ADB_DELAY 150
158
159 /*
160 * Maximum ADB message length; includes space for data, result, and
161 * device code - plus a little for safety.
162 */
163 #define ADB_MAX_MSG_LENGTH 16
164 #define ADB_MAX_HDR_LENGTH 8
165
166 #define ADB_QUEUE 32
167 #define ADB_TICKLE_TICKS 4
168
169 /*
170 * A structure for storing information about each ADB device.
171 */
172 struct ADBDevEntry {
173 void (*ServiceRtPtr) __P((void));
174 void *DataAreaAddr;
175 int devType;
176 int origAddr;
177 int currentAddr;
178 };
179
180 /*
181 * Used to hold ADB commands that are waiting to be sent out.
182 */
183 struct adbCmdHoldEntry {
184 u_char outBuf[ADB_MAX_MSG_LENGTH]; /* our message */
185 u_char *saveBuf; /* buffer to know where to save result */
186 u_char *compRout; /* completion routine pointer */
187 u_char *data; /* completion routine data pointer */
188 };
189
190 /*
191 * Eventually used for two separate queues, the queue between
192 * the upper and lower halves, and the outgoing packet queue.
193 * TO DO: adbCommand can replace all of adbCmdHoldEntry eventually
194 */
195 struct adbCommand {
196 u_char header[ADB_MAX_HDR_LENGTH]; /* not used yet */
197 u_char data[ADB_MAX_MSG_LENGTH]; /* packet data only */
198 u_char *saveBuf; /* where to save result */
199 u_char *compRout; /* completion routine pointer */
200 u_char *compData; /* completion routine data pointer */
201 u_int cmd; /* the original command for this data */
202 u_int unsol; /* 1 if packet was unsolicited */
203 u_int ack_only; /* 1 for no special processing */
204 };
205
206 /*
207 * Text representations of each hardware class
208 */
209 char *adbHardwareDescr[MAX_ADB_HW + 1] = {
210 "unknown",
211 "II series",
212 "IIsi series",
213 "PowerBook",
214 "Cuda",
215 "IOP",
216 };
217
218 /*
219 * A few variables that we need and their initial values.
220 */
221 int adbHardware = ADB_HW_UNKNOWN;
222 int adbActionState = ADB_ACTION_NOTREADY;
223 int adbBusState = ADB_BUS_UNKNOWN;
224 int adbWaiting = 0; /* waiting for return data from the device */
225 int adbWriteDelay = 0; /* working on (or waiting to do) a write */
226 int adbOutQueueHasData = 0; /* something in the queue waiting to go out */
227 int adbNextEnd = 0; /* the next incoming bute is the last (II) */
228 int adbSoftPower = 0; /* machine supports soft power */
229
230 int adbWaitingCmd = 0; /* ADB command we are waiting for */
231 u_char *adbBuffer = (long)0; /* pointer to user data area */
232 void *adbCompRout = (long)0; /* pointer to the completion routine */
233 void *adbCompData = (long)0; /* pointer to the completion routine data */
234 long adbFakeInts = 0; /* keeps track of fake ADB interrupts for
235 * timeouts (II) */
236 int adbStarting = 1; /* doing ADBReInit so do polling differently */
237 int adbSendTalk = 0; /* the intr routine is sending the talk, not
238 * the user (II) */
239 int adbPolling = 0; /* we are polling for service request */
240 int adbPollCmd = 0; /* the last poll command we sent */
241
242 u_char adbInputBuffer[ADB_MAX_MSG_LENGTH]; /* data input buffer */
243 u_char adbOutputBuffer[ADB_MAX_MSG_LENGTH]; /* data output buffer */
244 struct adbCmdHoldEntry adbOutQueue; /* our 1 entry output queue */
245
246 int adbSentChars = 0; /* how many characters we have sent */
247 int adbLastDevice = 0; /* last ADB dev we heard from (II ONLY) */
248 int adbLastDevIndex = 0; /* last ADB dev loc in dev table (II ONLY) */
249 int adbLastCommand = 0; /* the last ADB command we sent (II) */
250
251 struct ADBDevEntry ADBDevTable[16]; /* our ADB device table */
252 int ADBNumDevices; /* num. of ADB devices found with ADBReInit */
253
254 struct adbCommand adbInbound[ADB_QUEUE]; /* incoming queue */
255 int adbInCount = 0; /* how many packets in in queue */
256 int adbInHead = 0; /* head of in queue */
257 int adbInTail = 0; /* tail of in queue */
258 struct adbCommand adbOutbound[ADB_QUEUE]; /* outgoing queue - not used yet */
259 int adbOutCount = 0; /* how many packets in out queue */
260 int adbOutHead = 0; /* head of out queue */
261 int adbOutTail = 0; /* tail of out queue */
262
263 int tickle_count = 0; /* how many tickles seen for this packet? */
264 int tickle_serial = 0; /* the last packet tickled */
265 int adb_cuda_serial = 0; /* the current packet */
266
267 extern struct mac68k_machine_S mac68k_machine;
268 extern int adb_initted;
269 extern int ite_polling; /* Are we polling? (Debugger mode) */
270
271 void pm_setup_adb __P((void));
272 void pm_hw_setup __P((void));
273 void pm_check_adb_devices __P((int));
274 void pm_intr __P((void *));
275 int pm_adb_op __P((u_char *, void *, void *, int));
276 void pm_init_adb_device __P((void));
277
278 /*
279 * The following are private routines.
280 */
281 #ifdef ADB_DEBUG
282 void print_single __P((u_char *));
283 #endif
284 void adb_intr __P((void *));
285 void adb_intr_II __P((void *));
286 void adb_intr_IIsi __P((void *));
287 void adb_intr_cuda __P((void *));
288 void adb_soft_intr __P((void));
289 int send_adb_II __P((u_char *, u_char *, void *, void *, int));
290 int send_adb_IIsi __P((u_char *, u_char *, void *, void *, int));
291 int send_adb_cuda __P((u_char *, u_char *, void *, void *, int));
292 void adb_intr_cuda_test __P((void));
293 void adb_cuda_tickle __P((void));
294 void adb_pass_up __P((struct adbCommand *));
295 void adb_op_comprout __P((void));
296 void adb_reinit __P((void));
297 int count_adbs __P((void));
298 int get_ind_adb_info __P((ADBDataBlock *, int));
299 int get_adb_info __P((ADBDataBlock *, int));
300 int set_adb_info __P((ADBSetInfoBlock *, int));
301 void adb_setup_hw_type __P((void));
302 int adb_op __P((Ptr, Ptr, Ptr, short));
303 int adb_op_sync __P((Ptr, Ptr, Ptr, short));
304 void adb_read_II __P((u_char *));
305 void adb_hw_setup __P((void));
306 void adb_hw_setup_IIsi __P((u_char *));
307 void adb_comp_exec __P((void));
308 int adb_cmd_result __P((u_char *));
309 int adb_cmd_extra __P((u_char *));
310 int adb_guess_next_device __P((void));
311 int adb_prog_switch_enable __P((void));
312 int adb_prog_switch_disable __P((void));
313 /* we should create this and it will be the public version */
314 int send_adb __P((u_char *, void *, void *));
315 void adb_iop_recv __P((IOP *, struct iop_msg *));
316 int send_adb_iop __P((int, u_char *, void *, void *));
317
318 #ifdef ADB_DEBUG
319 /*
320 * print_single
321 * Diagnostic display routine. Displays the hex values of the
322 * specified elements of the u_char. The length of the "string"
323 * is in [0].
324 */
325 void
326 print_single(str)
327 u_char *str;
328 {
329 int x;
330
331 if (str == 0) {
332 printf_intr("no data - null pointer\n");
333 return;
334 }
335 if (*str == 0) {
336 printf_intr("nothing returned\n");
337 return;
338 }
339 if (*str > 20) {
340 printf_intr("ADB: ACK > 20 no way!\n");
341 *str = (u_char)20;
342 }
343 printf_intr("(length=0x%x):", (u_int)*str);
344 for (x = 1; x <= *str; x++)
345 printf_intr(" 0x%02x", (u_int)*(str + x));
346 printf_intr("\n");
347 }
348 #endif
349
350 void
351 adb_cuda_tickle(void)
352 {
353 volatile int s;
354
355 if (adbActionState == ADB_ACTION_IN) {
356 if (tickle_serial == adb_cuda_serial) {
357 if (++tickle_count > 0) {
358 s = splhigh();
359 adbActionState = ADB_ACTION_IDLE;
360 adbInputBuffer[0] = 0;
361 ADB_SET_STATE_IDLE_CUDA();
362 splx(s);
363 }
364 } else {
365 tickle_serial = adb_cuda_serial;
366 tickle_count = 0;
367 }
368 } else {
369 tickle_serial = adb_cuda_serial;
370 tickle_count = 0;
371 }
372
373 timeout((void *)adb_cuda_tickle, 0, ADB_TICKLE_TICKS);
374 }
375
376 /*
377 * called when when an adb interrupt happens
378 *
379 * Cuda version of adb_intr
380 * TO DO: do we want to add some calls to intr_dispatch() here to
381 * grab serial interrupts?
382 */
383 void
384 adb_intr_cuda(void *arg)
385 {
386 volatile int i, ending;
387 volatile unsigned int s;
388 struct adbCommand packet;
389
390 s = splhigh(); /* can't be too careful - might be called */
391 /* from a routine, NOT an interrupt */
392
393 ADB_VIA_CLR_INTR(); /* clear interrupt */
394 ADB_VIA_INTR_DISABLE(); /* disable ADB interrupt on IIs. */
395
396 switch_start:
397 switch (adbActionState) {
398 case ADB_ACTION_IDLE:
399 /*
400 * This is an unexpected packet, so grab the first (dummy)
401 * byte, set up the proper vars, and tell the chip we are
402 * starting to receive the packet by setting the TIP bit.
403 */
404 adbInputBuffer[1] = ADB_SR();
405 adb_cuda_serial++;
406 if (ADB_INTR_IS_OFF) /* must have been a fake start */
407 break;
408
409 ADB_SET_SR_INPUT();
410 ADB_SET_STATE_TIP();
411
412 adbInputBuffer[0] = 1;
413 adbActionState = ADB_ACTION_IN;
414 #ifdef ADB_DEBUG
415 if (adb_debug)
416 printf_intr("idle 0x%02x ", adbInputBuffer[1]);
417 #endif
418 break;
419
420 case ADB_ACTION_IN:
421 adbInputBuffer[++adbInputBuffer[0]] = ADB_SR();
422 /* intr off means this is the last byte (end of frame) */
423 if (ADB_INTR_IS_OFF)
424 ending = 1;
425 else
426 ending = 0;
427
428 if (1 == ending) { /* end of message? */
429 #ifdef ADB_DEBUG
430 if (adb_debug) {
431 printf_intr("in end 0x%02x ",
432 adbInputBuffer[adbInputBuffer[0]]);
433 print_single(adbInputBuffer);
434 }
435 #endif
436
437 /*
438 * Are we waiting AND does this packet match what we
439 * are waiting for AND is it coming from either the
440 * ADB or RTC/PRAM sub-device? This section _should_
441 * recognize all ADB and RTC/PRAM type commands, but
442 * there may be more... NOTE: commands are always at
443 * [4], even for RTC/PRAM commands.
444 */
445 /* set up data for adb_pass_up */
446 for (i = 0; i <= adbInputBuffer[0]; i++)
447 packet.data[i] = adbInputBuffer[i];
448
449 if ((adbWaiting == 1) &&
450 (adbInputBuffer[4] == adbWaitingCmd) &&
451 ((adbInputBuffer[2] == 0x00) ||
452 (adbInputBuffer[2] == 0x01))) {
453 packet.saveBuf = adbBuffer;
454 packet.compRout = adbCompRout;
455 packet.compData = adbCompData;
456 packet.unsol = 0;
457 packet.ack_only = 0;
458 adb_pass_up(&packet);
459
460 adbWaitingCmd = 0; /* reset "waiting" vars */
461 adbWaiting = 0;
462 adbBuffer = (long)0;
463 adbCompRout = (long)0;
464 adbCompData = (long)0;
465 } else {
466 packet.unsol = 1;
467 packet.ack_only = 0;
468 adb_pass_up(&packet);
469 }
470
471
472 /* reset vars and signal the end of this frame */
473 adbActionState = ADB_ACTION_IDLE;
474 adbInputBuffer[0] = 0;
475 ADB_SET_STATE_IDLE_CUDA();
476 /*ADB_SET_SR_INPUT();*/
477
478 /*
479 * If there is something waiting to be sent out,
480 * the set everything up and send the first byte.
481 */
482 if (adbWriteDelay == 1) {
483 delay(ADB_DELAY); /* required */
484 adbSentChars = 0;
485 adbActionState = ADB_ACTION_OUT;
486 /*
487 * If the interrupt is on, we were too slow
488 * and the chip has already started to send
489 * something to us, so back out of the write
490 * and start a read cycle.
