adb_direct.c revision 1.33 1 /* $NetBSD: adb_direct.c,v 1.33 1999/11/07 08:18:24 scottr Exp $ */
2
3 /* From: adb_direct.c 2.02 4/18/97 jpw */
4
5 /*
6 * Copyright (C) 1996, 1997 John P. Wittkoski
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by John P. Wittkoski.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*
36 * This code is rather messy, but I don't have time right now
37 * to clean it up as much as I would like.
38 * But it works, so I'm happy. :-) jpw
39 */
40
41 /*
42 * TO DO:
43 * - We could reduce the time spent in the adb_intr_* routines
44 * by having them save the incoming and outgoing data directly
45 * in the adbInbound and adbOutbound queues, as it would reduce
46 * the number of times we need to copy the data around. It
47 * would also make the code more readable and easier to follow.
48 * - (Related to above) Use the header part of adbCommand to
49 * reduce the number of copies we have to do of the data.
50 * - (Related to above) Actually implement the adbOutbound queue.
51 * This is fairly easy once you switch all the intr routines
52 * over to using adbCommand structs directly.
53 * - There is a bug in the state machine of adb_intr_cuda
54 * code that causes hangs, especially on 030 machines, probably
55 * because of some timing issues. Because I have been unable to
56 * determine the exact cause of this bug, I used the timeout function
57 * to check for and recover from this condition. If anyone finds
58 * the actual cause of this bug, the calls to timeout and the
59 * adb_cuda_tickle routine can be removed.
60 */
61
62 #ifdef __NetBSD__
63 #include "opt_adb.h"
64
65 #include <sys/param.h>
66 #include <sys/cdefs.h>
67 #include <sys/systm.h>
68
69 #include <machine/viareg.h>
70 #include <machine/param.h>
71 #include <machine/cpu.h>
72 #include <machine/adbsys.h> /* required for adbvar.h */
73 #include <machine/iopreg.h> /* required for IOP support */
74
75 #include <mac68k/mac68k/macrom.h>
76 #include <mac68k/dev/adbvar.h>
77 #define printf_intr printf
78 #else /* !__NetBSD__, i.e. Mac OS */
79 #include "via.h" /* for macos based testing */
80 /* #define ADB_DEBUG */ /* more verbose for testing */
81
82 /* Types of ADB hardware that we support */
83 #define ADB_HW_UNKNOWN 0x0 /* don't know */
84 #define ADB_HW_II 0x1 /* Mac II series */
85 #define ADB_HW_IISI 0x2 /* Mac IIsi series */
86 #define ADB_HW_PB 0x3 /* PowerBook series */
87 #define ADB_HW_CUDA 0x4 /* Machines with a Cuda chip */
88 #endif /* __NetBSD__ */
89
90 /* some misc. leftovers */
91 #define vPB 0x0000
92 #define vPB3 0x08
93 #define vPB4 0x10
94 #define vPB5 0x20
95 #define vSR_INT 0x04
96 #define vSR_OUT 0x10
97
98 /* the type of ADB action that we are currently preforming */
99 #define ADB_ACTION_NOTREADY 0x1 /* has not been initialized yet */
100 #define ADB_ACTION_IDLE 0x2 /* the bus is currently idle */
101 #define ADB_ACTION_OUT 0x3 /* sending out a command */
102 #define ADB_ACTION_IN 0x4 /* receiving data */
103 #define ADB_ACTION_POLLING 0x5 /* polling - II only */
104 #define ADB_ACTION_RUNNING 0x6 /* running - IOP only */
105
106 /*
107 * These describe the state of the ADB bus itself, although they
108 * don't necessarily correspond directly to ADB states.
109 * Note: these are not really used in the IIsi code.
110 */
111 #define ADB_BUS_UNKNOWN 0x1 /* we don't know yet - all models */
112 #define ADB_BUS_IDLE 0x2 /* bus is idle - all models */
113 #define ADB_BUS_CMD 0x3 /* starting a command - II models */
114 #define ADB_BUS_ODD 0x4 /* the "odd" state - II models */
115 #define ADB_BUS_EVEN 0x5 /* the "even" state - II models */
116 #define ADB_BUS_ACTIVE 0x6 /* active state - IIsi models */
117 #define ADB_BUS_ACK 0x7 /* currently ACKing - IIsi models */
118
119 /*
120 * Shortcuts for setting or testing the VIA bit states.
121 * Not all shortcuts are used for every type of ADB hardware.
122 */
123 #define ADB_SET_STATE_IDLE_II() via_reg(VIA1, vBufB) |= (vPB4 | vPB5)
124 #define ADB_SET_STATE_IDLE_IISI() via_reg(VIA1, vBufB) &= ~(vPB4 | vPB5)
125 #define ADB_SET_STATE_IDLE_CUDA() via_reg(VIA1, vBufB) |= (vPB4 | vPB5)
126 #define ADB_SET_STATE_CMD() via_reg(VIA1, vBufB) &= ~(vPB4 | vPB5)
127 #define ADB_SET_STATE_EVEN() via_reg(VIA1, vBufB) = ((via_reg(VIA1, \
128 vBufB) | vPB4) & ~vPB5)
129 #define ADB_SET_STATE_ODD() via_reg(VIA1, vBufB) = ((via_reg(VIA1, \
130 vBufB) | vPB5) & ~vPB4)
131 #define ADB_SET_STATE_ACTIVE() via_reg(VIA1, vBufB) |= vPB5
132 #define ADB_SET_STATE_INACTIVE() via_reg(VIA1, vBufB) &= ~vPB5
133 #define ADB_SET_STATE_TIP() via_reg(VIA1, vBufB) &= ~vPB5
134 #define ADB_CLR_STATE_TIP() via_reg(VIA1, vBufB) |= vPB5
135 #define ADB_SET_STATE_ACKON() via_reg(VIA1, vBufB) |= vPB4
136 #define ADB_SET_STATE_ACKOFF() via_reg(VIA1, vBufB) &= ~vPB4
137 #define ADB_TOGGLE_STATE_ACK_CUDA() via_reg(VIA1, vBufB) ^= vPB4
138 #define ADB_SET_STATE_ACKON_CUDA() via_reg(VIA1, vBufB) &= ~vPB4
139 #define ADB_SET_STATE_ACKOFF_CUDA() via_reg(VIA1, vBufB) |= vPB4
140 #define ADB_SET_SR_INPUT() via_reg(VIA1, vACR) &= ~vSR_OUT
141 #define ADB_SET_SR_OUTPUT() via_reg(VIA1, vACR) |= vSR_OUT
142 #define ADB_SR() via_reg(VIA1, vSR)
143 #define ADB_VIA_INTR_ENABLE() via_reg(VIA1, vIER) = 0x84
144 #define ADB_VIA_INTR_DISABLE() via_reg(VIA1, vIER) = 0x04
145 #define ADB_VIA_CLR_INTR() via_reg(VIA1, vIFR) = 0x04
146 #define ADB_INTR_IS_OFF (vPB3 == (via_reg(VIA1, vBufB) & vPB3))
147 #define ADB_INTR_IS_ON (0 == (via_reg(VIA1, vBufB) & vPB3))
148 #define ADB_SR_INTR_IS_OFF (0 == (via_reg(VIA1, vIFR) & vSR_INT))
149 #define ADB_SR_INTR_IS_ON (vSR_INT == (via_reg(VIA1, \
150 vIFR) & vSR_INT))
151
152 /*
153 * This is the delay that is required (in uS) between certain
154 * ADB transactions. The actual timing delay for for each uS is
155 * calculated at boot time to account for differences in machine speed.
156 */
157 #define ADB_DELAY 150
158
159 /*
160 * Maximum ADB message length; includes space for data, result, and
161 * device code - plus a little for safety.
162 */
163 #define ADB_MAX_MSG_LENGTH 16
164 #define ADB_MAX_HDR_LENGTH 8
165
166 #define ADB_QUEUE 32
167 #define ADB_TICKLE_TICKS 4
168
169 /*
170 * A structure for storing information about each ADB device.
171 */
172 struct ADBDevEntry {
173 void (*ServiceRtPtr) __P((void));
174 void *DataAreaAddr;
175 int devType;
176 int origAddr;
177 int currentAddr;
178 };
179
180 /*
181 * Used to hold ADB commands that are waiting to be sent out.
182 */
183 struct adbCmdHoldEntry {
184 u_char outBuf[ADB_MAX_MSG_LENGTH]; /* our message */
185 u_char *saveBuf; /* buffer to know where to save result */
186 u_char *compRout; /* completion routine pointer */
187 u_char *data; /* completion routine data pointer */
188 };
189
190 /*
191 * Eventually used for two separate queues, the queue between
192 * the upper and lower halves, and the outgoing packet queue.
193 * TO DO: adbCommand can replace all of adbCmdHoldEntry eventually
194 */
195 struct adbCommand {
196 u_char header[ADB_MAX_HDR_LENGTH]; /* not used yet */
197 u_char data[ADB_MAX_MSG_LENGTH]; /* packet data only */
198 u_char *saveBuf; /* where to save result */
199 u_char *compRout; /* completion routine pointer */
200 u_char *compData; /* completion routine data pointer */
201 u_int cmd; /* the original command for this data */
202 u_int unsol; /* 1 if packet was unsolicited */
203 u_int ack_only; /* 1 for no special processing */
204 };
205
206 /*
207 * Text representations of each hardware class
208 */
209 char *adbHardwareDescr[MAX_ADB_HW + 1] = {
210 "unknown",
211 "II series",
212 "IIsi series",
213 "PowerBook",
214 "Cuda",
215 "IOP",
216 };
217
218 /*
219 * A few variables that we need and their initial values.
220 */
221 int adbHardware = ADB_HW_UNKNOWN;
222 int adbActionState = ADB_ACTION_NOTREADY;
223 int adbBusState = ADB_BUS_UNKNOWN;
224 int adbWaiting = 0; /* waiting for return data from the device */
225 int adbWriteDelay = 0; /* working on (or waiting to do) a write */
226 int adbOutQueueHasData = 0; /* something in the queue waiting to go out */
227 int adbNextEnd = 0; /* the next incoming bute is the last (II) */
228 int adbSoftPower = 0; /* machine supports soft power */
229
230 int adbWaitingCmd = 0; /* ADB command we are waiting for */
231 u_char *adbBuffer = (long)0; /* pointer to user data area */
232 void *adbCompRout = (long)0; /* pointer to the completion routine */
233 void *adbCompData = (long)0; /* pointer to the completion routine data */
234 long adbFakeInts = 0; /* keeps track of fake ADB interrupts for
235 * timeouts (II) */
236 int adbStarting = 1; /* doing ADBReInit so do polling differently */
237 int adbSendTalk = 0; /* the intr routine is sending the talk, not
238 * the user (II) */
239 int adbPolling = 0; /* we are polling for service request */
240 int adbPollCmd = 0; /* the last poll command we sent */
241
242 u_char adbInputBuffer[ADB_MAX_MSG_LENGTH]; /* data input buffer */
243 u_char adbOutputBuffer[ADB_MAX_MSG_LENGTH]; /* data output buffer */
244 struct adbCmdHoldEntry adbOutQueue; /* our 1 entry output queue */
245
246 int adbSentChars = 0; /* how many characters we have sent */
247 int adbLastDevice = 0; /* last ADB dev we heard from (II ONLY) */
248 int adbLastDevIndex = 0; /* last ADB dev loc in dev table (II ONLY) */
249 int adbLastCommand = 0; /* the last ADB command we sent (II) */
250
251 struct ADBDevEntry ADBDevTable[16]; /* our ADB device table */
252 int ADBNumDevices; /* num. of ADB devices found with ADBReInit */
253
254 struct adbCommand adbInbound[ADB_QUEUE]; /* incoming queue */
255 int adbInCount = 0; /* how many packets in in queue */
256 int adbInHead = 0; /* head of in queue */
257 int adbInTail = 0; /* tail of in queue */
258 struct adbCommand adbOutbound[ADB_QUEUE]; /* outgoing queue - not used yet */
259 int adbOutCount = 0; /* how many packets in out queue */
260 int adbOutHead = 0; /* head of out queue */
261 int adbOutTail = 0; /* tail of out queue */
262
263 int tickle_count = 0; /* how many tickles seen for this packet? */
264 int tickle_serial = 0; /* the last packet tickled */
265 int adb_cuda_serial = 0; /* the current packet */
266
267 extern struct mac68k_machine_S mac68k_machine;
268
269 void pm_setup_adb __P((void));
270 void pm_hw_setup __P((void));
271 void pm_check_adb_devices __P((int));
272 void pm_intr __P((void *));
273 int pm_adb_op __P((u_char *, void *, void *, int));
274 void pm_init_adb_device __P((void));
275
276 /*
277 * The following are private routines.
278 */
279 #ifdef ADB_DEBUG
280 void print_single __P((u_char *));
281 #endif
282 void adb_intr __P((void *));
283 void adb_intr_II __P((void *));
284 void adb_intr_IIsi __P((void *));
285 void adb_intr_cuda __P((void *));
286 void adb_soft_intr __P((void));
287 int send_adb_II __P((u_char *, u_char *, void *, void *, int));
288 int send_adb_IIsi __P((u_char *, u_char *, void *, void *, int));
289 int send_adb_cuda __P((u_char *, u_char *, void *, void *, int));
290 void adb_intr_cuda_test __P((void));
291 void adb_cuda_tickle __P((void));
292 void adb_pass_up __P((struct adbCommand *));
293 void adb_op_comprout __P((void));
294 void adb_reinit __P((void));
295 int count_adbs __P((void));
296 int get_ind_adb_info __P((ADBDataBlock *, int));
297 int get_adb_info __P((ADBDataBlock *, int));
298 int set_adb_info __P((ADBSetInfoBlock *, int));
299 void adb_setup_hw_type __P((void));
300 int adb_op __P((Ptr, Ptr, Ptr, short));
301 int adb_op_sync __P((Ptr, Ptr, Ptr, short));
302 void adb_read_II __P((u_char *));
303 void adb_hw_setup __P((void));
304 void adb_hw_setup_IIsi __P((u_char *));
305 void adb_comp_exec __P((void));
306 int adb_cmd_result __P((u_char *));
307 int adb_cmd_extra __P((u_char *));
308 int adb_guess_next_device __P((void));
309 int adb_prog_switch_enable __P((void));
310 int adb_prog_switch_disable __P((void));
311 /* we should create this and it will be the public version */
312 int send_adb __P((u_char *, void *, void *));
313 void adb_iop_recv __P((IOP *, struct iop_msg *));
314 int send_adb_iop __P((int, u_char *, void *, void *));
315
316 #ifdef ADB_DEBUG
317 /*
318 * print_single
319 * Diagnostic display routine. Displays the hex values of the
320 * specified elements of the u_char. The length of the "string"
321 * is in [0].
