adb_direct.c revision 1.44 1 /* $NetBSD: adb_direct.c,v 1.44 2000/09/27 03:27:23 scottr Exp $ */
2
3 /* From: adb_direct.c 2.02 4/18/97 jpw */
4
5 /*
6 * Copyright (C) 1996, 1997 John P. Wittkoski
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by John P. Wittkoski.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*
36 * This code is rather messy, but I don't have time right now
37 * to clean it up as much as I would like.
38 * But it works, so I'm happy. :-) jpw
39 */
40
41 /*
42 * TO DO:
43 * - We could reduce the time spent in the adb_intr_* routines
44 * by having them save the incoming and outgoing data directly
45 * in the adbInbound and adbOutbound queues, as it would reduce
46 * the number of times we need to copy the data around. It
47 * would also make the code more readable and easier to follow.
48 * - (Related to above) Use the header part of adbCommand to
49 * reduce the number of copies we have to do of the data.
50 * - (Related to above) Actually implement the adbOutbound queue.
51 * This is fairly easy once you switch all the intr routines
52 * over to using adbCommand structs directly.
53 * - There is a bug in the state machine of adb_intr_cuda
54 * code that causes hangs, especially on 030 machines, probably
55 * because of some timing issues. Because I have been unable to
56 * determine the exact cause of this bug, I used the timeout function
57 * to check for and recover from this condition. If anyone finds
58 * the actual cause of this bug, the calls to timeout and the
59 * adb_cuda_tickle routine can be removed.
60 */
61
62 #ifdef __NetBSD__
63 #include "opt_adb.h"
64
65 #include <sys/param.h>
66 #include <sys/cdefs.h>
67 #include <sys/pool.h>
68 #include <sys/queue.h>
69 #include <sys/systm.h>
70 #include <sys/callout.h>
71
72 #include <machine/viareg.h>
73 #include <machine/param.h>
74 #include <machine/cpu.h>
75 #include <machine/adbsys.h> /* required for adbvar.h */
76 #include <machine/iopreg.h> /* required for IOP support */
77
78 #include <mac68k/mac68k/macrom.h>
79 #include <mac68k/dev/adbvar.h>
80 #define printf_intr printf
81 #else /* !__NetBSD__, i.e. Mac OS */
82 #include "via.h" /* for macos based testing */
83 /* #define ADB_DEBUG */ /* more verbose for testing */
84
85 /* Types of ADB hardware that we support */
86 #define ADB_HW_UNKNOWN 0x0 /* don't know */
87 #define ADB_HW_II 0x1 /* Mac II series */
88 #define ADB_HW_IISI 0x2 /* Mac IIsi series */
89 #define ADB_HW_PB 0x3 /* PowerBook series */
90 #define ADB_HW_CUDA 0x4 /* Machines with a Cuda chip */
91 #endif /* __NetBSD__ */
92
93 /* some misc. leftovers */
94 #define vPB 0x0000
95 #define vPB3 0x08
96 #define vPB4 0x10
97 #define vPB5 0x20
98 #define vSR_INT 0x04
99 #define vSR_OUT 0x10
100
101 /* the type of ADB action that we are currently preforming */
102 #define ADB_ACTION_NOTREADY 0x1 /* has not been initialized yet */
103 #define ADB_ACTION_IDLE 0x2 /* the bus is currently idle */
104 #define ADB_ACTION_OUT 0x3 /* sending out a command */
105 #define ADB_ACTION_IN 0x4 /* receiving data */
106 #define ADB_ACTION_POLLING 0x5 /* polling - II only */
107 #define ADB_ACTION_RUNNING 0x6 /* running - IOP only */
108
109 /*
110 * These describe the state of the ADB bus itself, although they
111 * don't necessarily correspond directly to ADB states.
112 * Note: these are not really used in the IIsi code.
113 */
114 #define ADB_BUS_UNKNOWN 0x1 /* we don't know yet - all models */
115 #define ADB_BUS_IDLE 0x2 /* bus is idle - all models */
116 #define ADB_BUS_CMD 0x3 /* starting a command - II models */
117 #define ADB_BUS_ODD 0x4 /* the "odd" state - II models */
118 #define ADB_BUS_EVEN 0x5 /* the "even" state - II models */
119 #define ADB_BUS_ACTIVE 0x6 /* active state - IIsi models */
120 #define ADB_BUS_ACK 0x7 /* currently ACKing - IIsi models */
121
122 /*
123 * Shortcuts for setting or testing the VIA bit states.
124 * Not all shortcuts are used for every type of ADB hardware.
125 */
126 #define ADB_SET_STATE_IDLE_II() via_reg(VIA1, vBufB) |= (vPB4 | vPB5)
127 #define ADB_SET_STATE_IDLE_IISI() via_reg(VIA1, vBufB) &= ~(vPB4 | vPB5)
128 #define ADB_SET_STATE_IDLE_CUDA() via_reg(VIA1, vBufB) |= (vPB4 | vPB5)
129 #define ADB_SET_STATE_CMD() via_reg(VIA1, vBufB) &= ~(vPB4 | vPB5)
130 #define ADB_SET_STATE_EVEN() via_reg(VIA1, vBufB) = ((via_reg(VIA1, \
131 vBufB) | vPB4) & ~vPB5)
132 #define ADB_SET_STATE_ODD() via_reg(VIA1, vBufB) = ((via_reg(VIA1, \
133 vBufB) | vPB5) & ~vPB4)
134 #define ADB_SET_STATE_ACTIVE() via_reg(VIA1, vBufB) |= vPB5
135 #define ADB_SET_STATE_INACTIVE() via_reg(VIA1, vBufB) &= ~vPB5
136 #define ADB_SET_STATE_TIP() via_reg(VIA1, vBufB) &= ~vPB5
137 #define ADB_CLR_STATE_TIP() via_reg(VIA1, vBufB) |= vPB5
138 #define ADB_SET_STATE_ACKON() via_reg(VIA1, vBufB) |= vPB4
139 #define ADB_SET_STATE_ACKOFF() via_reg(VIA1, vBufB) &= ~vPB4
140 #define ADB_TOGGLE_STATE_ACK_CUDA() via_reg(VIA1, vBufB) ^= vPB4
141 #define ADB_SET_STATE_ACKON_CUDA() via_reg(VIA1, vBufB) &= ~vPB4
142 #define ADB_SET_STATE_ACKOFF_CUDA() via_reg(VIA1, vBufB) |= vPB4
143 #define ADB_SET_SR_INPUT() via_reg(VIA1, vACR) &= ~vSR_OUT
144 #define ADB_SET_SR_OUTPUT() via_reg(VIA1, vACR) |= vSR_OUT
145 #define ADB_SR() via_reg(VIA1, vSR)
146 #define ADB_VIA_INTR_ENABLE() via_reg(VIA1, vIER) = 0x84
147 #define ADB_VIA_INTR_DISABLE() via_reg(VIA1, vIER) = 0x04
148 #define ADB_VIA_CLR_INTR() via_reg(VIA1, vIFR) = 0x04
149 #define ADB_INTR_IS_OFF (vPB3 == (via_reg(VIA1, vBufB) & vPB3))
150 #define ADB_INTR_IS_ON (0 == (via_reg(VIA1, vBufB) & vPB3))
151 #define ADB_SR_INTR_IS_OFF (0 == (via_reg(VIA1, vIFR) & vSR_INT))
152 #define ADB_SR_INTR_IS_ON (vSR_INT == (via_reg(VIA1, \
153 vIFR) & vSR_INT))
154
155 /*
156 * This is the delay that is required (in uS) between certain
157 * ADB transactions. The actual timing delay for for each uS is
158 * calculated at boot time to account for differences in machine speed.