491 */
492 if (ADB_INTR_IS_ON) {
493 ADB_SET_SR_INPUT();
494 ADB_SET_STATE_IDLE_CUDA();
495 adbSentChars = 0;
496 adbActionState = ADB_ACTION_IDLE;
497 adbInputBuffer[0] = 0;
498 break;
499 }
500 /*
501 * If we got here, it's ok to start sending
502 * so load the first byte and tell the chip
503 * we want to send.
504 */
505 ADB_SET_STATE_TIP();
506 ADB_SET_SR_OUTPUT();
507 ADB_SR() = adbOutputBuffer[adbSentChars + 1];
508 }
509 } else {
510 ADB_TOGGLE_STATE_ACK_CUDA();
511 #ifdef ADB_DEBUG
512 if (adb_debug)
513 printf_intr("in 0x%02x ",
514 adbInputBuffer[adbInputBuffer[0]]);
515 #endif
516 }
517 break;
518
519 case ADB_ACTION_OUT:
520 i = ADB_SR(); /* reset SR-intr in IFR */
521 #ifdef ADB_DEBUG
522 if (adb_debug)
523 printf_intr("intr out 0x%02x ", i);
524 #endif
525
526 adbSentChars++;
527 if (ADB_INTR_IS_ON) { /* ADB intr low during write */
528 #ifdef ADB_DEBUG
529 if (adb_debug)
530 printf_intr("intr was on ");
531 #endif
532 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
533 ADB_SET_STATE_IDLE_CUDA();
534 adbSentChars = 0; /* must start all over */
535 adbActionState = ADB_ACTION_IDLE; /* new state */
536 adbInputBuffer[0] = 0;
537 adbWriteDelay = 1; /* must retry when done with
538 * read */
539 delay(ADB_DELAY);
540 goto switch_start; /* process next state right
541 * now */
542 break;
543 }
544 if (adbOutputBuffer[0] == adbSentChars) { /* check for done */
545 if (0 == adb_cmd_result(adbOutputBuffer)) { /* do we expect data
546 * back? */
547 adbWaiting = 1; /* signal waiting for return */
548 adbWaitingCmd = adbOutputBuffer[2]; /* save waiting command */
549 } else { /* no talk, so done */
550 /* set up stuff for adb_pass_up */
551 for (i = 0; i <= adbInputBuffer[0]; i++)
552 packet.data[i] = adbInputBuffer[i];
553 packet.saveBuf = adbBuffer;
554 packet.compRout = adbCompRout;
555 packet.compData = adbCompData;
556 packet.cmd = adbWaitingCmd;
557 packet.unsol = 0;
558 packet.ack_only = 1;
559 adb_pass_up(&packet);
560
561 /* reset "waiting" vars, just in case */
562 adbWaitingCmd = 0;
563 adbBuffer = (long)0;
564 adbCompRout = (long)0;
565 adbCompData = (long)0;
566 }
567
568 adbWriteDelay = 0; /* done writing */
569 adbActionState = ADB_ACTION_IDLE; /* signal bus is idle */
570 ADB_SET_SR_INPUT();
571 ADB_SET_STATE_IDLE_CUDA();
572 #ifdef ADB_DEBUG
573 if (adb_debug)
574 printf_intr("write done ");
575 #endif
576 } else {
577 ADB_SR() = adbOutputBuffer[adbSentChars + 1]; /* send next byte */
578 ADB_TOGGLE_STATE_ACK_CUDA(); /* signal byte ready to
579 * shift */
580 #ifdef ADB_DEBUG
581 if (adb_debug)
582 printf_intr("toggle ");
583 #endif
584 }
585 break;
586
587 case ADB_ACTION_NOTREADY:
588 #ifdef ADB_DEBUG
589 if (adb_debug)
590 printf_intr("adb: not yet initialized\n");
591 #endif
592 break;
593
594 default:
595 #ifdef ADB_DEBUG
596 if (adb_debug)
597 printf_intr("intr: unknown ADB state\n");
598 #endif
599 }
600
601 ADB_VIA_INTR_ENABLE(); /* enable ADB interrupt on IIs. */
602
603 splx(s); /* restore */
604
605 return;
606 } /* end adb_intr_cuda */
607
608
609 int
610 send_adb_cuda(u_char * in, u_char * buffer, void *compRout, void *data, int
611 command)
612 {
613 int i, s, len;
614
615 #ifdef ADB_DEBUG
616 if (adb_debug)
617 printf_intr("SEND\n");
618 #endif
619
620 if (adbActionState == ADB_ACTION_NOTREADY)
621 return 1;
622
623 /* Don't interrupt while we are messing with the ADB */
624 s = splhigh();
625
626 if ((adbActionState == ADB_ACTION_IDLE) && /* ADB available? */
627 (ADB_INTR_IS_OFF)) { /* and no incoming interrupt? */
628 } else
629 if (adbWriteDelay == 0) /* it's busy, but is anything waiting? */
630 adbWriteDelay = 1; /* if no, then we'll "queue"
631 * it up */
632 else {
633 splx(s);
634 return 1; /* really busy! */
635 }
636
637 #ifdef ADB_DEBUG
638 if (adb_debug)
639 printf_intr("QUEUE\n");
640 #endif
641 if ((long)in == (long)0) { /* need to convert? */
642 /*
643 * Don't need to use adb_cmd_extra here because this section
644 * will be called ONLY when it is an ADB command (no RTC or
645 * PRAM)
646 */
647 if ((command & 0x0c) == 0x08) /* copy addl data ONLY if
648 * doing a listen! */
649 len = buffer[0]; /* length of additional data */
650 else
651 len = 0;/* no additional data */
652
653 adbOutputBuffer[0] = 2 + len; /* dev. type + command + addl.
654 * data */
655 adbOutputBuffer[1] = 0x00; /* mark as an ADB command */
656 adbOutputBuffer[2] = (u_char)command; /* load command */
657
658 for (i = 1; i <= len; i++) /* copy additional output
659 * data, if any */
660 adbOutputBuffer[2 + i] = buffer[i];
661 } else
662 for (i = 0; i <= (in[0] + 1); i++)
663 adbOutputBuffer[i] = in[i];
664
665 adbSentChars = 0; /* nothing sent yet */
666 adbBuffer = buffer; /* save buffer to know where to save result */
667 adbCompRout = compRout; /* save completion routine pointer */
668 adbCompData = data; /* save completion routine data pointer */
669 adbWaitingCmd = adbOutputBuffer[2]; /* save wait command */
670
671 if (adbWriteDelay != 1) { /* start command now? */
672 #ifdef ADB_DEBUG
673 if (adb_debug)
674 printf_intr("out start NOW");
675 #endif
676 delay(ADB_DELAY);
677 adbActionState = ADB_ACTION_OUT; /* set next state */
678 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
679 ADB_SR() = adbOutputBuffer[adbSentChars + 1]; /* load byte for output */
680 ADB_SET_STATE_ACKOFF_CUDA();
681 ADB_SET_STATE_TIP(); /* tell ADB that we want to send */
682 }
683 adbWriteDelay = 1; /* something in the write "queue" */
684
685 splx(s);
686
687 if (0x0100 <= (s & 0x0700)) /* were VIA1 interrupts blocked ? */
688 /* poll until byte done */
689 while ((adbActionState != ADB_ACTION_IDLE) || (ADB_INTR_IS_ON)
690 || (adbWaiting == 1))
691 if (ADB_SR_INTR_IS_ON) { /* wait for "interrupt" */
692 adb_intr_cuda(NULL); /* process it */
693 if (!adb_initted)
694 adb_soft_intr();
695 }
696
697 return 0;
698 } /* send_adb_cuda */
699
700
701 void
702 adb_intr_II(void *arg)
703 {
704 struct adbCommand packet;
705 int i, intr_on = 0;
706 int send = 0;
707 unsigned int s;
708
709 s = splhigh(); /* can't be too careful - might be called */
710 /* from a routine, NOT an interrupt */
711
712 ADB_VIA_CLR_INTR(); /* clear interrupt */
713
714 ADB_VIA_INTR_DISABLE(); /* disable ADB interrupt on IIs. */
715
716 delay(ADB_DELAY); /* yuck (don't remove) */
717
718 (void)intr_dispatch(0x70); /* grab any serial interrupts */
719
720 if (ADB_INTR_IS_ON)
721 intr_on = 1; /* save for later */
722
723 switch_start:
724 switch (adbActionState) {
725 case ADB_ACTION_POLLING:
726 if (!intr_on) {
727 if (adbOutQueueHasData) {
728 #ifdef ADB_DEBUG
729 if (adb_debug & 0x80)
730 printf_intr("POLL-doing-out-queue. ");
731 #endif
732 /* copy over data */
733 ADB_SET_STATE_IDLE_II();
734 delay(ADB_DELAY);
735 for (i = 0; i <= (adbOutQueue.outBuf[0] + 1); i++)
736 adbOutputBuffer[i] = adbOutQueue.outBuf[i];
737 adbBuffer = adbOutQueue.saveBuf; /* user data area */
738 adbCompRout = adbOutQueue.compRout; /* completion routine */
739 adbCompData = adbOutQueue.data; /* comp. rout. data */
740 adbOutQueueHasData = 0; /* currently processing
741 * "queue" entry */
742 adbSentChars = 0; /* nothing sent yet */
743 adbActionState = ADB_ACTION_OUT; /* set next state */
744 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
745 ADB_SR() = adbOutputBuffer[1]; /* load byte for output */
746 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */
747 ADB_SET_STATE_CMD(); /* tell ADB that we want to
748 * send */
749 break;
750 } else {
751 #ifdef ADB_DEBUG
752 if (adb_debug)
753 printf_intr("pIDLE ");
754 #endif
755 adbActionState = ADB_ACTION_IDLE;
756 }
757 } else {
758 #ifdef ADB_DEBUG
759 if (adb_debug & 0x80)
760 printf_intr("pIN ");
761 #endif
762 adbActionState = ADB_ACTION_IN;
763 }
764 delay(ADB_DELAY);
765 (void)intr_dispatch(0x70); /* grab any serial interrupts */
766 goto switch_start;
767 break;
768 case ADB_ACTION_IDLE:
769 if (!intr_on) {
770 i = ADB_SR();
771 adbBusState = ADB_BUS_IDLE;
772 adbActionState = ADB_ACTION_IDLE;
773 ADB_SET_STATE_IDLE_II();
774 break;
775 }
776 adbInputBuffer[0] = 1;
777 adbInputBuffer[1] = ADB_SR(); /* get first byte */
778 #ifdef ADB_DEBUG
779 if (adb_debug & 0x80)
780 printf_intr("idle 0x%02x ", adbInputBuffer[1]);
781 #endif
782 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
783 adbActionState = ADB_ACTION_IN; /* set next state */
784 ADB_SET_STATE_EVEN(); /* set bus state to even */
785 adbBusState = ADB_BUS_EVEN;
786 break;
787
788 case ADB_ACTION_IN:
789 adbInputBuffer[++adbInputBuffer[0]] = ADB_SR(); /* get byte */
790 #ifdef ADB_DEBUG
791 if (adb_debug & 0x80)
792 printf_intr("in 0x%02x ",
793 adbInputBuffer[adbInputBuffer[0]]);
794 #endif
795 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
796
797 if (intr_on) { /* process last byte of packet */
798 adbInputBuffer[0]--; /* minus one */
799 /*
800 * If intr_on was true, and it's the second byte, then
801 * the byte we just discarded is really valid, so
802 * adjust the count
803 */
804 if (adbInputBuffer[0] == 2) {
805 adbInputBuffer[0]++;
806 }
807
808 #ifdef ADB_DEBUG
809 if (adb_debug & 0x80) {
810 printf_intr("done: ");
811 print_single(adbInputBuffer);
812 }
813 #endif
814
815 adbLastDevice = (adbInputBuffer[1] & 0xf0) >> 4;
816
817 if (adbInputBuffer[0] == 1 && !adbWaiting) { /* SRQ!!!*/
818 #ifdef ADB_DEBUG
819 if (adb_debug & 0x80)
820 printf_intr(" xSRQ! ");
821 #endif
822 adb_guess_next_device();
823 #ifdef ADB_DEBUG
824 if (adb_debug & 0x80)
825 printf_intr("try 0x%0x ",
826 adbLastDevice);
827 #endif
828 adbOutputBuffer[0] = 1;
829 adbOutputBuffer[1] =
830 ((adbLastDevice & 0x0f) << 4) | 0x0c;
831
832 adbSentChars = 0; /* nothing sent yet */
833 adbActionState = ADB_ACTION_POLLING; /* set next state */
834 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
835 ADB_SR() = adbOutputBuffer[1]; /* load byte for output */
836 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */
837 ADB_SET_STATE_CMD(); /* tell ADB that we want to */
838 break;
839 }
840
841 /* set up data for adb_pass_up */
842 for (i = 0; i <= adbInputBuffer[0]; i++)
843 packet.data[i] = adbInputBuffer[i];
844
845 if (!adbWaiting && (adbInputBuffer[0] != 0)) {
846 packet.unsol = 1;
847 packet.ack_only = 0;
848 adb_pass_up(&packet);
849 } else {
850 packet.saveBuf = adbBuffer;
851 packet.compRout = adbCompRout;
852 packet.compData = adbCompData;
853 packet.unsol = 0;
854 packet.ack_only = 0;
855 adb_pass_up(&packet);
856 }
857
858 adbWaiting = 0;
859 adbInputBuffer[0] = 0;
860 adbBuffer = (long)0;
861 adbCompRout = (long)0;
862 adbCompData = (long)0;
863 /*
864 * Since we are done, check whether there is any data
865 * waiting to do out. If so, start the sending the data.