322 */
323 void
324 print_single(str)
325 u_char *str;
326 {
327 int x;
328
329 if (str == 0) {
330 printf_intr("no data - null pointer\n");
331 return;
332 }
333 if (*str == 0) {
334 printf_intr("nothing returned\n");
335 return;
336 }
337 if (*str > 20) {
338 printf_intr("ADB: ACK > 20 no way!\n");
339 *str = (u_char)20;
340 }
341 printf_intr("(length=0x%x):", (u_int)*str);
342 for (x = 1; x <= *str; x++)
343 printf_intr(" 0x%02x", (u_int)*(str + x));
344 printf_intr("\n");
345 }
346 #endif
347
348 void
349 adb_cuda_tickle(void)
350 {
351 volatile int s;
352
353 if (adbActionState == ADB_ACTION_IN) {
354 if (tickle_serial == adb_cuda_serial) {
355 if (++tickle_count > 0) {
356 s = splhigh();
357 adbActionState = ADB_ACTION_IDLE;
358 adbInputBuffer[0] = 0;
359 ADB_SET_STATE_IDLE_CUDA();
360 splx(s);
361 }
362 } else {
363 tickle_serial = adb_cuda_serial;
364 tickle_count = 0;
365 }
366 } else {
367 tickle_serial = adb_cuda_serial;
368 tickle_count = 0;
369 }
370
371 timeout((void *)adb_cuda_tickle, 0, ADB_TICKLE_TICKS);
372 }
373
374 /*
375 * called when when an adb interrupt happens
376 *
377 * Cuda version of adb_intr
378 * TO DO: do we want to add some calls to intr_dispatch() here to
379 * grab serial interrupts?
380 */
381 void
382 adb_intr_cuda(void *arg)
383 {
384 volatile int i, ending;
385 volatile unsigned int s;
386 struct adbCommand packet;
387
388 s = splhigh(); /* can't be too careful - might be called */
389 /* from a routine, NOT an interrupt */
390
391 ADB_VIA_CLR_INTR(); /* clear interrupt */
392 ADB_VIA_INTR_DISABLE(); /* disable ADB interrupt on IIs. */
393
394 switch_start:
395 switch (adbActionState) {
396 case ADB_ACTION_IDLE:
397 /*
398 * This is an unexpected packet, so grab the first (dummy)
399 * byte, set up the proper vars, and tell the chip we are
400 * starting to receive the packet by setting the TIP bit.
401 */
402 adbInputBuffer[1] = ADB_SR();
403 adb_cuda_serial++;
404 if (ADB_INTR_IS_OFF) /* must have been a fake start */
405 break;
406
407 ADB_SET_SR_INPUT();
408 ADB_SET_STATE_TIP();
409
410 adbInputBuffer[0] = 1;
411 adbActionState = ADB_ACTION_IN;
412 #ifdef ADB_DEBUG
413 if (adb_debug)
414 printf_intr("idle 0x%02x ", adbInputBuffer[1]);
415 #endif
416 break;
417
418 case ADB_ACTION_IN:
419 adbInputBuffer[++adbInputBuffer[0]] = ADB_SR();
420 /* intr off means this is the last byte (end of frame) */
421 if (ADB_INTR_IS_OFF)
422 ending = 1;
423 else
424 ending = 0;
425
426 if (1 == ending) { /* end of message? */
427 #ifdef ADB_DEBUG
428 if (adb_debug) {
429 printf_intr("in end 0x%02x ",
430 adbInputBuffer[adbInputBuffer[0]]);
431 print_single(adbInputBuffer);
432 }
433 #endif
434
435 /*
436 * Are we waiting AND does this packet match what we
437 * are waiting for AND is it coming from either the
438 * ADB or RTC/PRAM sub-device? This section _should_
439 * recognize all ADB and RTC/PRAM type commands, but
440 * there may be more... NOTE: commands are always at
441 * [4], even for RTC/PRAM commands.
442 */
443 /* set up data for adb_pass_up */
444 memcpy(packet.data, adbInputBuffer, adbInputBuffer[0] + 1);
445
446 if ((adbWaiting == 1) &&
447 (adbInputBuffer[4] == adbWaitingCmd) &&
448 ((adbInputBuffer[2] == 0x00) ||
449 (adbInputBuffer[2] == 0x01))) {
450 packet.saveBuf = adbBuffer;
451 packet.compRout = adbCompRout;
452 packet.compData = adbCompData;
453 packet.unsol = 0;
454 packet.ack_only = 0;
455 adb_pass_up(&packet);
456
457 adbWaitingCmd = 0; /* reset "waiting" vars */
458 adbWaiting = 0;
459 adbBuffer = (long)0;
460 adbCompRout = (long)0;
461 adbCompData = (long)0;
462 } else {
463 packet.unsol = 1;
464 packet.ack_only = 0;
465 adb_pass_up(&packet);
466 }
467
468
469 /* reset vars and signal the end of this frame */
470 adbActionState = ADB_ACTION_IDLE;
471 adbInputBuffer[0] = 0;
472 ADB_SET_STATE_IDLE_CUDA();
473 /*ADB_SET_SR_INPUT();*/
474
475 /*
476 * If there is something waiting to be sent out,
477 * the set everything up and send the first byte.
478 */
479 if (adbWriteDelay == 1) {
480 delay(ADB_DELAY); /* required */
481 adbSentChars = 0;
482 adbActionState = ADB_ACTION_OUT;
483 /*
484 * If the interrupt is on, we were too slow
485 * and the chip has already started to send
486 * something to us, so back out of the write
487 * and start a read cycle.
488 */
489 if (ADB_INTR_IS_ON) {
490 ADB_SET_SR_INPUT();
491 ADB_SET_STATE_IDLE_CUDA();
492 adbSentChars = 0;
493 adbActionState = ADB_ACTION_IDLE;
494 adbInputBuffer[0] = 0;
495 break;
496 }
497 /*
498 * If we got here, it's ok to start sending
499 * so load the first byte and tell the chip
500 * we want to send.
501 */
502 ADB_SET_STATE_TIP();
503 ADB_SET_SR_OUTPUT();
504 ADB_SR() = adbOutputBuffer[adbSentChars + 1];
505 }
506 } else {
507 ADB_TOGGLE_STATE_ACK_CUDA();
508 #ifdef ADB_DEBUG
509 if (adb_debug)
510 printf_intr("in 0x%02x ",
511 adbInputBuffer[adbInputBuffer[0]]);
512 #endif
513 }
514 break;
515
516 case ADB_ACTION_OUT:
517 i = ADB_SR(); /* reset SR-intr in IFR */
518 #ifdef ADB_DEBUG
519 if (adb_debug)
520 printf_intr("intr out 0x%02x ", i);
521 #endif
522
523 adbSentChars++;
524 if (ADB_INTR_IS_ON) { /* ADB intr low during write */
525 #ifdef ADB_DEBUG
526 if (adb_debug)
527 printf_intr("intr was on ");
528 #endif
529 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
530 ADB_SET_STATE_IDLE_CUDA();
531 adbSentChars = 0; /* must start all over */
532 adbActionState = ADB_ACTION_IDLE; /* new state */
533 adbInputBuffer[0] = 0;
534 adbWriteDelay = 1; /* must retry when done with
535 * read */
536 delay(ADB_DELAY);
537 goto switch_start; /* process next state right
538 * now */
539 break;
540 }
541 if (adbOutputBuffer[0] == adbSentChars) { /* check for done */
542 if (0 == adb_cmd_result(adbOutputBuffer)) { /* do we expect data
543 * back? */
544 adbWaiting = 1; /* signal waiting for return */
545 adbWaitingCmd = adbOutputBuffer[2]; /* save waiting command */
546 } else { /* no talk, so done */
547 /* set up stuff for adb_pass_up */
548 memcpy(packet.data, adbInputBuffer, adbInputBuffer[0] + 1);
549 packet.saveBuf = adbBuffer;
550 packet.compRout = adbCompRout;
551 packet.compData = adbCompData;
552 packet.cmd = adbWaitingCmd;
553 packet.unsol = 0;
554 packet.ack_only = 1;
555 adb_pass_up(&packet);
556
557 /* reset "waiting" vars, just in case */
558 adbWaitingCmd = 0;
559 adbBuffer = (long)0;
560 adbCompRout = (long)0;
561 adbCompData = (long)0;
562 }
563
564 adbWriteDelay = 0; /* done writing */
565 adbActionState = ADB_ACTION_IDLE; /* signal bus is idle */
566 ADB_SET_SR_INPUT();
567 ADB_SET_STATE_IDLE_CUDA();
568 #ifdef ADB_DEBUG
569 if (adb_debug)
570 printf_intr("write done ");
571 #endif
572 } else {
573 ADB_SR() = adbOutputBuffer[adbSentChars + 1]; /* send next byte */
574 ADB_TOGGLE_STATE_ACK_CUDA(); /* signal byte ready to
575 * shift */
576 #ifdef ADB_DEBUG
577 if (adb_debug)
578 printf_intr("toggle ");
579 #endif
580 }
581 break;
582
583 case ADB_ACTION_NOTREADY:
584 #ifdef ADB_DEBUG
585 if (adb_debug)
586 printf_intr("adb: not yet initialized\n");
587 #endif
588 break;
589
590 default:
591 #ifdef ADB_DEBUG
592 if (adb_debug)
593 printf_intr("intr: unknown ADB state\n");
594 #endif
595 }
596
597 ADB_VIA_INTR_ENABLE(); /* enable ADB interrupt on IIs. */
598
599 splx(s); /* restore */
600
601 return;
602 } /* end adb_intr_cuda */
603
604
605 int
606 send_adb_cuda(u_char * in, u_char * buffer, void *compRout, void *data, int
607 command)
608 {
609 int s, len;
610
611 #ifdef ADB_DEBUG
612 if (adb_debug)
613 printf_intr("SEND\n");
614 #endif
615
616 if (adbActionState == ADB_ACTION_NOTREADY)
617 return 1;
618
619 /* Don't interrupt while we are messing with the ADB */
620 s = splhigh();
621
622 if ((adbActionState == ADB_ACTION_IDLE) && /* ADB available? */
623 (ADB_INTR_IS_OFF)) { /* and no incoming interrupt? */
624 } else
625 if (adbWriteDelay == 0) /* it's busy, but is anything waiting? */
626 adbWriteDelay = 1; /* if no, then we'll "queue"
627 * it up */
628 else {
629 splx(s);
630 return 1; /* really busy! */
631 }
632
633 #ifdef ADB_DEBUG
634 if (adb_debug)
635 printf_intr("QUEUE\n");
636 #endif
637 if ((long)in == (long)0) { /* need to convert? */
638 /*
639 * Don't need to use adb_cmd_extra here because this section
640 * will be called ONLY when it is an ADB command (no RTC or
641 * PRAM)
642 */
643 if ((command & 0x0c) == 0x08) /* copy addl data ONLY if
644 * doing a listen! */
645 len = buffer[0]; /* length of additional data */
646 else
647 len = 0;/* no additional data */
648
649 adbOutputBuffer[0] = 2 + len; /* dev. type + command + addl.