159 */
160 #define ADB_DELAY 150
161
162 /*
163 * Maximum ADB message length; includes space for data, result, and
164 * device code - plus a little for safety.
165 */
166 #define ADB_MAX_MSG_LENGTH 16
167 #define ADB_MAX_HDR_LENGTH 8
168
169 #define ADB_QUEUE 32
170 #define ADB_TICKLE_TICKS 4
171
172 /*
173 * A structure for storing information about each ADB device.
174 */
175 struct ADBDevEntry {
176 void (*ServiceRtPtr) __P((void));
177 void *DataAreaAddr;
178 int devType;
179 int origAddr;
180 int currentAddr;
181 };
182
183 /*
184 * Used to hold ADB commands that are waiting to be sent out.
185 */
186 struct adbCmdHoldEntry {
187 u_char outBuf[ADB_MAX_MSG_LENGTH]; /* our message */
188 u_char *saveBuf; /* buffer to know where to save result */
189 u_char *compRout; /* completion routine pointer */
190 u_char *data; /* completion routine data pointer */
191 };
192
193 /*
194 * Eventually used for two separate queues, the queue between
195 * the upper and lower halves, and the outgoing packet queue.
196 * TO DO: adbCommand can replace all of adbCmdHoldEntry eventually
197 */
198 struct adbCommand {
199 u_char header[ADB_MAX_HDR_LENGTH]; /* not used yet */
200 u_char data[ADB_MAX_MSG_LENGTH]; /* packet data only */
201 u_char *saveBuf; /* where to save result */
202 u_char *compRout; /* completion routine pointer */
203 u_char *compData; /* completion routine data pointer */
204 u_int cmd; /* the original command for this data */
205 u_int unsol; /* 1 if packet was unsolicited */
206 u_int ack_only; /* 1 for no special processing */
207 };
208
209 /*
210 * Text representations of each hardware class
211 */
212 char *adbHardwareDescr[MAX_ADB_HW + 1] = {
213 "unknown",
214 "II series",
215 "IIsi series",
216 "PowerBook",
217 "Cuda",
218 "IOP",
219 };
220
221 /*
222 * A few variables that we need and their initial values.
223 */
224 int adbHardware = ADB_HW_UNKNOWN;
225 int adbActionState = ADB_ACTION_NOTREADY;
226 int adbBusState = ADB_BUS_UNKNOWN;
227 int adbWaiting = 0; /* waiting for return data from the device */
228 int adbWriteDelay = 0; /* working on (or waiting to do) a write */
229 int adbOutQueueHasData = 0; /* something in the queue waiting to go out */
230 int adbNextEnd = 0; /* the next incoming bute is the last (II) */
231 int adbSoftPower = 0; /* machine supports soft power */
232
233 int adbWaitingCmd = 0; /* ADB command we are waiting for */
234 u_char *adbBuffer = (long)0; /* pointer to user data area */
235 void *adbCompRout = (long)0; /* pointer to the completion routine */
236 void *adbCompData = (long)0; /* pointer to the completion routine data */
237 long adbFakeInts = 0; /* keeps track of fake ADB interrupts for
238 * timeouts (II) */
239 int adbStarting = 1; /* doing ADBReInit so do polling differently */
240 int adbSendTalk = 0; /* the intr routine is sending the talk, not
241 * the user (II) */
242 int adbPolling = 0; /* we are polling for service request */
243 int adbPollCmd = 0; /* the last poll command we sent */
244
245 u_char adbInputBuffer[ADB_MAX_MSG_LENGTH]; /* data input buffer */
246 u_char adbOutputBuffer[ADB_MAX_MSG_LENGTH]; /* data output buffer */
247 struct adbCmdHoldEntry adbOutQueue; /* our 1 entry output queue */
248
249 int adbSentChars = 0; /* how many characters we have sent */
250 int adbLastDevice = 0; /* last ADB dev we heard from (II ONLY) */
251 int adbLastDevIndex = 0; /* last ADB dev loc in dev table (II ONLY) */
252 int adbLastCommand = 0; /* the last ADB command we sent (II) */
253
254 struct ADBDevEntry ADBDevTable[16]; /* our ADB device table */
255 int ADBNumDevices; /* num. of ADB devices found with ADBReInit */
256
257 struct adbCommand adbInbound[ADB_QUEUE]; /* incoming queue */
258 volatile int adbInCount = 0; /* how many packets in in queue */
259 int adbInHead = 0; /* head of in queue */
260 int adbInTail = 0; /* tail of in queue */
261 struct adbCommand adbOutbound[ADB_QUEUE]; /* outgoing queue - not used yet */
262 int adbOutCount = 0; /* how many packets in out queue */
263 int adbOutHead = 0; /* head of out queue */
264 int adbOutTail = 0; /* tail of out queue */
265
266 int tickle_count = 0; /* how many tickles seen for this packet? */
267 int tickle_serial = 0; /* the last packet tickled */
268 int adb_cuda_serial = 0; /* the current packet */
269
270 struct callout adb_cuda_tickle_ch = CALLOUT_INITIALIZER;
271
272 extern struct mac68k_machine_S mac68k_machine;
273
274 void pm_setup_adb __P((void));
275 void pm_hw_setup __P((void));
276 void pm_check_adb_devices __P((int));
277 void pm_intr __P((void *));
278 int pm_adb_op __P((u_char *, void *, void *, int));
279 void pm_init_adb_device __P((void));
280
281 /*
282 * The following are private routines.