866 */
867 if (adbOutQueueHasData == 1) {
868 #ifdef ADB_DEBUG
869 if (adb_debug & 0x80)
870 printf_intr("XXX: DOING OUT QUEUE\n");
871 #endif
872 /* copy over data */
873 for (i = 0; i <= (adbOutQueue.outBuf[0] + 1); i++)
874 adbOutputBuffer[i] = adbOutQueue.outBuf[i];
875 adbBuffer = adbOutQueue.saveBuf; /* user data area */
876 adbCompRout = adbOutQueue.compRout; /* completion routine */
877 adbCompData = adbOutQueue.data; /* comp. rout. data */
878 adbOutQueueHasData = 0; /* currently processing
879 * "queue" entry */
880 send = 1;
881 } else {
882 #ifdef ADB_DEBUG
883 if (adb_debug & 0x80)
884 printf_intr("XXending ");
885 #endif
886 adb_guess_next_device();
887 adbOutputBuffer[0] = 1;
888 adbOutputBuffer[1] = ((adbLastDevice & 0x0f) << 4) | 0x0c;
889 adbSentChars = 0; /* nothing sent yet */
890 adbActionState = ADB_ACTION_POLLING; /* set next state */
891 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
892 ADB_SR() = adbOutputBuffer[1]; /* load byte for output */
893 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */
894 ADB_SET_STATE_CMD(); /* tell ADB that we want to */
895 break;
896 }
897 }
898
899 /*
900 * If send is true then something above determined that
901 * the message has ended and we need to start sending out
902 * a new message immediately. This could be because there
903 * is data waiting to go out or because an SRQ was seen.
904 */
905 if (send) {
906 adbSentChars = 0; /* nothing sent yet */
907 adbActionState = ADB_ACTION_OUT; /* set next state */
908 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
909 ADB_SR() = adbOutputBuffer[1]; /* load byte for output */
910 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */
911 ADB_SET_STATE_CMD(); /* tell ADB that we want to
912 * send */
913 break;
914 }
915 /* We only get this far if the message hasn't ended yet. */
916 switch (adbBusState) { /* set to next state */
917 case ADB_BUS_EVEN:
918 ADB_SET_STATE_ODD(); /* set state to odd */
919 adbBusState = ADB_BUS_ODD;
920 break;
921
922 case ADB_BUS_ODD:
923 ADB_SET_STATE_EVEN(); /* set state to even */
924 adbBusState = ADB_BUS_EVEN;
925 break;
926 default:
927 printf_intr("strange state!!!\n"); /* huh? */
928 break;
929 }
930 break;
931
932 case ADB_ACTION_OUT:
933 i = ADB_SR(); /* clear interrupt */
934 adbSentChars++;
935 /*
936 * If the outgoing data was a TALK, we must
937 * switch to input mode to get the result.
938 */
939 if ((adbOutputBuffer[1] & 0x0c) == 0x0c) {
940 adbInputBuffer[0] = 1;
941 adbInputBuffer[1] = i;
942 adbActionState = ADB_ACTION_IN;
943 ADB_SET_SR_INPUT();
944 adbBusState = ADB_BUS_EVEN;
945 ADB_SET_STATE_EVEN();
946 #ifdef ADB_DEBUG
947 if (adb_debug & 0x80)
948 printf_intr("talk out 0x%02x ", i);
949 #endif
950 /* we want something back */
951 adbWaiting = 1;
952 break;
953 }
954 /*
955 * If it's not a TALK, check whether all data has been sent.
956 * If so, call the completion routine and clean up. If not,
957 * advance to the next state.
958 */
959 #ifdef ADB_DEBUG
960 if (adb_debug & 0x80)
961 printf_intr("non-talk out 0x%0x ", i);
962 #endif
963 ADB_SET_SR_OUTPUT();
964 if (adbOutputBuffer[0] == adbSentChars) { /* check for done */
965 #ifdef ADB_DEBUG
966 if (adb_debug & 0x80)
967 printf_intr("done \n");
968 #endif
969 /* set up stuff for adb_pass_up */
970 for (i = 0; i <= adbOutputBuffer[0]; i++)
971 packet.data[i] = adbOutputBuffer[i];
972 packet.saveBuf = adbBuffer;
973 packet.compRout = adbCompRout;
974 packet.compData = adbCompData;
975 packet.cmd = adbWaitingCmd;
976 packet.unsol = 0;
977 packet.ack_only = 1;
978 adb_pass_up(&packet);
979
980 /* reset "waiting" vars, just in case */
981 adbBuffer = (long)0;
982 adbCompRout = (long)0;
983 adbCompData = (long)0;
984 if (adbOutQueueHasData == 1) {
985 /* copy over data */
986 for (i = 0; i <= (adbOutQueue.outBuf[0] + 1); i++)
987 adbOutputBuffer[i] = adbOutQueue.outBuf[i];
988 adbBuffer = adbOutQueue.saveBuf; /* user data area */
989 adbCompRout = adbOutQueue.compRout; /* completion routine */
990 adbCompData = adbOutQueue.data; /* comp. rout. data */
991 adbOutQueueHasData = 0; /* currently processing
992 * "queue" entry */
993 adbSentChars = 0; /* nothing sent yet */
994 adbActionState = ADB_ACTION_OUT; /* set next state */
995 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
996 ADB_SR() = adbOutputBuffer[1]; /* load byte for output */
997 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */
998 ADB_SET_STATE_CMD(); /* tell ADB that we want to
999 * send */
1000 break;
1001 } else {
1002 /* send talk to last device instead */
1003 adbOutputBuffer[0] = 1;
1004 adbOutputBuffer[1] = (adbOutputBuffer[1] & 0xf0) | 0x0c;
1005
1006 adbSentChars = 0; /* nothing sent yet */
1007 adbActionState = ADB_ACTION_IDLE; /* set next state */
1008 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
1009 ADB_SR() = adbOutputBuffer[1]; /* load byte for output */
1010 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */
1011 ADB_SET_STATE_CMD(); /* tell ADB that we want to */
1012 break;
1013 }
1014 }
1015 ADB_SR() = adbOutputBuffer[adbSentChars + 1];
1016 switch (adbBusState) { /* advance to next state */
1017 case ADB_BUS_EVEN:
1018 ADB_SET_STATE_ODD(); /* set state to odd */
1019 adbBusState = ADB_BUS_ODD;
1020 break;
1021
1022 case ADB_BUS_CMD:
1023 case ADB_BUS_ODD:
1024 ADB_SET_STATE_EVEN(); /* set state to even */
1025 adbBusState = ADB_BUS_EVEN;
1026 break;
1027
1028 default:
1029 #ifdef ADB_DEBUG
1030 if (adb_debug) {
1031 printf_intr("strange state!!! (0x%x)\n",
1032 adbBusState);
1033 }
1034 #endif
1035 break;
1036 }
1037 break;
1038
1039 default:
1040 #ifdef ADB_DEBUG
1041 if (adb_debug)
1042 printf_intr("adb: unknown ADB state (during intr)\n");
1043 #endif
1044 }
1045
1046 ADB_VIA_INTR_ENABLE(); /* enable ADB interrupt on IIs. */
1047
1048 splx(s); /* restore */
1049
1050 return;
1051
1052 }
1053
1054
1055 /*
1056 * send_adb version for II series machines
1057 */
1058 int
1059 send_adb_II(u_char * in, u_char * buffer, void *compRout, void *data, int command)
1060 {
1061 int i, s, len;
1062
1063 if (adbActionState == ADB_ACTION_NOTREADY) /* return if ADB not
1064 * available */
1065 return 1;
1066
1067 /* Don't interrupt while we are messing with the ADB */
1068 s = splhigh();
1069
1070 if (0 != adbOutQueueHasData) { /* right now, "has data" means "full" */
1071 splx(s); /* sorry, try again later */
1072 return 1;
1073 }
1074 if ((long)in == (long)0) { /* need to convert? */
1075 /*
1076 * Don't need to use adb_cmd_extra here because this section
1077 * will be called ONLY when it is an ADB command (no RTC or
1078 * PRAM), especially on II series!
1079 */
1080 if ((command & 0x0c) == 0x08) /* copy addl data ONLY if
1081 * doing a listen! */
1082 len = buffer[0]; /* length of additional data */
1083 else
1084 len = 0;/* no additional data */
1085
1086 adbOutQueue.outBuf[0] = 1 + len; /* command + addl. data */
1087 adbOutQueue.outBuf[1] = (u_char)command; /* load command */
1088
1089 for (i = 1; i <= len; i++) /* copy additional output
1090 * data, if any */
1091 adbOutQueue.outBuf[1 + i] = buffer[i];
1092 } else
1093 /* if data ready, just copy over */
1094 for (i = 0; i <= (in[0] + 1); i++)
1095 adbOutQueue.outBuf[i] = in[i];
1096
1097 adbOutQueue.saveBuf = buffer; /* save buffer to know where to save
1098 * result */
1099 adbOutQueue.compRout = compRout; /* save completion routine
1100 * pointer */
1101 adbOutQueue.data = data;/* save completion routine data pointer */
1102
1103 if ((adbActionState == ADB_ACTION_IDLE) && /* is ADB available? */
1104 (ADB_INTR_IS_OFF)) { /* and no incoming interrupts? */
1105 /* then start command now */
1106 for (i = 0; i <= (adbOutQueue.outBuf[0] + 1); i++) /* copy over data */
1107 adbOutputBuffer[i] = adbOutQueue.outBuf[i];
1108
1109 adbBuffer = adbOutQueue.saveBuf; /* pointer to user data
1110 * area */
1111 adbCompRout = adbOutQueue.compRout; /* pointer to the
1112 * completion routine */
1113 adbCompData = adbOutQueue.data; /* pointer to the completion
1114 * routine data */
1115
1116 adbSentChars = 0; /* nothing sent yet */
1117 adbActionState = ADB_ACTION_OUT; /* set next state */
1118 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */
1119
1120 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
1121
1122 ADB_SR() = adbOutputBuffer[adbSentChars + 1]; /* load byte for output */
1123 ADB_SET_STATE_CMD(); /* tell ADB that we want to send */
1124 adbOutQueueHasData = 0; /* currently processing "queue" entry */
1125 } else
1126 adbOutQueueHasData = 1; /* something in the write "queue" */
1127
1128 splx(s);
1129
1130 if (0x0100 <= (s & 0x0700)) /* were VIA1 interrupts blocked? */
1131 /* poll until message done */
1132 while ((adbActionState != ADB_ACTION_IDLE) || (ADB_INTR_IS_ON)
1133 || (adbWaiting == 1))
1134 if (ADB_SR_INTR_IS_ON) { /* wait for "interrupt" */
1135 adb_intr_II(NULL); /* go process "interrupt" */
1136 if (!adb_initted)
1137 adb_soft_intr();
1138 }
1139
1140 return 0;
1141 }
1142
1143
1144 /*
1145 * This routine is called from the II series interrupt routine
1146 * to determine what the "next" device is that should be polled.
1147 */
1148 int
1149 adb_guess_next_device(void)
1150 {
1151 int last, i, dummy;
1152
1153 if (adbStarting) {
1154 /*
1155 * Start polling EVERY device, since we can't be sure there is
1156 * anything in the device table yet
1157 */
1158 if (adbLastDevice < 1 || adbLastDevice > 15)
1159 adbLastDevice = 1;
1160 if (++adbLastDevice > 15) /* point to next one */
1161 adbLastDevice = 1;
1162 } else {
1163 /* find the next device using the device table */
1164 if (adbLastDevice < 1 || adbLastDevice > 15) /* let's be parinoid */
1165 adbLastDevice = 2;
1166 last = 1; /* default index location */
1167
1168 for (i = 1; i < 16; i++) /* find index entry */
1169 if (ADBDevTable[i].currentAddr == adbLastDevice) { /* look for device */
1170 last = i; /* found it */
1171 break;
1172 }
1173 dummy = last; /* index to start at */
1174 for (;;) { /* find next device in index */
1175 if (++dummy > 15) /* wrap around if needed */
1176 dummy = 1;
1177 if (dummy == last) { /* didn't find any other
1178 * device! This can happen if
1179 * there are no devices on the
1180 * bus */
1181 dummy = 2;
1182 break;
1183 }
1184 /* found the next device */
1185 if (ADBDevTable[dummy].devType != 0)
1186 break;
1187 }
1188 adbLastDevice = ADBDevTable[dummy].currentAddr;
1189 }
1190 return adbLastDevice;
1191 }
1192
1193
1194 /*
1195 * Called when when an adb interrupt happens.
1196 * This routine simply transfers control over to the appropriate
1197 * code for the machine we are running on.