650 * data */
651 adbOutputBuffer[1] = 0x00; /* mark as an ADB command */
652 adbOutputBuffer[2] = (u_char)command; /* load command */
653
654 /* copy additional output data, if any */
655 memcpy(adbOutputBuffer + 3, buffer + 1, len);
656 } else
657 /* if data ready, just copy over */
658 memcpy(adbOutputBuffer, in, in[0] + 2);
659
660 adbSentChars = 0; /* nothing sent yet */
661 adbBuffer = buffer; /* save buffer to know where to save result */
662 adbCompRout = compRout; /* save completion routine pointer */
663 adbCompData = data; /* save completion routine data pointer */
664 adbWaitingCmd = adbOutputBuffer[2]; /* save wait command */
665
666 if (adbWriteDelay != 1) { /* start command now? */
667 #ifdef ADB_DEBUG
668 if (adb_debug)
669 printf_intr("out start NOW");
670 #endif
671 delay(ADB_DELAY);
672 adbActionState = ADB_ACTION_OUT; /* set next state */
673 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
674 ADB_SR() = adbOutputBuffer[adbSentChars + 1]; /* load byte for output */
675 ADB_SET_STATE_ACKOFF_CUDA();
676 ADB_SET_STATE_TIP(); /* tell ADB that we want to send */
677 }
678 adbWriteDelay = 1; /* something in the write "queue" */
679
680 splx(s);
681
682 if (0x0100 <= (s & 0x0700)) /* were VIA1 interrupts blocked? */
683 /* poll until byte done */
684 while ((adbActionState != ADB_ACTION_IDLE) || (ADB_INTR_IS_ON)
685 || (adbWaiting == 1))
686 if (ADB_SR_INTR_IS_ON) { /* wait for "interrupt" */
687 adb_intr_cuda(NULL); /* go process it */
688 if (adb_polling)
689 adb_soft_intr();
690 }
691
692 return 0;
693 } /* send_adb_cuda */
694
695
696 void
697 adb_intr_II(void *arg)
698 {
699 struct adbCommand packet;
700 int i, intr_on = 0;
701 int send = 0;
702 unsigned int s;
703
704 s = splhigh(); /* can't be too careful - might be called */
705 /* from a routine, NOT an interrupt */
706
707 ADB_VIA_CLR_INTR(); /* clear interrupt */
708
709 ADB_VIA_INTR_DISABLE(); /* disable ADB interrupt on IIs. */
710
711 delay(ADB_DELAY); /* yuck (don't remove) */
712
713 (void)intr_dispatch(0x70); /* grab any serial interrupts */
714
715 if (ADB_INTR_IS_ON)
716 intr_on = 1; /* save for later */
717
718 switch_start:
719 switch (adbActionState) {
720 case ADB_ACTION_POLLING:
721 if (!intr_on) {
722 if (adbOutQueueHasData) {
723 #ifdef ADB_DEBUG
724 if (adb_debug & 0x80)
725 printf_intr("POLL-doing-out-queue. ");
726 #endif
727 ADB_SET_STATE_IDLE_II();
728 delay(ADB_DELAY);
729
730 /* copy over data */
731 memcpy(adbOutputBuffer, adbOutQueue.outBuf,
732 adbOutQueue.outBuf[0] + 2);
733
734 adbBuffer = adbOutQueue.saveBuf; /* user data area */
735 adbCompRout = adbOutQueue.compRout; /* completion routine */
736 adbCompData = adbOutQueue.data; /* comp. rout. data */
737 adbOutQueueHasData = 0; /* currently processing
738 * "queue" entry */
739 adbSentChars = 0; /* nothing sent yet */
740 adbActionState = ADB_ACTION_OUT; /* set next state */
741 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
742 ADB_SR() = adbOutputBuffer[1]; /* load byte for output */
743 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */
744 ADB_SET_STATE_CMD(); /* tell ADB that we want to send */
745 break;
746 } else {
747 #ifdef ADB_DEBUG
748 if (adb_debug)
749 printf_intr("pIDLE ");
750 #endif
751 adbActionState = ADB_ACTION_IDLE;
752 }
753 } else {
754 #ifdef ADB_DEBUG
755 if (adb_debug & 0x80)
756 printf_intr("pIN ");
757 #endif
758 adbActionState = ADB_ACTION_IN;
759 }
760 delay(ADB_DELAY);
761 (void)intr_dispatch(0x70); /* grab any serial interrupts */
762 goto switch_start;
763 break;
764 case ADB_ACTION_IDLE:
765 if (!intr_on) {
766 i = ADB_SR();
767 adbBusState = ADB_BUS_IDLE;
768 adbActionState = ADB_ACTION_IDLE;
769 ADB_SET_STATE_IDLE_II();
770 break;
771 }
772 adbInputBuffer[0] = 1;
773 adbInputBuffer[1] = ADB_SR(); /* get first byte */
774 #ifdef ADB_DEBUG
775 if (adb_debug & 0x80)
776 printf_intr("idle 0x%02x ", adbInputBuffer[1]);
777 #endif
778 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
779 adbActionState = ADB_ACTION_IN; /* set next state */
780 ADB_SET_STATE_EVEN(); /* set bus state to even */
781 adbBusState = ADB_BUS_EVEN;
782 break;
783
784 case ADB_ACTION_IN:
785 adbInputBuffer[++adbInputBuffer[0]] = ADB_SR(); /* get byte */
786 #ifdef ADB_DEBUG
787 if (adb_debug & 0x80)
788 printf_intr("in 0x%02x ",
789 adbInputBuffer[adbInputBuffer[0]]);
790 #endif
791 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
792
793 if (intr_on) { /* process last byte of packet */
794 adbInputBuffer[0]--; /* minus one */
795 /*
796 * If intr_on was true, and it's the second byte, then
797 * the byte we just discarded is really valid, so
798 * adjust the count
799 */
800 if (adbInputBuffer[0] == 2) {
801 adbInputBuffer[0]++;
802 }
803
804 #ifdef ADB_DEBUG
805 if (adb_debug & 0x80) {
806 printf_intr("done: ");
807 print_single(adbInputBuffer);
808 }
809 #endif
810
811 adbLastDevice = (adbInputBuffer[1] & 0xf0) >> 4;
812
813 if (adbInputBuffer[0] == 1 && !adbWaiting) { /* SRQ!!!*/
814 #ifdef ADB_DEBUG
815 if (adb_debug & 0x80)
816 printf_intr(" xSRQ! ");
817 #endif
818 adb_guess_next_device();
819 #ifdef ADB_DEBUG
820 if (adb_debug & 0x80)
821 printf_intr("try 0x%0x ",
822 adbLastDevice);
823 #endif
824 adbOutputBuffer[0] = 1;
825 adbOutputBuffer[1] =
826 ((adbLastDevice & 0x0f) << 4) | 0x0c;
827
828 adbSentChars = 0; /* nothing sent yet */
829 adbActionState = ADB_ACTION_POLLING; /* set next state */
830 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
831 ADB_SR() = adbOutputBuffer[1]; /* load byte for output */
832 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */
833 ADB_SET_STATE_CMD(); /* tell ADB that we want to */
834 break;
835 }
836
837 /* set up data for adb_pass_up */
838 memcpy(packet.data, adbInputBuffer, adbInputBuffer[0] + 1);
839
840 if (!adbWaiting && (adbInputBuffer[0] != 0)) {
841 packet.unsol = 1;
842 packet.ack_only = 0;
843 adb_pass_up(&packet);
844 } else {
845 packet.saveBuf = adbBuffer;
846 packet.compRout = adbCompRout;
847 packet.compData = adbCompData;
848 packet.unsol = 0;
849 packet.ack_only = 0;
850 adb_pass_up(&packet);
851 }
852
853 adbWaiting = 0;
854 adbInputBuffer[0] = 0;
855 adbBuffer = (long)0;
856 adbCompRout = (long)0;
857 adbCompData = (long)0;
858 /*
859 * Since we are done, check whether there is any data
860 * waiting to do out. If so, start the sending the data.
861 */
862 if (adbOutQueueHasData == 1) {
863 #ifdef ADB_DEBUG
864 if (adb_debug & 0x80)
865 printf_intr("XXX: DOING OUT QUEUE\n");
866 #endif
867 /* copy over data */
868 memcpy(adbOutputBuffer, adbOutQueue.outBuf,
869 adbOutQueue.outBuf[0] + 2);
870 adbBuffer = adbOutQueue.saveBuf; /* user data area */
871 adbCompRout = adbOutQueue.compRout; /* completion routine */
872 adbCompData = adbOutQueue.data; /* comp. rout. data */
873 adbOutQueueHasData = 0; /* currently processing
874 * "queue" entry */
875 send = 1;
876 } else {
877 #ifdef ADB_DEBUG
878 if (adb_debug & 0x80)
879 printf_intr("XXending ");
880 #endif
881 adb_guess_next_device();
882 adbOutputBuffer[0] = 1;
883 adbOutputBuffer[1] = ((adbLastDevice & 0x0f) << 4) | 0x0c;
884 adbSentChars = 0; /* nothing sent yet */
885 adbActionState = ADB_ACTION_POLLING; /* set next state */
886 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
887 ADB_SR() = adbOutputBuffer[1]; /* load byte for output */
888 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */
889 ADB_SET_STATE_CMD(); /* tell ADB that we want to */
890 break;
891 }
892 }
893
894 /*
895 * If send is true then something above determined that
896 * the message has ended and we need to start sending out
897 * a new message immediately. This could be because there
898 * is data waiting to go out or because an SRQ was seen.
899 */
900 if (send) {
901 adbSentChars = 0; /* nothing sent yet */
902 adbActionState = ADB_ACTION_OUT; /* set next state */
903 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
904 ADB_SR() = adbOutputBuffer[1]; /* load byte for output */
905 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */
906 ADB_SET_STATE_CMD(); /* tell ADB that we want to
907 * send */
908 break;
909 }
910 /* We only get this far if the message hasn't ended yet. */
911 switch (adbBusState) { /* set to next state */
912 case ADB_BUS_EVEN:
913 ADB_SET_STATE_ODD(); /* set state to odd */
914 adbBusState = ADB_BUS_ODD;
915 break;
916
917 case ADB_BUS_ODD:
918 ADB_SET_STATE_EVEN(); /* set state to even */
919 adbBusState = ADB_BUS_EVEN;
920 break;
921 default:
922 printf_intr("strange state!!!\n"); /* huh? */
923 break;
924 }
925 break;
926
927 case ADB_ACTION_OUT:
928 i = ADB_SR(); /* clear interrupt */
929 adbSentChars++;
930 /*
931 * If the outgoing data was a TALK, we must
932 * switch to input mode to get the result.
933 */
934 if ((adbOutputBuffer[1] & 0x0c) == 0x0c) {
935 adbInputBuffer[0] = 1;
936 adbInputBuffer[1] = i;
937 adbActionState = ADB_ACTION_IN;
938 ADB_SET_SR_INPUT();
939 adbBusState = ADB_BUS_EVEN;
940 ADB_SET_STATE_EVEN();
941 #ifdef ADB_DEBUG
942 if (adb_debug & 0x80)
943 printf_intr("talk out 0x%02x ", i);
944 #endif
945 /* we want something back */
946 adbWaiting = 1;
947 break;
948 }
949 /*
950 * If it's not a TALK, check whether all data has been sent.
951 * If so, call the completion routine and clean up. If not,
952 * advance to the next state.
953 */
954 #ifdef ADB_DEBUG
955 if (adb_debug & 0x80)
956 printf_intr("non-talk out 0x%0x ", i);
957 #endif
958 ADB_SET_SR_OUTPUT();
959 if (adbOutputBuffer[0] == adbSentChars) { /* check for done */
960 #ifdef ADB_DEBUG
961 if (adb_debug & 0x80)
962 printf_intr("done \n");
963 #endif
964 /* set up stuff for adb_pass_up */
965 memcpy(packet.data, adbOutputBuffer, adbOutputBuffer[0] + 1);
966 packet.saveBuf = adbBuffer;
967 packet.compRout = adbCompRout;
968 packet.compData = adbCompData;
969 packet.cmd = adbWaitingCmd;
970 packet.unsol = 0;
971 packet.ack_only = 1;
972 adb_pass_up(&packet);
973
974 /* reset "waiting" vars, just in case */
975 adbBuffer = (long)0;
976 adbCompRout = (long)0;
977 adbCompData = (long)0;
978 if (adbOutQueueHasData == 1) {
979 /* copy over data */
980 memcpy(adbOutputBuffer, adbOutQueue.outBuf,
981 adbOutQueue.outBuf[0] + 2);
982 adbBuffer = adbOutQueue.saveBuf; /* user data area */
983 adbCompRout = adbOutQueue.compRout; /* completion routine */
984 adbCompData = adbOutQueue.data; /* comp. rout. data */
985 adbOutQueueHasData = 0; /* currently processing
986 * "queue" entry */
987 adbSentChars = 0; /* nothing sent yet */
988 adbActionState = ADB_ACTION_OUT; /* set next state */
989 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
990 ADB_SR() = adbOutputBuffer[1]; /* load byte for output */
991 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */
992 ADB_SET_STATE_CMD(); /* tell ADB that we want to
993 * send */
994 break;
995 } else {
996 /* send talk to last device instead */
997 adbOutputBuffer[0] = 1;
998 adbOutputBuffer[1] = (adbOutputBuffer[1] & 0xf0) | 0x0c;
999
1000 adbSentChars = 0; /* nothing sent yet */
1001 adbActionState = ADB_ACTION_IDLE; /* set next state */
1002 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
1003 ADB_SR() = adbOutputBuffer[1]; /* load byte for output */
1004 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */
1005 ADB_SET_STATE_CMD(); /* tell ADB that we want to */
1006 break;
1007 }
1008 }
1009 ADB_SR() = adbOutputBuffer[adbSentChars + 1];
1010 switch (adbBusState) { /* advance to next state */
1011 case ADB_BUS_EVEN:
1012 ADB_SET_STATE_ODD(); /* set state to odd */
1013 adbBusState = ADB_BUS_ODD;
1014 break;
1015
1016 case ADB_BUS_CMD:
1017 case ADB_BUS_ODD:
1018 ADB_SET_STATE_EVEN(); /* set state to even */
1019 adbBusState = ADB_BUS_EVEN;
1020 break;
1021
1022 default:
1023 #ifdef ADB_DEBUG
1024 if (adb_debug) {
1025 printf_intr("strange state!!! (0x%x)\n",
1026 adbBusState);
1027 }
1028 #endif
1029 break;
1030 }
1031 break;
1032
1033 default:
1034 #ifdef ADB_DEBUG
1035 if (adb_debug)
1036 printf_intr("adb: unknown ADB state (during intr)\n");
1037 #endif
1038 }
1039
1040 ADB_VIA_INTR_ENABLE(); /* enable ADB interrupt on IIs. */
1041
1042 splx(s); /* restore */
1043
1044 return;
1045
1046 }
1047
1048
1049 /*
1050 * send_adb version for II series machines
1051 */
1052 int
1053 send_adb_II(u_char * in, u_char * buffer, void *compRout, void *data, int command)
1054 {
1055 int s, len;
1056
1057 if (adbActionState == ADB_ACTION_NOTREADY) /* return if ADB not
1058 * available */
1059 return 1;
1060
1061 /* Don't interrupt while we are messing with the ADB */
1062 s = splhigh();
1063
1064 if (0 != adbOutQueueHasData) { /* right now, "has data" means "full" */
1065 splx(s); /* sorry, try again later */
1066 return 1;
1067 }
1068 if ((long)in == (long)0) { /* need to convert? */
1069 /*
1070 * Don't need to use adb_cmd_extra here because this section
1071 * will be called ONLY when it is an ADB command (no RTC or
1072 * PRAM), especially on II series!