283 */
284 #ifdef ADB_DEBUG
285 void print_single __P((u_char *));
286 #endif
287 void adb_intr __P((void *));
288 void adb_intr_II __P((void *));
289 void adb_intr_IIsi __P((void *));
290 void adb_intr_cuda __P((void *));
291 void adb_soft_intr __P((void));
292 int send_adb_II __P((u_char *, u_char *, void *, void *, int));
293 int send_adb_IIsi __P((u_char *, u_char *, void *, void *, int));
294 int send_adb_cuda __P((u_char *, u_char *, void *, void *, int));
295 void adb_intr_cuda_test __P((void));
296 void adb_cuda_tickle __P((void));
297 void adb_pass_up __P((struct adbCommand *));
298 void adb_op_comprout __P((void));
299 void adb_reinit __P((void));
300 int count_adbs __P((void));
301 int get_ind_adb_info __P((ADBDataBlock *, int));
302 int get_adb_info __P((ADBDataBlock *, int));
303 int set_adb_info __P((ADBSetInfoBlock *, int));
304 void adb_setup_hw_type __P((void));
305 int adb_op __P((Ptr, Ptr, Ptr, short));
306 void adb_read_II __P((u_char *));
307 void adb_hw_setup __P((void));
308 void adb_hw_setup_IIsi __P((u_char *));
309 void adb_comp_exec __P((void));
310 int adb_cmd_result __P((u_char *));
311 int adb_cmd_extra __P((u_char *));
312 int adb_guess_next_device __P((void));
313 int adb_prog_switch_enable __P((void));
314 int adb_prog_switch_disable __P((void));
315 /* we should create this and it will be the public version */
316 int send_adb __P((u_char *, void *, void *));
317 void adb_iop_recv __P((IOP *, struct iop_msg *));
318 int send_adb_iop __P((int, u_char *, void *, void *));
319
320 #ifdef ADB_DEBUG
321 /*
322 * print_single
323 * Diagnostic display routine. Displays the hex values of the
324 * specified elements of the u_char. The length of the "string"
325 * is in [0].
326 */
327 void
328 print_single(str)
329 u_char *str;
330 {
331 int x;
332
333 if (str == 0) {
334 printf_intr("no data - null pointer\n");
335 return;
336 }
337 if (*str == 0) {
338 printf_intr("nothing returned\n");
339 return;
340 }
341 if (*str > 20) {
342 printf_intr("ADB: ACK > 20 no way!\n");
343 *str = (u_char)20;
344 }
345 printf_intr("(length=0x%x):", (u_int)*str);
346 for (x = 1; x <= *str; x++)
347 printf_intr(" 0x%02x", (u_int)*(str + x));
348 printf_intr("\n");
349 }
350 #endif
351
352 void
353 adb_cuda_tickle(void)
354 {
355 volatile int s;
356
357 if (adbActionState == ADB_ACTION_IN) {
358 if (tickle_serial == adb_cuda_serial) {
359 if (++tickle_count > 0) {
360 s = splhigh();
361 adbActionState = ADB_ACTION_IDLE;
362 adbInputBuffer[0] = 0;
363 ADB_SET_STATE_IDLE_CUDA();
364 splx(s);
365 }
366 } else {
367 tickle_serial = adb_cuda_serial;
368 tickle_count = 0;
369 }
370 } else {
371 tickle_serial = adb_cuda_serial;
372 tickle_count = 0;
373 }
374
375 callout_reset(&adb_cuda_tickle_ch, ADB_TICKLE_TICKS,
376 (void *)adb_cuda_tickle, NULL);
377 }
378
379 /*
380 * called when when an adb interrupt happens
381 *
382 * Cuda version of adb_intr
383 * TO DO: do we want to add some calls to intr_dispatch() here to
384 * grab serial interrupts?
385 */
386 void
387 adb_intr_cuda(void *arg)
388 {
389 volatile int i, ending;
390 volatile unsigned int s;
391 struct adbCommand packet;
392
393 s = splhigh(); /* can't be too careful - might be called */
394 /* from a routine, NOT an interrupt */
395
396 ADB_VIA_CLR_INTR(); /* clear interrupt */
397 ADB_VIA_INTR_DISABLE(); /* disable ADB interrupt on IIs. */
398
399 switch_start:
400 switch (adbActionState) {
401 case ADB_ACTION_IDLE:
402 /*
403 * This is an unexpected packet, so grab the first (dummy)
404 * byte, set up the proper vars, and tell the chip we are
405 * starting to receive the packet by setting the TIP bit.
406 */
407 adbInputBuffer[1] = ADB_SR();
408 adb_cuda_serial++;
409 if (ADB_INTR_IS_OFF) /* must have been a fake start */
410 break;
411
412 ADB_SET_SR_INPUT();
413 ADB_SET_STATE_TIP();
414
415 adbInputBuffer[0] = 1;
416 adbActionState = ADB_ACTION_IN;
417 #ifdef ADB_DEBUG
418 if (adb_debug)
419 printf_intr("idle 0x%02x ", adbInputBuffer[1]);
420 #endif
421 break;
422
423 case ADB_ACTION_IN:
424 adbInputBuffer[++adbInputBuffer[0]] = ADB_SR();
425 /* intr off means this is the last byte (end of frame) */
426 if (ADB_INTR_IS_OFF)
427 ending = 1;
428 else
429 ending = 0;
430
431 if (1 == ending) { /* end of message? */
432 #ifdef ADB_DEBUG
433 if (adb_debug) {
434 printf_intr("in end 0x%02x ",
435 adbInputBuffer[adbInputBuffer[0]]);
436 print_single(adbInputBuffer);
437 }
438 #endif
439
440 /*
441 * Are we waiting AND does this packet match what we
442 * are waiting for AND is it coming from either the
443 * ADB or RTC/PRAM sub-device? This section _should_
444 * recognize all ADB and RTC/PRAM type commands, but
445 * there may be more... NOTE: commands are always at
446 * [4], even for RTC/PRAM commands.
