adb_direct.c revision 1.3 1 /* $NetBSD: adb_direct.c,v 1.3 1997/04/14 16:56:26 scottr Exp $ */
2
3 /*
4 * Copyright (C) 1996, 1997 John P. Wittkoski
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by John P. Wittkoski.
18 * 4. The name of the author may not be used to endorse or promote products
19 * derived from this software without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
22 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
23 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
24 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
26 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
30 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 */
32 /* From: adb_direct.c 1.91 1/20/97 jpw */
33
34 /* This code is rather messy, but I don't have time right now
35 * to clean it up as much as I would like.
36 * But it works, so I'm happy. :-) jpw */
37
38 #ifdef __NetBSD__
39 #include "opt_mrg_adb.h"
40
41 #include <sys/param.h>
42 #include <sys/cdefs.h>
43 #include <sys/systm.h>
44
45 #include <machine/viareg.h>
46 #include <machine/param.h>
47 #include <machine/cpu.h>
48 #include <machine/adbsys.h> /* required for adbvar.h */
49
50 #include <arch/mac68k/mac68k/macrom.h>
51 #include "adb_direct.h"
52 #include "adbvar.h"
53 #define printf_intr printf
54 #else
55 #include "via.h" /* for macos based testing */
56 #endif
57
58 /* more verbose for testing */
59 /*#define DEBUG*/
60
61 /* include changes to work with Takashi's Power Manager support */
62 /*#define ADB_PB_TESTING*/
63
64 /* some misc. leftovers */
65 #define vPB 0x0000
66 #define vPB3 0x08
67 #define vPB4 0x10
68 #define vPB5 0x20
69 #define vSR_INT 0x04
70 #define vSR_OUT 0x10
71
72 /* types of adb hardware that we (will eventually) support */
73 #define ADB_HW_UNKNOWN 0x01 /* don't know */
74 #define ADB_HW_II 0x02 /* Mac II series */
75 #define ADB_HW_IISI 0x03 /* Mac IIsi series */
76 #define ADB_HW_PB 0x04 /* PowerBook series */
77 #define ADB_HW_CUDA 0x05 /* Machines with a Cuda chip */
78
79 /* the type of ADB action that we are currently preforming */
80 #define ADB_ACTION_NOTREADY 0x01 /* has not been initialized yet */
81 #define ADB_ACTION_IDLE 0x02 /* the bus is currently idle */
82 #define ADB_ACTION_OUT 0x03 /* sending out a command */
83 #define ADB_ACTION_IN 0x04 /* receiving data */
84
85 /*
86 * These describe the state of the ADB bus itself, although they
87 * don't necessarily correspond directly to ADB states.
88 * Note: these are not really used in the IIsi code.
89 */
90 #define ADB_BUS_UNKNOWN 0x01 /* we don't know yet - all models */
91 #define ADB_BUS_IDLE 0x02 /* bus is idle - all models */
92 #define ADB_BUS_CMD 0x03 /* starting a command - II models */
93 #define ADB_BUS_ODD 0x04 /* the "odd" state - II models */
94 #define ADB_BUS_EVEN 0x05 /* the "even" state - II models */
95 #define ADB_BUS_ACTIVE 0x06 /* active state - IIsi models */
96 #define ADB_BUS_ACK 0x07 /* currently ACKing - IIsi models */
97
98 /*
99 * Shortcuts for setting or testing the VIA bit states.
100 * Not all shortcuts are used for every type of ADB hardware.
101 */
102 #define ADB_SET_STATE_IDLE_II() via_reg(VIA1, vBufB) |= (vPB4 | vPB5)
103 #define ADB_SET_STATE_IDLE_IISI() via_reg(VIA1, vBufB) &= ~(vPB4 | vPB5)
104 #define ADB_SET_STATE_IDLE_CUDA() via_reg(VIA1, vBufB) |= (vPB4 | vPB5)
105 #define ADB_SET_STATE_CMD() via_reg(VIA1, vBufB) &= ~(vPB4 | vPB5)
106 #define ADB_SET_STATE_EVEN() via_reg(VIA1, vBufB) = ( (via_reg(VIA1, \
107 vBufB) | vPB4) & ~vPB5 )
108 #define ADB_SET_STATE_ODD() via_reg(VIA1, vBufB) = ( (via_reg(VIA1, \
109 vBufB) | vPB5) & ~vPB4 )
110 #define ADB_SET_STATE_ACTIVE() via_reg(VIA1, vBufB) |= vPB5
111 #define ADB_SET_STATE_INACTIVE() via_reg(VIA1, vBufB) &= ~vPB5
112 #define ADB_SET_STATE_TIP() via_reg(VIA1, vBufB) &= ~vPB5
113 #define ADB_CLR_STATE_TIP() via_reg(VIA1, vBufB) |= vPB5
114 #define ADB_SET_STATE_ACKON() via_reg(VIA1, vBufB) |= vPB4
115 #define ADB_SET_STATE_ACKOFF() via_reg(VIA1, vBufB) &= ~vPB4
116 #define ADB_TOGGLE_STATE_ACK_CUDA() via_reg(VIA1, vBufB) ^= vPB4
117 #define ADB_SET_STATE_ACKON_CUDA() via_reg(VIA1, vBufB) &= ~vPB4
118 #define ADB_SET_STATE_ACKOFF_CUDA() via_reg(VIA1, vBufB) |= vPB4
119 #define ADB_SET_SR_INPUT() via_reg(VIA1, vACR) &= ~vSR_OUT
120 #define ADB_SET_SR_OUTPUT() via_reg(VIA1, vACR) |= vSR_OUT
121 #define ADB_SR() via_reg(VIA1, vSR)
122 #define ADB_VIA_INTR_ENABLE() via_reg(VIA1, vIER) = 0x84
123 #define ADB_VIA_INTR_DISABLE() via_reg(VIA1, vIER) = 0x04
124 #define ADB_VIA_CLR_INTR() via_reg(VIA1, vIFR) = 0x04
125 #define ADB_INTR_IS_OFF ( vPB3 == (via_reg(VIA1, vBufB) & vPB3) )
126 #define ADB_INTR_IS_ON ( 0 == (via_reg(VIA1, vBufB) & vPB3) )
127 #define ADB_SR_INTR_IS_OFF ( 0 == (via_reg(VIA1, vIFR) & vSR_INT) )
128 #define ADB_SR_INTR_IS_ON ( vSR_INT == (via_reg(VIA1, vIFR) & vSR_INT) )
129
130 /*
131 * This is the delay that is required (in uS) between certain
132 * ADB transactions. The actual timing delay for for each uS is
133 * calculated at boot time to account for differences in machine speed.
134 */
135 #define ADB_ACK_DELAY 150
136
137 /*
138 * Maximum ADB message length; includes space for data, result, and
139 * device code - plus a little for safety.
140 */
141 #define MAX_ADB_MSG_LENGTH 20
142
143 /*
144 * A structure for storing information about each ADB device.
145 */
146 struct ADBDevEntry {
147 void (*ServiceRtPtr) __P((void));
148 void *DataAreaAddr;
149 char devType;
150 char origAddr;
151 char currentAddr;
152 };
153
154 /*
155 * Used to hold ADB commands that are waiting to be sent out.
156 */
157 struct adbCmdHoldEntry {
158 u_char outBuf[MAX_ADB_MSG_LENGTH]; /* our message */
159 u_char *saveBuf; /* buffer to know where to save result */
160 u_char *compRout; /* completion routine pointer */
161 u_char *data; /* completion routine data pointer */
162 };
163
164 /*
165 * A few variables that we need and their initial values.
166 */
167 int adbHardware = ADB_HW_UNKNOWN;
168 int adbActionState = ADB_ACTION_NOTREADY;
169 int adbBusState = ADB_BUS_UNKNOWN;
170 int adbWaiting = 0; /* waiting for return data from the device */
171 int adbWriteDelay = 0; /* working on (or waiting to do) a write */
172 int adbOutQueueHasData = 0; /* something in the "queue" waiting to go out */
173 int adbNextEnd = 0; /* the next incoming bute is the last (II) */
174
175 int adbWaitingCmd = 0; /* ADB command we are waiting for */
176 u_char *adbBuffer = (long) 0; /* pointer to user data area */
177 void *adbCompRout = (long) 0; /* pointer to the completion routine */
178 void *adbCompData = (long) 0; /* pointer to the completion routine data */
179 long adbFakeInts = 0; /* keeps track of fake ADB interrupts for
180 * timeouts (II) */
181 int adbStarting = 0; /* doing ADB reinit, so do "polling" differently */
182 int adbSendTalk = 0; /* the intr routine is sending the talk, not
183 * the user (II) */
184 int adbPolling = 0; /* we are polling for service request */
185 int adbPollCmd = 0; /* the last poll command we sent */
186
187 u_char adbInputBuffer[MAX_ADB_MSG_LENGTH]; /* data input buffer */
188 u_char adbOutputBuffer[MAX_ADB_MSG_LENGTH]; /* data output buffer */
189 struct adbCmdHoldEntry adbOutQueue; /* our 1 entry output "queue" */
190
191 int adbSentChars = 0; /* how many characters we have sent */
192 int adbLastDevice = 0; /* last ADB device we heard from (II ONLY) */
193 int adbLastDevIndex = 0; /* last ADB device loc. in device table (II ONLY) */
194 int adbLastCommand = 0; /* the last ADB command we sent (II) */
195 int adbWaitingSubDev = 0; /* ADB sub-device (RTC, PRAM, etc) - IIsi ONLY - unused */
196 int adbWaitingDevice = 0; /* ADB device we are waiting for - unused */
197
198 struct ADBDevEntry ADBDevTable[16]; /* our ADB device table */
199 int ADBNumDevices; /* number of ADB devices found with ADBReInit */
200
201 extern struct mac68k_machine_S mac68k_machine;
202 extern int zshard(int);
203
204 #ifdef ADB_PB_TESTING
205 extern void pm_setup_adb(void);
206 extern void pm_check_adb_devices(int);
207 extern void pm_intr(void);
208 extern int pm_adb_op(u_char *, void *, void *, int);
209 extern void pm_init_adb_device(void);
210 #endif
211
212
213 /*
214 * The following are private routines.
215 */
216 void print_single __P((unsigned char *));
217 void adb_intr __P((void));
218 void adb_intr_II __P((void));
219 void adb_intr_IIsi __P((void));
220 void adb_intr_cuda __P((void));
221 int send_adb_II __P((unsigned char *, unsigned char *, void *, void *, int));
222 int send_adb_IIsi __P((unsigned char *, unsigned char *, void *, void *, int));
223 int send_adb_cuda __P((unsigned char *, unsigned char *, void *, void *, int));
224 void adb_intr_cuda_test __P((void));
225 void adb_handle_unsol __P((unsigned char *));
226 void adb_op_comprout __P((void));
227 void adb_reinit __P((void));
228 int count_adbs __P((void));
229 int get_ind_adb_info __P((ADBDataBlock *, int));
230 int get_adb_info __P((ADBDataBlock *, int));
231 int set_adb_info __P((ADBSetInfoBlock *, int));
232 void adb_setup_hw_type __P((void));
233 int adb_op __P((Ptr, Ptr, Ptr, short));
234 void adb_handle_unsol __P((unsigned char *));
235 int adb_op_sync __P((Ptr, Ptr, Ptr, short));
236 void adb_read_II __P((unsigned char *));
237 void adb_cleanup __P((unsigned char *));
238 void adb_cleanup_IIsi __P((unsigned char *));
239 void adb_comp_exec __P((void));
240 int adb_cmd_result __P((unsigned char *));
241 int adb_cmd_extra __P((unsigned char *));
242 int adb_guess_next_device __P((void));
243 int adb_prog_switch_enable __P((void));
244 int adb_prog_switch_disable __P((void));
245 /* we should create this and it will be the public version */
246 int send_adb __P((unsigned char *, void *, void *));
247
248
249 /*
250 * print_single
251 * Diagnostic display routine. Displays the hex values of the
252 * specified elements of the u_char. The length of the "string"
253 * is in [0].