1198 */
1199 void
1200 adb_intr(void *arg)
1201 {
1202 switch (adbHardware) {
1203 case ADB_HW_II:
1204 adb_intr_II(arg);
1205 break;
1206
1207 case ADB_HW_IISI:
1208 adb_intr_IIsi(arg);
1209 break;
1210
1211 case ADB_HW_PB: /* Should not come through here. */
1212 break;
1213
1214 case ADB_HW_CUDA:
1215 adb_intr_cuda(arg);
1216 break;
1217
1218 case ADB_HW_IOP: /* Should not come through here. */
1219 break;
1220
1221 case ADB_HW_UNKNOWN:
1222 break;
1223 }
1224 }
1225
1226
1227 /*
1228 * called when when an adb interrupt happens
1229 *
1230 * IIsi version of adb_intr
1231 *
1232 */
1233 void
1234 adb_intr_IIsi(void *arg)
1235 {
1236 struct adbCommand packet;
1237 int i, ending;
1238 unsigned int s;
1239
1240 s = splhigh(); /* can't be too careful - might be called */
1241 /* from a routine, NOT an interrupt */
1242
1243 ADB_VIA_CLR_INTR(); /* clear interrupt */
1244
1245 ADB_VIA_INTR_DISABLE(); /* disable ADB interrupt on IIs. */
1246
1247 switch_start:
1248 switch (adbActionState) {
1249 case ADB_ACTION_IDLE:
1250 delay(ADB_DELAY); /* short delay is required before the
1251 * first byte */
1252
1253 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
1254 ADB_SET_STATE_ACTIVE(); /* signal start of data frame */
1255 adbInputBuffer[1] = ADB_SR(); /* get byte */
1256 adbInputBuffer[0] = 1;
1257 adbActionState = ADB_ACTION_IN; /* set next state */
1258
1259 ADB_SET_STATE_ACKON(); /* start ACK to ADB chip */
1260 delay(ADB_DELAY); /* delay */
1261 ADB_SET_STATE_ACKOFF(); /* end ACK to ADB chip */
1262 (void)intr_dispatch(0x70); /* grab any serial interrupts */
1263 break;
1264
1265 case ADB_ACTION_IN:
1266 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
1267 adbInputBuffer[++adbInputBuffer[0]] = ADB_SR(); /* get byte */
1268 if (ADB_INTR_IS_OFF) /* check for end of frame */
1269 ending = 1;
1270 else
1271 ending = 0;
1272
1273 ADB_SET_STATE_ACKON(); /* start ACK to ADB chip */
1274 delay(ADB_DELAY); /* delay */
1275 ADB_SET_STATE_ACKOFF(); /* end ACK to ADB chip */
1276 (void)intr_dispatch(0x70); /* grab any serial interrupts */
1277
1278 if (1 == ending) { /* end of message? */
1279 ADB_SET_STATE_INACTIVE(); /* signal end of frame */
1280 /*
1281 * This section _should_ handle all ADB and RTC/PRAM
1282 * type commands, but there may be more... Note:
1283 * commands are always at [4], even for rtc/pram
1284 * commands
1285 */
1286 /* set up data for adb_pass_up */
1287 for (i = 0; i <= adbInputBuffer[0]; i++)
1288 packet.data[i] = adbInputBuffer[i];
1289
1290 if ((adbWaiting == 1) && /* are we waiting AND */
1291 (adbInputBuffer[4] == adbWaitingCmd) && /* the cmd we sent AND */
1292 ((adbInputBuffer[2] == 0x00) || /* it's from the ADB
1293 * device OR */
1294 (adbInputBuffer[2] == 0x01))) { /* it's from the
1295 * PRAM/RTC device */
1296
1297 packet.saveBuf = adbBuffer;
1298 packet.compRout = adbCompRout;
1299 packet.compData = adbCompData;
1300 packet.unsol = 0;
1301 packet.ack_only = 0;
1302 adb_pass_up(&packet);
1303
1304 adbWaitingCmd = 0; /* reset "waiting" vars */
1305 adbWaiting = 0;
1306 adbBuffer = (long)0;
1307 adbCompRout = (long)0;
1308 adbCompData = (long)0;
1309 } else {
1310 packet.unsol = 1;
1311 packet.ack_only = 0;
1312 adb_pass_up(&packet);
1313 }
1314
1315 adbActionState = ADB_ACTION_IDLE;
1316 adbInputBuffer[0] = 0; /* reset length */
1317
1318 if (adbWriteDelay == 1) { /* were we waiting to
1319 * write? */
1320 adbSentChars = 0; /* nothing sent yet */
1321 adbActionState = ADB_ACTION_OUT; /* set next state */
1322
1323 delay(ADB_DELAY); /* delay */
1324 (void)intr_dispatch(0x70); /* grab any serial interrupts */
1325
1326 if (ADB_INTR_IS_ON) { /* ADB intr low during
1327 * write */
1328 ADB_SET_STATE_IDLE_IISI(); /* reset */
1329 ADB_SET_SR_INPUT(); /* make sure SR is set
1330 * to IN */
1331 adbSentChars = 0; /* must start all over */
1332 adbActionState = ADB_ACTION_IDLE; /* new state */
1333 adbInputBuffer[0] = 0;
1334 /* may be able to take this out later */
1335 delay(ADB_DELAY); /* delay */
1336 break;
1337 }
1338 ADB_SET_STATE_ACTIVE(); /* tell ADB that we want
1339 * to send */
1340 ADB_SET_STATE_ACKOFF(); /* make sure */
1341 ADB_SET_SR_OUTPUT(); /* set shift register
1342 * for OUT */
1343 ADB_SR() = adbOutputBuffer[adbSentChars + 1];
1344 ADB_SET_STATE_ACKON(); /* tell ADB byte ready
1345 * to shift */
1346 }
1347 }
1348 break;
1349
1350 case ADB_ACTION_OUT:
1351 i = ADB_SR(); /* reset SR-intr in IFR */
1352 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
1353
1354 ADB_SET_STATE_ACKOFF(); /* finish ACK */
1355 adbSentChars++;
1356 if (ADB_INTR_IS_ON) { /* ADB intr low during write */
1357 ADB_SET_STATE_IDLE_IISI(); /* reset */
1358 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
1359 adbSentChars = 0; /* must start all over */
1360 adbActionState = ADB_ACTION_IDLE; /* new state */
1361 adbInputBuffer[0] = 0;
1362 adbWriteDelay = 1; /* must retry when done with
1363 * read */
1364 delay(ADB_DELAY); /* delay */
1365 (void)intr_dispatch(0x70); /* grab any serial interrupts */
1366 goto switch_start; /* process next state right
1367 * now */
1368 break;
1369 }
1370 delay(ADB_DELAY); /* required delay */
1371 (void)intr_dispatch(0x70); /* grab any serial interrupts */
1372
1373 if (adbOutputBuffer[0] == adbSentChars) { /* check for done */
1374 if (0 == adb_cmd_result(adbOutputBuffer)) { /* do we expect data
1375 * back? */
1376 adbWaiting = 1; /* signal waiting for return */
1377 adbWaitingCmd = adbOutputBuffer[2]; /* save waiting command */
1378 } else {/* no talk, so done */
1379 /* set up stuff for adb_pass_up */
1380 for (i = 0; i <= adbInputBuffer[0]; i++)
1381 packet.data[i] = adbInputBuffer[i];
1382 packet.saveBuf = adbBuffer;
1383 packet.compRout = adbCompRout;
1384 packet.compData = adbCompData;
1385 packet.cmd = adbWaitingCmd;
1386 packet.unsol = 0;
1387 packet.ack_only = 1;
1388 adb_pass_up(&packet);
1389
1390 /* reset "waiting" vars, just in case */
1391 adbWaitingCmd = 0;
1392 adbBuffer = (long)0;
1393 adbCompRout = (long)0;
1394 adbCompData = (long)0;
1395 }
1396
1397 adbWriteDelay = 0; /* done writing */
1398 adbActionState = ADB_ACTION_IDLE; /* signal bus is idle */
1399 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
1400 ADB_SET_STATE_INACTIVE(); /* end of frame */
1401 } else {
1402 ADB_SR() = adbOutputBuffer[adbSentChars + 1]; /* send next byte */
1403 ADB_SET_STATE_ACKON(); /* signal byte ready to shift */
1404 }
1405 break;
1406
1407 case ADB_ACTION_NOTREADY:
1408 #ifdef ADB_DEBUG
1409 if (adb_debug)
1410 printf_intr("adb: not yet initialized\n");
1411 #endif
1412 break;
1413
1414 default:
1415 #ifdef ADB_DEBUG
1416 if (adb_debug)
1417 printf_intr("intr: unknown ADB state\n");
1418 #endif
1419 }
1420
1421 ADB_VIA_INTR_ENABLE(); /* enable ADB interrupt on IIs. */
1422
1423 splx(s); /* restore */
1424
1425 return;
1426 } /* end adb_intr_IIsi */
1427
1428
1429 /*****************************************************************************
1430 * if the device is currently busy, and there is no data waiting to go out, then
1431 * the data is "queued" in the outgoing buffer. If we are already waiting, then
1432 * we return.
1433 * in: if (in == 0) then the command string is built from command and buffer
1434 * if (in != 0) then in is used as the command string
1435 * buffer: additional data to be sent (used only if in == 0)
1436 * this is also where return data is stored
1437 * compRout: the completion routine that is called when then return value
1438 * is received (if a return value is expected)
1439 * data: a data pointer that can be used by the completion routine
1440 * command: an ADB command to be sent (used only if in == 0)
1441 *
1442 */
1443 int
1444 send_adb_IIsi(u_char * in, u_char * buffer, void *compRout, void *data, int
1445 command)
1446 {
1447 int i, s, len;
1448
1449 if (adbActionState == ADB_ACTION_NOTREADY)
1450 return 1;
1451
1452 /* Don't interrupt while we are messing with the ADB */
1453 s = splhigh();
1454
1455 if ((adbActionState == ADB_ACTION_IDLE) && /* ADB available? */
1456 (ADB_INTR_IS_OFF)) {/* and no incoming interrupt? */
1457
1458 } else
1459 if (adbWriteDelay == 0) /* it's busy, but is anything waiting? */
1460 adbWriteDelay = 1; /* if no, then we'll "queue"
1461 * it up */
1462 else {
1463 splx(s);
1464 return 1; /* really busy! */
1465 }
1466
1467 if ((long)in == (long)0) { /* need to convert? */
1468 /*
1469 * Don't need to use adb_cmd_extra here because this section
1470 * will be called ONLY when it is an ADB command (no RTC or
1471 * PRAM)
1472 */
1473 if ((command & 0x0c) == 0x08) /* copy addl data ONLY if
1474 * doing a listen! */
1475 len = buffer[0]; /* length of additional data */
1476 else
1477 len = 0;/* no additional data */
1478
1479 adbOutputBuffer[0] = 2 + len; /* dev. type + command + addl.
1480 * data */
1481 adbOutputBuffer[1] = 0x00; /* mark as an ADB command */
1482 adbOutputBuffer[2] = (u_char)command; /* load command */
1483
1484 for (i = 1; i <= len; i++) /* copy additional output
1485 * data, if any */
1486 adbOutputBuffer[2 + i] = buffer[i];
1487 } else
1488 for (i = 0; i <= (in[0] + 1); i++)
1489 adbOutputBuffer[i] = in[i];
1490
1491 adbSentChars = 0; /* nothing sent yet */
1492 adbBuffer = buffer; /* save buffer to know where to save result */
1493 adbCompRout = compRout; /* save completion routine pointer */
1494 adbCompData = data; /* save completion routine data pointer */
1495 adbWaitingCmd = adbOutputBuffer[2]; /* save wait command */
1496
1497 if (adbWriteDelay != 1) { /* start command now? */
1498 adbActionState = ADB_ACTION_OUT; /* set next state */
1499
1500 ADB_SET_STATE_ACTIVE(); /* tell ADB that we want to send */
1501 ADB_SET_STATE_ACKOFF(); /* make sure */
1502
1503 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
1504
1505 ADB_SR() = adbOutputBuffer[adbSentChars + 1]; /* load byte for output */
1506
1507 ADB_SET_STATE_ACKON(); /* tell ADB byte ready to shift */
1508 }
1509 adbWriteDelay = 1; /* something in the write "queue" */
1510
1511 splx(s);
1512
1513 if (0x0100 <= (s & 0x0700)) /* were VIA1 interrupts blocked ? */
1514 /* poll until byte done */
1515 while ((adbActionState != ADB_ACTION_IDLE) || (ADB_INTR_IS_ON)
1516 || (adbWaiting == 1))
1517 if (ADB_SR_INTR_IS_ON) { /* wait for "interrupt" */
1518 adb_intr_IIsi(NULL); /* process it */
1519 if (!adb_initted)
1520 adb_soft_intr();
1521 }
1522
1523 return 0;
1524 } /* send_adb_IIsi */
1525
1526 void
1527 adb_iop_recv(IOP *iop, struct iop_msg *msg)
1528 {
1529 struct adbCommand pkt;
1530 unsigned flags;
1531
1532 if (adbActionState != ADB_ACTION_RUNNING)
1533 return;
1534
1535 switch (msg->status) {
1536 case IOP_MSGSTAT_SENT:
1537 if (0 == adb_cmd_result(msg->msg + 1)) {
1538 adbWaiting = 1;
1539 adbWaitingCmd = msg->msg[2];
1540 }
1541 break;
1542 case IOP_MSGSTAT_RECEIVED:
1543 case IOP_MSGSTAT_UNEXPECTED:
1544 flags = msg->msg[0];
1545 if (flags != 0) {
1546 printf("ADB FLAGS 0x%x", flags);
1547 break;
1548 }
1549 if (adbWaiting &&
1550 (msg->msg[2] == adbWaitingCmd)) {
1551 pkt.saveBuf = msg->msg + 1;
1552 pkt.compRout = adbCompRout;
1553 pkt.compData = adbCompData;
1554 pkt.unsol = 0;
1555 pkt.ack_only = 0;
1556 adb_pass_up(&pkt);
1557
1558 adbWaitingCmd = 0;
1559 adbWaiting = 0;
1560 } else {
1561 pkt.unsol = 1;
1562 pkt.ack_only = 0;
1563 adb_pass_up(&pkt);
1564 }
1565 break;
1566 default:
1567 return;
1568 }
1569 }
1570
1571 int
1572 send_adb_iop(int cmd, u_char * buffer, void *compRout, void *data)
1573 {
1574 u_char buff[32];
1575 int i, cnt;
1576
1577 if (adbActionState != ADB_ACTION_RUNNING)
1578 return -1;
1579
1580 buff[0] = IOP_ADB_FL_EXPLICIT;
1581 buff[1] = buffer[0];
1582 buff[2] = cmd;
1583 cnt = (int) buff[1];
1584 for (i=0; i<cnt ; i++) {
1585 buff[i+3] = buffer[i+1];
1586 }
1587 return iop_send_msg(ISM_IOP, IOP_CHAN_ADB, buff, cnt+3,
1588 adb_iop_recv, NULL);
1589 }
1590
1591 /*
1592 * adb_pass_up is called by the interrupt-time routines.