447 */
448 /* set up data for adb_pass_up */
449 memcpy(packet.data, adbInputBuffer, adbInputBuffer[0] + 1);
450
451 if ((adbWaiting == 1) &&
452 (adbInputBuffer[4] == adbWaitingCmd) &&
453 ((adbInputBuffer[2] == 0x00) ||
454 (adbInputBuffer[2] == 0x01))) {
455 packet.saveBuf = adbBuffer;
456 packet.compRout = adbCompRout;
457 packet.compData = adbCompData;
458 packet.unsol = 0;
459 packet.ack_only = 0;
460 adb_pass_up(&packet);
461
462 adbWaitingCmd = 0; /* reset "waiting" vars */
463 adbWaiting = 0;
464 adbBuffer = (long)0;
465 adbCompRout = (long)0;
466 adbCompData = (long)0;
467 } else {
468 packet.unsol = 1;
469 packet.ack_only = 0;
470 adb_pass_up(&packet);
471 }
472
473
474 /* reset vars and signal the end of this frame */
475 adbActionState = ADB_ACTION_IDLE;
476 adbInputBuffer[0] = 0;
477 ADB_SET_STATE_IDLE_CUDA();
478 /*ADB_SET_SR_INPUT();*/
479
480 /*
481 * If there is something waiting to be sent out,
482 * the set everything up and send the first byte.
483 */
484 if (adbWriteDelay == 1) {
485 delay(ADB_DELAY); /* required */
486 adbSentChars = 0;
487 adbActionState = ADB_ACTION_OUT;
488 /*
489 * If the interrupt is on, we were too slow
490 * and the chip has already started to send
491 * something to us, so back out of the write
492 * and start a read cycle.
493 */
494 if (ADB_INTR_IS_ON) {
495 ADB_SET_SR_INPUT();
496 ADB_SET_STATE_IDLE_CUDA();
497 adbSentChars = 0;
498 adbActionState = ADB_ACTION_IDLE;
499 adbInputBuffer[0] = 0;
500 break;
501 }
502 /*
503 * If we got here, it's ok to start sending
504 * so load the first byte and tell the chip
505 * we want to send.
506 */
507 ADB_SET_STATE_TIP();
508 ADB_SET_SR_OUTPUT();
509 ADB_SR() = adbOutputBuffer[adbSentChars + 1];
510 }
511 } else {
512 ADB_TOGGLE_STATE_ACK_CUDA();
513 #ifdef ADB_DEBUG
514 if (adb_debug)
515 printf_intr("in 0x%02x ",
516 adbInputBuffer[adbInputBuffer[0]]);
517 #endif
518 }
519 break;
520
521 case ADB_ACTION_OUT:
522 i = ADB_SR(); /* reset SR-intr in IFR */
523 #ifdef ADB_DEBUG
524 if (adb_debug)
525 printf_intr("intr out 0x%02x ", i);
526 #endif
527
528 adbSentChars++;
529 if (ADB_INTR_IS_ON) { /* ADB intr low during write */
530 #ifdef ADB_DEBUG
531 if (adb_debug)
532 printf_intr("intr was on ");
533 #endif
534 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
535 ADB_SET_STATE_IDLE_CUDA();
536 adbSentChars = 0; /* must start all over */
537 adbActionState = ADB_ACTION_IDLE; /* new state */
538 adbInputBuffer[0] = 0;
539 adbWriteDelay = 1; /* must retry when done with
540 * read */
541 delay(ADB_DELAY);
542 goto switch_start; /* process next state right
543 * now */
544 break;
545 }
546 if (adbOutputBuffer[0] == adbSentChars) { /* check for done */
547 if (0 == adb_cmd_result(adbOutputBuffer)) { /* do we expect data
548 * back? */
549 adbWaiting = 1; /* signal waiting for return */
550 adbWaitingCmd = adbOutputBuffer[2]; /* save waiting command */
551 } else { /* no talk, so done */
552 /* set up stuff for adb_pass_up */
553 memcpy(packet.data, adbInputBuffer, adbInputBuffer[0] + 1);
554 packet.saveBuf = adbBuffer;
555 packet.compRout = adbCompRout;
556 packet.compData = adbCompData;
557 packet.cmd = adbWaitingCmd;
558 packet.unsol = 0;
559 packet.ack_only = 1;
560 adb_pass_up(&packet);
561
562 /* reset "waiting" vars, just in case */
563 adbWaitingCmd = 0;
564 adbBuffer = (long)0;
565 adbCompRout = (long)0;
566 adbCompData = (long)0;
567 }
568
569 adbWriteDelay = 0; /* done writing */
570 adbActionState = ADB_ACTION_IDLE; /* signal bus is idle */
571 ADB_SET_SR_INPUT();
572 ADB_SET_STATE_IDLE_CUDA();
573 #ifdef ADB_DEBUG
574 if (adb_debug)
575 printf_intr("write done ");
576 #endif
577 } else {
578 ADB_SR() = adbOutputBuffer[adbSentChars + 1]; /* send next byte */
579 ADB_TOGGLE_STATE_ACK_CUDA(); /* signal byte ready to
580 * shift */
581 #ifdef ADB_DEBUG
582 if (adb_debug)
583 printf_intr("toggle ");
584 #endif
585 }
586 break;
587
588 case ADB_ACTION_NOTREADY:
589 #ifdef ADB_DEBUG
590 if (adb_debug)
591 printf_intr("adb: not yet initialized\n");
592 #endif
593 break;
594
595 default:
596 #ifdef ADB_DEBUG
597 if (adb_debug)
598 printf_intr("intr: unknown ADB state\n");
599 #endif
600 }
601
602 ADB_VIA_INTR_ENABLE(); /* enable ADB interrupt on IIs. */
603
604 splx(s); /* restore */
605
606 return;
607 } /* end adb_intr_cuda */
608
609
610 int
611 send_adb_cuda(u_char * in, u_char * buffer, void *compRout, void *data, int
612 command)
613 {
614 int s, len;
615
616 #ifdef ADB_DEBUG
617 if (adb_debug)
618 printf_intr("SEND\n");
619 #endif
620
621 if (adbActionState == ADB_ACTION_NOTREADY)
622 return 1;
623
624 /* Don't interrupt while we are messing with the ADB */
625 s = splhigh();
626
627 if ((adbActionState == ADB_ACTION_IDLE) && /* ADB available? */
628 (ADB_INTR_IS_OFF)) { /* and no incoming interrupt? */
629 } else
630 if (adbWriteDelay == 0) /* it's busy, but is anything waiting? */
631 adbWriteDelay = 1; /* if no, then we'll "queue"
632 * it up */
633 else {
634 splx(s);
635 return 1; /* really busy! */
636 }
637
638 #ifdef ADB_DEBUG
639 if (adb_debug)
640 printf_intr("QUEUE\n");
641 #endif
642 if ((long)in == (long)0) { /* need to convert? */
643 /*
644 * Don't need to use adb_cmd_extra here because this section
645 * will be called ONLY when it is an ADB command (no RTC or
646 * PRAM)
647 */
648 if ((command & 0x0c) == 0x08) /* copy addl data ONLY if
649 * doing a listen! */
650 len = buffer[0]; /* length of additional data */
651 else
652 len = 0;/* no additional data */
653
654 adbOutputBuffer[0] = 2 + len; /* dev. type + command + addl.