254 */
255 void
256 print_single(thestring)
257 u_char *thestring;
258 {
259 int x;
260
261 if (thestring == 0) {
262 printf_intr("no data - null pointer\n");
263 return;
264 }
265 if ((int)(thestring[0]) == 0) {
266 printf_intr("nothing returned\n");
267 return;
268 }
269 if (thestring[0] > 20) {
270 printf_intr("ADB: ACK > 20 no way!\n");
271 thestring[0] = 20;
272 }
273 printf_intr("(length=0x%x):", thestring[0]);
274 for (x = 0; x < thestring[0]; x++)
275 printf_intr(" 0x%02x", thestring[x + 1]);
276 printf_intr("\n");
277 }
278
279
280 /*
281 * called when when an adb interrupt happens
282 *
283 * Cuda version of adb_intr
284 * TO DO: can probably reduce the number of zshard calls in here
285 */
286 void
287 adb_intr_cuda(void)
288 {
289 int i, ending, len;
290 unsigned int s;
291
292 s = splhigh(); /* can't be too careful - might be called */
293 /* from a routine, NOT an interrupt */
294
295 ADB_VIA_CLR_INTR(); /* clear interrupt */
296
297 ADB_VIA_INTR_DISABLE(); /* disable ADB interrupt on IIs. */
298
299 switch_start:
300 switch (adbActionState) {
301 case ADB_ACTION_IDLE:
302 adbInputBuffer[1] = ADB_SR(); /* get byte */
303 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
304 ADB_SET_STATE_TIP(); /* signal start of data frame */
305 printf_intr("idle 0x%02x ", adbInputBuffer[1]);
306 adbInputBuffer[0] = 1;
307 adbActionState = ADB_ACTION_IN; /* set next state */
308 break;
309
310 case ADB_ACTION_IN:
311 adbInputBuffer[++adbInputBuffer[0]] = ADB_SR(); /* get byte */
312 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
313 if (ADB_INTR_IS_OFF) /* check for end of frame */
314 ending = 1;
315 else
316 ending = 0;
317
318 if (1 == ending) { /* end of message? */
319 ADB_CLR_STATE_TIP(); /* signal end of frame */
320 printf_intr("in end 0x%02x ", adbInputBuffer[adbInputBuffer[0]]);
321 print_single(adbInputBuffer);
322 /* this section _should_ handle all ADB and RTC/PRAM type commands, */
323 /* but there may be more... */
324 /* note: commands are always at [4], even for rtc/pram commands */
325 if ((adbWaiting == 1) && /* are we waiting AND */
326 (adbInputBuffer[4] == adbWaitingCmd) && /* the cmd we sent AND */
327 ((adbInputBuffer[2] == 0x00) || /* it's from the
328 * ADB device OR */
329 (adbInputBuffer[2] == 0x01))) { /* it's from the PRAM/RTC device */
330
331 /* is this data we are waiting for? */
332 if (adbBuffer != (long) 0) { /* if valid return data pointer */
333 /* get return length minus extras */
334 len = adbInputBuffer[0] - 4;
335 /* if adb_op is ever made to be called from a user
336 * routine, we should use a copyout or copyin
337 * here to be sure we're in the correct context */
338 for (i = 1; i <= len; i++)
339 adbBuffer[i] = adbInputBuffer[4 + i];
340 if (len < 0)
341 len = 0;
342 adbBuffer[0] = len;
343 }
344 adb_comp_exec(); /* call completion routine */
345
346 adbWaitingCmd = 0; /* reset "waiting" vars */
347 adbWaiting = 0;
348 adbBuffer = (long) 0;
349 adbCompRout = (long) 0;
350 adbCompData = (long) 0;
351 } else {
352 /* pass the data off to the handler */
353 /* This section IGNORES all data that is not from
354 * the ADB sub-device. That is, not from rtc or pram.
355 * Maybe we should fix later, but do the other
356 * devices every send things without
357 * being asked? */
358 if (adbStarting == 0) /* ignore if during adbreinit */
359 if (adbInputBuffer[2] == 0x00)
360 adb_handle_unsol(adbInputBuffer);
361 }
362
363 adbActionState = ADB_ACTION_IDLE;
364 adbInputBuffer[0] = 0; /* reset length */
365
366 if (adbWriteDelay == 1) { /* were we waiting to write? */\
367 printf_intr("WRITE DELAY ");
368 adbSentChars = 0; /* nothing sent yet */
369 adbActionState = ADB_ACTION_OUT; /* set next state */
370
371 if (ADB_INTR_IS_ON) { /* ADB intr low during write */
372 ADB_CLR_STATE_TIP(); /* reset */
373 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
374 adbSentChars = 0; /* must start all over */
375 adbActionState = ADB_ACTION_IDLE; /* new state */
376 adbInputBuffer[0] = 0;
377 break;
378 }
379 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
380 ADB_SR() = adbOutputBuffer[adbSentChars + 1];
381 ADB_SET_STATE_TIP(); /* tell ADB that we want to send */
382 }
383 } else {
384 ADB_TOGGLE_STATE_ACK_CUDA();
385 printf_intr("in 0x%02x ", adbInputBuffer[adbInputBuffer[0]]);
386 }
387
388 break;
389
390 case ADB_ACTION_OUT:
391 i = ADB_SR(); /* reset SR-intr in IFR */
392 printf_intr("intr out 0x%02x ", i);
393 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
394
395 adbSentChars++;
396 if (ADB_INTR_IS_ON) { /* ADB intr low during write */
397 printf_intr("intr was on ");
398 ADB_CLR_STATE_TIP(); /* reset */
399 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
400 adbSentChars = 0; /* must start all over */
401 adbActionState = ADB_ACTION_IDLE; /* new state */
402 adbInputBuffer[0] = 0;
403 adbWriteDelay = 1; /* must retry when done with read */
404 delay(ADB_ACK_DELAY); /* delay */
405 /* TO DO: not sure if this is the right thing to do for Cuda */
406 goto switch_start; /* process next state right now */
407 break;
408 }
409
410 if (adbOutputBuffer[0] == adbSentChars) { /* check for done */
411 if (0 == adb_cmd_result(adbOutputBuffer)) { /* do we expect data back? */
412 adbWaiting = 1; /* signal waiting for return */
413 adbWaitingCmd = adbOutputBuffer[2]; /* save waiting command */
414 } else { /* no talk, so done */
415 adb_comp_exec(); /* call completion routine */
416 adbWaitingCmd = 0; /* reset "waiting" vars, just in case */
417 adbBuffer = (long) 0;
418 adbCompRout = (long) 0;
419 adbCompData = (long) 0;
420 }
421
422 adbWriteDelay = 0; /* done writing */
423 adbActionState = ADB_ACTION_IDLE; /* signal bus is idle */
424 /*ADB_SET_SR_INPUT();*/ /* make sure SR is set to IN */
425 ADB_TOGGLE_STATE_ACK_CUDA();
426 ADB_CLR_STATE_TIP(); /* end of frame */
427 printf_intr("write done ");
428 } else {
429 ADB_SR() = adbOutputBuffer[adbSentChars + 1]; /* send next byte */
430 ADB_TOGGLE_STATE_ACK_CUDA(); /* signal byte ready to shift */
431 printf_intr("toggle ");
432 }
433 break;
434
435 case ADB_ACTION_NOTREADY:
436 printf_intr("adb: not yet initialized\n");
437 break;
438
439 default:
440 printf_intr("intr: unknown ADB state\n");
441 }
442
443 ADB_VIA_INTR_ENABLE(); /* enable ADB interrupt on IIs. */
444
445 splx(s); /* restore */
446
447 return;
448 } /* end adb_intr_IIsi */
449
450
451 int
452 send_adb_cuda(u_char *in, u_char *buffer, void *compRout, void *data, int
453 command)
454 {
455 int i, s, len;
456
457 if (adbActionState == ADB_ACTION_NOTREADY)
458 return 1;
459
460 s = splhigh(); /* don't interrupt while we are messing with the ADB */
461
462 if ((adbActionState == ADB_ACTION_IDLE) && /* ADB available? */
463 (ADB_INTR_IS_OFF)) { /* and no incoming interrupt? */
464
465 } else if (adbWriteDelay == 0) /* it's busy, but is anything waiting? */
466 adbWriteDelay = 1; /* if no, then we'll "queue" it up */
467 else {
468 splx(s);
469 return 1; /* really busy! */
470 }
471
472 if ((long) in == (long) 0) { /* need to convert? */
473 /* don't need to use adb_cmd_extra here because this section will be called */
474 /* ONLY when it is an ADB command (no RTC or PRAM) */
475 if ((command & 0x0c) == 0x08) /* copy addl data ONLY if doing a listen! */
476 len = buffer[0]; /* length of additional data */
477 else
478 len = 0; /* no additional data */
479
480 adbOutputBuffer[0] = 2 + len; /* dev. type + command + addl. data */
481 adbOutputBuffer[1] = 0x00; /* mark as an ADB command */
482 adbOutputBuffer[2] = (u_char) command; /* load command */
483
484 for (i = 1; i <= len; i++) /* copy additional output data, if any */
485 adbOutputBuffer[2 + i] = buffer[i];
486 } else
487 for (i = 0; i <= (adbOutputBuffer[0] + 1); i++)
488 adbOutputBuffer[i] = in[i];
489
490 adbSentChars = 0; /* nothing sent yet */
491 adbBuffer = buffer; /* save buffer to know where to save result */
492 adbCompRout = compRout; /* save completion routine pointer */
493 adbCompData = data; /* save completion routine data pointer */
494 adbWaitingCmd = adbOutputBuffer[2]; /* save wait command */
495
496 if (adbWriteDelay != 1) { /* start command now? */
497 printf_intr("out start ");
498 adbActionState = ADB_ACTION_OUT; /* set next state */
499 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
500 ADB_SR() = adbOutputBuffer[adbSentChars + 1]; /* load byte for output */
501 ADB_SET_STATE_ACKOFF_CUDA();
502 ADB_SET_STATE_TIP(); /* tell ADB that we want to send */
503 }
504 adbWriteDelay = 1; /* something in the write "queue" */
505
506 splx(s);
507
508 if (0x0100 <= (s & 0x0700)) /* were VIA1 interrupts blocked ? */
509 /* poll until byte done */
510 while ((adbActionState != ADB_ACTION_IDLE) || (ADB_INTR_IS_ON)
511 || (adbWaiting == 1))
512 if (ADB_SR_INTR_IS_ON) /* wait for "interrupt" */
513 adb_intr_cuda(); /* go process "interrupt" */
514
515 return 0;
516 } /* send_adb_cuda */
517
518
519 /*
520 * called when when an adb interrupt happens
521 *
522 * Cuda version of adb_intr
523 *
524 */
525 void
526 adb_intr_cuda_test(void)
527 {
528 int i, ending;
529 unsigned int s;
530
531 s = splhigh(); /* can't be too careful - might be called */
532 /* from a routine, NOT an interrupt */
533
534 ADB_VIA_CLR_INTR(); /* clear interrupt */
535
536 ADB_VIA_INTR_DISABLE(); /* disable ADB interrupt on IIs. */
537
538 printf_intr("intr ");
539 switch_start:
540 switch (adbActionState) {
541 case ADB_ACTION_IDLE:
542 adbInputBuffer[1] = ADB_SR(); /* get byte */
543 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
544 ADB_SET_STATE_TIP(); /* signal start of data frame */
545 printf_intr("idle 0x%02x ", adbInputBuffer[1]);
546 adbInputBuffer[0] = 1;
547 adbActionState = ADB_ACTION_IN; /* set next state */
548 break;
549
550 case ADB_ACTION_IN:
551 adbInputBuffer[++adbInputBuffer[0]] = ADB_SR(); /* get byte */
552 if (ADB_INTR_IS_OFF) /* check for end of frame */
553 ending = 1;
554 else
555 ending = 0;
556
557 if (1 == ending) { /* end of message? */
558 ADB_CLR_STATE_TIP(); /* signal end of frame */
559
560 printf_intr("in end 0x%02x ", adbInputBuffer[adbInputBuffer[0]]);
561 print_single(adbInputBuffer);
562
563 adbActionState = ADB_ACTION_IDLE;
564 adbInputBuffer[0] = 0; /* reset length */
565 } else {
566 ADB_TOGGLE_STATE_ACK_CUDA();
567 printf_intr("in 0x%02x ", adbInputBuffer[adbInputBuffer[0]]);
568 }
569
570
571 #if 0
572 /* this section _should_ handle all ADB and RTC/PRAM type commands, */
573 /* but there may be more... */
574 /* note: commands are always at [4], even for rtc/pram commands */
575 if ((adbWaiting == 1) && /* are we waiting AND */
576 (adbInputBuffer[4] == adbWaitingCmd) && /* the cmd we sent AND */
577 ((adbInputBuffer[2] == 0x00) || /* it's from the
578 * ADB device OR */
579 (adbInputBuffer[2] == 0x01))) { /* it's from the PRAM/RTC device */
580
581 /* is this data we are waiting for? */
582 if (adbBuffer != (long) 0) { /* if valid return data pointer */
583 /* get return length minus extras */
584 len = adbInputBuffer[0] - 4;
585 /* if adb_op is ever made to be called from a user
586 * routine, we should use a copyout or copyin
587 * here to be sure we're in the correct context */
588 for (i = 1; i <= len; i++)
589 adbBuffer[i] = adbInputBuffer[4 + i];
590 if (len < 0)
591 len = 0;
592 adbBuffer[0] = len;
593 }
594 adb_comp_exec(); /* call completion routine */
595 print_single(adbInputBuffer);
596
597 adbWaitingCmd = 0; /* reset "waiting" vars */
598 adbWaiting = 0;
599 adbBuffer = (long) 0;
600 adbCompRout = (long) 0;
601 adbCompData = (long) 0;
602 } else {
603 /* pass the data off to the handler */
604 /* This section IGNORES all data that is not from
605 * the ADB sub-device. That is, not from rtc or pram.