1073 */
1074 if ((command & 0x0c) == 0x08) /* copy addl data ONLY if
1075 * doing a listen! */
1076 len = buffer[0]; /* length of additional data */
1077 else
1078 len = 0;/* no additional data */
1079
1080 adbOutQueue.outBuf[0] = 1 + len; /* command + addl. data */
1081 adbOutQueue.outBuf[1] = (u_char)command; /* load command */
1082
1083 /* copy additional output data, if any */
1084 memcpy(adbOutQueue.outBuf + 2, buffer + 1, len);
1085 } else
1086 /* if data ready, just copy over */
1087 memcpy(adbOutQueue.outBuf, in, in[0] + 2);
1088
1089 adbOutQueue.saveBuf = buffer; /* save buffer to know where to save
1090 * result */
1091 adbOutQueue.compRout = compRout; /* save completion routine
1092 * pointer */
1093 adbOutQueue.data = data;/* save completion routine data pointer */
1094
1095 if ((adbActionState == ADB_ACTION_IDLE) && /* is ADB available? */
1096 (ADB_INTR_IS_OFF)) { /* and no incoming interrupts? */
1097 /* then start command now */
1098 memcpy(adbOutputBuffer, adbOutQueue.outBuf,
1099 adbOutQueue.outBuf[0] + 2); /* copy over data */
1100
1101 adbBuffer = adbOutQueue.saveBuf; /* pointer to user data
1102 * area */
1103 adbCompRout = adbOutQueue.compRout; /* pointer to the
1104 * completion routine */
1105 adbCompData = adbOutQueue.data; /* pointer to the completion
1106 * routine data */
1107
1108 adbSentChars = 0; /* nothing sent yet */
1109 adbActionState = ADB_ACTION_OUT; /* set next state */
1110 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */
1111
1112 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
1113
1114 ADB_SR() = adbOutputBuffer[adbSentChars + 1]; /* load byte for output */
1115 ADB_SET_STATE_CMD(); /* tell ADB that we want to send */
1116 adbOutQueueHasData = 0; /* currently processing "queue" entry */
1117 } else
1118 adbOutQueueHasData = 1; /* something in the write "queue" */
1119
1120 splx(s);
1121
1122 if (0x0100 <= (s & 0x0700)) /* were VIA1 interrupts blocked? */
1123 /* poll until message done */
1124 while ((adbActionState != ADB_ACTION_IDLE) || (ADB_INTR_IS_ON)
1125 || (adbWaiting == 1))
1126 if (ADB_SR_INTR_IS_ON) { /* wait for "interrupt" */
1127 adb_intr_II(NULL); /* go process it */
1128 if (adb_polling)
1129 adb_soft_intr();
1130 }
1131
1132 return 0;
1133 }
1134
1135
1136 /*
1137 * This routine is called from the II series interrupt routine
1138 * to determine what the "next" device is that should be polled.
1139 */
1140 int
1141 adb_guess_next_device(void)
1142 {
1143 int last, i, dummy;
1144
1145 if (adbStarting) {
1146 /*
1147 * Start polling EVERY device, since we can't be sure there is
1148 * anything in the device table yet
1149 */
1150 if (adbLastDevice < 1 || adbLastDevice > 15)
1151 adbLastDevice = 1;
1152 if (++adbLastDevice > 15) /* point to next one */
1153 adbLastDevice = 1;
1154 } else {
1155 /* find the next device using the device table */
1156 if (adbLastDevice < 1 || adbLastDevice > 15) /* let's be parinoid */
1157 adbLastDevice = 2;
1158 last = 1; /* default index location */
1159
1160 for (i = 1; i < 16; i++) /* find index entry */
1161 if (ADBDevTable[i].currentAddr == adbLastDevice) { /* look for device */
1162 last = i; /* found it */
1163 break;
1164 }
1165 dummy = last; /* index to start at */
1166 for (;;) { /* find next device in index */
1167 if (++dummy > 15) /* wrap around if needed */
1168 dummy = 1;
1169 if (dummy == last) { /* didn't find any other
1170 * device! This can happen if
1171 * there are no devices on the
1172 * bus */
1173 dummy = 2;
1174 break;
1175 }
1176 /* found the next device */
1177 if (ADBDevTable[dummy].devType != 0)
1178 break;
1179 }
1180 adbLastDevice = ADBDevTable[dummy].currentAddr;
1181 }
1182 return adbLastDevice;
1183 }
1184
1185
1186 /*
1187 * Called when when an adb interrupt happens.
1188 * This routine simply transfers control over to the appropriate
1189 * code for the machine we are running on.
1190 */
1191 void
1192 adb_intr(void *arg)
1193 {
1194 switch (adbHardware) {
1195 case ADB_HW_II:
1196 adb_intr_II(arg);
1197 break;
1198
1199 case ADB_HW_IISI:
1200 adb_intr_IIsi(arg);
1201 break;
1202
1203 case ADB_HW_PB: /* Should not come through here. */
1204 break;
1205
1206 case ADB_HW_CUDA:
1207 adb_intr_cuda(arg);
1208 break;
1209
1210 case ADB_HW_IOP: /* Should not come through here. */
1211 break;
1212
1213 case ADB_HW_UNKNOWN:
1214 break;
1215 }
1216 }
1217
1218
1219 /*
1220 * called when when an adb interrupt happens
1221 *
1222 * IIsi version of adb_intr
1223 *
1224 */
1225 void
1226 adb_intr_IIsi(void *arg)
1227 {
1228 struct adbCommand packet;
1229 int i, ending;
1230 unsigned int s;
1231
1232 s = splhigh(); /* can't be too careful - might be called */
1233 /* from a routine, NOT an interrupt */
1234
1235 ADB_VIA_CLR_INTR(); /* clear interrupt */
1236
1237 ADB_VIA_INTR_DISABLE(); /* disable ADB interrupt on IIs. */
1238
1239 switch_start:
1240 switch (adbActionState) {
1241 case ADB_ACTION_IDLE:
1242 delay(ADB_DELAY); /* short delay is required before the
1243 * first byte */
1244
1245 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
1246 ADB_SET_STATE_ACTIVE(); /* signal start of data frame */
1247 adbInputBuffer[1] = ADB_SR(); /* get byte */
1248 adbInputBuffer[0] = 1;
1249 adbActionState = ADB_ACTION_IN; /* set next state */
1250
1251 ADB_SET_STATE_ACKON(); /* start ACK to ADB chip */
1252 delay(ADB_DELAY); /* delay */
1253 ADB_SET_STATE_ACKOFF(); /* end ACK to ADB chip */
1254 (void)intr_dispatch(0x70); /* grab any serial interrupts */
1255 break;
1256
1257 case ADB_ACTION_IN:
1258 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
1259 adbInputBuffer[++adbInputBuffer[0]] = ADB_SR(); /* get byte */
1260 if (ADB_INTR_IS_OFF) /* check for end of frame */
1261 ending = 1;
1262 else
1263 ending = 0;
1264
1265 ADB_SET_STATE_ACKON(); /* start ACK to ADB chip */
1266 delay(ADB_DELAY); /* delay */
1267 ADB_SET_STATE_ACKOFF(); /* end ACK to ADB chip */
1268 (void)intr_dispatch(0x70); /* grab any serial interrupts */
1269
1270 if (1 == ending) { /* end of message? */
1271 ADB_SET_STATE_INACTIVE(); /* signal end of frame */
1272 /*
1273 * This section _should_ handle all ADB and RTC/PRAM
1274 * type commands, but there may be more... Note:
1275 * commands are always at [4], even for rtc/pram
1276 * commands
1277 */
1278 /* set up data for adb_pass_up */
1279 memcpy(packet.data, adbInputBuffer, adbInputBuffer[0] + 1);
1280
1281 if ((adbWaiting == 1) && /* are we waiting AND */
1282 (adbInputBuffer[4] == adbWaitingCmd) && /* the cmd we sent AND */
1283 ((adbInputBuffer[2] == 0x00) || /* it's from the ADB
1284 * device OR */
1285 (adbInputBuffer[2] == 0x01))) { /* it's from the
1286 * PRAM/RTC device */
1287
1288 packet.saveBuf = adbBuffer;
1289 packet.compRout = adbCompRout;
1290 packet.compData = adbCompData;
1291 packet.unsol = 0;
1292 packet.ack_only = 0;
1293 adb_pass_up(&packet);
1294
1295 adbWaitingCmd = 0; /* reset "waiting" vars */
1296 adbWaiting = 0;
1297 adbBuffer = (long)0;
1298 adbCompRout = (long)0;
1299 adbCompData = (long)0;
1300 } else {
1301 packet.unsol = 1;
1302 packet.ack_only = 0;
1303 adb_pass_up(&packet);
1304 }
1305
1306 adbActionState = ADB_ACTION_IDLE;
1307 adbInputBuffer[0] = 0; /* reset length */
1308
1309 if (adbWriteDelay == 1) { /* were we waiting to
1310 * write? */
1311 adbSentChars = 0; /* nothing sent yet */
1312 adbActionState = ADB_ACTION_OUT; /* set next state */
1313
1314 delay(ADB_DELAY); /* delay */
1315 (void)intr_dispatch(0x70); /* grab any serial interrupts */
1316
1317 if (ADB_INTR_IS_ON) { /* ADB intr low during
1318 * write */
1319 ADB_SET_STATE_IDLE_IISI(); /* reset */
1320 ADB_SET_SR_INPUT(); /* make sure SR is set
1321 * to IN */
1322 adbSentChars = 0; /* must start all over */
1323 adbActionState = ADB_ACTION_IDLE; /* new state */
1324 adbInputBuffer[0] = 0;
1325 /* may be able to take this out later */
1326 delay(ADB_DELAY); /* delay */
1327 break;
1328 }
1329 ADB_SET_STATE_ACTIVE(); /* tell ADB that we want
1330 * to send */
1331 ADB_SET_STATE_ACKOFF(); /* make sure */
1332 ADB_SET_SR_OUTPUT(); /* set shift register
1333 * for OUT */
1334 ADB_SR() = adbOutputBuffer[adbSentChars + 1];
1335 ADB_SET_STATE_ACKON(); /* tell ADB byte ready
1336 * to shift */
1337 }
1338 }
1339 break;
1340
1341 case ADB_ACTION_OUT:
1342 i = ADB_SR(); /* reset SR-intr in IFR */
1343 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
1344
1345 ADB_SET_STATE_ACKOFF(); /* finish ACK */
1346 adbSentChars++;
1347 if (ADB_INTR_IS_ON) { /* ADB intr low during write */
1348 ADB_SET_STATE_IDLE_IISI(); /* reset */
1349 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
1350 adbSentChars = 0; /* must start all over */
1351 adbActionState = ADB_ACTION_IDLE; /* new state */
1352 adbInputBuffer[0] = 0;
1353 adbWriteDelay = 1; /* must retry when done with
1354 * read */
1355 delay(ADB_DELAY); /* delay */
1356 (void)intr_dispatch(0x70); /* grab any serial interrupts */
1357 goto switch_start; /* process next state right
1358 * now */
1359 break;
1360 }
1361 delay(ADB_DELAY); /* required delay */
1362 (void)intr_dispatch(0x70); /* grab any serial interrupts */
1363
1364 if (adbOutputBuffer[0] == adbSentChars) { /* check for done */
1365 if (0 == adb_cmd_result(adbOutputBuffer)) { /* do we expect data
1366 * back? */
1367 adbWaiting = 1; /* signal waiting for return */
1368 adbWaitingCmd = adbOutputBuffer[2]; /* save waiting command */
1369 } else {/* no talk, so done */
1370 /* set up stuff for adb_pass_up */
1371 memcpy(packet.data, adbInputBuffer,
1372 adbInputBuffer[0] + 1);
1373 packet.saveBuf = adbBuffer;
1374 packet.compRout = adbCompRout;
1375 packet.compData = adbCompData;
1376 packet.cmd = adbWaitingCmd;
1377 packet.unsol = 0;
1378 packet.ack_only = 1;
1379 adb_pass_up(&packet);
1380
1381 /* reset "waiting" vars, just in case */
1382 adbWaitingCmd = 0;
1383 adbBuffer = (long)0;
1384 adbCompRout = (long)0;
1385 adbCompData = (long)0;
1386 }
1387
1388 adbWriteDelay = 0; /* done writing */
1389 adbActionState = ADB_ACTION_IDLE; /* signal bus is idle */
1390 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
1391 ADB_SET_STATE_INACTIVE(); /* end of frame */
1392 } else {
1393 ADB_SR() = adbOutputBuffer[adbSentChars + 1]; /* send next byte */
1394 ADB_SET_STATE_ACKON(); /* signal byte ready to shift */
1395 }
1396 break;
1397
1398 case ADB_ACTION_NOTREADY:
1399 #ifdef ADB_DEBUG
1400 if (adb_debug)
1401 printf_intr("adb: not yet initialized\n");
1402 #endif
1403 break;
1404
1405 default:
1406 #ifdef ADB_DEBUG
1407 if (adb_debug)
1408 printf_intr("intr: unknown ADB state\n");
1409 #endif
1410 }
1411
1412 ADB_VIA_INTR_ENABLE(); /* enable ADB interrupt on IIs. */
1413
1414 splx(s); /* restore */
1415
1416 return;
1417 } /* end adb_intr_IIsi */
1418
1419
1420 /*****************************************************************************
1421 * if the device is currently busy, and there is no data waiting to go out, then
1422 * the data is "queued" in the outgoing buffer. If we are already waiting, then
1423 * we return.