1593 * It takes the raw packet data that was received from the
1594 * device and puts it into the queue that the upper half
1595 * processes. It then signals for a soft ADB interrupt which
1596 * will eventually call the upper half routine (adb_soft_intr).
1597 *
1598 * If in->unsol is 0, then this is either the notification
1599 * that the packet was sent (on a LISTEN, for example), or the
1600 * response from the device (on a TALK). The completion routine
1601 * is called only if the user specified one.
1602 *
1603 * If in->unsol is 1, then this packet was unsolicited and
1604 * so we look up the device in the ADB device table to determine
1605 * what it's default service routine is.
1606 *
1607 * If in->ack_only is 1, then we really only need to call
1608 * the completion routine, so don't do any other stuff.
1609 *
1610 * Note that in->data contains the packet header AND data,
1611 * while adbInbound[]->data contains ONLY data.
1612 *
1613 * Note: Called only at interrupt time. Assumes this.
1614 */
1615 void
1616 adb_pass_up(struct adbCommand *in)
1617 {
1618 int i, start = 0, len = 0, cmd = 0;
1619 ADBDataBlock block;
1620
1621 /* temp for testing */
1622 /*u_char *buffer = 0;*/
1623 /*u_char *compdata = 0;*/
1624 /*u_char *comprout = 0;*/
1625
1626 if (adbInCount >= ADB_QUEUE) {
1627 #ifdef ADB_DEBUG
1628 if (adb_debug)
1629 printf_intr("adb: ring buffer overflow\n");
1630 #endif
1631 return;
1632 }
1633
1634 if (in->ack_only) {
1635 len = in->data[0];
1636 cmd = in->cmd;
1637 start = 0;
1638 } else {
1639 switch (adbHardware) {
1640 case ADB_HW_IOP:
1641 case ADB_HW_II:
1642 cmd = in->data[1];
1643 if (in->data[0] < 2)
1644 len = 0;
1645 else
1646 len = in->data[0]-1;
1647 start = 1;
1648 break;
1649
1650 case ADB_HW_IISI:
1651 case ADB_HW_CUDA:
1652 /* If it's unsolicited, accept only ADB data for now */
1653 if (in->unsol)
1654 if (0 != in->data[2])
1655 return;
1656 cmd = in->data[4];
1657 if (in->data[0] < 5)
1658 len = 0;
1659 else
1660 len = in->data[0]-4;
1661 start = 4;
1662 break;
1663
1664 case ADB_HW_PB:
1665 cmd = in->data[1];
1666 if (in->data[0] < 2)
1667 len = 0;
1668 else
1669 len = in->data[0]-1;
1670 start = 1;
1671 break;
1672
1673 case ADB_HW_UNKNOWN:
1674 return;
1675 }
1676
1677 /* Make sure there is a valid device entry for this device */
1678 if (in->unsol) {
1679 /* ignore unsolicited data during adbreinit */
1680 if (adbStarting)
1681 return;
1682 /* get device's comp. routine and data area */
1683 if (-1 == get_adb_info(&block, ((cmd & 0xf0) >> 4)))
1684 return;
1685 }
1686 }
1687
1688 /*
1689 * If this is an unsolicited packet, we need to fill in
1690 * some info so adb_soft_intr can process this packet
1691 * properly. If it's not unsolicited, then use what
1692 * the caller sent us.
1693 */
1694 if (in->unsol) {
1695 adbInbound[adbInTail].compRout = (void *)block.dbServiceRtPtr;
1696 adbInbound[adbInTail].compData = (void *)block.dbDataAreaAddr;
1697 adbInbound[adbInTail].saveBuf = (void *)adbInbound[adbInTail].data;
1698 } else {
1699 adbInbound[adbInTail].compRout = (void *)in->compRout;
1700 adbInbound[adbInTail].compData = (void *)in->compData;
1701 adbInbound[adbInTail].saveBuf = (void *)in->saveBuf;
1702 }
1703
1704 #ifdef ADB_DEBUG
1705 if (adb_debug && in->data[1] == 2)
1706 printf_intr("adb: caught error\n");
1707 #endif
1708
1709 /* copy the packet data over */
1710 /*
1711 * TO DO: If the *_intr routines fed their incoming data
1712 * directly into an adbCommand struct, which is passed to
1713 * this routine, then we could eliminate this copy.
1714 */
1715 for (i = 1; i <= len; i++)
1716 adbInbound[adbInTail].data[i] = in->data[start+i];
1717
1718 adbInbound[adbInTail].data[0] = len;
1719 adbInbound[adbInTail].cmd = cmd;
1720
1721 adbInCount++;
1722 if (++adbInTail >= ADB_QUEUE)
1723 adbInTail = 0;
1724
1725 /*
1726 * If the debugger is running, call upper half manually.
1727 * Otherwise, trigger a soft interrupt to handle the rest later.
1728 */
1729 if (ite_polling)
1730 adb_soft_intr();
1731 else
1732 setsoftadb();
1733
1734 return;
1735 }
1736
1737
1738 /*
1739 * Called to process the packets after they have been
1740 * placed in the incoming queue.
1741 *
1742 */
1743 void
1744 adb_soft_intr(void)
1745 {
1746 int s, i;
1747 int cmd = 0;
1748 u_char *buffer = 0;
1749 u_char *comprout = 0;
1750 u_char *compdata = 0;
1751
1752 #if 0
1753 s = splhigh();
1754 printf_intr("sr: %x\n", (s & 0x0700));
1755 splx(s);
1756 #endif
1757
1758 /*delay(2*ADB_DELAY);*/
1759
1760 while (adbInCount) {
1761 #ifdef ADB_DEBUG
1762 if (adb_debug & 0x80)
1763 printf_intr("%x %x %x ",
1764 adbInCount, adbInHead, adbInTail);
1765 #endif
1766 /* get the data we need from the queue */
1767 buffer = adbInbound[adbInHead].saveBuf;
1768 comprout = adbInbound[adbInHead].compRout;
1769 compdata = adbInbound[adbInHead].compData;
1770 cmd = adbInbound[adbInHead].cmd;
1771
1772 /* copy over data to data area if it's valid */
1773 /*
1774 * Note that for unsol packets we don't want to copy the
1775 * data anywhere, so buffer was already set to 0.
1776 * For ack_only buffer was set to 0, so don't copy.
1777 */
1778 if (buffer)
1779 for (i = 0; i <= adbInbound[adbInHead].data[0]; i++)
1780 *(buffer+i) = adbInbound[adbInHead].data[i];
1781
1782 #ifdef ADB_DEBUG
1783 if (adb_debug & 0x80) {
1784 printf_intr("%p %p %p %x ",
1785 buffer, comprout, compdata, (short)cmd);
1786 printf_intr("buf: ");
1787 print_single(adbInbound[adbInHead].data);
1788 }
1789 #endif
1790
1791 /* call default completion routine if it's valid */
1792 if (comprout) {
1793 #ifdef __NetBSD__
1794 asm(" movml #0xffff,sp@- | save all registers
1795 movl %0,a2 | compdata
1796 movl %1,a1 | comprout
1797 movl %2,a0 | buffer
1798 movl %3,d0 | cmd
1799 jbsr a1@ | go call the routine
1800 movml sp@+,#0xffff | restore all registers"
1801 :
1802 : "g"(compdata), "g"(comprout),
1803 "g"(buffer), "g"(cmd)
1804 : "d0", "a0", "a1", "a2");
1805 #else /* for macos based testing */
1806 asm
1807 {
1808 movem.l a0/a1/a2/d0, -(a7)
1809 move.l compdata, a2
1810 move.l comprout, a1
1811 move.l buffer, a0
1812 move.w cmd, d0
1813 jsr(a1)
1814 movem.l(a7)+, d0/a2/a1/a0
1815 }
1816 #endif
1817 }
1818
1819 s = splhigh();
1820 adbInCount--;
1821 if (++adbInHead >= ADB_QUEUE)
1822 adbInHead = 0;
1823 splx(s);
1824
1825 }
1826 return;
1827 }
1828
1829
1830 /*
1831 * This is my version of the ADBOp routine. It mainly just calls the
1832 * hardware-specific routine.
1833 *
1834 * data : pointer to data area to be used by compRout
1835 * compRout : completion routine
1836 * buffer : for LISTEN: points to data to send - MAX 8 data bytes,
1837 * byte 0 = # of bytes
1838 * : for TALK: points to place to save return data
1839 * command : the adb command to send
1840 * result : 0 = success
1841 * : -1 = could not complete
1842 */
1843 int
1844 adb_op(Ptr buffer, Ptr compRout, Ptr data, short command)
1845 {
1846 int result;
1847
1848 switch (adbHardware) {
1849 case ADB_HW_II:
1850 result = send_adb_II((u_char *)0, (u_char *)buffer,
1851 (void *)compRout, (void *)data, (int)command);
1852 if (result == 0)
1853 return 0;
1854 else
1855 return -1;
1856 break;
1857
1858 case ADB_HW_IOP:
1859 #if 0
1860 result = send_adb_iop((int)command, (u_char *)buffer,
1861 (void *)compRout, (void *)data);
1862 if (result == 0)
1863 return 0;
1864 else
1865 #endif
1866 return -1;
1867 break;
1868
1869 case ADB_HW_IISI:
1870 result = send_adb_IIsi((u_char *)0, (u_char *)buffer,
1871 (void *)compRout, (void *)data, (int)command);
1872 /*
1873 * I wish I knew why this delay is needed. It usually needs to
1874 * be here when several commands are sent in close succession,
1875 * especially early in device probes when doing collision
1876 * detection. It must be some race condition. Sigh. - jpw
1877 */
1878 delay(100);
1879 if (result == 0)
1880 return 0;
1881 else
1882 return -1;
1883 break;
1884
1885 case ADB_HW_PB:
1886 result = pm_adb_op((u_char *)buffer, (void *)compRout,
1887 (void *)data, (int)command);
1888
1889 if (result == 0)
1890 return 0;
1891 else
1892 return -1;
1893 break;
1894
1895 case ADB_HW_CUDA:
1896 result = send_adb_cuda((u_char *)0, (u_char *)buffer,
1897 (void *)compRout, (void *)data, (int)command);
1898 if (result == 0)
1899 return 0;
1900 else
1901 return -1;
1902 break;
1903
1904 case ADB_HW_UNKNOWN:
1905 default:
1906 return -1;
1907 }
1908 }
1909
1910
1911 /*
1912 * adb_hw_setup
1913 * This routine sets up the possible machine specific hardware
1914 * config (mainly VIA settings) for the various models.