655 * data */
656 adbOutputBuffer[1] = 0x00; /* mark as an ADB command */
657 adbOutputBuffer[2] = (u_char)command; /* load command */
658
659 /* copy additional output data, if any */
660 memcpy(adbOutputBuffer + 3, buffer + 1, len);
661 } else
662 /* if data ready, just copy over */
663 memcpy(adbOutputBuffer, in, in[0] + 2);
664
665 adbSentChars = 0; /* nothing sent yet */
666 adbBuffer = buffer; /* save buffer to know where to save result */
667 adbCompRout = compRout; /* save completion routine pointer */
668 adbCompData = data; /* save completion routine data pointer */
669 adbWaitingCmd = adbOutputBuffer[2]; /* save wait command */
670
671 if (adbWriteDelay != 1) { /* start command now? */
672 #ifdef ADB_DEBUG
673 if (adb_debug)
674 printf_intr("out start NOW");
675 #endif
676 delay(ADB_DELAY);
677 adbActionState = ADB_ACTION_OUT; /* set next state */
678 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
679 ADB_SR() = adbOutputBuffer[adbSentChars + 1]; /* load byte for output */
680 ADB_SET_STATE_ACKOFF_CUDA();
681 ADB_SET_STATE_TIP(); /* tell ADB that we want to send */
682 }
683 adbWriteDelay = 1; /* something in the write "queue" */
684
685 splx(s);
686
687 if (0x0100 <= (s & 0x0700)) /* were VIA1 interrupts blocked? */
688 /* poll until byte done */
689 while ((adbActionState != ADB_ACTION_IDLE) || (ADB_INTR_IS_ON)
690 || (adbWaiting == 1))
691 if (ADB_SR_INTR_IS_ON) { /* wait for "interrupt" */
692 adb_intr_cuda(NULL); /* go process it */
693 if (adb_polling)
694 adb_soft_intr();
695 }
696
697 return 0;
698 } /* send_adb_cuda */
699
700
701 void
702 adb_intr_II(void *arg)
703 {
704 struct adbCommand packet;
705 int i, intr_on = 0;
706 int send = 0;
707 unsigned int s;
708
709 s = splhigh(); /* can't be too careful - might be called */
710 /* from a routine, NOT an interrupt */
711
712 ADB_VIA_CLR_INTR(); /* clear interrupt */
713
714 ADB_VIA_INTR_DISABLE(); /* disable ADB interrupt on IIs. */
715
716 delay(ADB_DELAY); /* yuck (don't remove) */
717
718 (void)intr_dispatch(0x70); /* grab any serial interrupts */
719
720 if (ADB_INTR_IS_ON)
721 intr_on = 1; /* save for later */
722
723 switch_start:
724 switch (adbActionState) {
725 case ADB_ACTION_POLLING:
726 if (!intr_on) {
727 if (adbOutQueueHasData) {
728 #ifdef ADB_DEBUG
729 if (adb_debug & 0x80)
730 printf_intr("POLL-doing-out-queue. ");
731 #endif
732 ADB_SET_STATE_IDLE_II();
733 delay(ADB_DELAY);
734
735 /* copy over data */
736 memcpy(adbOutputBuffer, adbOutQueue.outBuf,
737 adbOutQueue.outBuf[0] + 2);
738
739 adbBuffer = adbOutQueue.saveBuf; /* user data area */
740 adbCompRout = adbOutQueue.compRout; /* completion routine */
741 adbCompData = adbOutQueue.data; /* comp. rout. data */
742 adbOutQueueHasData = 0; /* currently processing
743 * "queue" entry */
744 adbSentChars = 0; /* nothing sent yet */
745 adbActionState = ADB_ACTION_OUT; /* set next state */
746 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
747 ADB_SR() = adbOutputBuffer[1]; /* load byte for output */
748 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */
749 ADB_SET_STATE_CMD(); /* tell ADB that we want to send */
750 break;
751 } else {
752 #ifdef ADB_DEBUG
753 if (adb_debug)
754 printf_intr("pIDLE ");
755 #endif
756 adbActionState = ADB_ACTION_IDLE;
757 }
758 } else {
759 #ifdef ADB_DEBUG
760 if (adb_debug & 0x80)
761 printf_intr("pIN ");
762 #endif
763 adbActionState = ADB_ACTION_IN;
764 }
765 delay(ADB_DELAY);
766 (void)intr_dispatch(0x70); /* grab any serial interrupts */
767 goto switch_start;
768 break;
769 case ADB_ACTION_IDLE:
770 if (!intr_on) {
771 i = ADB_SR();
772 adbBusState = ADB_BUS_IDLE;
773 adbActionState = ADB_ACTION_IDLE;
774 ADB_SET_STATE_IDLE_II();
775 break;
776 }
777 adbInputBuffer[0] = 1;
778 adbInputBuffer[1] = ADB_SR(); /* get first byte */
779 #ifdef ADB_DEBUG
780 if (adb_debug & 0x80)
781 printf_intr("idle 0x%02x ", adbInputBuffer[1]);
782 #endif
783 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
784 adbActionState = ADB_ACTION_IN; /* set next state */
785 ADB_SET_STATE_EVEN(); /* set bus state to even */
786 adbBusState = ADB_BUS_EVEN;
787 break;
788
789 case ADB_ACTION_IN:
790 adbInputBuffer[++adbInputBuffer[0]] = ADB_SR(); /* get byte */
791 #ifdef ADB_DEBUG
792 if (adb_debug & 0x80)
793 printf_intr("in 0x%02x ",
794 adbInputBuffer[adbInputBuffer[0]]);
795 #endif
796 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
797
798 if (intr_on) { /* process last byte of packet */
799 adbInputBuffer[0]--; /* minus one */
800 /*
801 * If intr_on was true, and it's the second byte, then
802 * the byte we just discarded is really valid, so