1424 * in: if (in == 0) then the command string is built from command and buffer
1425 * if (in != 0) then in is used as the command string
1426 * buffer: additional data to be sent (used only if in == 0)
1427 * this is also where return data is stored
1428 * compRout: the completion routine that is called when then return value
1429 * is received (if a return value is expected)
1430 * data: a data pointer that can be used by the completion routine
1431 * command: an ADB command to be sent (used only if in == 0)
1432 *
1433 */
1434 int
1435 send_adb_IIsi(u_char * in, u_char * buffer, void *compRout, void *data, int
1436 command)
1437 {
1438 int s, len;
1439
1440 if (adbActionState == ADB_ACTION_NOTREADY)
1441 return 1;
1442
1443 /* Don't interrupt while we are messing with the ADB */
1444 s = splhigh();
1445
1446 if ((adbActionState == ADB_ACTION_IDLE) && /* ADB available? */
1447 (ADB_INTR_IS_OFF)) {/* and no incoming interrupt? */
1448
1449 } else
1450 if (adbWriteDelay == 0) /* it's busy, but is anything waiting? */
1451 adbWriteDelay = 1; /* if no, then we'll "queue"
1452 * it up */
1453 else {
1454 splx(s);
1455 return 1; /* really busy! */
1456 }
1457
1458 if ((long)in == (long)0) { /* need to convert? */
1459 /*
1460 * Don't need to use adb_cmd_extra here because this section
1461 * will be called ONLY when it is an ADB command (no RTC or
1462 * PRAM)
1463 */
1464 if ((command & 0x0c) == 0x08) /* copy addl data ONLY if
1465 * doing a listen! */
1466 len = buffer[0]; /* length of additional data */
1467 else
1468 len = 0;/* no additional data */
1469
1470 adbOutputBuffer[0] = 2 + len; /* dev. type + command + addl.
1471 * data */
1472 adbOutputBuffer[1] = 0x00; /* mark as an ADB command */
1473 adbOutputBuffer[2] = (u_char)command; /* load command */
1474
1475 /* copy additional output data, if any */
1476 memcpy(adbOutputBuffer + 3, buffer + 1, len);
1477 } else
1478 /* if data ready, just copy over */
1479 memcpy(adbOutputBuffer, in, in[0] + 2);
1480
1481 adbSentChars = 0; /* nothing sent yet */
1482 adbBuffer = buffer; /* save buffer to know where to save result */
1483 adbCompRout = compRout; /* save completion routine pointer */
1484 adbCompData = data; /* save completion routine data pointer */
1485 adbWaitingCmd = adbOutputBuffer[2]; /* save wait command */
1486
1487 if (adbWriteDelay != 1) { /* start command now? */
1488 adbActionState = ADB_ACTION_OUT; /* set next state */
1489
1490 ADB_SET_STATE_ACTIVE(); /* tell ADB that we want to send */
1491 ADB_SET_STATE_ACKOFF(); /* make sure */
1492
1493 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
1494
1495 ADB_SR() = adbOutputBuffer[adbSentChars + 1]; /* load byte for output */
1496
1497 ADB_SET_STATE_ACKON(); /* tell ADB byte ready to shift */
1498 }
1499 adbWriteDelay = 1; /* something in the write "queue" */
1500
1501 splx(s);
1502
1503 if (0x0100 <= (s & 0x0700)) /* were VIA1 interrupts blocked? */
1504 /* poll until byte done */
1505 while ((adbActionState != ADB_ACTION_IDLE) || (ADB_INTR_IS_ON)
1506 || (adbWaiting == 1))
1507 if (ADB_SR_INTR_IS_ON) { /* wait for "interrupt" */
1508 adb_intr_IIsi(NULL); /* go process it */
1509 if (adb_polling)
1510 adb_soft_intr();
1511 }
1512
1513 return 0;
1514 } /* send_adb_IIsi */
1515
1516 void
1517 adb_iop_recv(IOP *iop, struct iop_msg *msg)
1518 {
1519 struct adbCommand pkt;
1520 unsigned flags;
1521
1522 if (adbActionState != ADB_ACTION_RUNNING)
1523 return;
1524
1525 switch (msg->status) {
1526 case IOP_MSGSTAT_SENT:
1527 if (0 == adb_cmd_result(msg->msg + 1)) {
1528 adbWaiting = 1;
1529 adbWaitingCmd = msg->msg[2];
1530 }
1531 break;
1532 case IOP_MSGSTAT_RECEIVED:
1533 case IOP_MSGSTAT_UNEXPECTED:
1534 flags = msg->msg[0];
1535 if (flags != 0) {
1536 printf("ADB FLAGS 0x%x", flags);
1537 break;
1538 }
1539 if (adbWaiting &&
1540 (msg->msg[2] == adbWaitingCmd)) {
1541 pkt.saveBuf = msg->msg + 1;
1542 pkt.compRout = adbCompRout;
1543 pkt.compData = adbCompData;
1544 pkt.unsol = 0;
1545 pkt.ack_only = 0;
1546 adb_pass_up(&pkt);
1547
1548 adbWaitingCmd = 0;
1549 adbWaiting = 0;
1550 } else {
1551 pkt.unsol = 1;
1552 pkt.ack_only = 0;
1553 adb_pass_up(&pkt);
1554 }
1555 break;
1556 default:
1557 return;
1558 }
1559 }
1560
1561 int
1562 send_adb_iop(int cmd, u_char * buffer, void *compRout, void *data)
1563 {
1564 u_char buff[32];
1565 int cnt;
1566
1567 if (adbActionState != ADB_ACTION_RUNNING)
1568 return -1;
1569
1570 buff[0] = IOP_ADB_FL_EXPLICIT;
1571 buff[1] = buffer[0];
1572 buff[2] = cmd;
1573 cnt = (int) buff[1];
1574 memcpy(buff + 3, buffer + 1, cnt);
1575 return iop_send_msg(ISM_IOP, IOP_CHAN_ADB, buff, cnt+3,
1576 adb_iop_recv, NULL);
1577 }
1578
1579 /*
1580 * adb_pass_up is called by the interrupt-time routines.
1581 * It takes the raw packet data that was received from the
1582 * device and puts it into the queue that the upper half
1583 * processes. It then signals for a soft ADB interrupt which
1584 * will eventually call the upper half routine (adb_soft_intr).
1585 *
1586 * If in->unsol is 0, then this is either the notification
1587 * that the packet was sent (on a LISTEN, for example), or the
1588 * response from the device (on a TALK). The completion routine
1589 * is called only if the user specified one.
1590 *
1591 * If in->unsol is 1, then this packet was unsolicited and
1592 * so we look up the device in the ADB device table to determine
1593 * what it's default service routine is.
1594 *
1595 * If in->ack_only is 1, then we really only need to call
1596 * the completion routine, so don't do any other stuff.
1597 *
1598 * Note that in->data contains the packet header AND data,
1599 * while adbInbound[]->data contains ONLY data.
1600 *
1601 * Note: Called only at interrupt time. Assumes this.
1602 */
1603 void
1604 adb_pass_up(struct adbCommand *in)
1605 {
1606 int start = 0, len = 0, cmd = 0;
1607 ADBDataBlock block;
1608
1609 /* temp for testing */
1610 /*u_char *buffer = 0;*/
1611 /*u_char *compdata = 0;*/
1612 /*u_char *comprout = 0;*/
1613
1614 if (adbInCount >= ADB_QUEUE) {
1615 #ifdef ADB_DEBUG
1616 if (adb_debug)
1617 printf_intr("adb: ring buffer overflow\n");
1618 #endif
1619 return;
1620 }
1621
1622 if (in->ack_only) {
1623 len = in->data[0];
1624 cmd = in->cmd;
1625 start = 0;
1626 } else {
1627 switch (adbHardware) {
1628 case ADB_HW_IOP:
1629 case ADB_HW_II:
1630 cmd = in->data[1];
1631 if (in->data[0] < 2)
1632 len = 0;
1633 else
1634 len = in->data[0]-1;
1635 start = 1;
1636 break;
1637
1638 case ADB_HW_IISI:
1639 case ADB_HW_CUDA:
1640 /* If it's unsolicited, accept only ADB data for now */
1641 if (in->unsol)
1642 if (0 != in->data[2])
1643 return;
1644 cmd = in->data[4];
1645 if (in->data[0] < 5)
1646 len = 0;
1647 else
1648 len = in->data[0]-4;
1649 start = 4;
1650 break;
1651
1652 case ADB_HW_PB:
1653 cmd = in->data[1];
1654 if (in->data[0] < 2)
1655 len = 0;
1656 else
1657 len = in->data[0]-1;
1658 start = 1;
1659 break;
1660
1661 case ADB_HW_UNKNOWN:
1662 return;
1663 }
1664
1665 /* Make sure there is a valid device entry for this device */
1666 if (in->unsol) {
1667 /* ignore unsolicited data during adbreinit */
1668 if (adbStarting)
1669 return;
1670 /* get device's comp. routine and data area */
1671 if (-1 == get_adb_info(&block, ((cmd & 0xf0) >> 4)))
1672 return;
1673 }
1674 }
1675
1676 /*
1677 * If this is an unsolicited packet, we need to fill in
1678 * some info so adb_soft_intr can process this packet
1679 * properly. If it's not unsolicited, then use what
1680 * the caller sent us.
1681 */
1682 if (in->unsol) {
1683 adbInbound[adbInTail].compRout = (void *)block.dbServiceRtPtr;
1684 adbInbound[adbInTail].compData = (void *)block.dbDataAreaAddr;
1685 adbInbound[adbInTail].saveBuf = (void *)adbInbound[adbInTail].data;
1686 } else {
1687 adbInbound[adbInTail].compRout = (void *)in->compRout;
1688 adbInbound[adbInTail].compData = (void *)in->compData;
1689 adbInbound[adbInTail].saveBuf = (void *)in->saveBuf;
1690 }
1691
1692 #ifdef ADB_DEBUG
1693 if (adb_debug && in->data[1] == 2)
1694 printf_intr("adb: caught error\n");
1695 #endif
1696
1697 /* copy the packet data over */
1698 /*
1699 * TO DO: If the *_intr routines fed their incoming data
1700 * directly into an adbCommand struct, which is passed to
1701 * this routine, then we could eliminate this copy.
1702 */
1703 memcpy(adbInbound[adbInTail].data + 1, in->data + start + 1, len);
1704 adbInbound[adbInTail].data[0] = len;
1705 adbInbound[adbInTail].cmd = cmd;
1706
1707 adbInCount++;
1708 if (++adbInTail >= ADB_QUEUE)
1709 adbInTail = 0;
1710
1711 /*
1712 * If the debugger is running, call upper half manually.
1713 * Otherwise, trigger a soft interrupt to handle the rest later.
1714 */
1715 if (adb_polling)
1716 adb_soft_intr();
1717 else
1718 setsoftadb();
1719
1720 return;
1721 }
1722
1723
1724 /*
1725 * Called to process the packets after they have been
1726 * placed in the incoming queue.
1727 *
1728 */
1729 void
1730 adb_soft_intr(void)
1731 {
1732 int s;
1733 int cmd = 0;
1734 u_char *buffer = 0;
1735 u_char *comprout = 0;
1736 u_char *compdata = 0;
1737
1738 #if 0
1739 s = splhigh();
1740 printf_intr("sr: %x\n", (s & 0x0700));
1741 splx(s);
1742 #endif
1743
1744 /*delay(2*ADB_DELAY);*/
1745
1746 while (adbInCount) {
1747 #ifdef ADB_DEBUG
1748 if (adb_debug & 0x80)
1749 printf_intr("%x %x %x ",
1750 adbInCount, adbInHead, adbInTail);
1751 #endif
1752 /* get the data we need from the queue */
1753 buffer = adbInbound[adbInHead].saveBuf;
1754 comprout = adbInbound[adbInHead].compRout;
1755 compdata = adbInbound[adbInHead].compData;
1756 cmd = adbInbound[adbInHead].cmd;
1757
1758 /* copy over data to data area if it's valid */
1759 /*
1760 * Note that for unsol packets we don't want to copy the
1761 * data anywhere, so buffer was already set to 0.
1762 * For ack_only buffer was set to 0, so don't copy.
1763 */
1764 if (buffer)
1765 memcpy(buffer, adbInbound[adbInHead].data,
1766 adbInbound[adbInHead].data[0] + 1);
1767
1768 #ifdef ADB_DEBUG
1769 if (adb_debug & 0x80) {
1770 printf_intr("%p %p %p %x ",
1771 buffer, comprout, compdata, (short)cmd);
1772 printf_intr("buf: ");
1773 print_single(adbInbound[adbInHead].data);
1774 }
1775 #endif
1776
1777 /* call default completion routine if it's valid */
1778 if (comprout) {
1779 #ifdef __NetBSD__
1780 asm(" movml #0xffff,sp@- | save all registers
1781 movl %0,a2 | compdata
1782 movl %1,a1 | comprout
1783 movl %2,a0 | buffer
1784 movl %3,d0 | cmd
1785 jbsr a1@ | go call the routine
1786 movml sp@+,#0xffff | restore all registers"
1787 :
1788 : "g"(compdata), "g"(comprout),
1789 "g"(buffer), "g"(cmd)
1790 : "d0", "a0", "a1", "a2");
1791 #else /* for macos based testing */
1792 asm
1793 {
1794 movem.l a0/a1/a2/d0, -(a7)
1795 move.l compdata, a2
1796 move.l comprout, a1
1797 move.l buffer, a0
1798 move.w cmd, d0
1799 jsr(a1)
1800 movem.l(a7)+, d0/a2/a1/a0
1801 }
1802 #endif
1803 }
1804
1805 s = splhigh();
1806 adbInCount--;
1807 if (++adbInHead >= ADB_QUEUE)
1808 adbInHead = 0;
1809 splx(s);
1810
1811 }
1812 return;
1813 }
1814
1815
1816 /*
1817 * This is my version of the ADBOp routine. It mainly just calls the
1818 * hardware-specific routine.