606 * Maybe we should fix later, but do the other
607 * devices every send things without
608 * being asked? */
609 if (adbStarting == 0) /* ignore if during adbreinit */
610 if (adbInputBuffer[2] == 0x00)
611 adb_handle_unsol(adbInputBuffer);
612 }
613
614 adbActionState = ADB_ACTION_IDLE;
615 adbInputBuffer[0] = 0; /* reset length */
616
617 if (adbWriteDelay == 1) { /* were we waiting to write? */
618 adbSentChars = 0; /* nothing sent yet */
619 adbActionState = ADB_ACTION_OUT; /* set next state */
620
621 zshard(0); /* grab any serial interrupts */
622
623 if (ADB_INTR_IS_ON) { /* ADB intr low during write */
624 ADB_SET_STATE_IDLE_CUDA(); /* reset */
625 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
626 adbSentChars = 0; /* must start all over */
627 adbActionState = ADB_ACTION_IDLE; /* new state */
628 adbInputBuffer[0] = 0;
629 /* may be able to take this out later */
630 delay(ADB_ACK_DELAY); /* delay */
631 break;
632 }
633 ADB_SET_STATE_TIP(); /* tell ADB that we want to send */
634 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
635 ADB_SR() = adbOutputBuffer[adbSentChars + 1];
636 ADB_TOGGLE_STATE_ACK_CUDA();
637 }
638 }
639 #endif
640 break;
641
642 case ADB_ACTION_OUT:
643 i = ADB_SR(); /* reset SR-intr in IFR */
644 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
645
646 adbSentChars++;
647 if (ADB_INTR_IS_ON) { /* ADB intr low during write */
648 ADB_SET_STATE_IDLE_CUDA(); /* reset */
649 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
650 adbSentChars = 0; /* must start all over */
651 adbActionState = ADB_ACTION_IDLE; /* new state */
652 adbInputBuffer[0] = 0;
653 adbWriteDelay = 1; /* must retry when done with read */
654 delay(ADB_ACK_DELAY); /* delay */
655 zshard(0); /* grab any serial interrupts */
656 goto switch_start; /* process next state right now */
657 break;
658 }
659 delay(ADB_ACK_DELAY); /* required delay */
660 zshard(0); /* grab any serial interrupts */
661
662 if (adbOutputBuffer[0] == adbSentChars) { /* check for done */
663 if (0 == adb_cmd_result(adbOutputBuffer)) { /* do we expect data back? */
664 adbWaiting = 1; /* signal waiting for return */
665 adbWaitingCmd = adbOutputBuffer[2]; /* save waiting command */
666 } else { /* no talk, so done */
667 adb_comp_exec(); /* call completion routine */
668 adbWaitingCmd = 0; /* reset "waiting" vars, just in case */
669 adbBuffer = (long) 0;
670 adbCompRout = (long) 0;
671 adbCompData = (long) 0;
672 }
673
674 adbWriteDelay = 0; /* done writing */
675 adbActionState = ADB_ACTION_IDLE; /* signal bus is idle */
676 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
677 ADB_SET_STATE_IDLE_CUDA(); /* end of frame */
678 } else {
679 ADB_SR() = adbOutputBuffer[adbSentChars + 1]; /* send next byte */
680 ADB_TOGGLE_STATE_ACK_CUDA();
681 }
682 break;
683
684 case ADB_ACTION_NOTREADY:
685 printf_intr("adb: not yet initialized\n");
686 break;
687
688 default:
689 printf_intr("intr: unknown ADB state\n");
690 }
691
692 ADB_VIA_INTR_ENABLE(); /* enable ADB interrupt on IIs. */
693
694 splx(s); /* restore */
695
696 return;
697 } /* end adb_intr_cuda_test */
698
699
700 /* TO DO: add one or two zshard calls in here */
701 void
702 adb_intr_II(void)
703 {
704 int i, len, intr_on = 0;
705 int send = 0, do_srq = 0;
706 unsigned int s;
707
708 s = splhigh(); /* can't be too careful - might be called */
709 /* from a routine, NOT an interrupt */
710
711 ADB_VIA_CLR_INTR(); /* clear interrupt */
712
713 ADB_VIA_INTR_DISABLE(); /* disable ADB interrupt on IIs. */
714
715 /*if (ADB_INTR_IS_ON)*/
716 /* printf_intr("INTR ON ");*/
717 if (ADB_INTR_IS_ON)
718 intr_on=1; /* save for later */
719
720 switch (adbActionState) {
721 case ADB_ACTION_IDLE:
722 if ( !intr_on ) {
723 /*printf_intr("FAKE DROPPED \n");*/
724 /*printf_intr(" XX ");*/
725 i=ADB_SR();
726 break;
727 }
728 adbNextEnd=0;
729 /*printf_intr("idle ");*/
730 adbInputBuffer[0] = 1;
731 adbInputBuffer[1] = ADB_SR(); /* get first byte */
732 /*printf_intr("0x%02x ", adbInputBuffer[1]);*/
733 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
734 adbActionState = ADB_ACTION_IN; /* set next state */
735 ADB_SET_STATE_EVEN(); /* set bus state to even */
736 adbBusState = ADB_BUS_EVEN;
737 break;
738
739 case ADB_ACTION_IN:
740 adbInputBuffer[++adbInputBuffer[0]] = ADB_SR(); /* get byte */
741 /*printf_intr("in 0x%02x ", adbInputBuffer[adbInputBuffer[0]]);*/
742 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
743
744 /*
745 * Check for an unsolicited Service Request (SRQ).
746 * An empty SRQ packet NEVER ends, so we must manually
747 * check for the following condition.
748 */
749 if ( adbInputBuffer[0]==4 && adbInputBuffer[2]==0xff &&
750 adbInputBuffer[3]==0xff && adbInputBuffer[4]==0xff &&
751 intr_on && !adbNextEnd )
752 do_srq=1;
753
754 if (adbNextEnd==1) { /* process last byte of packet */
755 adbNextEnd=0;
756 /*printf_intr("done: ");*/
757
758 /*
759 * If the following conditions are true (4 byte
760 * message, last 3 bytes are 0xff) then we
761 * basically got a "no response" from the ADB chip,
762 * so change the message to an empty one.
763 * We also clear intr_on to stop the SRQ send later
764 * on because these packets normally have the SRQ
765 * bit set even when there is NOT a pending SRQ.
766 */
767 if ( adbInputBuffer[0]==4 && adbInputBuffer[2]==0xff &&
768 adbInputBuffer[3]==0xff && adbInputBuffer[4]==0xff ) {
769 /*printf_intr("NO RESP ");*/
770 intr_on=0;
771 adbInputBuffer[0]=0;
772 }
773
774 adbLastDevice=(adbInputBuffer[1] & 0xf0) >> 4;
775
776 if ((!adbWaiting || adbPolling )
777 && (adbInputBuffer[0] != 0)) {
778 /* unsolicided - ignore if starting */
779 if (!adbStarting)
780 adb_handle_unsol(adbInputBuffer);
781 } else if ( !adbPolling ) { /* someone asked for it */
782 /*printf_intr("SOL: ");*/
783 /*print_single(adbInputBuffer);*/
784 if (adbBuffer != (long) 0) { /* if valid return data pointer */
785 /* get return length minus extras */
786 len = adbInputBuffer[0] - 1;
787
788 /* if adb_op is ever made to be called from a user
789 * routine, we should use a copyout or copyin
790 * here to be sure we're in the correct context. */
791 for (i = 1; i <= len; i++)
792 adbBuffer[i] = adbInputBuffer[i + 1];
793 if (len < 0)
794 len = 0;
795 adbBuffer[0] = len;
796 }
797 adb_comp_exec();
798 }
799
800 adbWaiting=0;
801 adbPolling=0;
802 adbInputBuffer[0]=0;
803 adbBuffer = (long) 0;
804 adbCompRout = (long) 0;
805 adbCompData = (long) 0;
806 /*
807 * Since we are done, check whether there is any data
808 * waiting to do out. If so, start the sending the data.
809 */
810 if (adbOutQueueHasData == 1) {
811 /*printf_intr("XXX: DOING OUT QUEUE\n");*/
812 /* copy over data */
813 for (i = 0; i <= (adbOutQueue.outBuf[0] + 1); i++)
814 adbOutputBuffer[i] = adbOutQueue.outBuf[i];
815 adbBuffer = adbOutQueue.saveBuf; /* user data area */
816 adbCompRout = adbOutQueue.compRout; /* completion routine */
817 adbCompData = adbOutQueue.data; /* comp. rout. data */
818 adbOutQueueHasData = 0; /* currently processing "queue" entry */
819 adbPolling=0;
820 send=1;
821 /* if intr_on is true, then it's a SRQ
822 * so poll other devices. */
823 } else if (intr_on) {
824 /*printf_intr("starting POLL ");*/
825 do_srq=1;
826 adbPolling=1;
827 } else if ( (adbInputBuffer[1] & 0x0f) != 0x0c) {
828 /*printf_intr("xC HACK ");*/
829 adbPolling=1;
830 send=1;
831 adbOutputBuffer[0]=1;
832 adbOutputBuffer[1]=(adbInputBuffer[1] & 0xf0) | 0x0c;
833 } else {
834 /*printf_intr("ending ");*/
835 adbBusState=ADB_BUS_IDLE;
836 adbActionState=ADB_ACTION_IDLE;
837 ADB_SET_STATE_IDLE_II();
838 break;
839 }
840 }
841
842 /*
843 * If do_srq is true then something above determined that
844 * the message has ended and some device is sending a
845 * service request. So we need to determine the next device
846 * and send a poll to it. (If the device we send to isn't the
847 * one that sent the SRQ, that ok as it will be caught
848 * the next time though.)
849 */
850 if ( do_srq ) {
851 /*printf_intr("SRQ! ");*/
852 adbPolling=1;
853 adb_guess_next_device();
854 adbOutputBuffer[0]=1;
855 adbOutputBuffer[1]=((adbLastDevice & 0x0f) << 4) | 0x0c;
856 send=1;
857 }
858
859 /*
860 * If send is true then something above determined that
861 * the message has ended and we need to start sending out
862 * a new message immediately. This could be because there
863 * is data waiting to go out or because an SRQ was seen.