803 * adjust the count
804 */
805 if (adbInputBuffer[0] == 2) {
806 adbInputBuffer[0]++;
807 }
808
809 #ifdef ADB_DEBUG
810 if (adb_debug & 0x80) {
811 printf_intr("done: ");
812 print_single(adbInputBuffer);
813 }
814 #endif
815
816 adbLastDevice = ADB_CMDADDR(adbInputBuffer[1]);
817
818 if (adbInputBuffer[0] == 1 && !adbWaiting) { /* SRQ!!!*/
819 #ifdef ADB_DEBUG
820 if (adb_debug & 0x80)
821 printf_intr(" xSRQ! ");
822 #endif
823 adb_guess_next_device();
824 #ifdef ADB_DEBUG
825 if (adb_debug & 0x80)
826 printf_intr("try 0x%0x ",
827 adbLastDevice);
828 #endif
829 adbOutputBuffer[0] = 1;
830 adbOutputBuffer[1] = ADBTALK(adbLastDevice, 0);
831
832 adbSentChars = 0; /* nothing sent yet */
833 adbActionState = ADB_ACTION_POLLING; /* set next state */
834 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
835 ADB_SR() = adbOutputBuffer[1]; /* load byte for output */
836 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */
837 ADB_SET_STATE_CMD(); /* tell ADB that we want to */
838 break;
839 }
840
841 /* set up data for adb_pass_up */
842 memcpy(packet.data, adbInputBuffer, adbInputBuffer[0] + 1);
843
844 if (!adbWaiting && (adbInputBuffer[0] != 0)) {
845 packet.unsol = 1;
846 packet.ack_only = 0;
847 adb_pass_up(&packet);
848 } else {
849 packet.saveBuf = adbBuffer;
850 packet.compRout = adbCompRout;
851 packet.compData = adbCompData;
852 packet.unsol = 0;
853 packet.ack_only = 0;
854 adb_pass_up(&packet);
855 }
856
857 adbWaiting = 0;
858 adbInputBuffer[0] = 0;
859 adbBuffer = (long)0;
860 adbCompRout = (long)0;
861 adbCompData = (long)0;
862 /*
863 * Since we are done, check whether there is any data
864 * waiting to do out. If so, start the sending the data.
865 */
866 if (adbOutQueueHasData == 1) {
867 #ifdef ADB_DEBUG
868 if (adb_debug & 0x80)
869 printf_intr("XXX: DOING OUT QUEUE\n");
870 #endif
871 /* copy over data */
872 memcpy(adbOutputBuffer, adbOutQueue.outBuf,
873 adbOutQueue.outBuf[0] + 2);
874 adbBuffer = adbOutQueue.saveBuf; /* user data area */
875 adbCompRout = adbOutQueue.compRout; /* completion routine */
876 adbCompData = adbOutQueue.data; /* comp. rout. data */
877 adbOutQueueHasData = 0; /* currently processing
878 * "queue" entry */
879 send = 1;
880 } else {
881 #ifdef ADB_DEBUG
882 if (adb_debug & 0x80)
883 printf_intr("XXending ");
884 #endif
885 adb_guess_next_device();
886 adbOutputBuffer[0] = 1;
887 adbOutputBuffer[1] = ((adbLastDevice & 0x0f) << 4) | 0x0c;
888 adbSentChars = 0; /* nothing sent yet */
889 adbActionState = ADB_ACTION_POLLING; /* set next state */
890 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
891 ADB_SR() = adbOutputBuffer[1]; /* load byte for output */
892 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */
893 ADB_SET_STATE_CMD(); /* tell ADB that we want to */
894 break;
895 }
896 }
897
898 /*
899 * If send is true then something above determined that
900 * the message has ended and we need to start sending out
901 * a new message immediately. This could be because there
902 * is data waiting to go out or because an SRQ was seen.
903 */
904 if (send) {
905 adbSentChars = 0; /* nothing sent yet */
906 adbActionState = ADB_ACTION_OUT; /* set next state */
907 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
908 ADB_SR() = adbOutputBuffer[1]; /* load byte for output */
909 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */
910 ADB_SET_STATE_CMD(); /* tell ADB that we want to
911 * send */
912 break;
913 }
914 /* We only get this far if the message hasn't ended yet. */
915 switch (adbBusState) { /* set to next state */
916 case ADB_BUS_EVEN:
917 ADB_SET_STATE_ODD(); /* set state to odd */
918 adbBusState = ADB_BUS_ODD;
919 break;
920
921 case ADB_BUS_ODD:
922 ADB_SET_STATE_EVEN(); /* set state to even */
923 adbBusState = ADB_BUS_EVEN;
924 break;
925 default:
926 printf_intr("strange state!!!\n"); /* huh? */
927 break;
928 }
929 break;
930
931 case ADB_ACTION_OUT:
932 i = ADB_SR(); /* clear interrupt */
933 adbSentChars++;
934 /*
935 * If the outgoing data was a TALK, we must
936 * switch to input mode to get the result.
937 */
938 if ((adbOutputBuffer[1] & 0x0c) == 0x0c) {
939 adbInputBuffer[0] = 1;
940 adbInputBuffer[1] = i;
941 adbActionState = ADB_ACTION_IN;
942 ADB_SET_SR_INPUT();
943 adbBusState = ADB_BUS_EVEN;
944 ADB_SET_STATE_EVEN();
945 #ifdef ADB_DEBUG
946 if (adb_debug & 0x80)
947 printf_intr("talk out 0x%02x ", i);
948 #endif
949 /* we want something back */
950 adbWaiting = 1;
951 break;
952 }
953 /*
954 * If it's not a TALK, check whether all data has been sent.
955 * If so, call the completion routine and clean up. If not,
956 * advance to the next state.