1819 *
1820 * data : pointer to data area to be used by compRout
1821 * compRout : completion routine
1822 * buffer : for LISTEN: points to data to send - MAX 8 data bytes,
1823 * byte 0 = # of bytes
1824 * : for TALK: points to place to save return data
1825 * command : the adb command to send
1826 * result : 0 = success
1827 * : -1 = could not complete
1828 */
1829 int
1830 adb_op(Ptr buffer, Ptr compRout, Ptr data, short command)
1831 {
1832 int result;
1833
1834 switch (adbHardware) {
1835 case ADB_HW_II:
1836 result = send_adb_II((u_char *)0, (u_char *)buffer,
1837 (void *)compRout, (void *)data, (int)command);
1838 if (result == 0)
1839 return 0;
1840 else
1841 return -1;
1842 break;
1843
1844 case ADB_HW_IOP:
1845 #if 0
1846 result = send_adb_iop((int)command, (u_char *)buffer,
1847 (void *)compRout, (void *)data);
1848 if (result == 0)
1849 return 0;
1850 else
1851 #endif
1852 return -1;
1853 break;
1854
1855 case ADB_HW_IISI:
1856 result = send_adb_IIsi((u_char *)0, (u_char *)buffer,
1857 (void *)compRout, (void *)data, (int)command);
1858 /*
1859 * I wish I knew why this delay is needed. It usually needs to
1860 * be here when several commands are sent in close succession,
1861 * especially early in device probes when doing collision
1862 * detection. It must be some race condition. Sigh. - jpw
1863 */
1864 delay(100);
1865 if (result == 0)
1866 return 0;
1867 else
1868 return -1;
1869 break;
1870
1871 case ADB_HW_PB:
1872 result = pm_adb_op((u_char *)buffer, (void *)compRout,
1873 (void *)data, (int)command);
1874
1875 if (result == 0)
1876 return 0;
1877 else
1878 return -1;
1879 break;
1880
1881 case ADB_HW_CUDA:
1882 result = send_adb_cuda((u_char *)0, (u_char *)buffer,
1883 (void *)compRout, (void *)data, (int)command);
1884 if (result == 0)
1885 return 0;
1886 else
1887 return -1;
1888 break;
1889
1890 case ADB_HW_UNKNOWN:
1891 default:
1892 return -1;
1893 }
1894 }
1895
1896
1897 /*
1898 * adb_hw_setup
1899 * This routine sets up the possible machine specific hardware
1900 * config (mainly VIA settings) for the various models.
1901 */
1902 void
1903 adb_hw_setup(void)
1904 {
1905 volatile int i;
1906 u_char send_string[ADB_MAX_MSG_LENGTH];
1907
1908 switch (adbHardware) {
1909 case ADB_HW_II:
1910 via1_register_irq(2, adb_intr_II, NULL);
1911
1912 via_reg(VIA1, vDirB) |= 0x30; /* register B bits 4 and 5:
1913 * outputs */
1914 via_reg(VIA1, vDirB) &= 0xf7; /* register B bit 3: input */
1915 via_reg(VIA1, vACR) &= ~vSR_OUT; /* make sure SR is set
1916 * to IN (II, IIsi) */
1917 adbActionState = ADB_ACTION_IDLE; /* used by all types of
1918 * hardware (II, IIsi) */
1919 adbBusState = ADB_BUS_IDLE; /* this var. used in II-series
1920 * code only */
1921 via_reg(VIA1, vIER) = 0x84; /* make sure VIA interrupts
1922 * are on (II, IIsi) */
1923 ADB_SET_STATE_IDLE_II(); /* set ADB bus state to idle */
1924
1925 ADB_VIA_CLR_INTR(); /* clear interrupt */
1926 break;
1927
1928 case ADB_HW_IOP:
1929 /* adbActionState = ADB_ACTION_RUNNING; */
1930 via_reg(VIA1, vIER) = 0x84;
1931 via_reg(VIA1, vIFR) = 0x04;
1932 break;
1933
1934 case ADB_HW_IISI:
1935 via1_register_irq(2, adb_intr_IIsi, NULL);
1936 via_reg(VIA1, vDirB) |= 0x30; /* register B bits 4 and 5:
1937 * outputs */
1938 via_reg(VIA1, vDirB) &= 0xf7; /* register B bit 3: input */
1939 via_reg(VIA1, vACR) &= ~vSR_OUT; /* make sure SR is set
1940 * to IN (II, IIsi) */
1941 adbActionState = ADB_ACTION_IDLE; /* used by all types of
1942 * hardware (II, IIsi) */
1943 adbBusState = ADB_BUS_IDLE; /* this var. used in II-series
1944 * code only */
1945 via_reg(VIA1, vIER) = 0x84; /* make sure VIA interrupts
1946 * are on (II, IIsi) */
1947 ADB_SET_STATE_IDLE_IISI(); /* set ADB bus state to idle */
1948
1949 /* get those pesky clock ticks we missed while booting */
1950 for (i = 0; i < 30; i++) {
1951 delay(ADB_DELAY);
1952 adb_hw_setup_IIsi(send_string);
1953 #ifdef ADB_DEBUG
1954 if (adb_debug) {
1955 printf_intr("adb: cleanup: ");
1956 print_single(send_string);
1957 }
1958 #endif
1959 delay(ADB_DELAY);
1960 if (ADB_INTR_IS_OFF)
1961 break;
1962 }
1963 break;
1964
1965 case ADB_HW_PB:
1966 /*
1967 * XXX - really PM_VIA_CLR_INTR - should we put it in
1968 * pm_direct.h?
1969 */
1970 pm_hw_setup();
1971 break;
1972
1973 case ADB_HW_CUDA:
1974 via1_register_irq(2, adb_intr_cuda, NULL);
1975 via_reg(VIA1, vDirB) |= 0x30; /* register B bits 4 and 5:
1976 * outputs */
1977 via_reg(VIA1, vDirB) &= 0xf7; /* register B bit 3: input */
1978 via_reg(VIA1, vACR) &= ~vSR_OUT; /* make sure SR is set
1979 * to IN */
1980 via_reg(VIA1, vACR) = (via_reg(VIA1, vACR) | 0x0c) & ~0x10;
1981 adbActionState = ADB_ACTION_IDLE; /* used by all types of
1982 * hardware */
1983 adbBusState = ADB_BUS_IDLE; /* this var. used in II-series
1984 * code only */
1985 via_reg(VIA1, vIER) = 0x84; /* make sure VIA interrupts
1986 * are on */
1987 ADB_SET_STATE_IDLE_CUDA(); /* set ADB bus state to idle */
1988
1989 /* sort of a device reset */
1990 i = ADB_SR(); /* clear interrupt */
1991 ADB_VIA_INTR_DISABLE(); /* no interrupts while clearing */
1992 ADB_SET_STATE_IDLE_CUDA(); /* reset state to idle */
1993 delay(ADB_DELAY);
1994 ADB_SET_STATE_TIP(); /* signal start of frame */
1995 delay(ADB_DELAY);
1996 ADB_TOGGLE_STATE_ACK_CUDA();
1997 delay(ADB_DELAY);
1998 ADB_CLR_STATE_TIP();
1999 delay(ADB_DELAY);
2000 ADB_SET_STATE_IDLE_CUDA(); /* back to idle state */
2001 i = ADB_SR(); /* clear interrupt */
2002 ADB_VIA_INTR_ENABLE(); /* ints ok now */
2003 break;
2004
2005 case ADB_HW_UNKNOWN:
2006 default:
2007 via_reg(VIA1, vIER) = 0x04; /* turn interrupts off - TO
2008 * DO: turn PB ints off? */
2009 return;
2010 break;
2011 }
2012 }
2013
2014
2015 /*
2016 * adb_hw_setup_IIsi
2017 * This is sort of a "read" routine that forces the adb hardware through a read cycle
2018 * if there is something waiting. This helps "clean up" any commands that may have gotten
2019 * stuck or stopped during the boot process.
2020 *
2021 */
2022 void
2023 adb_hw_setup_IIsi(u_char * buffer)
2024 {
2025 int i;
2026 int dummy;
2027 int s;
2028 long my_time;
2029 int endofframe;
2030
2031 delay(ADB_DELAY);
2032
2033 i = 1; /* skip over [0] */
2034 s = splhigh(); /* block ALL interrupts while we are working */
2035 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
2036 ADB_VIA_INTR_DISABLE(); /* disable ADB interrupt on IIs. */
2037 /* this is required, especially on faster machines */
2038 delay(ADB_DELAY);
2039
2040 if (ADB_INTR_IS_ON) {
2041 ADB_SET_STATE_ACTIVE(); /* signal start of data frame */
2042
2043 endofframe = 0;
2044 while (0 == endofframe) {
2045 /*
2046 * Poll for ADB interrupt and watch for timeout.
2047 * If time out, keep going in hopes of not hanging
2048 * the ADB chip - I think
2049 */
2050 my_time = ADB_DELAY * 5;
2051 while ((ADB_SR_INTR_IS_OFF) && (my_time-- > 0))
2052 dummy = via_reg(VIA1, vBufB);
2053
2054 buffer[i++] = ADB_SR(); /* reset interrupt flag by
2055 * reading vSR */
2056 /*
2057 * Perhaps put in a check here that ignores all data
2058 * after the first ADB_MAX_MSG_LENGTH bytes ???
2059 */
2060 if (ADB_INTR_IS_OFF) /* check for end of frame */
2061 endofframe = 1;
2062
2063 ADB_SET_STATE_ACKON(); /* send ACK to ADB chip */
2064 delay(ADB_DELAY); /* delay */
2065 ADB_SET_STATE_ACKOFF(); /* send ACK to ADB chip */
2066 }
2067 ADB_SET_STATE_INACTIVE(); /* signal end of frame and
2068 * delay */
2069
2070 /* probably don't need to delay this long */
2071 delay(ADB_DELAY);
2072 }
2073 buffer[0] = --i; /* [0] is length of message */
2074 ADB_VIA_INTR_ENABLE(); /* enable ADB interrupt on IIs. */
2075 splx(s); /* restore interrupts */
2076
2077 return;
2078 } /* adb_hw_setup_IIsi */
2079
2080
2081
2082 /*
2083 * adb_reinit sets up the adb stuff
2084 *
2085 */
2086 void
2087 adb_reinit(void)
2088 {
2089 u_char send_string[ADB_MAX_MSG_LENGTH];
2090 ADBDataBlock data; /* temp. holder for getting device info */
2091 volatile int i, x;
2092 int s;
2093 int command;
2094 int result;
2095 int saveptr; /* point to next free relocation address */
2096 int device;
2097 int nonewtimes; /* times thru loop w/o any new devices */
2098
2099 /* Make sure we are not interrupted while building the table. */
2100 /* ints must be on for PB & IOP (at least, for now) */
2101 if (adbHardware != ADB_HW_PB && adbHardware != ADB_HW_IOP)
2102 s = splhigh();
2103 else
2104 s = 0; /* XXX shut the compiler up*/
2105
2106 ADBNumDevices = 0; /* no devices yet */
2107
2108 /* Let intr routines know we are running reinit */
2109 adbStarting = 1;
2110
2111 /*
2112 * Initialize the ADB table. For now, we'll always use the same table
2113 * that is defined at the beginning of this file - no mallocs.
2114 */
2115 for (i = 0; i < 16; i++)
2116 ADBDevTable[i].devType = 0;
2117
2118 adb_setup_hw_type(); /* setup hardware type */
2119
2120 adb_hw_setup(); /* init the VIA bits and hard reset ADB */
2121
2122 delay(1000);
2123
2124 /* send an ADB reset first */
2125 adb_op_sync((Ptr)0, (Ptr)0, (Ptr)0, (short)0x00);
2126 delay(3000);
2127
2128 /*
2129 * Probe for ADB devices. Probe devices 1-15 quickly to determine
2130 * which device addresses are in use and which are free. For each
2131 * address that is in use, move the device at that address to a higher
2132 * free address. Continue doing this at that address until no device
2133 * responds at that address. Then move the last device that was moved
2134 * back to the original address. Do this for the remaining addresses
2135 * that we determined were in use.
2136 *
2137 * When finished, do this entire process over again with the updated
2138 * list of in use addresses. Do this until no new devices have been
2139 * found in 20 passes though the in use address list. (This probably
2140 * seems long and complicated, but it's the best way to detect multiple
2141 * devices at the same address - sometimes it takes a couple of tries
2142 * before the collision is detected.)