1915 */
1916 void
1917 adb_hw_setup(void)
1918 {
1919 volatile int i;
1920 u_char send_string[ADB_MAX_MSG_LENGTH];
1921
1922 switch (adbHardware) {
1923 case ADB_HW_II:
1924 via1_register_irq(2, adb_intr_II, NULL);
1925
1926 via_reg(VIA1, vDirB) |= 0x30; /* register B bits 4 and 5:
1927 * outputs */
1928 via_reg(VIA1, vDirB) &= 0xf7; /* register B bit 3: input */
1929 via_reg(VIA1, vACR) &= ~vSR_OUT; /* make sure SR is set
1930 * to IN (II, IIsi) */
1931 adbActionState = ADB_ACTION_IDLE; /* used by all types of
1932 * hardware (II, IIsi) */
1933 adbBusState = ADB_BUS_IDLE; /* this var. used in II-series
1934 * code only */
1935 via_reg(VIA1, vIER) = 0x84; /* make sure VIA interrupts
1936 * are on (II, IIsi) */
1937 ADB_SET_STATE_IDLE_II(); /* set ADB bus state to idle */
1938
1939 ADB_VIA_CLR_INTR(); /* clear interrupt */
1940 break;
1941
1942 case ADB_HW_IOP:
1943 /* adbActionState = ADB_ACTION_RUNNING; */
1944 via_reg(VIA1, vIER) = 0x84;
1945 via_reg(VIA1, vIFR) = 0x04;
1946 break;
1947
1948 case ADB_HW_IISI:
1949 via1_register_irq(2, adb_intr_IIsi, NULL);
1950 via_reg(VIA1, vDirB) |= 0x30; /* register B bits 4 and 5:
1951 * outputs */
1952 via_reg(VIA1, vDirB) &= 0xf7; /* register B bit 3: input */
1953 via_reg(VIA1, vACR) &= ~vSR_OUT; /* make sure SR is set
1954 * to IN (II, IIsi) */
1955 adbActionState = ADB_ACTION_IDLE; /* used by all types of
1956 * hardware (II, IIsi) */
1957 adbBusState = ADB_BUS_IDLE; /* this var. used in II-series
1958 * code only */
1959 via_reg(VIA1, vIER) = 0x84; /* make sure VIA interrupts
1960 * are on (II, IIsi) */
1961 ADB_SET_STATE_IDLE_IISI(); /* set ADB bus state to idle */
1962
1963 /* get those pesky clock ticks we missed while booting */
1964 for (i = 0; i < 30; i++) {
1965 delay(ADB_DELAY);
1966 adb_hw_setup_IIsi(send_string);
1967 #ifdef ADB_DEBUG
1968 if (adb_debug) {
1969 printf_intr("adb: cleanup: ");
1970 print_single(send_string);
1971 }
1972 #endif
1973 delay(ADB_DELAY);
1974 if (ADB_INTR_IS_OFF)
1975 break;
1976 }
1977 break;
1978
1979 case ADB_HW_PB:
1980 /*
1981 * XXX - really PM_VIA_CLR_INTR - should we put it in
1982 * pm_direct.h?
1983 */
1984 pm_hw_setup();
1985 break;
1986
1987 case ADB_HW_CUDA:
1988 via1_register_irq(2, adb_intr_cuda, NULL);
1989 via_reg(VIA1, vDirB) |= 0x30; /* register B bits 4 and 5:
1990 * outputs */
1991 via_reg(VIA1, vDirB) &= 0xf7; /* register B bit 3: input */
1992 via_reg(VIA1, vACR) &= ~vSR_OUT; /* make sure SR is set
1993 * to IN */
1994 via_reg(VIA1, vACR) = (via_reg(VIA1, vACR) | 0x0c) & ~0x10;
1995 adbActionState = ADB_ACTION_IDLE; /* used by all types of
1996 * hardware */
1997 adbBusState = ADB_BUS_IDLE; /* this var. used in II-series
1998 * code only */
1999 via_reg(VIA1, vIER) = 0x84; /* make sure VIA interrupts
2000 * are on */
2001 ADB_SET_STATE_IDLE_CUDA(); /* set ADB bus state to idle */
2002
2003 /* sort of a device reset */
2004 i = ADB_SR(); /* clear interrupt */
2005 ADB_VIA_INTR_DISABLE(); /* no interrupts while clearing */
2006 ADB_SET_STATE_IDLE_CUDA(); /* reset state to idle */
2007 delay(ADB_DELAY);
2008 ADB_SET_STATE_TIP(); /* signal start of frame */
2009 delay(ADB_DELAY);
2010 ADB_TOGGLE_STATE_ACK_CUDA();
2011 delay(ADB_DELAY);
2012 ADB_CLR_STATE_TIP();
2013 delay(ADB_DELAY);
2014 ADB_SET_STATE_IDLE_CUDA(); /* back to idle state */
2015 i = ADB_SR(); /* clear interrupt */
2016 ADB_VIA_INTR_ENABLE(); /* ints ok now */
2017 break;
2018
2019 case ADB_HW_UNKNOWN:
2020 default:
2021 via_reg(VIA1, vIER) = 0x04; /* turn interrupts off - TO
2022 * DO: turn PB ints off? */
2023 return;
2024 break;
2025 }
2026 }
2027
2028
2029 /*
2030 * adb_hw_setup_IIsi
2031 * This is sort of a "read" routine that forces the adb hardware through a read cycle
2032 * if there is something waiting. This helps "clean up" any commands that may have gotten
2033 * stuck or stopped during the boot process.
2034 *
2035 */
2036 void
2037 adb_hw_setup_IIsi(u_char * buffer)
2038 {
2039 int i;
2040 int dummy;
2041 int s;
2042 long my_time;
2043 int endofframe;
2044
2045 delay(ADB_DELAY);
2046
2047 i = 1; /* skip over [0] */
2048 s = splhigh(); /* block ALL interrupts while we are working */
2049 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
2050 ADB_VIA_INTR_DISABLE(); /* disable ADB interrupt on IIs. */
2051 /* this is required, especially on faster machines */
2052 delay(ADB_DELAY);
2053
2054 if (ADB_INTR_IS_ON) {
2055 ADB_SET_STATE_ACTIVE(); /* signal start of data frame */
2056
2057 endofframe = 0;
2058 while (0 == endofframe) {
2059 /*
2060 * Poll for ADB interrupt and watch for timeout.
2061 * If time out, keep going in hopes of not hanging
2062 * the ADB chip - I think
2063 */
2064 my_time = ADB_DELAY * 5;
2065 while ((ADB_SR_INTR_IS_OFF) && (my_time-- > 0))
2066 dummy = via_reg(VIA1, vBufB);
2067
2068 buffer[i++] = ADB_SR(); /* reset interrupt flag by
2069 * reading vSR */
2070 /*
2071 * Perhaps put in a check here that ignores all data
2072 * after the first ADB_MAX_MSG_LENGTH bytes ???
2073 */
2074 if (ADB_INTR_IS_OFF) /* check for end of frame */
2075 endofframe = 1;
2076
2077 ADB_SET_STATE_ACKON(); /* send ACK to ADB chip */
2078 delay(ADB_DELAY); /* delay */
2079 ADB_SET_STATE_ACKOFF(); /* send ACK to ADB chip */
2080 }
2081 ADB_SET_STATE_INACTIVE(); /* signal end of frame and
2082 * delay */
2083
2084 /* probably don't need to delay this long */
2085 delay(ADB_DELAY);
2086 }
2087 buffer[0] = --i; /* [0] is length of message */
2088 ADB_VIA_INTR_ENABLE(); /* enable ADB interrupt on IIs. */
2089 splx(s); /* restore interrupts */
2090
2091 return;
2092 } /* adb_hw_setup_IIsi */
2093
2094
2095
2096 /*
2097 * adb_reinit sets up the adb stuff
2098 *
2099 */
2100 void
2101 adb_reinit(void)
2102 {
2103 u_char send_string[ADB_MAX_MSG_LENGTH];
2104 int s = 0;
2105 volatile int i, x;
2106 int command;
2107 int result;
2108 int saveptr; /* point to next free relocation address */
2109 int device;
2110 int nonewtimes; /* times thru loop w/o any new devices */
2111 ADBDataBlock data; /* temp. holder for getting device info */
2112
2113 (void)(&s); /* work around lame GCC bug */
2114
2115 /* Make sure we are not interrupted while building the table. */
2116 /* ints must be on for PB & IOP (at least, for now) */
2117 if (adbHardware != ADB_HW_PB && adbHardware != ADB_HW_IOP)
2118 s = splhigh();
2119
2120 ADBNumDevices = 0; /* no devices yet */
2121
2122 /* Let intr routines know we are running reinit */
2123 adbStarting = 1;
2124
2125 /*
2126 * Initialize the ADB table. For now, we'll always use the same table
2127 * that is defined at the beginning of this file - no mallocs.
2128 */
2129 for (i = 0; i < 16; i++)
2130 ADBDevTable[i].devType = 0;
2131
2132 adb_setup_hw_type(); /* setup hardware type */
2133
2134 adb_hw_setup(); /* init the VIA bits and hard reset ADB */
2135
2136 /* send an ADB reset first */
2137 adb_op_sync((Ptr)0, (Ptr)0, (Ptr)0, (short)0x00);
2138 delay(3000);
2139
2140 /*
2141 * Probe for ADB devices. Probe devices 1-15 quickly to determine
2142 * which device addresses are in use and which are free. For each
2143 * address that is in use, move the device at that address to a higher
2144 * free address. Continue doing this at that address until no device
2145 * responds at that address. Then move the last device that was moved
2146 * back to the original address. Do this for the remaining addresses
2147 * that we determined were in use.
2148 *
2149 * When finished, do this entire process over again with the updated
2150 * list of in use addresses. Do this until no new devices have been
2151 * found in 20 passes though the in use address list. (This probably
2152 * seems long and complicated, but it's the best way to detect multiple
2153 * devices at the same address - sometimes it takes a couple of tries
2154 * before the collision is detected.)
2155 */
2156
2157 /* initial scan through the devices */
2158 for (i = 1; i < 16; i++) {
2159 command = (int)(0x0f | ((int)(i & 0x000f) << 4)); /* talk R3 */
2160 result = adb_op_sync((Ptr)send_string, (Ptr)0,
2161 (Ptr)0, (short)command);
2162 if (0x00 != send_string[0]) { /* anything come back ?? */
2163 ADBDevTable[++ADBNumDevices].devType =
2164 (int)(send_string[2]);
2165 ADBDevTable[ADBNumDevices].origAddr = i;
2166 ADBDevTable[ADBNumDevices].currentAddr = i;
2167 ADBDevTable[ADBNumDevices].DataAreaAddr =
2168 (long)0;
2169 ADBDevTable[ADBNumDevices].ServiceRtPtr = (void *)0;
2170 pm_check_adb_devices(i); /* tell pm driver device
2171 * is here */
2172 }
2173 }
2174
2175 /* find highest unused address */
2176 for (saveptr = 15; saveptr > 0; saveptr--)
2177 if (-1 == get_adb_info(&data, saveptr))
2178 break;
2179
2180 if (saveptr == 0) /* no free addresses??? */
2181 saveptr = 15;
2182
2183 #ifdef ADB_DEBUG
2184 if (adb_debug & 0x80) {
2185 printf_intr("first free is: 0x%02x\n", saveptr);
2186 printf_intr("devices: %i\n", ADBNumDevices);
2187 }
2188 #endif
2189
2190 nonewtimes = 0; /* no loops w/o new devices */
2191 while (nonewtimes++ < 11) {
2192 for (i = 1; i <= ADBNumDevices; i++) {
2193 device = ADBDevTable[i].currentAddr;
2194 #ifdef ADB_DEBUG
2195 if (adb_debug & 0x80)
2196 printf_intr("moving device 0x%02x to 0x%02x "
2197 "(index 0x%02x) ", device, saveptr, i);
2198 #endif
2199
2200 /* send TALK R3 to address */
2201 command = (int)(0x0f | ((int)(device & 0x000f) << 4));
2202 adb_op_sync((Ptr)send_string, (Ptr)0,
2203 (Ptr)0, (short)command);
2204
2205 /* move device to higher address */
2206 command = (int)(0x0b | ((int)(device & 0x000f) << 4));
2207 send_string[0] = 2;
2208 send_string[1] = (u_char)(saveptr | 0x60);
2209 send_string[2] = 0xfe;
2210 adb_op_sync((Ptr)send_string, (Ptr)0,
2211 (Ptr)0, (short)command);
2212
2213 /* send TALK R3 - anything at old address? */
2214 command = (int)(0x0f | ((int)(device & 0x000f) << 4));
2215 result = adb_op_sync((Ptr)send_string, (Ptr)0,
2216 (Ptr)0, (short)command);
2217 if (send_string[0] != 0) {
2218 /* new device found */
2219 /* update data for previously moved device */
2220 ADBDevTable[i].currentAddr = saveptr;
2221 #ifdef ADB_DEBUG
2222 if (adb_debug & 0x80)
2223 printf_intr("old device at index %i\n",i);
2224 #endif
2225 /* add new device in table */
2226 #ifdef ADB_DEBUG
2227 if (adb_debug & 0x80)
2228 printf_intr("new device found\n");
2229 #endif
2230 ADBDevTable[++ADBNumDevices].devType =
2231 (int)(send_string[2]);
2232 ADBDevTable[ADBNumDevices].origAddr = device;
2233 ADBDevTable[ADBNumDevices].currentAddr = device;
2234 /* These will be set correctly in adbsys.c */
2235 /* Until then, unsol. data will be ignored. */
2236 ADBDevTable[ADBNumDevices].DataAreaAddr =
2237 (long)0;
2238 ADBDevTable[ADBNumDevices].ServiceRtPtr =
2239 (void *)0;
2240 /* find next unused address */
2241 for (x = saveptr; x > 0; x--)
2242 if (-1 == get_adb_info(&data, x)) {
2243 saveptr = x;
2244 break;
2245 }
2246 #ifdef ADB_DEBUG
2247 if (adb_debug & 0x80)
2248 printf_intr("new free is 0x%02x\n",
2249 saveptr);
2250 #endif
2251 nonewtimes = 0;
2252 /* tell pm driver device is here */
2253 pm_check_adb_devices(device);
2254 } else {
2255 #ifdef ADB_DEBUG
2256 if (adb_debug & 0x80)
2257 printf_intr("moving back...\n");
2258 #endif
2259 /* move old device back */
2260 command = (int)(0x0b | ((int)(saveptr & 0x000f) << 4));
2261 send_string[0] = 2;
2262 send_string[1] = (u_char)(device | 0x60);
2263 send_string[2] = 0xfe;
2264 adb_op_sync((Ptr)send_string, (Ptr)0,
2265 (Ptr)0, (short)command);
2266 }
2267 }
2268 }
2269
2270 #ifdef ADB_DEBUG
2271 if (adb_debug) {
2272 for (i = 1; i <= ADBNumDevices; i++) {
2273 x = get_ind_adb_info(&data, i);
2274 if (x != -1)
2275 printf_intr("index 0x%x, addr 0x%x, type 0x%hx\n",
2276 i, x, data.devType);
2277 }
2278 }
2279 #endif
2280
2281 #ifndef MRG_ADB
2282 /* enable the programmer's switch, if we have one */
2283 adb_prog_switch_enable();
2284 #endif
2285
2286 #ifdef ADB_DEBUG
2287 if (adb_debug) {
2288 if (0 == ADBNumDevices) /* tell user if no devices found */
2289 printf_intr("adb: no devices found\n");
2290 }
2291 #endif
2292
2293 adbStarting = 0; /* not starting anymore */
2294 #ifdef ADB_DEBUG
2295 if (adb_debug)
2296 printf_intr("adb: ADBReInit complete\n");
2297 #endif
2298
2299 if (adbHardware == ADB_HW_CUDA)
2300 timeout((void *)adb_cuda_tickle, 0, ADB_TICKLE_TICKS);
2301
2302 /* ints must be on for PB & IOP (at least, for now) */
2303 if (adbHardware != ADB_HW_PB && adbHardware != ADB_HW_IOP)
2304 splx(s);
2305
2306 return;
2307 }
2308
2309
2310 /*
2311 * adb_comp_exec
2312 * This is a general routine that calls the completion routine if there is one.