864 */
865 if ( send ) {
866 adbNextEnd = 0;
867 adbSentChars = 0; /* nothing sent yet */
868 adbActionState = ADB_ACTION_OUT; /* set next state */
869 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
870 ADB_SR() = adbOutputBuffer[1]; /* load byte for output */
871 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */
872 ADB_SET_STATE_CMD(); /* tell ADB that we want to send */
873 break;
874 }
875
876 /*
877 * We only get this far if the message hasn't
878 * ended yet.
879 */
880 if (!intr_on) /* if adb intr. on then the */
881 adbNextEnd=1; /* NEXT byte is the last */
882
883 switch (adbBusState) { /* set to next state */
884 case ADB_BUS_EVEN:
885 ADB_SET_STATE_ODD(); /* set state to odd */
886 adbBusState = ADB_BUS_ODD;
887 break;
888
889 case ADB_BUS_ODD:
890 ADB_SET_STATE_EVEN(); /* set state to even */
891 adbBusState = ADB_BUS_EVEN;
892 break;
893 default:
894 printf_intr("strange state!!!\n"); /* huh? */
895 break;
896 }
897 break;
898
899 case ADB_ACTION_OUT:
900 adbNextEnd=0;
901 if (!adbPolling)
902 adbWaiting=1; /* not unsolicited */
903 i=ADB_SR(); /* clear interrupt */
904 adbSentChars++;
905 /*
906 * If the outgoing data was a TALK, we must
907 * switch to input mode to get the result.
908 */
909 if ( (adbOutputBuffer[1] & 0x0c) == 0x0c ) {
910 adbInputBuffer[0]=1;
911 adbInputBuffer[1]=i;
912 adbActionState=ADB_ACTION_IN;
913 ADB_SET_SR_INPUT();
914 adbBusState= ADB_BUS_EVEN;
915 ADB_SET_STATE_EVEN();
916 /*printf_intr("talk out 0x%02x ", i);*/
917 break;
918 }
919
920 /*
921 * If it's not a TALK, check whether all data has been
922 * sent. If so, call the completion routine and clean up.
923 * If not, advance to the next state.
924 */
925 /*printf_intr("non-talk out 0x%0x ", i);*/
926 ADB_SET_SR_OUTPUT();
927 if (adbOutputBuffer[0] == adbSentChars) { /* check for done */
928 /*printf_intr("done \n");*/
929 adb_comp_exec();
930 adbBuffer = (long) 0;
931 adbCompRout = (long) 0;
932 adbCompData = (long) 0;
933 if (adbOutQueueHasData == 1) {
934 /* copy over data */
935 for (i = 0; i <= (adbOutQueue.outBuf[0] + 1); i++)
936 adbOutputBuffer[i] = adbOutQueue.outBuf[i];
937 adbBuffer = adbOutQueue.saveBuf; /* user data area */
938 adbCompRout = adbOutQueue.compRout; /* completion routine */
939 adbCompData = adbOutQueue.data; /* comp. rout. data */
940 adbOutQueueHasData = 0; /* currently processing "queue" entry */
941 adbPolling=0;
942 } else {
943 adbOutputBuffer[0]=1;
944 adbOutputBuffer[1]=(adbOutputBuffer[1] & 0xf0) | 0x0c;
945 adbPolling=1; /* non-user poll */
946 }
947 adbNextEnd = 0;
948 adbSentChars = 0; /* nothing sent yet */
949 adbActionState = ADB_ACTION_OUT; /* set next state */
950 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
951 ADB_SR() = adbOutputBuffer[1]; /* load byte for output */
952 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */
953 ADB_SET_STATE_CMD(); /* tell ADB that we want to send */
954 break;
955 }
956
957 ADB_SR() = adbOutputBuffer[adbSentChars + 1];
958 switch (adbBusState) { /* advance to next state */
959 case ADB_BUS_EVEN:
960 ADB_SET_STATE_ODD(); /* set state to odd */
961 adbBusState = ADB_BUS_ODD;
962 break;
963
964 case ADB_BUS_CMD:
965 case ADB_BUS_ODD:
966 ADB_SET_STATE_EVEN(); /* set state to even */
967 adbBusState = ADB_BUS_EVEN;
968 break;
969
970 default:
971 printf_intr("strange state!!! (0x%x)\n", adbBusState);
972 break;
973 }
974 break;
975
976 default:
977 printf_intr("adb: unknown ADB state (during intr)\n");
978 }
979
980 ADB_VIA_INTR_ENABLE(); /* enable ADB interrupt on IIs. */
981
982 splx(s); /* restore */
983
984 return;
985
986 }
987
988
989 /*
990 * send_adb version for II series machines
991 */
992 int
993 send_adb_II(u_char *in, u_char *buffer, void *compRout, void *data, int command)
994 {
995 int i, s, len;
996
997 if (adbActionState == ADB_ACTION_NOTREADY) /* return if ADB not available */
998 return 1;
999
1000 s = splhigh(); /* don't interrupt while we are messing with the ADB */
1001
1002 if (0 != adbOutQueueHasData) { /* right now, "has data" means "full" */
1003 splx(s); /* sorry, try again later */
1004 return 1;
1005 }
1006 if ((long) in == (long) 0) { /* need to convert? */
1007 /*
1008 * Don't need to use adb_cmd_extra here because this section
1009 * will be called ONLY when it is an ADB command (no RTC or
1010 * PRAM), especially on II series!
1011 */
1012 if ((command & 0x0c) == 0x08) /* copy addl data ONLY if doing a listen! */
1013 len = buffer[0]; /* length of additional data */
1014 else
1015 len = 0; /* no additional data */
1016
1017 adbOutQueue.outBuf[0] = 1 + len; /* command + addl. data */
1018 adbOutQueue.outBuf[1] = (u_char) command; /* load command */
1019
1020 for (i = 1; i <= len; i++) /* copy additional output data, if any */
1021 adbOutQueue.outBuf[1 + i] = buffer[i];
1022 } else
1023 /* if data ready, just copy over */
1024 for (i = 0; i <= (adbOutQueue.outBuf[0] + 1); i++)
1025 adbOutQueue.outBuf[i] = in[i];
1026
1027 adbOutQueue.saveBuf = buffer; /* save buffer to know where to save result */
1028 adbOutQueue.compRout = compRout; /* save completion routine pointer */
1029 adbOutQueue.data = data; /* save completion routine data pointer */
1030
1031 if ((adbActionState == ADB_ACTION_IDLE) && /* is ADB available? */
1032 (ADB_INTR_IS_OFF) && /* and no incoming interrupts? */
1033 (adbPolling == 0)) { /* and we are not currently polling */
1034 /* then start command now */
1035 for (i = 0; i <= (adbOutQueue.outBuf[0] + 1); i++) /* copy over data */
1036 adbOutputBuffer[i] = adbOutQueue.outBuf[i];
1037
1038 adbBuffer = adbOutQueue.saveBuf; /* pointer to user data area */
1039 adbCompRout = adbOutQueue.compRout; /* pointer to the completion routine */
1040 adbCompData = adbOutQueue.data; /* pointer to the completion routine data */
1041
1042 adbSentChars = 0; /* nothing sent yet */
1043 adbActionState = ADB_ACTION_OUT; /* set next state */
1044 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */
1045
1046 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
1047
1048 ADB_SR() = adbOutputBuffer[adbSentChars + 1]; /* load byte for output */
1049 ADB_SET_STATE_CMD(); /* tell ADB that we want to send */
1050 adbOutQueueHasData = 0; /* currently processing "queue" entry */
1051 } else
1052 adbOutQueueHasData = 1; /* something in the write "queue" */
1053
1054 splx(s);
1055
1056 if (0x0100 <= (s & 0x0700)) /* were VIA1 interrupts blocked ? */
1057 /* poll until message done */
1058 while ((adbActionState != ADB_ACTION_IDLE) || (ADB_INTR_IS_ON)
1059 || (adbWaiting == 1) || (adbPolling == 1))
1060 if (ADB_SR_INTR_IS_ON) /* wait for "interrupt" */
1061 adb_intr_II(); /* go process "interrupt" */
1062
1063 return 0;
1064 }
1065
1066
1067 /*
1068 * This routine is called from the II series interrupt routine
1069 * to determine what the "next" device is that should be polled.
1070 */
1071 int
1072 adb_guess_next_device(void)
1073 {
1074 int last, i, dummy;
1075
1076 if (adbStarting) {
1077 /* start polling EVERY device, since we can't
1078 * be sure there is anything in the device table yet */
1079 if (adbLastDevice < 1 || adbLastDevice > 15)
1080 adbLastDevice = 1;
1081 if (++adbLastDevice > 15) /* point to next one */
1082 adbLastDevice = 1;
1083 } else {
1084 /* find the next device using the device table */
1085 if (adbLastDevice < 1 || adbLastDevice > 15) /* let's be parinoid */
1086 adbLastDevice = 2;
1087 last = 1; /* default index location */
1088
1089 for (i = 1; i < 16; i++) /* find index entry */
1090 if (ADBDevTable[i].currentAddr == adbLastDevice) { /* look for device */
1091 last = i; /* found it */
1092 break;
1093 }
1094
1095 dummy = last; /* index to start at */
1096 for (;;) { /* find next device in index */
1097 if (++dummy > 15) /* wrap around if needed */
1098 dummy = 1;
1099 if (dummy == last) { /* didn't find any other
1100 * device! This can happen if there
1101 * are no devices on the bus */
1102 dummy = 2;
1103 break;
1104 }
1105 /* found the next device */
1106 if (ADBDevTable[dummy].devType != 0)
1107 break;
1108 }
1109 adbLastDevice=ADBDevTable[dummy].currentAddr;
1110 }
1111 return adbLastDevice;
1112 }
1113
1114 /*
1115 * Called when when an adb interrupt happens.
1116 * This routine simply transfers control over to the appropriate
1117 * code for the machine we are running on.