2143 */
2144
2145 /* initial scan through the devices */
2146 for (i = 1; i < 16; i++) {
2147 command = (int)(0x0f | ((int)(i & 0x000f) << 4)); /* talk R3 */
2148 result = adb_op_sync((Ptr)send_string, (Ptr)0,
2149 (Ptr)0, (short)command);
2150 if (0x00 != send_string[0]) { /* anything come back ?? */
2151 ADBDevTable[++ADBNumDevices].devType =
2152 (int)(send_string[2]);
2153 ADBDevTable[ADBNumDevices].origAddr = i;
2154 ADBDevTable[ADBNumDevices].currentAddr = i;
2155 ADBDevTable[ADBNumDevices].DataAreaAddr =
2156 (long)0;
2157 ADBDevTable[ADBNumDevices].ServiceRtPtr = (void *)0;
2158 pm_check_adb_devices(i); /* tell pm driver device
2159 * is here */
2160 }
2161 }
2162
2163 /* find highest unused address */
2164 for (saveptr = 15; saveptr > 0; saveptr--)
2165 if (-1 == get_adb_info(&data, saveptr))
2166 break;
2167
2168 if (saveptr == 0) /* no free addresses??? */
2169 saveptr = 15;
2170
2171 #ifdef ADB_DEBUG
2172 if (adb_debug & 0x80) {
2173 printf_intr("first free is: 0x%02x\n", saveptr);
2174 printf_intr("devices: %i\n", ADBNumDevices);
2175 }
2176 #endif
2177
2178 nonewtimes = 0; /* no loops w/o new devices */
2179 while (nonewtimes++ < 11) {
2180 for (i = 1; i <= ADBNumDevices; i++) {
2181 device = ADBDevTable[i].currentAddr;
2182 #ifdef ADB_DEBUG
2183 if (adb_debug & 0x80)
2184 printf_intr("moving device 0x%02x to 0x%02x "
2185 "(index 0x%02x) ", device, saveptr, i);
2186 #endif
2187
2188 /* send TALK R3 to address */
2189 command = (int)(0x0f | ((int)(device & 0x000f) << 4));
2190 adb_op_sync((Ptr)send_string, (Ptr)0,
2191 (Ptr)0, (short)command);
2192
2193 /* move device to higher address */
2194 command = (int)(0x0b | ((int)(device & 0x000f) << 4));
2195 send_string[0] = 2;
2196 send_string[1] = (u_char)(saveptr | 0x60);
2197 send_string[2] = 0xfe;
2198 adb_op_sync((Ptr)send_string, (Ptr)0,
2199 (Ptr)0, (short)command);
2200 delay(500);
2201
2202 /* send TALK R3 - anything at old address? */
2203 command = (int)(0x0f | ((int)(device & 0x000f) << 4));
2204 result = adb_op_sync((Ptr)send_string, (Ptr)0,
2205 (Ptr)0, (short)command);
2206 if (send_string[0] != 0) {
2207 /* new device found */
2208 /* update data for previously moved device */
2209 ADBDevTable[i].currentAddr = saveptr;
2210 #ifdef ADB_DEBUG
2211 if (adb_debug & 0x80)
2212 printf_intr("old device at index %i\n",i);
2213 #endif
2214 /* add new device in table */
2215 #ifdef ADB_DEBUG
2216 if (adb_debug & 0x80)
2217 printf_intr("new device found\n");
2218 #endif
2219 ADBDevTable[++ADBNumDevices].devType =
2220 (int)(send_string[2]);
2221 ADBDevTable[ADBNumDevices].origAddr = device;
2222 ADBDevTable[ADBNumDevices].currentAddr = device;
2223 /* These will be set correctly in adbsys.c */
2224 /* Until then, unsol. data will be ignored. */
2225 ADBDevTable[ADBNumDevices].DataAreaAddr =
2226 (long)0;
2227 ADBDevTable[ADBNumDevices].ServiceRtPtr =
2228 (void *)0;
2229 /* find next unused address */
2230 for (x = saveptr; x > 0; x--)
2231 if (-1 == get_adb_info(&data, x)) {
2232 saveptr = x;
2233 break;
2234 }
2235 #ifdef ADB_DEBUG
2236 if (adb_debug & 0x80)
2237 printf_intr("new free is 0x%02x\n",
2238 saveptr);
2239 #endif
2240 nonewtimes = 0;
2241 /* tell pm driver device is here */
2242 pm_check_adb_devices(device);
2243 } else {
2244 #ifdef ADB_DEBUG
2245 if (adb_debug & 0x80)
2246 printf_intr("moving back...\n");
2247 #endif
2248 /* move old device back */
2249 command = (int)(0x0b | ((int)(saveptr & 0x000f) << 4));
2250 send_string[0] = 2;
2251 send_string[1] = (u_char)(device | 0x60);
2252 send_string[2] = 0xfe;
2253 adb_op_sync((Ptr)send_string, (Ptr)0,
2254 (Ptr)0, (short)command);
2255 delay(1000);
2256 }
2257 }
2258 }
2259
2260 #ifdef ADB_DEBUG
2261 if (adb_debug) {
2262 for (i = 1; i <= ADBNumDevices; i++) {
2263 x = get_ind_adb_info(&data, i);
2264 if (x != -1)
2265 printf_intr("index 0x%x, addr 0x%x, type 0x%hx\n",
2266 i, x, data.devType);
2267 }
2268 }
2269 #endif
2270
2271 #ifndef MRG_ADB
2272 /* enable the programmer's switch, if we have one */
2273 adb_prog_switch_enable();
2274 #endif
2275
2276 #ifdef ADB_DEBUG
2277 if (adb_debug) {
2278 if (0 == ADBNumDevices) /* tell user if no devices found */
2279 printf_intr("adb: no devices found\n");
2280 }
2281 #endif
2282
2283 adbStarting = 0; /* not starting anymore */
2284 #ifdef ADB_DEBUG
2285 if (adb_debug)
2286 printf_intr("adb: ADBReInit complete\n");
2287 #endif
2288
2289 if (adbHardware == ADB_HW_CUDA)
2290 timeout((void *)adb_cuda_tickle, 0, ADB_TICKLE_TICKS);
2291
2292 /* ints must be on for PB & IOP (at least, for now) */
2293 if (adbHardware != ADB_HW_PB && adbHardware != ADB_HW_IOP)
2294 splx(s);
2295
2296 return;
2297 }
2298
2299
2300 /*
2301 * adb_comp_exec
2302 * This is a general routine that calls the completion routine if there is one.
2303 * NOTE: This routine is now only used by pm_direct.c
2304 * All the code in this file (adb_direct.c) uses
2305 * the adb_pass_up routine now.
2306 */
2307 void
2308 adb_comp_exec(void)
2309 {
2310 if ((long)0 != adbCompRout) /* don't call if empty return location */
2311 #ifdef __NetBSD__
2312 asm(" movml #0xffff,sp@- | save all registers
2313 movl %0,a2 | adbCompData
2314 movl %1,a1 | adbCompRout
2315 movl %2,a0 | adbBuffer
2316 movl %3,d0 | adbWaitingCmd
2317 jbsr a1@ | go call the routine
2318 movml sp@+,#0xffff | restore all registers"
2319 :
2320 : "g"(adbCompData), "g"(adbCompRout),
2321 "g"(adbBuffer), "g"(adbWaitingCmd)
2322 : "d0", "a0", "a1", "a2");
2323 #else /* for Mac OS-based testing */
2324 asm {
2325 movem.l a0/a1/a2/d0, -(a7)
2326 move.l adbCompData, a2
2327 move.l adbCompRout, a1
2328 move.l adbBuffer, a0
2329 move.w adbWaitingCmd, d0
2330 jsr(a1)
2331 movem.l(a7) +, d0/a2/a1/a0
2332 }
2333 #endif
2334 }
2335
2336
2337 /*
2338 * adb_cmd_result
2339 *
2340 * This routine lets the caller know whether the specified adb command string
2341 * should expect a returned result, such as a TALK command.
2342 *
2343 * returns: 0 if a result should be expected
2344 * 1 if a result should NOT be expected
2345 */
2346 int
2347 adb_cmd_result(u_char *in)
2348 {
2349 switch (adbHardware) {
2350 case ADB_HW_IOP:
2351 case ADB_HW_II:
2352 /* was it an ADB talk command? */
2353 if ((in[1] & 0x0c) == 0x0c)
2354 return 0;
2355 return 1;
2356
2357 case ADB_HW_IISI:
2358 case ADB_HW_CUDA:
2359 /* was it an ADB talk command? */
2360 if ((in[1] == 0x00) && ((in[2] & 0x0c) == 0x0c))
2361 return 0;
2362 /* was it an RTC/PRAM read date/time? */
2363 if ((in[1] == 0x01) && (in[2] == 0x03))
2364 return 0;
2365 return 1;
2366
2367 case ADB_HW_PB:
2368 return 1;
2369
2370 case ADB_HW_UNKNOWN:
2371 default:
2372 return 1;
2373 }
2374 }
2375
2376
2377 /*
2378 * adb_cmd_extra
2379 *
2380 * This routine lets the caller know whether the specified adb command string
2381 * may have extra data appended to the end of it, such as a LISTEN command.
2382 *
2383 * returns: 0 if extra data is allowed
2384 * 1 if extra data is NOT allowed
2385 */
2386 int
2387 adb_cmd_extra(u_char *in)
2388 {
2389 switch (adbHardware) {
2390 case ADB_HW_II:
2391 case ADB_HW_IOP:
2392 if ((in[1] & 0x0c) == 0x08) /* was it a listen command? */
2393 return 0;
2394 return 1;
2395
2396 case ADB_HW_IISI:
2397 case ADB_HW_CUDA:
2398 /*
2399 * TO DO: support needs to be added to recognize RTC and PRAM
2400 * commands
2401 */
2402 if ((in[2] & 0x0c) == 0x08) /* was it a listen command? */
2403 return 0;
2404 /* add others later */
2405 return 1;
2406
2407 case ADB_HW_PB:
2408 return 1;
2409
2410 case ADB_HW_UNKNOWN:
2411 default:
2412 return 1;
2413 }
2414 }
2415
2416
2417 /*
2418 * adb_op_sync
2419 *
2420 * This routine does exactly what the adb_op routine does, except that after
2421 * the adb_op is called, it waits until the return value is present before
2422 * returning.
2423 *
2424 * NOTE: The user specified compRout is ignored, since this routine specifies
2425 * it's own to adb_op, which is why you really called this in the first place
2426 * anyway.
2427 */
2428 int
2429 adb_op_sync(Ptr buffer, Ptr compRout, Ptr data, short command)
2430 {
2431 int result;
2432 volatile int flag = 0;
2433
2434 result = adb_op(buffer, (void *)adb_op_comprout,
2435 (void *)&flag, command); /* send command */
2436 if (result == 0) /* send ok? */
2437 while (0 == flag)
2438 /* wait for compl. routine */;
2439
2440 return result;
2441 }
2442
2443
2444 /*
2445 * adb_op_comprout
2446 *
2447 * This function is used by the adb_op_sync routine so it knows when the
2448 * function is done.
2449 */
2450 void
2451 adb_op_comprout(void)
2452 {
2453 #ifdef __NetBSD__
2454 asm("movw #1,a2@ | update flag value");
2455 #else /* for macos based testing */
2456 asm {
2457 move.w #1,(a2) } /* update flag value */
2458 #endif
2459 }
2460
2461 void
2462 adb_setup_hw_type(void)
2463 {
2464 long response;
2465
2466 response = mac68k_machine.machineid;
2467
2468 /*
2469 * Determine what type of ADB hardware we are running on.
2470 */
2471 switch (response) {
2472 case MACH_MACC610: /* Centris 610 */
2473 case MACH_MACC650: /* Centris 650 */
2474 case MACH_MACII: /* II */
2475 case MACH_MACIICI: /* IIci */
2476 case MACH_MACIICX: /* IIcx */
2477 case MACH_MACIIX: /* IIx */
2478 case MACH_MACQ610: /* Quadra 610 */
2479 case MACH_MACQ650: /* Quadra 650 */
2480 case MACH_MACQ700: /* Quadra 700 */
2481 case MACH_MACQ800: /* Quadra 800 */
2482 case MACH_MACSE30: /* SE/30 */
2483 adbHardware = ADB_HW_II;
2484 #ifdef ADB_DEBUG
2485 if (adb_debug)
2486 printf_intr("adb: using II series hardware support\n");
2487 #endif
2488 break;
2489
2490 case MACH_MACCLASSICII: /* Classic II */
2491 case MACH_MACLCII: /* LC II, Performa 400/405/430 */
2492 case MACH_MACLCIII: /* LC III, Performa 450 */
2493 case MACH_MACIISI: /* IIsi */
2494 case MACH_MACIIVI: /* IIvi */
2495 case MACH_MACIIVX: /* IIvx */
2496 case MACH_MACP460: /* Performa 460/465/467 */
2497 case MACH_MACP600: /* Performa 600 */
2498 adbHardware = ADB_HW_IISI;
2499 #ifdef ADB_DEBUG
2500 if (adb_debug)
2501 printf_intr("adb: using IIsi series hardware support\n");
2502 #endif
2503 break;
2504
2505 case MACH_MACPB140: /* PowerBook 140 */
2506 case MACH_MACPB145: /* PowerBook 145 */
2507 case MACH_MACPB150: /* PowerBook 150 */
2508 case MACH_MACPB160: /* PowerBook 160 */
2509 case MACH_MACPB165: /* PowerBook 165 */
2510 case MACH_MACPB165C: /* PowerBook 165c */
2511 case MACH_MACPB170: /* PowerBook 170 */
2512 case MACH_MACPB180: /* PowerBook 180 */
2513 case MACH_MACPB180C: /* PowerBook 180c */
2514 adbHardware = ADB_HW_PB;
2515 pm_setup_adb();
2516 #ifdef ADB_DEBUG
2517 if (adb_debug)
2518 printf_intr("adb: using PowerBook 100-series hardware support\n");
2519 #endif
2520 break;
2521
2522 case MACH_MACPB210: /* PowerBook Duo 210 */
2523 case MACH_MACPB230: /* PowerBook Duo 230 */
2524 case MACH_MACPB250: /* PowerBook Duo 250 */
2525 case MACH_MACPB270: /* PowerBook Duo 270 */
2526 case MACH_MACPB280: /* PowerBook Duo 280 */
2527 case MACH_MACPB280C: /* PowerBook Duo 280c */
2528 case MACH_MACPB500: /* PowerBook 500 series */
2529 adbHardware = ADB_HW_PB;
2530 pm_setup_adb();
2531 #ifdef ADB_DEBUG
2532 if (adb_debug)
2533 printf_intr("adb: using PowerBook Duo-series and PowerBook 500-series hardware support\n");
2534 #endif
2535 break;
2536
2537 case MACH_MACC660AV: /* Centris 660AV */
2538 case MACH_MACCCLASSIC: /* Color Classic */
2539 case MACH_MACCCLASSICII: /* Color Classic II */
2540 case MACH_MACLC475: /* LC 475, Performa 475/476 */
2541 case MACH_MACLC475_33: /* Clock-chipped 47x */
2542 case MACH_MACLC520: /* LC 520 */
2543 case MACH_MACLC575: /* LC 575, Performa 575/577/578 */
2544 case MACH_MACP550: /* LC 550, Performa 550 */
2545 case MACH_MACP580: /* Performa 580/588 */
2546 case MACH_MACQ605: /* Quadra 605 */
2547 case MACH_MACQ605_33: /* Clock-chipped Quadra 605 */
2548 case MACH_MACQ630: /* LC 630, Performa 630, Quadra 630 */
2549 case MACH_MACQ840AV: /* Quadra 840AV */
2550 adbHardware = ADB_HW_CUDA;
2551 #ifdef ADB_DEBUG
2552 if (adb_debug)
2553 printf_intr("adb: using Cuda series hardware support\n");
2554 #endif
2555 break;
2556
2557 case MACH_MACQ900: /* Quadra 900 */
2558 case MACH_MACQ950: /* Quadra 950 */
2559 case MACH_MACIIFX: /* Mac IIfx */
2560 adbHardware = ADB_HW_IOP;
2561 iop_register_listener(ISM_IOP, IOP_CHAN_ADB, adb_iop_recv, NULL);
2562 #ifdef ADB_DEBUG
2563 if (adb_debug)
2564 printf_intr("adb: using IOP-based ADB\n");
2565 #endif
2566 break;
2567
2568 default:
2569 adbHardware = ADB_HW_UNKNOWN;
2570 #ifdef ADB_DEBUG
2571 if (adb_debug) {
2572 printf_intr("adb: hardware type unknown for this machine\n");
2573 printf_intr("adb: ADB support is disabled\n");
2574 }
2575 #endif
2576 break;
2577 }
2578
2579 /*
2580 * Determine whether this machine has ADB based soft power.