2313 * NOTE: This routine is now only used by pm_direct.c
2314 * All the code in this file (adb_direct.c) uses
2315 * the adb_pass_up routine now.
2316 */
2317 void
2318 adb_comp_exec(void)
2319 {
2320 if ((long)0 != adbCompRout) /* don't call if empty return location */
2321 #ifdef __NetBSD__
2322 asm(" movml #0xffff,sp@- | save all registers
2323 movl %0,a2 | adbCompData
2324 movl %1,a1 | adbCompRout
2325 movl %2,a0 | adbBuffer
2326 movl %3,d0 | adbWaitingCmd
2327 jbsr a1@ | go call the routine
2328 movml sp@+,#0xffff | restore all registers"
2329 :
2330 : "g"(adbCompData), "g"(adbCompRout),
2331 "g"(adbBuffer), "g"(adbWaitingCmd)
2332 : "d0", "a0", "a1", "a2");
2333 #else /* for Mac OS-based testing */
2334 asm {
2335 movem.l a0/a1/a2/d0, -(a7)
2336 move.l adbCompData, a2
2337 move.l adbCompRout, a1
2338 move.l adbBuffer, a0
2339 move.w adbWaitingCmd, d0
2340 jsr(a1)
2341 movem.l(a7) +, d0/a2/a1/a0
2342 }
2343 #endif
2344 }
2345
2346
2347 /*
2348 * adb_cmd_result
2349 *
2350 * This routine lets the caller know whether the specified adb command string
2351 * should expect a returned result, such as a TALK command.
2352 *
2353 * returns: 0 if a result should be expected
2354 * 1 if a result should NOT be expected
2355 */
2356 int
2357 adb_cmd_result(u_char *in)
2358 {
2359 switch (adbHardware) {
2360 case ADB_HW_IOP:
2361 case ADB_HW_II:
2362 /* was it an ADB talk command? */
2363 if ((in[1] & 0x0c) == 0x0c)
2364 return 0;
2365 return 1;
2366
2367 case ADB_HW_IISI:
2368 case ADB_HW_CUDA:
2369 /* was it an ADB talk command? */
2370 if ((in[1] == 0x00) && ((in[2] & 0x0c) == 0x0c))
2371 return 0;
2372 /* was it an RTC/PRAM read date/time? */
2373 if ((in[1] == 0x01) && (in[2] == 0x03))
2374 return 0;
2375 return 1;
2376
2377 case ADB_HW_PB:
2378 return 1;
2379
2380 case ADB_HW_UNKNOWN:
2381 default:
2382 return 1;
2383 }
2384 }
2385
2386
2387 /*
2388 * adb_cmd_extra
2389 *
2390 * This routine lets the caller know whether the specified adb command string
2391 * may have extra data appended to the end of it, such as a LISTEN command.
2392 *
2393 * returns: 0 if extra data is allowed
2394 * 1 if extra data is NOT allowed
2395 */
2396 int
2397 adb_cmd_extra(u_char *in)
2398 {
2399 switch (adbHardware) {
2400 case ADB_HW_II:
2401 case ADB_HW_IOP:
2402 if ((in[1] & 0x0c) == 0x08) /* was it a listen command? */
2403 return 0;
2404 return 1;
2405
2406 case ADB_HW_IISI:
2407 case ADB_HW_CUDA:
2408 /*
2409 * TO DO: support needs to be added to recognize RTC and PRAM
2410 * commands
2411 */
2412 if ((in[2] & 0x0c) == 0x08) /* was it a listen command? */
2413 return 0;
2414 /* add others later */
2415 return 1;
2416
2417 case ADB_HW_PB:
2418 return 1;
2419
2420 case ADB_HW_UNKNOWN:
2421 default:
2422 return 1;
2423 }
2424 }
2425
2426
2427 /*
2428 * adb_op_sync
2429 *
2430 * This routine does exactly what the adb_op routine does, except that after
2431 * the adb_op is called, it waits until the return value is present before
2432 * returning.
2433 *
2434 * NOTE: The user specified compRout is ignored, since this routine specifies
2435 * it's own to adb_op, which is why you really called this in the first place
2436 * anyway.
2437 */
2438 int
2439 adb_op_sync(Ptr buffer, Ptr compRout, Ptr data, short command)
2440 {
2441 int result;
2442 volatile int flag = 0;
2443
2444 result = adb_op(buffer, (void *)adb_op_comprout,
2445 (void *)&flag, command); /* send command */
2446 if (result == 0) /* send ok? */
2447 while (0 == flag)
2448 /* wait for compl. routine */;
2449
2450 return result;
2451 }
2452
2453
2454 /*
2455 * adb_op_comprout
2456 *
2457 * This function is used by the adb_op_sync routine so it knows when the
2458 * function is done.
2459 */
2460 void
2461 adb_op_comprout(void)
2462 {
2463 #ifdef __NetBSD__
2464 asm("movw #1,a2@ | update flag value");
2465 #else /* for macos based testing */
2466 asm {
2467 move.w #1,(a2) } /* update flag value */
2468 #endif
2469 }
2470
2471 void
2472 adb_setup_hw_type(void)
2473 {
2474 long response;
2475
2476 response = mac68k_machine.machineid;
2477
2478 /*
2479 * Determine what type of ADB hardware we are running on.
2480 */
2481 switch (response) {
2482 case MACH_MACC610: /* Centris 610 */
2483 case MACH_MACC650: /* Centris 650 */
2484 case MACH_MACII: /* II */
2485 case MACH_MACIICI: /* IIci */
2486 case MACH_MACIICX: /* IIcx */
2487 case MACH_MACIIX: /* IIx */
2488 case MACH_MACQ610: /* Quadra 610 */
2489 case MACH_MACQ650: /* Quadra 650 */
2490 case MACH_MACQ700: /* Quadra 700 */
2491 case MACH_MACQ800: /* Quadra 800 */
2492 case MACH_MACSE30: /* SE/30 */
2493 adbHardware = ADB_HW_II;
2494 #ifdef ADB_DEBUG
2495 if (adb_debug)
2496 printf_intr("adb: using II series hardware support\n");
2497 #endif
2498 break;
2499
2500 case MACH_MACCLASSICII: /* Classic II */
2501 case MACH_MACLCII: /* LC II, Performa 400/405/430 */
2502 case MACH_MACLCIII: /* LC III, Performa 450 */
2503 case MACH_MACIISI: /* IIsi */
2504 case MACH_MACIIVI: /* IIvi */
2505 case MACH_MACIIVX: /* IIvx */
2506 case MACH_MACP460: /* Performa 460/465/467 */
2507 case MACH_MACP600: /* Performa 600 */
2508 adbHardware = ADB_HW_IISI;
2509 #ifdef ADB_DEBUG
2510 if (adb_debug)
2511 printf_intr("adb: using IIsi series hardware support\n");
2512 #endif
2513 break;
2514
2515 case MACH_MACPB140: /* PowerBook 140 */
2516 case MACH_MACPB145: /* PowerBook 145 */
2517 case MACH_MACPB150: /* PowerBook 150 */
2518 case MACH_MACPB160: /* PowerBook 160 */
2519 case MACH_MACPB165: /* PowerBook 165 */
2520 case MACH_MACPB165C: /* PowerBook 165c */
2521 case MACH_MACPB170: /* PowerBook 170 */
2522 case MACH_MACPB180: /* PowerBook 180 */
2523 case MACH_MACPB180C: /* PowerBook 180c */
2524 adbHardware = ADB_HW_PB;
2525 pm_setup_adb();
2526 #ifdef ADB_DEBUG
2527 if (adb_debug)
2528 printf_intr("adb: using PowerBook 100-series hardware support\n");
2529 #endif
2530 break;
2531
2532 case MACH_MACPB210: /* PowerBook Duo 210 */
2533 case MACH_MACPB230: /* PowerBook Duo 230 */
2534 case MACH_MACPB250: /* PowerBook Duo 250 */
2535 case MACH_MACPB270: /* PowerBook Duo 270 */
2536 case MACH_MACPB280: /* PowerBook Duo 280 */
2537 case MACH_MACPB280C: /* PowerBook Duo 280c */
2538 case MACH_MACPB500: /* PowerBook 500 series */
2539 adbHardware = ADB_HW_PB;
2540 pm_setup_adb();
2541 #ifdef ADB_DEBUG
2542 if (adb_debug)
2543 printf_intr("adb: using PowerBook Duo-series and PowerBook 500-series hardware support\n");
2544 #endif
2545 break;
2546
2547 case MACH_MACC660AV: /* Centris 660AV */
2548 case MACH_MACCCLASSIC: /* Color Classic */
2549 case MACH_MACCCLASSICII: /* Color Classic II */
2550 case MACH_MACLC475: /* LC 475, Performa 475/476 */
2551 case MACH_MACLC475_33: /* Clock-chipped 47x */
2552 case MACH_MACLC520: /* LC 520 */
2553 case MACH_MACLC575: /* LC 575, Performa 575/577/578 */
2554 case MACH_MACP550: /* LC 550, Performa 550 */
2555 case MACH_MACP580: /* Performa 580/588 */
2556 case MACH_MACQ605: /* Quadra 605 */
2557 case MACH_MACQ605_33: /* Clock-chipped Quadra 605 */
2558 case MACH_MACQ630: /* LC 630, Performa 630, Quadra 630 */
2559 case MACH_MACQ840AV: /* Quadra 840AV */
2560 adbHardware = ADB_HW_CUDA;
2561 #ifdef ADB_DEBUG
2562 if (adb_debug)
2563 printf_intr("adb: using Cuda series hardware support\n");
2564 #endif
2565 break;
2566
2567 case MACH_MACQ900: /* Quadra 900 */
2568 case MACH_MACQ950: /* Quadra 950 */
2569 case MACH_MACIIFX: /* Mac IIfx */
2570 adbHardware = ADB_HW_IOP;
2571 iop_register_listener(ISM_IOP, IOP_CHAN_ADB, adb_iop_recv, NULL);
2572 #ifdef ADB_DEBUG
2573 if (adb_debug)
2574 printf_intr("adb: using IOP-based ADB\n");
2575 #endif
2576 break;
2577
2578 default:
2579 adbHardware = ADB_HW_UNKNOWN;
2580 #ifdef ADB_DEBUG
2581 if (adb_debug) {
2582 printf_intr("adb: hardware type unknown for this machine\n");
2583 printf_intr("adb: ADB support is disabled\n");
2584 }
2585 #endif
2586 break;
2587 }
2588
2589 /*
2590 * Determine whether this machine has ADB based soft power.