1118 */
1119 void
1120 adb_intr(void)
1121 {
1122 switch (adbHardware) {
1123 case ADB_HW_II:
1124 adb_intr_II();
1125 break;
1126
1127 case ADB_HW_IISI:
1128 adb_intr_IIsi();
1129 break;
1130
1131 case ADB_HW_PB:
1132 break;
1133
1134 case ADB_HW_CUDA:
1135 adb_intr_cuda();
1136 break;
1137
1138 case ADB_HW_UNKNOWN:
1139 break;
1140 }
1141 }
1142
1143
1144 /*
1145 * called when when an adb interrupt happens
1146 *
1147 * IIsi version of adb_intr
1148 *
1149 */
1150 void
1151 adb_intr_IIsi(void)
1152 {
1153 int i, ending, len;
1154 unsigned int s;
1155
1156 s = splhigh(); /* can't be too careful - might be called */
1157 /* from a routine, NOT an interrupt */
1158
1159 ADB_VIA_CLR_INTR(); /* clear interrupt */
1160
1161 ADB_VIA_INTR_DISABLE(); /* disable ADB interrupt on IIs. */
1162
1163 switch_start:
1164 switch (adbActionState) {
1165 case ADB_ACTION_IDLE:
1166 delay(ADB_ACK_DELAY); /* short delay is required
1167 * before the first byte */
1168
1169 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
1170 ADB_SET_STATE_ACTIVE(); /* signal start of data frame */
1171 adbInputBuffer[1] = ADB_SR(); /* get byte */
1172 adbInputBuffer[0] = 1;
1173 adbActionState = ADB_ACTION_IN; /* set next state */
1174
1175 ADB_SET_STATE_ACKON(); /* start ACK to ADB chip */
1176 delay(ADB_ACK_DELAY); /* delay */
1177 ADB_SET_STATE_ACKOFF(); /* end ACK to ADB chip */
1178 zshard(0); /* grab any serial interrupts */
1179 break;
1180
1181 case ADB_ACTION_IN:
1182 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
1183 adbInputBuffer[++adbInputBuffer[0]] = ADB_SR(); /* get byte */
1184 if (ADB_INTR_IS_OFF) /* check for end of frame */
1185 ending = 1;
1186 else
1187 ending = 0;
1188
1189 ADB_SET_STATE_ACKON(); /* start ACK to ADB chip */
1190 delay(ADB_ACK_DELAY); /* delay */
1191 ADB_SET_STATE_ACKOFF(); /* end ACK to ADB chip */
1192 zshard(0); /* grab any serial interrupts */
1193
1194 if (1 == ending) { /* end of message? */
1195 ADB_SET_STATE_INACTIVE(); /* signal end of frame */
1196 /* this section _should_ handle all ADB and RTC/PRAM type commands, */
1197 /* but there may be more... */
1198 /* note: commands are always at [4], even for rtc/pram commands */
1199 if ((adbWaiting == 1) && /* are we waiting AND */
1200 (adbInputBuffer[4] == adbWaitingCmd) && /* the cmd we sent AND */
1201 ((adbInputBuffer[2] == 0x00) || /* it's from the
1202 * ADB device OR */
1203 (adbInputBuffer[2] == 0x01))) { /* it's from the PRAM/RTC device */
1204
1205 /* is this data we are waiting for? */
1206 if (adbBuffer != (long) 0) { /* if valid return data pointer */
1207 /* get return length minus extras */
1208 len = adbInputBuffer[0] - 4;
1209 /* if adb_op is ever made to be called from a user
1210 * routine, we should use a copyout or copyin
1211 * here to be sure we're in the correct context */
1212 for (i = 1; i <= len; i++)
1213 adbBuffer[i] = adbInputBuffer[4 + i];
1214 if (len < 0)
1215 len = 0;
1216 adbBuffer[0] = len;
1217 }
1218 adb_comp_exec(); /* call completion routine */
1219
1220 adbWaitingCmd = 0; /* reset "waiting" vars */
1221 adbWaiting = 0;
1222 adbBuffer = (long) 0;
1223 adbCompRout = (long) 0;
1224 adbCompData = (long) 0;
1225 } else {
1226 /* pass the data off to the handler */
1227 /* This section IGNORES all data that is not from
1228 * the ADB sub-device. That is, not from rtc or pram.
1229 * Maybe we should fix later, but do the other
1230 * devices every send things without
1231 * being asked? */
1232 if (adbStarting == 0) /* ignore if during adbreinit */
1233 if (adbInputBuffer[2] == 0x00)
1234 adb_handle_unsol(adbInputBuffer);
1235 }
1236
1237 adbActionState = ADB_ACTION_IDLE;
1238 adbInputBuffer[0] = 0; /* reset length */
1239
1240 if (adbWriteDelay == 1) { /* were we waiting to write? */
1241 adbSentChars = 0; /* nothing sent yet */
1242 adbActionState = ADB_ACTION_OUT; /* set next state */
1243
1244 delay(ADB_ACK_DELAY); /* delay */
1245 zshard(0); /* grab any serial interrupts */
1246
1247 if (ADB_INTR_IS_ON) { /* ADB intr low during write */
1248 ADB_SET_STATE_IDLE_IISI(); /* reset */
1249 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
1250 adbSentChars = 0; /* must start all over */
1251 adbActionState = ADB_ACTION_IDLE; /* new state */
1252 adbInputBuffer[0] = 0;
1253 /* may be able to take this out later */
1254 delay(ADB_ACK_DELAY); /* delay */
1255 break;
1256 }
1257 ADB_SET_STATE_ACTIVE(); /* tell ADB that we want to send */
1258 ADB_SET_STATE_ACKOFF(); /* make sure */
1259 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
1260 ADB_SR() = adbOutputBuffer[adbSentChars + 1];
1261 ADB_SET_STATE_ACKON(); /* tell ADB byte ready to shift */
1262 }
1263 }
1264 break;
1265
1266 case ADB_ACTION_OUT:
1267 i = ADB_SR(); /* reset SR-intr in IFR */
1268 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
1269
1270 ADB_SET_STATE_ACKOFF(); /* finish ACK */
1271 adbSentChars++;
1272 if (ADB_INTR_IS_ON) { /* ADB intr low during write */
1273 ADB_SET_STATE_IDLE_IISI(); /* reset */
1274 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
1275 adbSentChars = 0; /* must start all over */
1276 adbActionState = ADB_ACTION_IDLE; /* new state */
1277 adbInputBuffer[0] = 0;
1278 adbWriteDelay = 1; /* must retry when done with read */
1279 delay(ADB_ACK_DELAY); /* delay */
1280 zshard(0); /* grab any serial interrupts */
1281 goto switch_start; /* process next state right now */
1282 break;
1283 }
1284 delay(ADB_ACK_DELAY); /* required delay */
1285 zshard(0); /* grab any serial interrupts */
1286
1287 if (adbOutputBuffer[0] == adbSentChars) { /* check for done */
1288 if (0 == adb_cmd_result(adbOutputBuffer)) { /* do we expect data back? */
1289 adbWaiting = 1; /* signal waiting for return */
1290 adbWaitingCmd = adbOutputBuffer[2]; /* save waiting command */
1291 } else { /* no talk, so done */
1292 adb_comp_exec(); /* call completion routine */
1293 adbWaitingCmd = 0; /* reset "waiting" vars, just in case */
1294 adbBuffer = (long) 0;
1295 adbCompRout = (long) 0;
1296 adbCompData = (long) 0;
1297 }
1298
1299 adbWriteDelay = 0; /* done writing */
1300 adbActionState = ADB_ACTION_IDLE; /* signal bus is idle */
1301 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
1302 ADB_SET_STATE_INACTIVE(); /* end of frame */
1303 } else {
1304 ADB_SR() = adbOutputBuffer[adbSentChars + 1]; /* send next byte */
1305 ADB_SET_STATE_ACKON(); /* signal byte ready to shift */
1306 }
1307 break;
1308
1309 case ADB_ACTION_NOTREADY:
1310 printf_intr("adb: not yet initialized\n");
1311 break;
1312
1313 default:
1314 printf_intr("intr: unknown ADB state\n");
1315 }
1316
1317 ADB_VIA_INTR_ENABLE(); /* enable ADB interrupt on IIs. */
1318
1319 splx(s); /* restore */
1320
1321 return;
1322 } /* end adb_intr_IIsi */
1323
1324
1325 /*****************************************************************************
1326 * if the device is currently busy, and there is no data waiting to go out, then
1327 * the data is "queued" in the outgoing buffer. If we are already waiting, then
1328 * we return.
1329 * in: if (in==0) then the command string is built from command and buffer
1330 * if (in!=0) then in is used as the command string
1331 * buffer: additional data to be sent (used only if in==0)
1332 * this is also where return data is stored
1333 * compRout: the completion routine that is called when then return value
1334 * is received (if a return value is expected)
1335 * data: a data pointer that can be used by the completion routine
1336 * command: an ADB command to be sent (used only if in==0)
1337 *
1338 */
1339 int
1340 send_adb_IIsi(u_char *in, u_char *buffer, void *compRout, void *data, int
1341 command)
1342 {
1343 int i, s, len;
1344
1345 if (adbActionState == ADB_ACTION_NOTREADY)
1346 return 1;
1347
1348 s = splhigh(); /* don't interrupt while we are messing with the ADB */
1349
1350 if ((adbActionState == ADB_ACTION_IDLE) && /* ADB available? */
1351 (ADB_INTR_IS_OFF)) { /* and no incoming interrupt? */
1352
1353 } else if (adbWriteDelay == 0) /* it's busy, but is anything waiting? */
1354 adbWriteDelay = 1; /* if no, then we'll "queue" it up */
1355 else {
1356 splx(s);
1357 return 1; /* really busy! */
1358 }
1359
1360 if ((long) in == (long) 0) { /* need to convert? */
1361 /* don't need to use adb_cmd_extra here because this section will be called */
1362 /* ONLY when it is an ADB command (no RTC or PRAM) */
1363 if ((command & 0x0c) == 0x08) /* copy addl data ONLY if doing a listen! */
1364 len = buffer[0]; /* length of additional data */
1365 else
1366 len = 0; /* no additional data */
1367
1368 adbOutputBuffer[0] = 2 + len; /* dev. type + command + addl. data */
1369 adbOutputBuffer[1] = 0x00; /* mark as an ADB command */
1370 adbOutputBuffer[2] = (u_char) command; /* load command */
1371
1372 for (i = 1; i <= len; i++) /* copy additional output data, if any */
1373 adbOutputBuffer[2 + i] = buffer[i];
1374 } else
1375 for (i = 0; i <= (adbOutputBuffer[0] + 1); i++)
1376 adbOutputBuffer[i] = in[i];
1377
1378 adbSentChars = 0; /* nothing sent yet */
1379 adbBuffer = buffer; /* save buffer to know where to save result */
1380 adbCompRout = compRout; /* save completion routine pointer */
1381 adbCompData = data; /* save completion routine data pointer */
1382 adbWaitingCmd = adbOutputBuffer[2]; /* save wait command */
1383
1384 if (adbWriteDelay != 1) { /* start command now? */
1385 adbActionState = ADB_ACTION_OUT; /* set next state */
1386
1387 ADB_SET_STATE_ACTIVE(); /* tell ADB that we want to send */
1388 ADB_SET_STATE_ACKOFF(); /* make sure */
1389
1390 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
1391
1392 ADB_SR() = adbOutputBuffer[adbSentChars + 1]; /* load byte for output */
1393
1394 ADB_SET_STATE_ACKON(); /* tell ADB byte ready to shift */
1395 }
1396 adbWriteDelay = 1; /* something in the write "queue" */
1397
1398 splx(s);
1399
1400 if (0x0100 <= (s & 0x0700)) /* were VIA1 interrupts blocked ? */
1401 /* poll until byte done */
1402 while ((adbActionState != ADB_ACTION_IDLE) || (ADB_INTR_IS_ON)
1403 || (adbWaiting == 1))
1404 if (ADB_SR_INTR_IS_ON) /* wait for "interrupt" */
1405 adb_intr_IIsi(); /* go process "interrupt" */
1406
1407 return 0;
1408 } /* send_adb_IIsi */
1409
1410
1411 /*
1412 * adb_comp_exec
1413 * This is a general routine that calls the completion routine if there is one.
1414 */
1415 void adb_comp_exec(void)
1416 {
1417 if ( (long)0 != adbCompRout ) /* don't call if empty return location */
1418 #ifdef __NetBSD__
1419 asm ( "
1420 movml #0xffff, sp@- | save all registers
1421 movl %0,a2 | adbCompData
1422 movl %1,a1 | adbCompRout
1423 movl %2,a0 | adbBuffer
1424 movl %3,d0 | adbWaitingCmd
1425 jbsr a1@ | go call the routine
1426 movml sp@+, #0xffff | restore all registers"
1427 : : "g" (adbCompData), "g" (adbCompRout), "g" (adbBuffer), "g" (adbWaitingCmd) );
1428 #else /* for macos based testing */
1429 asm
1430 {
1431 movem.l a0/a1/a2/d0,-(a7)
1432 move.l adbCompData,a2
1433 move.l adbCompRout,a1
1434 move.l adbBuffer,a0
1435 move.w adbWaitingCmd,d0
1436 jsr (a1)
1437 movem.l (a7)+,d0/a2/a1/a0
1438 }
1439 #endif
1440 }
1441
1442
1443 /*
1444 * this routine handles what needs to be done after a message is read
1445 * from the adb data points to the raw data received from the device,
1446 * including device number (on IIsi) and result code.