2581 */
2582 switch (response) {
2583 case MACH_MACCCLASSIC: /* Color Classic */
2584 case MACH_MACCCLASSICII: /* Color Classic II */
2585 case MACH_MACIISI: /* IIsi */
2586 case MACH_MACIIVI: /* IIvi */
2587 case MACH_MACIIVX: /* IIvx */
2588 case MACH_MACLC520: /* LC 520 */
2589 case MACH_MACLC575: /* LC 575, Performa 575/577/578 */
2590 case MACH_MACP550: /* LC 550, Performa 550 */
2591 case MACH_MACP580: /* Performa 580/588 */
2592 case MACH_MACP600: /* Performa 600 */
2593 case MACH_MACQ630: /* LC 630, Performa 630, Quadra 630 */
2594 case MACH_MACQ840AV: /* Quadra 840AV */
2595 adbSoftPower = 1;
2596 break;
2597 }
2598 }
2599
2600 int
2601 count_adbs(void)
2602 {
2603 int i;
2604 int found;
2605
2606 found = 0;
2607
2608 for (i = 1; i < 16; i++)
2609 if (0 != ADBDevTable[i].devType)
2610 found++;
2611
2612 return found;
2613 }
2614
2615 int
2616 get_ind_adb_info(ADBDataBlock * info, int index)
2617 {
2618 if ((index < 1) || (index > 15)) /* check range 1-15 */
2619 return (-1);
2620
2621 #ifdef ADB_DEBUG
2622 if (adb_debug & 0x80)
2623 printf_intr("index 0x%x devType is: 0x%x\n", index,
2624 ADBDevTable[index].devType);
2625 #endif
2626 if (0 == ADBDevTable[index].devType) /* make sure it's a valid entry */
2627 return (-1);
2628
2629 info->devType = (unsigned char)(ADBDevTable[index].devType);
2630 info->origADBAddr = (unsigned char)(ADBDevTable[index].origAddr);
2631 info->dbServiceRtPtr = (Ptr)ADBDevTable[index].ServiceRtPtr;
2632 info->dbDataAreaAddr = (Ptr)ADBDevTable[index].DataAreaAddr;
2633
2634 return (ADBDevTable[index].currentAddr);
2635 }
2636
2637 int
2638 get_adb_info(ADBDataBlock * info, int adbAddr)
2639 {
2640 int i;
2641
2642 if ((adbAddr < 1) || (adbAddr > 15)) /* check range 1-15 */
2643 return (-1);
2644
2645 for (i = 1; i < 15; i++)
2646 if (ADBDevTable[i].currentAddr == adbAddr) {
2647 info->devType = (unsigned char)(ADBDevTable[i].devType);
2648 info->origADBAddr = (unsigned char)(ADBDevTable[i].origAddr);
2649 info->dbServiceRtPtr = (Ptr)ADBDevTable[i].ServiceRtPtr;
2650 info->dbDataAreaAddr = ADBDevTable[i].DataAreaAddr;
2651 return 0; /* found */
2652 }
2653
2654 return (-1); /* not found */
2655 }
2656
2657 int
2658 set_adb_info(ADBSetInfoBlock * info, int adbAddr)
2659 {
2660 int i;
2661
2662 if ((adbAddr < 1) || (adbAddr > 15)) /* check range 1-15 */
2663 return (-1);
2664
2665 for (i = 1; i < 15; i++)
2666 if (ADBDevTable[i].currentAddr == adbAddr) {
2667 ADBDevTable[i].ServiceRtPtr =
2668 (void *)(info->siServiceRtPtr);
2669 ADBDevTable[i].DataAreaAddr = info->siDataAreaAddr;
2670 return 0; /* found */
2671 }
2672
2673 return (-1); /* not found */
2674
2675 }
2676
2677 #ifndef MRG_ADB
2678 long
2679 mrg_adbintr(void)
2680 {
2681 adb_intr(NULL);
2682 return 1; /* mimic mrg_adbintr in macrom.h just in case */
2683 }
2684
2685 long
2686 mrg_pmintr(void)
2687 {
2688 pm_intr(NULL);
2689 return 1; /* mimic mrg_pmintr in macrom.h just in case */
2690 }
2691
2692 /* caller should really use machine-independant version: getPramTime */
2693 /* this version does pseudo-adb access only */
2694 int
2695 adb_read_date_time(unsigned long *time)
2696 {
2697 u_char output[ADB_MAX_MSG_LENGTH];
2698 int result;
2699 volatile int flag = 0;
2700
2701 switch (adbHardware) {
2702 case ADB_HW_II:
2703 return -1;
2704
2705 case ADB_HW_IOP:
2706 return -1;
2707
2708 case ADB_HW_IISI:
2709 output[0] = 0x02; /* 2 byte message */
2710 output[1] = 0x01; /* to pram/rtc device */
2711 output[2] = 0x03; /* read date/time */
2712 result = send_adb_IIsi((u_char *)output, (u_char *)output,
2713 (void *)adb_op_comprout, (int *)&flag, (int)0);
2714 if (result != 0) /* exit if not sent */
2715 return -1;
2716
2717 while (0 == flag) /* wait for result */
2718 ;
2719
2720 *time = (long)(*(long *)(output + 1));
2721 return 0;
2722
2723 case ADB_HW_PB:
2724 return -1;
2725
2726 case ADB_HW_CUDA:
2727 output[0] = 0x02; /* 2 byte message */
2728 output[1] = 0x01; /* to pram/rtc device */
2729 output[2] = 0x03; /* read date/time */
2730 result = send_adb_cuda((u_char *)output, (u_char *)output,
2731 (void *)adb_op_comprout, (void *)&flag, (int)0);
2732 if (result != 0) /* exit if not sent */
2733 return -1;
2734
2735 while (0 == flag) /* wait for result */
2736 ;
2737
2738 *time = (long)(*(long *)(output + 1));
2739 return 0;
2740
2741 case ADB_HW_UNKNOWN:
2742 default:
2743 return -1;
2744 }
2745 }
2746
2747 /* caller should really use machine-independant version: setPramTime */
2748 /* this version does pseudo-adb access only */
2749 int
2750 adb_set_date_time(unsigned long time)
2751 {
2752 u_char output[ADB_MAX_MSG_LENGTH];
2753 int result;
2754 volatile int flag = 0;
2755
2756 switch (adbHardware) {
2757 case ADB_HW_II:
2758 return -1;
2759
2760 case ADB_HW_IOP:
2761 return -1;
2762
2763 case ADB_HW_IISI:
2764 output[0] = 0x06; /* 6 byte message */
2765 output[1] = 0x01; /* to pram/rtc device */
2766 output[2] = 0x09; /* set date/time */
2767 output[3] = (u_char)(time >> 24);
2768 output[4] = (u_char)(time >> 16);
2769 output[5] = (u_char)(time >> 8);
2770 output[6] = (u_char)(time);
2771 result = send_adb_IIsi((u_char *)output, (u_char *)0,
2772 (void *)adb_op_comprout, (void *)&flag, (int)0);
2773 if (result != 0) /* exit if not sent */
2774 return -1;
2775
2776 while (0 == flag) /* wait for send to finish */
2777 ;
2778
2779 return 0;
2780
2781 case ADB_HW_PB:
2782 return -1;
2783
2784 case ADB_HW_CUDA:
2785 output[0] = 0x06; /* 6 byte message */
2786 output[1] = 0x01; /* to pram/rtc device */
2787 output[2] = 0x09; /* set date/time */
2788 output[3] = (u_char)(time >> 24);
2789 output[4] = (u_char)(time >> 16);
2790 output[5] = (u_char)(time >> 8);
2791 output[6] = (u_char)(time);
2792 result = send_adb_cuda((u_char *)output, (u_char *)0,
2793 (void *)adb_op_comprout, (void *)&flag, (int)0);
2794 if (result != 0) /* exit if not sent */
2795 return -1;
2796
2797 while (0 == flag) /* wait for send to finish */
2798 ;
2799
2800 return 0;
2801
2802 case ADB_HW_UNKNOWN:
2803 default:
2804 return -1;
2805 }
2806 }
2807
2808
2809 int
2810 adb_poweroff(void)
2811 {
2812 u_char output[ADB_MAX_MSG_LENGTH];
2813 int result;
2814
2815 if (!adbSoftPower)
2816 return -1;
2817
2818 adb_polling = 1;
2819
2820 switch (adbHardware) {
2821 case ADB_HW_IISI:
2822 output[0] = 0x02; /* 2 byte message */
2823 output[1] = 0x01; /* to pram/rtc/soft-power device */
2824 output[2] = 0x0a; /* set date/time */
2825 result = send_adb_IIsi((u_char *)output, (u_char *)0,
2826 (void *)0, (void *)0, (int)0);
2827 if (result != 0) /* exit if not sent */
2828 return -1;
2829
2830 for (;;); /* wait for power off */
2831
2832 return 0;
2833
2834 case ADB_HW_PB:
2835 return -1;
2836
2837 case ADB_HW_CUDA:
2838 output[0] = 0x02; /* 2 byte message */
2839 output[1] = 0x01; /* to pram/rtc/soft-power device */
2840 output[2] = 0x0a; /* set date/time */
2841 result = send_adb_cuda((u_char *)output, (u_char *)0,
2842 (void *)0, (void *)0, (int)0);
2843 if (result != 0) /* exit if not sent */
2844 return -1;
2845
2846 for (;;); /* wait for power off */
2847
2848 return 0;
2849
2850 case ADB_HW_II: /* II models don't do ADB soft power */
2851 case ADB_HW_IOP: /* IOP models don't do ADB soft power */
2852 case ADB_HW_UNKNOWN:
2853 default:
2854 return -1;
2855 }
2856 }
2857
2858 int
2859 adb_prog_switch_enable(void)
2860 {
2861 u_char output[ADB_MAX_MSG_LENGTH];
2862 int result;
2863 volatile int flag = 0;
2864
2865 switch (adbHardware) {
2866 case ADB_HW_IISI:
2867 output[0] = 0x03; /* 3 byte message */
2868 output[1] = 0x01; /* to pram/rtc/soft-power device */
2869 output[2] = 0x1c; /* prog. switch control */
2870 output[3] = 0x01; /* enable */
2871 result = send_adb_IIsi((u_char *)output, (u_char *)0,
2872 (void *)adb_op_comprout, (void *)&flag, (int)0);
2873 if (result != 0) /* exit if not sent */
2874 return -1;
2875
2876 while (0 == flag) /* wait for send to finish */
2877 ;
2878
2879 return 0;
2880
2881 case ADB_HW_PB:
2882 return -1;
2883
2884 case ADB_HW_II: /* II models don't do prog. switch */
2885 case ADB_HW_IOP: /* IOP models don't do prog. switch */
2886 case ADB_HW_CUDA: /* cuda doesn't do prog. switch TO DO: verify this */
2887 case ADB_HW_UNKNOWN:
2888 default:
2889 return -1;
2890 }
2891 }
2892
2893 int
2894 adb_prog_switch_disable(void)
2895 {
2896 u_char output[ADB_MAX_MSG_LENGTH];
2897 int result;
2898 volatile int flag = 0;
2899
2900 switch (adbHardware) {
2901 case ADB_HW_IISI:
2902 output[0] = 0x03; /* 3 byte message */
2903 output[1] = 0x01; /* to pram/rtc/soft-power device */
2904 output[2] = 0x1c; /* prog. switch control */
2905 output[3] = 0x01; /* disable */
2906 result = send_adb_IIsi((u_char *)output, (u_char *)0,
2907 (void *)adb_op_comprout, (void *)&flag, (int)0);
2908 if (result != 0) /* exit if not sent */
2909 return -1;
2910
2911 while (0 == flag) /* wait for send to finish */
2912 ;
2913
2914 return 0;
2915
2916 case ADB_HW_PB:
2917 return -1;
2918
2919 case ADB_HW_II: /* II models don't do prog. switch */
2920 case ADB_HW_IOP: /* IOP models don't do prog. switch */
2921 case ADB_HW_CUDA: /* cuda doesn't do prog. switch */
2922 case ADB_HW_UNKNOWN:
2923 default:
2924 return -1;
2925 }
2926 }
2927
2928 int
2929 CountADBs(void)
2930 {
2931 return (count_adbs());
2932 }
2933
2934 void
2935 ADBReInit(void)
2936 {
2937 adb_reinit();
2938 }
2939
2940 int
2941 GetIndADB(ADBDataBlock * info, int index)
2942 {
2943 return (get_ind_adb_info(info, index));
2944 }
2945
2946 int
2947 GetADBInfo(ADBDataBlock * info, int adbAddr)
2948 {
2949 return (get_adb_info(info, adbAddr));
2950 }
2951
2952 int
2953 SetADBInfo(ADBSetInfoBlock * info, int adbAddr)
2954 {
2955 return (set_adb_info(info, adbAddr));
2956 }
2957
2958 int
2959 ADBOp(Ptr buffer, Ptr compRout, Ptr data, short commandNum)
2960 {
2961 return (adb_op(buffer, compRout, data, commandNum));
2962 }
2963
2964 #endif
2965