957 */
958 #ifdef ADB_DEBUG
959 if (adb_debug & 0x80)
960 printf_intr("non-talk out 0x%0x ", i);
961 #endif
962 ADB_SET_SR_OUTPUT();
963 if (adbOutputBuffer[0] == adbSentChars) { /* check for done */
964 #ifdef ADB_DEBUG
965 if (adb_debug & 0x80)
966 printf_intr("done \n");
967 #endif
968 /* set up stuff for adb_pass_up */
969 memcpy(packet.data, adbOutputBuffer, adbOutputBuffer[0] + 1);
970 packet.saveBuf = adbBuffer;
971 packet.compRout = adbCompRout;
972 packet.compData = adbCompData;
973 packet.cmd = adbWaitingCmd;
974 packet.unsol = 0;
975 packet.ack_only = 1;
976 adb_pass_up(&packet);
977
978 /* reset "waiting" vars, just in case */
979 adbBuffer = (long)0;
980 adbCompRout = (long)0;
981 adbCompData = (long)0;
982 if (adbOutQueueHasData == 1) {
983 /* copy over data */
984 memcpy(adbOutputBuffer, adbOutQueue.outBuf,
985 adbOutQueue.outBuf[0] + 2);
986 adbBuffer = adbOutQueue.saveBuf; /* user data area */
987 adbCompRout = adbOutQueue.compRout; /* completion routine */
988 adbCompData = adbOutQueue.data; /* comp. rout. data */
989 adbOutQueueHasData = 0; /* currently processing
990 * "queue" entry */
991 adbSentChars = 0; /* nothing sent yet */
992 adbActionState = ADB_ACTION_OUT; /* set next state */
993 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
994 ADB_SR() = adbOutputBuffer[1]; /* load byte for output */
995 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */
996 ADB_SET_STATE_CMD(); /* tell ADB that we want to
997 * send */
998 break;
999 } else {
1000 /* send talk to last device instead */
1001 adbOutputBuffer[0] = 1;
1002 adbOutputBuffer[1] =
1003 ADBTALK(ADB_CMDADDR(adbOutputBuffer[1]), 0);
1004
1005 adbSentChars = 0; /* nothing sent yet */
1006 adbActionState = ADB_ACTION_IDLE; /* set next state */
1007 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
1008 ADB_SR() = adbOutputBuffer[1]; /* load byte for output */
1009 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */
1010 ADB_SET_STATE_CMD(); /* tell ADB that we want to */
1011 break;
1012 }
1013 }
1014 ADB_SR() = adbOutputBuffer[adbSentChars + 1];
1015 switch (adbBusState) { /* advance to next state */
1016 case ADB_BUS_EVEN:
1017 ADB_SET_STATE_ODD(); /* set state to odd */
1018 adbBusState = ADB_BUS_ODD;
1019 break;
1020
1021 case ADB_BUS_CMD:
1022 case ADB_BUS_ODD:
1023 ADB_SET_STATE_EVEN(); /* set state to even */
1024 adbBusState = ADB_BUS_EVEN;
1025 break;
1026
1027 default:
1028 #ifdef ADB_DEBUG
1029 if (adb_debug) {
1030 printf_intr("strange state!!! (0x%x)\n",
1031 adbBusState);
1032 }
1033 #endif
1034 break;
1035 }
1036 break;
1037
1038 default:
1039 #ifdef ADB_DEBUG
1040 if (adb_debug)
1041 printf_intr("adb: unknown ADB state (during intr)\n");
1042 #endif
1043 }
1044
1045 ADB_VIA_INTR_ENABLE(); /* enable ADB interrupt on IIs. */
1046
1047 splx(s); /* restore */
1048
1049 return;
1050
1051 }
1052
1053
1054 /*
1055 * send_adb version for II series machines
1056 */
1057 int
1058 send_adb_II(u_char * in, u_char * buffer, void *compRout, void *data, int command)
1059 {
1060 int s, len;
1061
1062 if (adbActionState == ADB_ACTION_NOTREADY) /* return if ADB not
1063 * available */
1064 return 1;
1065
1066 /* Don't interrupt while we are messing with the ADB */
1067 s = splhigh();
1068
1069 if (0 != adbOutQueueHasData) { /* right now, "has data" means "full" */
1070 splx(s); /* sorry, try again later */
1071 return 1;
1072 }
1073 if ((long)in == (long)0) { /* need to convert? */
1074 /*
1075 * Don't need to use adb_cmd_extra here because this section
1076 * will be called ONLY when it is an ADB command (no RTC or
1077 * PRAM), especially on II series!
1078 */
1079 if ((command & 0x0c) == 0x08) /* copy addl data ONLY if
1080 * doing a listen! */
1081 len = buffer[0]; /* length of additional data */
1082 else
1083 len = 0;/* no additional data */
1084
1085 adbOutQueue.outBuf[0] = 1 + len; /* command + addl. data */
1086 adbOutQueue.outBuf[1] = (u_char)command; /* load command */
1087
1088 /* copy additional output data, if any */
1089 memcpy(adbOutQueue.outBuf + 2, buffer + 1, len);
1090 } else
1091 /* if data ready, just copy over */
1092 memcpy(adbOutQueue.outBuf, in, in[0] + 2);
1093
1094 adbOutQueue.saveBuf = buffer; /* save buffer to know where to save
1095 * result */
1096 adbOutQueue.compRout = compRout; /* save completion routine
1097 * pointer */
1098 adbOutQueue.data = data;/* save completion routine data pointer */
1099
1100 if ((adbActionState == ADB_ACTION_IDLE) && /* is ADB available? */
1101 (ADB_INTR_IS_OFF)) { /* and no incoming interrupts? */
1102 /* then start command now */
1103 memcpy(adbOutputBuffer, adbOutQueue.outBuf,
1104 adbOutQueue.outBuf[0] + 2); /* copy over data */
1105
1106 adbBuffer = adbOutQueue.saveBuf; /* pointer to user data
1107 * area */
1108 adbCompRout = adbOutQueue.compRout; /* pointer to the
1109 * completion routine */
1110 adbCompData = adbOutQueue.data; /* pointer to the completion
1111 * routine data */
1112
1113 adbSentChars = 0; /* nothing sent yet */
1114 adbActionState = ADB_ACTION_OUT; /* set next state */
1115 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */
1116
1117 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
1118
1119 ADB_SR() = adbOutputBuffer[adbSentChars + 1]; /* load byte for output */
1120 ADB_SET_STATE_CMD(); /* tell ADB that we want to send */
1121 adbOutQueueHasData = 0; /* currently processing "queue" entry */
1122 } else
1123 adbOutQueueHasData = 1; /* something in the write "queue" */
1124
1125 splx(s);
1126
1127 if (0x0100 <= (s & 0x0700)) /* were VIA1 interrupts blocked? */
1128 /* poll until message done */
1129 while ((adbActionState != ADB_ACTION_IDLE) || (ADB_INTR_IS_ON)
1130 || (adbWaiting == 1))
1131 if (ADB_SR_INTR_IS_ON) { /* wait for "interrupt" */
1132 adb_intr_II(NULL); /* go process it */
1133 if (adb_polling)
1134 adb_soft_intr();
1135 }
1136
1137 return 0;
1138 }
1139
1140
1141 /*
1142 * This routine is called from the II series interrupt routine
1143 * to determine what the "next" device is that should be polled.