1447 */
1448 void
1449 adb_handle_unsol(u_char *in)
1450 {
1451 int i, cmd;
1452 u_char data[MAX_ADB_MSG_LENGTH];
1453
1454 /* make local copy so we don't destroy the real one - it may
1455 * be needed later. */
1456 for (i = 0; i <= (in[0] + 1); i++)
1457 data[i] = in[i];
1458
1459 switch (adbHardware) {
1460 case ADB_HW_II:
1461 /* adjust the "length" byte */
1462 cmd = data[1];
1463 if (data[0] < 2)
1464 data[1] = 0;
1465 else
1466 data[1] = data[0] - 1;
1467
1468 adb_complete((data + 1), (long) 0, cmd);
1469
1470 break;
1471
1472 case ADB_HW_IISI:
1473 case ADB_HW_CUDA:
1474 /* only handles ADB for now */
1475 if (0 != *(data + 2))
1476 return;
1477
1478 /* adjust the "length" byte */
1479 cmd = data[4];
1480 if (data[0] < 5)
1481 data[4] = 0;
1482 else
1483 data[4] = data[0] - 4;
1484
1485 adb_complete((data + 4), (long) 0, cmd);
1486
1487 break;
1488
1489 case ADB_HW_PB:
1490 return; /* how does PM handle "unsolicited" messages? */
1491 case ADB_HW_UNKNOWN:
1492 return;
1493 }
1494
1495 return;
1496
1497 #if 0
1498 /* this should really be used later, once it is set up properly */
1499 /* AND we need to make sure that we DON'T call it if it is zero! */
1500 if ( 0 != ADBDevTable[i].devType )
1501 (*(ADBDevTable[i].ServiceRtPtr))();
1502 #endif
1503 }
1504
1505
1506 /*
1507 * This is my version of the ADBOp routine. It mainly just calls the hardware-specific
1508 * routine.
1509 *
1510 * data : pointer to data area to be used by compRout
1511 * compRout : completion routine
1512 * buffer : for LISTEN: points to data to send - MAX 8 data bytes, byte 0 = # of bytes
1513 * : for TALK: points to place to save return data
1514 * command : the adb command to send
1515
1516 * result : 0 = success
1517 * : -1 = could not complete
1518 */
1519 int
1520 adb_op(Ptr buffer, Ptr compRout, Ptr data, short command)
1521 {
1522 int result;
1523
1524 switch (adbHardware) {
1525 case ADB_HW_II:
1526 result = send_adb_II((u_char *) 0,
1527 (u_char *) buffer, (void *) compRout,
1528 (void *) data, (int) command);
1529 if (result == 0)
1530 return 0;
1531 else
1532 return -1;
1533 break;
1534
1535 case ADB_HW_IISI:
1536 result = send_adb_IIsi((u_char *) 0,
1537 (u_char *) buffer, (void *) compRout,
1538 (void *) data, (int) command);
1539 /*
1540 * I wish I knew why this delay is needed. It usually needs to
1541 * be here when several commands are sent in close succession,
1542 * especially early in device probes when doing collision
1543 * detection. It must be some race condition. Sigh. - jpw
1544 */
1545 delay(100);
1546 if (result == 0)
1547 return 0;
1548 else
1549 return -1;
1550 break;
1551
1552 case ADB_HW_PB:
1553 return -1;
1554 break;
1555
1556 case ADB_HW_CUDA:
1557 result = send_adb_cuda((u_char *) 0,
1558 (u_char *) buffer, (void *) compRout,
1559 (void *) data, (int) command);
1560 if (result == 0)
1561 return 0;
1562 else
1563 return -1;
1564 break;
1565
1566 case ADB_HW_UNKNOWN:
1567 default:
1568 return -1;
1569 }
1570 }
1571
1572
1573 /*
1574 * adb_cleanup
1575 * This routine simply calls the appropriate version of the adb_cleanup routine.
1576 */
1577 void
1578 adb_cleanup(u_char *in)
1579 {
1580 switch (adbHardware) {
1581 case ADB_HW_II:
1582 ADB_VIA_CLR_INTR(); /* clear interrupt */
1583 break;
1584
1585 case ADB_HW_IISI:
1586 /* get those pesky clock ticks we missed while booting */
1587 adb_cleanup_IIsi(in);
1588 break;
1589
1590 case ADB_HW_PB:
1591 #ifdef ADB_PB_TESTING
1592 /* TO DO: really PM_VIA_CLR_INTR - should we put it in pm_direct.h? */
1593 via_reg(VIA1, vIFR) = 0x90; /* clear interrupt */
1594 #endif
1595 break;
1596
1597 case ADB_HW_CUDA:
1598 /* TO DO: probably need some sort of cleanup for Cuda */
1599 ADB_VIA_CLR_INTR();
1600 ADB_SET_STATE_IDLE_CUDA();
1601 break;
1602
1603 case ADB_HW_UNKNOWN:
1604 return;
1605 }
1606 }
1607
1608
1609 /*
1610 * adb_cleanup_IIsi
1611 * This is sort of a "read" routine that forces the adb hardware through a read cycle
1612 * if there is something waiting. This helps "clean up" any commands that may have gotten
1613 * stuck or stopped during the boot process.
1614 *
1615 */
1616 void
1617 adb_cleanup_IIsi(u_char *buffer)
1618 {
1619 int i;
1620 int dummy;
1621 int s;
1622 long my_time;
1623 int endofframe;
1624
1625 delay(ADB_ACK_DELAY);
1626
1627 i = 1; /* skip over [0] */
1628 s = splhigh(); /* block ALL interrupts while we are working */
1629 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
1630 ADB_VIA_INTR_DISABLE(); /* disable ADB interrupt on IIs. */
1631 /* this is required, especially on faster machines */
1632 delay(ADB_ACK_DELAY);
1633
1634 if (ADB_INTR_IS_ON) {
1635 ADB_SET_STATE_ACTIVE(); /* signal start of data frame */
1636
1637 endofframe = 0;
1638 while (0 == endofframe) {
1639 /* poll for ADB interrupt and watch for timeout */
1640 /* if time out, keep going in hopes of not hanging the ADB chip - I think */
1641 my_time = ADB_ACK_DELAY * 5;
1642 while ((ADB_SR_INTR_IS_OFF) && (my_time-- > 0))
1643 dummy = via_reg(VIA1, vBufB);
1644
1645 buffer[i++] = ADB_SR(); /* reset interrupt flag by reading vSR */
1646 /* perhaps put in a check here that ignores all data
1647 * after the first MAX_ADB_MSG_LENGTH bytes ??? */
1648 if (ADB_INTR_IS_OFF) /* check for end of frame */
1649 endofframe = 1;
1650
1651 ADB_SET_STATE_ACKON(); /* send ACK to ADB chip */
1652 delay(ADB_ACK_DELAY); /* delay */
1653 ADB_SET_STATE_ACKOFF(); /* send ACK to ADB chip */
1654 }
1655 ADB_SET_STATE_INACTIVE(); /* signal end of frame and delay */
1656
1657 /* probably don't need to delay this long */
1658 delay(ADB_ACK_DELAY);
1659 }
1660 buffer[0] = --i; /* [0] is length of message */
1661 ADB_VIA_INTR_ENABLE(); /* enable ADB interrupt on IIs. */
1662 splx(s); /* restore interrupts */
1663
1664 return;
1665 } /* adb_cleanup_IIsi */
1666
1667
1668 /*
1669 * adb_reinit sets up the adb stuff
1670 *
1671 */
1672 void
1673 adb_reinit(void)
1674 {
1675 u_char send_string[MAX_ADB_MSG_LENGTH];
1676 int s;
1677 int i, x;
1678 int command;
1679 int result;
1680 int saveptr; /* point to next free relocation address */
1681 int device;
1682 int nonewtimes; /* times thru loop w/o any new devices */
1683 ADBDataBlock data; /* temp. holder for getting device info */
1684
1685 /* Make sure we are not interrupted while building the table. */
1686 #ifdef ADB_PB_TESTING /* later this ifdef should come out */
1687 if (adbHardware != ADB_HW_PB ) /* ints must be on for PB? */
1688 #endif
1689 s = splhigh();
1690
1691 ADBNumDevices=0; /* no devices yet */
1692
1693 /* Let intr routines know we are running reinit */
1694 adbStarting = 1;
1695
1696 /* Initialize the ADB table. For now, we'll always use the same
1697 * table that is defined at the beginning of this file - no mallocs.
1698 */
1699 for (i = 0; i < 16; i++)
1700 ADBDevTable[i].devType = 0;
1701
1702 adb_setup_hw_type(); /* setup hardware type */
1703
1704 /* Set up all the VIA bits we need to do the ADB stuff.
1705 */
1706 switch (adbHardware) {
1707 case ADB_HW_II:
1708 via_reg(VIA1, vDirB) |= 0x30; /* register B bits 4 and 5: outputs */
1709 via_reg(VIA1, vDirB) &= 0xf7; /* register B bit 3: input */
1710 via_reg(VIA1, vACR) &= ~vSR_OUT; /* make sure SR is set to IN (II, IIsi) */
1711 adbActionState = ADB_ACTION_IDLE; /* used by all types of hardware (II, IIsi) */
1712 adbBusState = ADB_BUS_IDLE; /* this var. used in II-series code only */
1713 via_reg(VIA1, vIER) = 0x84; /* make sure VIA interrupts are on (II, IIsi) */
1714 ADB_SET_STATE_IDLE_II(); /* set ADB bus state to idle */
1715 break;
1716
1717 case ADB_HW_IISI:
1718 via_reg(VIA1, vDirB) |= 0x30; /* register B bits 4 and 5: outputs */
1719 via_reg(VIA1, vDirB) &= 0xf7; /* register B bit 3: input */
1720 via_reg(VIA1, vACR) &= ~vSR_OUT; /* make sure SR is set to IN (II, IIsi) */
1721 adbActionState = ADB_ACTION_IDLE; /* used by all types of hardware (II, IIsi) */
1722 adbBusState = ADB_BUS_IDLE; /* this var. used in II-series code only */
1723 via_reg(VIA1, vIER) = 0x84; /* make sure VIA interrupts are on (II, IIsi) */
1724 ADB_SET_STATE_IDLE_IISI(); /* set ADB bus state to idle */
1725 break;
1726
1727 case ADB_HW_PB:
1728 break; /* there has to be more than this? */
1729
1730 case ADB_HW_CUDA:
1731 via_reg(VIA1, vDirB) |= 0x30; /* register B bits 4 and 5: outputs */
1732 via_reg(VIA1, vDirB) &= 0xf7; /* register B bit 3: input */
1733 via_reg(VIA1, vACR) &= ~vSR_OUT; /* make sure SR is set to IN */
1734 adbActionState = ADB_ACTION_IDLE; /* used by all types of hardware */
1735 adbBusState = ADB_BUS_IDLE; /* this var. used in II-series code only */
1736 via_reg(VIA1, vIER) = 0x84; /* make sure VIA interrupts are on */
1737 ADB_SET_STATE_IDLE_CUDA(); /* set ADB bus state to idle */
1738 break;
1739
1740 case ADB_HW_UNKNOWN: /* if type unknown then skip out */
1741 default:
1742 via_reg(VIA1, vIER) = 0x04; /* turn interrupts off - TO DO: turn PB ints off? */
1743 return;
1744 break;
1745 }
1746
1747 /*
1748 * Clear out any "leftover" commands. Remember that up until this
1749 * point, the interrupt routine will be either off or it should be
1750 * able to ignore inputs until the device table is built.
1751 */
1752 for (i = 0; i < 30; i++) {
1753 delay(ADB_ACK_DELAY);
1754 adb_cleanup(send_string);
1755 printf_intr("adb: cleanup: ");
1756 print_single(send_string);
1757 delay(ADB_ACK_DELAY);
1758 if (ADB_INTR_IS_OFF)
1759 break;
1760 }
1761
1762 /* send an ADB reset first */
1763 adb_op_sync((Ptr) 0, (Ptr) 0, (Ptr) 0, (short) 0x00);
1764
1765 /*
1766 * Probe for ADB devices.
1767 * Probe devices 1-15 quickly to determine which
1768 * device addresses are in use and which are free.
1769 * For each address that is in use, move the device
1770 * at that address to a higher free address.
1771 * Continue doing this at that address until
1772 * no device responds at that address. Then move
1773 * the last device that was moved back to the
1774 * original address. Do this for the remaining
1775 * addresses that we determined were in use.
1776 *
1777 * When finished, do this entire process over again
1778 * with the updated list of in use addresses. Do this
1779 * until no new devices have been found in 20 passes
1780 * though the in use address list.