2591 */
2592 switch (response) {
2593 case MACH_MACCCLASSIC: /* Color Classic */
2594 case MACH_MACCCLASSICII: /* Color Classic II */
2595 case MACH_MACIISI: /* IIsi */
2596 case MACH_MACIIVI: /* IIvi */
2597 case MACH_MACIIVX: /* IIvx */
2598 case MACH_MACLC520: /* LC 520 */
2599 case MACH_MACLC575: /* LC 575, Performa 575/577/578 */
2600 case MACH_MACP550: /* LC 550, Performa 550 */
2601 case MACH_MACP580: /* Performa 580/588 */
2602 case MACH_MACP600: /* Performa 600 */
2603 case MACH_MACQ630: /* LC 630, Performa 630, Quadra 630 */
2604 case MACH_MACQ840AV: /* Quadra 840AV */
2605 adbSoftPower = 1;
2606 break;
2607 }
2608 }
2609
2610 int
2611 count_adbs(void)
2612 {
2613 int i;
2614 int found;
2615
2616 found = 0;
2617
2618 for (i = 1; i < 16; i++)
2619 if (0 != ADBDevTable[i].devType)
2620 found++;
2621
2622 return found;
2623 }
2624
2625 int
2626 get_ind_adb_info(ADBDataBlock * info, int index)
2627 {
2628 if ((index < 1) || (index > 15)) /* check range 1-15 */
2629 return (-1);
2630
2631 #ifdef ADB_DEBUG
2632 if (adb_debug & 0x80)
2633 printf_intr("index 0x%x devType is: 0x%x\n", index,
2634 ADBDevTable[index].devType);
2635 #endif
2636 if (0 == ADBDevTable[index].devType) /* make sure it's a valid entry */
2637 return (-1);
2638
2639 info->devType = (unsigned char)(ADBDevTable[index].devType);
2640 info->origADBAddr = (unsigned char)(ADBDevTable[index].origAddr);
2641 info->dbServiceRtPtr = (Ptr)ADBDevTable[index].ServiceRtPtr;
2642 info->dbDataAreaAddr = (Ptr)ADBDevTable[index].DataAreaAddr;
2643
2644 return (ADBDevTable[index].currentAddr);
2645 }
2646
2647 int
2648 get_adb_info(ADBDataBlock * info, int adbAddr)
2649 {
2650 int i;
2651
2652 if ((adbAddr < 1) || (adbAddr > 15)) /* check range 1-15 */
2653 return (-1);
2654
2655 for (i = 1; i < 15; i++)
2656 if (ADBDevTable[i].currentAddr == adbAddr) {
2657 info->devType = (unsigned char)(ADBDevTable[i].devType);
2658 info->origADBAddr = (unsigned char)(ADBDevTable[i].origAddr);
2659 info->dbServiceRtPtr = (Ptr)ADBDevTable[i].ServiceRtPtr;
2660 info->dbDataAreaAddr = ADBDevTable[i].DataAreaAddr;
2661 return 0; /* found */
2662 }
2663
2664 return (-1); /* not found */
2665 }
2666
2667 int
2668 set_adb_info(ADBSetInfoBlock * info, int adbAddr)
2669 {
2670 int i;
2671
2672 if ((adbAddr < 1) || (adbAddr > 15)) /* check range 1-15 */
2673 return (-1);
2674
2675 for (i = 1; i < 15; i++)
2676 if (ADBDevTable[i].currentAddr == adbAddr) {
2677 ADBDevTable[i].ServiceRtPtr =
2678 (void *)(info->siServiceRtPtr);
2679 ADBDevTable[i].DataAreaAddr = info->siDataAreaAddr;
2680 return 0; /* found */
2681 }
2682
2683 return (-1); /* not found */
2684
2685 }
2686
2687 #ifndef MRG_ADB
2688 long
2689 mrg_adbintr(void)
2690 {
2691 adb_intr(NULL);
2692 return 1; /* mimic mrg_adbintr in macrom.h just in case */
2693 }
2694
2695 long
2696 mrg_pmintr(void)
2697 {
2698 pm_intr(NULL);
2699 return 1; /* mimic mrg_pmintr in macrom.h just in case */
2700 }
2701
2702 /* caller should really use machine-independant version: getPramTime */
2703 /* this version does pseudo-adb access only */
2704 int
2705 adb_read_date_time(unsigned long *time)
2706 {
2707 u_char output[ADB_MAX_MSG_LENGTH];
2708 int result;
2709 volatile int flag = 0;
2710
2711 switch (adbHardware) {
2712 case ADB_HW_II:
2713 return -1;
2714
2715 case ADB_HW_IOP:
2716 return -1;
2717
2718 case ADB_HW_IISI:
2719 output[0] = 0x02; /* 2 byte message */
2720 output[1] = 0x01; /* to pram/rtc device */
2721 output[2] = 0x03; /* read date/time */
2722 result = send_adb_IIsi((u_char *)output, (u_char *)output,
2723 (void *)adb_op_comprout, (int *)&flag, (int)0);
2724 if (result != 0) /* exit if not sent */
2725 return -1;
2726
2727 while (0 == flag) /* wait for result */
2728 ;
2729
2730 *time = (long)(*(long *)(output + 1));
2731 return 0;
2732
2733 case ADB_HW_PB:
2734 return -1;
2735
2736 case ADB_HW_CUDA:
2737 output[0] = 0x02; /* 2 byte message */
2738 output[1] = 0x01; /* to pram/rtc device */
2739 output[2] = 0x03; /* read date/time */
2740 result = send_adb_cuda((u_char *)output, (u_char *)output,
2741 (void *)adb_op_comprout, (void *)&flag, (int)0);
2742 if (result != 0) /* exit if not sent */
2743 return -1;
2744
2745 while (0 == flag) /* wait for result */
2746 ;
2747
2748 *time = (long)(*(long *)(output + 1));
2749 return 0;
2750
2751 case ADB_HW_UNKNOWN:
2752 default:
2753 return -1;
2754 }
2755 }
2756
2757 /* caller should really use machine-independant version: setPramTime */
2758 /* this version does pseudo-adb access only */
2759 int
2760 adb_set_date_time(unsigned long time)
2761 {
2762 u_char output[ADB_MAX_MSG_LENGTH];
2763 int result;
2764 volatile int flag = 0;
2765
2766 switch (adbHardware) {
2767 case ADB_HW_II:
2768 return -1;
2769
2770 case ADB_HW_IOP:
2771 return -1;
2772
2773 case ADB_HW_IISI:
2774 output[0] = 0x06; /* 6 byte message */
2775 output[1] = 0x01; /* to pram/rtc device */
2776 output[2] = 0x09; /* set date/time */
2777 output[3] = (u_char)(time >> 24);
2778 output[4] = (u_char)(time >> 16);
2779 output[5] = (u_char)(time >> 8);
2780 output[6] = (u_char)(time);
2781 result = send_adb_IIsi((u_char *)output, (u_char *)0,
2782 (void *)adb_op_comprout, (void *)&flag, (int)0);
2783 if (result != 0) /* exit if not sent */
2784 return -1;
2785
2786 while (0 == flag) /* wait for send to finish */
2787 ;
2788
2789 return 0;
2790
2791 case ADB_HW_PB:
2792 return -1;
2793
2794 case ADB_HW_CUDA:
2795 output[0] = 0x06; /* 6 byte message */
2796 output[1] = 0x01; /* to pram/rtc device */
2797 output[2] = 0x09; /* set date/time */
2798 output[3] = (u_char)(time >> 24);
2799 output[4] = (u_char)(time >> 16);
2800 output[5] = (u_char)(time >> 8);
2801 output[6] = (u_char)(time);
2802 result = send_adb_cuda((u_char *)output, (u_char *)0,
2803 (void *)adb_op_comprout, (void *)&flag, (int)0);
2804 if (result != 0) /* exit if not sent */
2805 return -1;
2806
2807 while (0 == flag) /* wait for send to finish */
2808 ;
2809
2810 return 0;
2811
2812 case ADB_HW_UNKNOWN:
2813 default:
2814 return -1;
2815 }
2816 }
2817
2818
2819 int
2820 adb_poweroff(void)
2821 {
2822 u_char output[ADB_MAX_MSG_LENGTH];
2823 int result;
2824
2825 if (!adbSoftPower)
2826 return -1;
2827
2828 switch (adbHardware) {
2829 case ADB_HW_IISI:
2830 output[0] = 0x02; /* 2 byte message */
2831 output[1] = 0x01; /* to pram/rtc/soft-power device */
2832 output[2] = 0x0a; /* set date/time */
2833 result = send_adb_IIsi((u_char *)output, (u_char *)0,
2834 (void *)0, (void *)0, (int)0);
2835 if (result != 0) /* exit if not sent */
2836 return -1;
2837
2838 for (;;); /* wait for power off */
2839
2840 return 0;
2841
2842 case ADB_HW_PB:
2843 return -1;
2844
2845 case ADB_HW_CUDA:
2846 output[0] = 0x02; /* 2 byte message */
2847 output[1] = 0x01; /* to pram/rtc/soft-power device */
2848 output[2] = 0x0a; /* set date/time */
2849 result = send_adb_cuda((u_char *)output, (u_char *)0,
2850 (void *)0, (void *)0, (int)0);
2851 if (result != 0) /* exit if not sent */
2852 return -1;
2853
2854 for (;;); /* wait for power off */
2855
2856 return 0;
2857
2858 case ADB_HW_II: /* II models don't do ADB soft power */
2859 case ADB_HW_IOP: /* IOP models don't do ADB soft power */
2860 case ADB_HW_UNKNOWN:
2861 default:
2862 return -1;
2863 }
2864 }
2865
2866 int
2867 adb_prog_switch_enable(void)
2868 {
2869 u_char output[ADB_MAX_MSG_LENGTH];
2870 int result;
2871 volatile int flag = 0;
2872
2873 switch (adbHardware) {
2874 case ADB_HW_IISI:
2875 output[0] = 0x03; /* 3 byte message */
2876 output[1] = 0x01; /* to pram/rtc/soft-power device */
2877 output[2] = 0x1c; /* prog. switch control */
2878 output[3] = 0x01; /* enable */
2879 result = send_adb_IIsi((u_char *)output, (u_char *)0,
2880 (void *)adb_op_comprout, (void *)&flag, (int)0);
2881 if (result != 0) /* exit if not sent */
2882 return -1;
2883
2884 while (0 == flag) /* wait for send to finish */
2885 ;
2886
2887 return 0;
2888
2889 case ADB_HW_PB:
2890 return -1;
2891
2892 case ADB_HW_II: /* II models don't do prog. switch */
2893 case ADB_HW_IOP: /* IOP models don't do prog. switch */
2894 case ADB_HW_CUDA: /* cuda doesn't do prog. switch TO DO: verify this */
2895 case ADB_HW_UNKNOWN:
2896 default:
2897 return -1;
2898 }
2899 }
2900
2901 int
2902 adb_prog_switch_disable(void)
2903 {
2904 u_char output[ADB_MAX_MSG_LENGTH];
2905 int result;
2906 volatile int flag = 0;
2907
2908 switch (adbHardware) {
2909 case ADB_HW_IISI:
2910 output[0] = 0x03; /* 3 byte message */
2911 output[1] = 0x01; /* to pram/rtc/soft-power device */
2912 output[2] = 0x1c; /* prog. switch control */
2913 output[3] = 0x01; /* disable */
2914 result = send_adb_IIsi((u_char *)output, (u_char *)0,
2915 (void *)adb_op_comprout, (void *)&flag, (int)0);
2916 if (result != 0) /* exit if not sent */
2917 return -1;
2918
2919 while (0 == flag) /* wait for send to finish */
2920 ;
2921
2922 return 0;
2923
2924 case ADB_HW_PB:
2925 return -1;
2926
2927 case ADB_HW_II: /* II models don't do prog. switch */
2928 case ADB_HW_IOP: /* IOP models don't do prog. switch */
2929 case ADB_HW_CUDA: /* cuda doesn't do prog. switch */
2930 case ADB_HW_UNKNOWN:
2931 default:
2932 return -1;
2933 }
2934 }
2935
2936 int
2937 CountADBs(void)
2938 {
2939 return (count_adbs());
2940 }
2941
2942 void
2943 ADBReInit(void)
2944 {
2945 adb_reinit();
2946 }
2947
2948 int
2949 GetIndADB(ADBDataBlock * info, int index)
2950 {
2951 return (get_ind_adb_info(info, index));
2952 }
2953
2954 int
2955 GetADBInfo(ADBDataBlock * info, int adbAddr)
2956 {
2957 return (get_adb_info(info, adbAddr));
2958 }
2959
2960 int
2961 SetADBInfo(ADBSetInfoBlock * info, int adbAddr)
2962 {
2963 return (set_adb_info(info, adbAddr));
2964 }
2965
2966 int
2967 ADBOp(Ptr buffer, Ptr compRout, Ptr data, short commandNum)
2968 {
2969 return (adb_op(buffer, compRout, data, commandNum));
2970 }
2971
2972 #endif
2973