1781 * (This probably seems long and complicated, but it's
1782 * the best way to detect multiple devices at the
1783 * same address - sometimes it takes a couple of tries
1784 * before the collision is detected.)
1785 */
1786
1787 /* initial scan through the devices */
1788 for ( i=1; i<16; i++) {
1789 command = (int) (0x0f | ((int) (i & 0x000f) << 4)); /* talk R3 */
1790 result = adb_op_sync((Ptr) send_string, (Ptr) 0, (Ptr) 0, (short) command);
1791 if (0x00 != send_string[0]) { /* anything come back ?? */
1792 ADBDevTable[++ADBNumDevices].devType = (u_char) send_string[2];
1793 ADBDevTable[ADBNumDevices].origAddr = i;
1794 ADBDevTable[ADBNumDevices].currentAddr = i;
1795 ADBDevTable[ADBNumDevices].DataAreaAddr = (long) 0;
1796 ADBDevTable[ADBNumDevices].ServiceRtPtr = NULL;
1797 /*printf_intr("initial device found (at index %i)\n", ADBNumDevices);*/
1798 }
1799 }
1800
1801 /* find highest unused address */
1802 for ( saveptr=15; saveptr>0; saveptr-- )
1803 if ( -1 == get_adb_info(&data, saveptr) )
1804 break;
1805
1806 if ( saveptr==0 ) /* no free addresses??? */
1807 saveptr=15;
1808
1809 /*printf_intr("first free is: 0x%02x\n", saveptr);*/
1810 /*printf_intr("devices: %i\n", ADBNumDevices);*/
1811
1812 nonewtimes=0; /* no loops w/o new devices */
1813 while ( nonewtimes++ < 11 ) {
1814 for ( i=1; i <= ADBNumDevices; i++ ) {
1815 device=ADBDevTable[i].currentAddr;
1816 /*printf_intr("moving device 0x%02x to 0x%02x (index 0x%02x) ", device, saveptr, i);*/
1817
1818 /* send TALK R3 to address */
1819 command = (int) (0x0f | ((int) (device & 0x000f) << 4));
1820 adb_op_sync((Ptr) send_string, (Ptr) 0, (Ptr) 0, (short) command);
1821
1822 /* move device to higher address */
1823 command = (int) (0x0b | ((int) (device & 0x000f) << 4));
1824 send_string[0]=2;
1825 send_string[1]=(u_char) (saveptr | 0x60 );
1826 send_string[2]=0xfe;
1827 adb_op_sync((Ptr) send_string, (Ptr) 0, (Ptr) 0, (short) command);
1828
1829 /* send TALK R3 - anything at old address? */
1830 command = (int) (0x0f | ((int) (device & 0x000f) << 4));
1831 result = adb_op_sync((Ptr) send_string, (Ptr) 0, (Ptr) 0, (short) command);
1832 if ( send_string[0] != 0 ) {
1833 /* new device found */
1834 /* update data for previously moved device */
1835 ADBDevTable[i].currentAddr=saveptr;
1836 /*printf_intr("old device at index %i\n",i);*/
1837 /* add new device in table */
1838 /*printf_intr("new device found\n");*/
1839 ADBDevTable[++ADBNumDevices].devType = (u_char) send_string[2];
1840 ADBDevTable[ADBNumDevices].origAddr = device;
1841 ADBDevTable[ADBNumDevices].currentAddr = device;
1842 ADBDevTable[ADBNumDevices].DataAreaAddr = (long) 0;
1843 ADBDevTable[ADBNumDevices].ServiceRtPtr = NULL;
1844 /* find next unused address */
1845 for ( x=saveptr; x>0; x-- )
1846 if ( -1 == get_adb_info(&data, x) ) {
1847 saveptr=x;
1848 break;
1849 }
1850 /*printf_intr("new free is 0x%02x\n", saveptr);*/
1851 nonewtimes=0;
1852 } else {
1853 /*printf_intr("moving back...\n");*/
1854 /* move old device back */
1855 command = (int) (0x0b | ((int) (saveptr & 0x000f) << 4));
1856 send_string[0]=2;
1857 send_string[1]=(u_char) (device | 0x60 );
1858 send_string[2]=0xfe;
1859 adb_op_sync((Ptr) send_string, (Ptr) 0, (Ptr) 0, (short) command);
1860 }
1861 }
1862 }
1863
1864 adb_prog_switch_enable(); /* enable the programmer's switch, if we have one */
1865
1866 if (0 == ADBNumDevices) /* tell user if no devices found */
1867 printf_intr("adb: no devices found\n");
1868
1869 adbStarting = 0; /* not starting anymore */
1870 printf_intr("adb: ADBReInit complete\n");
1871
1872 #ifdef ADB_PB_TESTING /* later this ifdef should come out */
1873 if (adbHardware != ADB_HW_PB ) /* ints must be on for PB? */
1874 #endif
1875 splx(s);
1876 return;
1877 }
1878
1879
1880 /* adb_cmd_result
1881 * This routine lets the caller know whether the specified adb command string should
1882 * expect a returned result, such as a TALK command.
1883 * returns: 0 if a result should be expected
1884 * 1 if a result should NOT be expected
1885 */
1886 int
1887 adb_cmd_result(u_char *in)
1888 {
1889 switch (adbHardware) {
1890 case ADB_HW_II:
1891 /* was it an ADB talk command? */
1892 if ((in[1] & 0x0c) == 0x0c)
1893 return 0;
1894 else
1895 return 1;
1896 break;
1897
1898 case ADB_HW_IISI:
1899 case ADB_HW_CUDA:
1900 /* was is an ADB talk command? */
1901 if ((in[1] == 0x00) && ((in[2] & 0x0c) == 0x0c))
1902 return 0;
1903 else
1904 /* was is an RTC/PRAM read date/time? */
1905 if ((in[1] == 0x01) && (in[2] == 0x03))
1906 return 0;
1907 else
1908 return 1;
1909 break;
1910
1911 case ADB_HW_PB:
1912 return 1;
1913 break;
1914
1915 case ADB_HW_UNKNOWN:
1916 default:
1917 return 1;
1918 }
1919 }
1920
1921
1922 /* adb_cmd_extra
1923 * This routine lets the caller know whether the specified adb command string may have
1924 * extra data appended to the end of it, such as a LISTEN command.
1925 * returns: 0 if extra data is allowed
1926 * 1 if extra data is NOT allowed
1927 */
1928 int
1929 adb_cmd_extra(u_char *in)
1930 {
1931 switch (adbHardware) {
1932 case ADB_HW_II:
1933 if ((in[1] & 0x0c) == 0x08) /* was it a listen command? */
1934 return 0;
1935 else
1936 return 1;
1937 break;
1938
1939 case ADB_HW_IISI:
1940 case ADB_HW_CUDA:
1941 /* TO DO: support needs to be added to recognize RTC
1942 * and PRAM commands */
1943 if ((in[2] & 0x0c) == 0x08) /* was it a listen command? */
1944 return 0;
1945 else /* add others later */
1946 return 1;
1947 break;
1948
1949 case ADB_HW_PB:
1950 return 1;
1951 break;
1952
1953 case ADB_HW_UNKNOWN:
1954 default:
1955 return 1;
1956 }
1957 }
1958
1959
1960 /* adb_op_sync
1961 * This routine does exactly what the adb_op routine does, except that after the
1962 * adb_op is called, it waits until the return value is present before returning
1963 */
1964 int
1965 adb_op_sync(Ptr buffer, Ptr compRout, Ptr data, short command)
1966 {
1967 int result;
1968 int flag;
1969
1970 flag = 0;
1971 result = adb_op(buffer, (void *) adb_op_comprout,
1972 (void *) &flag, command); /* send command */
1973 if (result == 0) { /* send ok? */
1974 /* Don't need to use adb_cmd_result since this section is
1975 * hardware independent, and for ADB commands only (no RTC or PRAM) */
1976 /*if ((command & 0x0c) == 0x0c)*/ /* was it a talk? */
1977 while (0 == flag) ;
1978
1979 return 0;
1980 } else
1981 return result;
1982 }
1983
1984
1985 /* adb_op_comprout
1986 * This function is used by the adb_op_sync routine so it knows when the function is
1987 * done.
1988 */
1989 void adb_op_comprout(void)
1990 {
1991 #ifdef __NetBSD__
1992 asm ( "movw #1,a2@ | update flag value" );
1993 #else /* for macos based testing */
1994 asm { move.w #1,(a2) } /* update flag value */
1995 #endif
1996 }
1997
1998 void
1999 adb_setup_hw_type(void)
2000 {
2001 long response;
2002
2003 response = mac68k_machine.machineid;
2004
2005 switch (response) {
2006 case 6: /* II */
2007 case 7: /* IIx */
2008 case 8: /* IIcx */
2009 case 9: /* SE/30 */
2010 case 11: /* IIci */
2011 case 22: /* Quadra 700 */
2012 case 30: /* Centris 650 */
2013 case 35: /* Quadra 800 */
2014 case 36: /* Quadra 650 */
2015 case 52: /* Centris 610 */
2016 case 53: /* Centris 650 */
2017 adbHardware = ADB_HW_II;
2018 printf_intr("adb: using II series hardware support\n");
2019 break;
2020 case 18: /* IIsi */
2021 case 20: /* Quadra 900 - not sure if IIsi or not */
2022 case 23: /* Classic II */
2023 case 26: /* Quadra 950 - not sure if IIsi or not */
2024 case 27: /* LC III, Performa 450 */
2025 case 37: /* LC II, Performa 400/405/430 */
2026 case 44: /* IIvi */
2027 case 45: /* Performa 600 */
2028 case 48: /* IIvx */
2029 case 49: /* Color Classic - not sure if IIsi or not */
2030 case 62: /* Performa 460/465/467 */
2031 case 83: /* Color Classic II (number right?) - not sure if IIsi or not */
2032 adbHardware = ADB_HW_IISI;
2033 printf_intr("adb: using IIsi series hardware support\n");
2034 break;
2035 case 21: /* PowerBook 170 */
2036 case 25: /* PowerBook 140 */
2037 case 54: /* PowerBook 145 */
2038 case 34: /* PowerBook 160 */
2039 case 84: /* PowerBook 165 */
2040 case 50: /* PowerBook 165c */
2041 case 33: /* PowerBook 180 */
2042 case 71: /* PowerBook 180c */
2043 case 115: /* PowerBook 150 */
2044 #ifdef ADB_PB_TESTING
2045 adbHardware=ADB_HW_PB;
2046 pm_setup_adb();
2047 printf_intr("adb: using PowerBook 100-series hardware support\n");
2048 #else
2049 adbHardware = ADB_HW_UNKNOWN; /* really ADB_HW_PB, but that's not done yet */
2050 printf_intr("adb: hardware type (PowerBook 1xx) not yet supported for this machine\n");
2051 printf_intr("adb: ADB support is disabled\n");
2052 #endif
2053 break;
2054 case 29: /* PowerBook Duo 210 */
2055 case 32: /* PowerBook Duo 230 */
2056 case 38: /* PowerBook Duo 250 */
2057 case 72: /* PowerBook 500 series */
2058 case 77: /* PowerBook Duo 270 */
2059 case 102: /* PowerBook Duo 280 */
2060 case 103: /* PowerBook Duo 280c */
2061 #ifdef ADB_PB_TESTING
2062 adbHardware=ADB_HW_PB;
2063 pm_setup_adb();
2064 printf_intr("adb: using PowerBook Duo-series and PowerBook 500-series hardware support\n");
2065 #else
2066 adbHardware = ADB_HW_UNKNOWN; /* really ADB_HW_PB, but that's not done yet */
2067 printf_intr("adb: hardware type (PowerBook Duo/5xx) not yet supported for this machine\n");
2068 printf_intr("adb: ADB support is disabled\n");
2069 #endif
2070 break;
2071 case 60: /* Centris 660AV */
2072 case 78: /* Quadra 840AV */
2073 case 89: /* LC 475, Performa 475/476 */
2074 case 92: /* LC 575, Performa 575/577/578 */
2075 case 94: /* Quadra 605 */
2076 case 98: /* LC 630, Performa 630, Quadra 630 */
2077 adbHardware = ADB_HW_CUDA;
2078 printf_intr("adb: using Cuda series hardware support\n");
2079 break;
2080 default:
2081 adbHardware = ADB_HW_UNKNOWN;
2082 printf_intr("adb: hardware type unknown for this machine\n");
2083 printf_intr("adb: ADB support is disabled\n");
2084 break;
2085 }
2086 }
2087
2088 int
2089 count_adbs(void)
2090 {
2091 int i;
2092 int found;
2093
2094 found = 0;
2095
2096 for (i = 1; i < 16; i++)
2097 if (0 != ADBDevTable[i].devType)
2098 found++;
2099
2100 return found;
2101 }
2102
2103 int
2104 get_ind_adb_info(ADBDataBlock * info, int index)
2105 {
2106 if ((index < 1) || (index > 15)) /* check range 1-15 */
2107 return (-1);
2108
2109 /* printf_intr("index 0x%x devType is: 0x%x\n", index,
2110 ADBDevTable[index].devType); */
2111 if (0 == ADBDevTable[index].devType) /* make sure it's a valid entry */
2112 return (-1);
2113
2114 info->devType = ADBDevTable[index].devType;
2115 info->origADBAddr = ADBDevTable[index].origAddr;
2116 info->dbServiceRtPtr = (Ptr) ADBDevTable[index].ServiceRtPtr;
2117 info->dbDataAreaAddr = (Ptr) ADBDevTable[index].DataAreaAddr;
2118
2119 return (ADBDevTable[index].currentAddr);
2120 }
2121
2122 int
2123 get_adb_info(ADBDataBlock * info, int adbAddr)
2124 {
2125 int i;
2126
2127 if ((adbAddr < 1) || (adbAddr > 15)) /* check range 1-15 */
2128 return (-1);
2129
2130 for (i = 1; i < 15; i++)
2131 if (ADBDevTable[i].currentAddr == adbAddr) {
2132 info->devType = ADBDevTable[i].devType;
2133 info->origADBAddr = ADBDevTable[i].origAddr;
2134 info->dbServiceRtPtr = (Ptr)ADBDevTable[i].ServiceRtPtr;
2135 info->dbDataAreaAddr = ADBDevTable[i].DataAreaAddr;
2136 return 0; /* found */
2137 }
2138
2139 return (-1); /* not found */
2140 }
2141
2142 int
2143 set_adb_info(ADBSetInfoBlock * info, int adbAddr)
2144 {
2145 int i;
2146
2147 if ((adbAddr < 1) || (adbAddr > 15)) /* check range 1-15 */
2148 return (-1);
2149
2150 for (i = 1; i < 15; i++)
2151 if (ADBDevTable[i].currentAddr == adbAddr) {
2152 ADBDevTable[i].ServiceRtPtr =
2153 (void *)(info->siServiceRtPtr);
2154 ADBDevTable[i].DataAreaAddr = info->siDataAreaAddr;
2155 return 0; /* found */
2156 }
2157
2158 return (-1); /* not found */
2159
2160 }
2161
2162 #ifndef MRG_ADB
2163 long
2164 mrg_adbintr(void)
2165 {
2166 adb_intr();
2167 return 1; /* mimic mrg_adbintr in macrom.h just in case */
2168 }
2169
2170 long
2171 mrg_pmintr(void) /* we don't do this yet */
2172 {
2173 #ifdef ADB_PB_TESTING
2174 pm_intr();
2175 #endif
2176 return 1; /* mimic mrg_pmintr in macrom.h just in case */
2177 }
2178 #endif /* !MRG_ADB */
2179
2180 /* caller should really use machine-independant version: getPramTime */
2181 /* this version does pseudo-adb access only */
2182 int
2183 adb_read_date_time(unsigned long *time)
2184 {
2185 u_char output[MAX_ADB_MSG_LENGTH];
2186 int result;
2187 volatile int flag = 0;
2188
2189 switch (adbHardware) {
2190 case ADB_HW_II:
2191 return -1;
2192
2193 case ADB_HW_IISI:
2194 output[0] = 0x02; /* 2 byte message */
2195 output[1] = 0x01; /* to pram/rtc device */
2196 output[2] = 0x03; /* read date/time */
2197 result = send_adb_IIsi((u_char *) output,
2198 (u_char *) output, (void *) adb_op_comprout,
2199 (void *) &flag, (int) 0);
2200 if (result != 0) /* exit if not sent */
2201 return -1;
2202
2203 while (0 == flag) ; /* wait for result */
2204
2205 *time = (long) (*(long *) (output + 1));
2206 return 0;
2207
2208 case ADB_HW_PB:
2209 return -1;
2210
2211 case ADB_HW_CUDA:
2212 output[0] = 0x02; /* 2 byte message */
2213 output[1] = 0x01; /* to pram/rtc device */
2214 output[2] = 0x03; /* read date/time */
2215 result = send_adb_cuda((u_char *) output,
2216 (u_char *) output, (void *) adb_op_comprout,
2217 (void *) &flag, (int) 0);
2218 if (result != 0) /* exit if not sent */
2219 return -1;
2220
2221 while (0 == flag) ; /* wait for result */
2222
2223 *time = (long) (*(long *) (output + 1));
2224 return 0;
2225
2226 case ADB_HW_UNKNOWN:
2227 default:
2228 return -1;
2229 }
2230 }
2231
2232 /* caller should really use machine-independant version: setPramTime */
2233 /* this version does pseudo-adb access only */
2234 int
2235 adb_set_date_time(unsigned long time)
2236 {
2237 u_char output[MAX_ADB_MSG_LENGTH];
2238 int result;
2239 volatile int flag = 0;
2240
2241 switch (adbHardware) {
2242 case ADB_HW_II:
2243 return -1;
2244
2245 case ADB_HW_IISI:
2246 output[0] = 0x06; /* 6 byte message */
2247 output[1] = 0x01; /* to pram/rtc device */
2248 output[2] = 0x09; /* set date/time */
2249 output[3] = (u_char) (time >> 24);
2250 output[4] = (u_char) (time >> 16);
2251 output[5] = (u_char) (time >> 8);
2252 output[6] = (u_char) (time);
2253 result = send_adb_IIsi((u_char *) output,
2254 (u_char *) 0, (void *) adb_op_comprout,
2255 (void *) &flag, (int) 0);
2256 if (result != 0) /* exit if not sent */
2257 return -1;
2258
2259 while (0 == flag) ; /* wait for send to finish */
2260
2261 return 0;
2262
2263 case ADB_HW_PB:
2264 return -1;
2265
2266 case ADB_HW_CUDA:
2267 output[0] = 0x06; /* 6 byte message */
2268 output[1] = 0x01; /* to pram/rtc device */
2269 output[2] = 0x09; /* set date/time */
2270 output[3] = (u_char) (time >> 24);
2271 output[4] = (u_char) (time >> 16);
2272 output[5] = (u_char) (time >> 8);
2273 output[6] = (u_char) (time);
2274 result = send_adb_cuda((u_char *) output,
2275 (u_char *) 0, (void *) adb_op_comprout,
2276 (void *) &flag, (int) 0);
2277 if (result != 0) /* exit if not sent */
2278 return -1;
2279
2280 while (0 == flag) ; /* wait for send to finish */
2281
2282 return 0;
2283
2284 case ADB_HW_UNKNOWN:
2285 default:
2286 return -1;
2287 }
2288 }
2289
2290
2291 int
2292 adb_poweroff(void)
2293 {
2294 u_char output[MAX_ADB_MSG_LENGTH];
2295 int result;
2296
2297 switch (adbHardware) {
2298 case ADB_HW_IISI:
2299 output[0] = 0x02; /* 2 byte message */
2300 output[1] = 0x01; /* to pram/rtc/soft-power device */
2301 output[2] = 0x0a; /* set date/time */
2302 result = send_adb_IIsi((u_char *) output,
2303 (u_char *) 0, (void *) 0, (void *) 0, (int) 0);
2304 if (result != 0) /* exit if not sent */
2305 return -1;
2306
2307 for (;;) ; /* wait for power off */
2308
2309 return 0;
2310
2311 case ADB_HW_PB:
2312 return -1;
2313
2314 /* TO DO: some cuda models claim to do soft power - check out */
2315 case ADB_HW_II: /* II models don't do soft power */
2316 case ADB_HW_CUDA: /* cuda doesn't do soft power */
2317 case ADB_HW_UNKNOWN:
2318 default:
2319 return -1;
2320 }
2321 } /* adb_poweroff */
2322
2323 int
2324 adb_prog_switch_enable(void)
2325 {
2326 u_char output[MAX_ADB_MSG_LENGTH];
2327 int result;
2328 volatile int flag = 0;
2329
2330 switch (adbHardware) {
2331 case ADB_HW_IISI:
2332 output[0] = 0x03; /* 3 byte message */
2333 output[1] = 0x01; /* to pram/rtc/soft-power device */
2334 output[2] = 0x1c; /* prog. switch control */
2335 output[3] = 0x01; /* enable */
2336 result = send_adb_IIsi((u_char *) output,
2337 (u_char *) 0, (void *) adb_op_comprout,
2338 (void *) &flag, (int) 0);
2339 if (result != 0) /* exit if not sent */
2340 return -1;
2341
2342 while (0 == flag) ; /* wait for send to finish */
2343
2344 return 0;
2345
2346 case ADB_HW_PB:
2347 return -1;
2348
2349 case ADB_HW_II: /* II models don't do prog. switch */
2350 case ADB_HW_CUDA: /* cuda doesn't do prog. switch */
2351 case ADB_HW_UNKNOWN:
2352 default:
2353 return -1;
2354 }
2355 } /* adb_prog_switch_enable */
2356
2357 int
2358 adb_prog_switch_disable(void)
2359 {
2360 u_char output[MAX_ADB_MSG_LENGTH];
2361 int result;
2362 volatile int flag = 0;
2363
2364 switch (adbHardware) {
2365 case ADB_HW_IISI:
2366 output[0] = 0x03; /* 3 byte message */
2367 output[1] = 0x01; /* to pram/rtc/soft-power device */
2368 output[2] = 0x1c; /* prog. switch control */
2369 output[3] = 0x01; /* disable */
2370 result = send_adb_IIsi((u_char *) output,
2371 (u_char *) 0, (void *) adb_op_comprout,
2372 (void *) &flag, (int) 0);
2373 if (result != 0) /* exit if not sent */
2374 return -1;
2375
2376 while (0 == flag) ; /* wait for send to finish */
2377
2378 return 0;
2379
2380 case ADB_HW_PB:
2381 return -1;
2382
2383 case ADB_HW_II: /* II models don't do prog. switch */
2384 case ADB_HW_CUDA: /* cuda doesn't do prog. switch */
2385 case ADB_HW_UNKNOWN:
2386 default:
2387 return -1;
2388 }
2389 } /* adb_prog_switch_disable */
2390
2391 #ifndef MRG_ADB
2392 int
2393 CountADBs(void)
2394 {
2395 return (count_adbs());
2396 }
2397
2398 void
2399 ADBReInit(void)
2400 {
2401 adb_reinit();
2402 }
2403
2404 int
2405 GetIndADB(ADBDataBlock * info, int index)
2406 {
2407 return (get_ind_adb_info(info, index));
2408 }
2409
2410 int
2411 GetADBInfo(ADBDataBlock * info, int adbAddr)
2412 {
2413 return (get_adb_info(info, adbAddr));
2414 }
2415
2416 int
2417 SetADBInfo(ADBSetInfoBlock * info, int adbAddr)
2418 {
2419 return (set_adb_info(info, adbAddr));
2420 }
2421
2422 int
2423 ADBOp(Ptr buffer, Ptr compRout, Ptr data, short commandNum)
2424 {
2425 return (adb_op(buffer, compRout, data, commandNum));
2426 }
2427 #endif /* !MRG_ADB */
2428