1144 */
1145 int
1146 adb_guess_next_device(void)
1147 {
1148 int last, i, dummy;
1149
1150 if (adbStarting) {
1151 /*
1152 * Start polling EVERY device, since we can't be sure there is
1153 * anything in the device table yet
1154 */
1155 if (adbLastDevice < 1 || adbLastDevice > 15)
1156 adbLastDevice = 1;
1157 if (++adbLastDevice > 15) /* point to next one */
1158 adbLastDevice = 1;
1159 } else {
1160 /* find the next device using the device table */
1161 if (adbLastDevice < 1 || adbLastDevice > 15) /* let's be parinoid */
1162 adbLastDevice = 2;
1163 last = 1; /* default index location */
1164
1165 for (i = 1; i < 16; i++) /* find index entry */
1166 if (ADBDevTable[i].currentAddr == adbLastDevice) { /* look for device */
1167 last = i; /* found it */
1168 break;
1169 }
1170 dummy = last; /* index to start at */
1171 for (;;) { /* find next device in index */
1172 if (++dummy > 15) /* wrap around if needed */
1173 dummy = 1;
1174 if (dummy == last) { /* didn't find any other
1175 * device! This can happen if
1176 * there are no devices on the
1177 * bus */
1178 dummy = 1;
1179 break;
1180 }
1181 /* found the next device */
1182 if (ADBDevTable[dummy].devType != 0)
1183 break;
1184 }
1185 adbLastDevice = ADBDevTable[dummy].currentAddr;
1186 }
1187 return adbLastDevice;
1188 }
1189
1190
1191 /*
1192 * Called when when an adb interrupt happens.
1193 * This routine simply transfers control over to the appropriate
1194 * code for the machine we are running on.
1195 */
1196 void
1197 adb_intr(void *arg)
1198 {
1199 switch (adbHardware) {
1200 case ADB_HW_II:
1201 adb_intr_II(arg);
1202 break;
1203
1204 case ADB_HW_IISI:
1205 adb_intr_IIsi(arg);
1206 break;
1207
1208 case ADB_HW_PB: /* Should not come through here. */
1209 break;
1210
1211 case ADB_HW_CUDA:
1212 adb_intr_cuda(arg);
1213 break;
1214
1215 case ADB_HW_IOP: /* Should not come through here. */
1216 break;
1217
1218 case ADB_HW_UNKNOWN:
1219 break;
1220 }
1221 }
1222
1223
1224 /*
1225 * called when when an adb interrupt happens
1226 *
1227 * IIsi version of adb_intr
1228 *
1229 */
1230 void
1231 adb_intr_IIsi(void *arg)
1232 {
1233 struct adbCommand packet;
1234 int i, ending;
1235 unsigned int s;
1236
1237 s = splhigh(); /* can't be too careful - might be called */
1238 /* from a routine, NOT an interrupt */
1239
1240 ADB_VIA_CLR_INTR(); /* clear interrupt */
1241
1242 ADB_VIA_INTR_DISABLE(); /* disable ADB interrupt on IIs. */
1243
1244 switch_start:
1245 switch (adbActionState) {
1246 case ADB_ACTION_IDLE:
1247 delay(ADB_DELAY); /* short delay is required before the
1248 * first byte */
1249
1250 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
1251 ADB_SET_STATE_ACTIVE(); /* signal start of data frame */
1252 adbInputBuffer[1] = ADB_SR(); /* get byte */
1253 adbInputBuffer[0] = 1;
1254 adbActionState = ADB_ACTION_IN; /* set next state */
1255
1256 ADB_SET_STATE_ACKON(); /* start ACK to ADB chip */
1257 delay(ADB_DELAY); /* delay */
1258 ADB_SET_STATE_ACKOFF(); /* end ACK to ADB chip */
1259 (void)intr_dispatch(0x70); /* grab any serial interrupts */
1260 break;
1261
1262 case ADB_ACTION_IN:
1263 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
1264 adbInputBuffer[++adbInputBuffer[0]] = ADB_SR(); /* get byte */
1265 if (ADB_INTR_IS_OFF) /* check for end of frame */
1266 ending = 1;
1267 else
1268 ending = 0;
1269
1270 ADB_SET_STATE_ACKON(); /* start ACK to ADB chip */
1271 delay(ADB_DELAY); /* delay */
1272 ADB_SET_STATE_ACKOFF(); /* end ACK to ADB chip */
1273 (void)intr_dispatch(0x70); /* grab any serial interrupts */
1274
1275 if (1 == ending) { /* end of message? */
1276 ADB_SET_STATE_INACTIVE(); /* signal end of frame */
1277 /*
1278 * This section _should_ handle all ADB and RTC/PRAM
1279 * type commands, but there may be more... Note:
1280 * commands are always at [4], even for rtc/pram
1281 * commands
1282 */
1283 /* set up data for adb_pass_up */
1284 memcpy(packet.data, adbInputBuffer, adbInputBuffer[0] + 1);
1285
1286 if ((adbWaiting == 1) && /* are we waiting AND */
1287 (adbInputBuffer[4] == adbWaitingCmd) && /* the cmd we sent AND */
1288 ((adbInputBuffer[2] == 0x00) || /* it's from the ADB
1289 * device OR */
1290 (adbInputBuffer[2] == 0x01))) { /* it's from the
1291 * PRAM/RTC device */
1292
1293 packet.saveBuf = adbBuffer;
1294 packet.compRout = adbCompRout;
1295 packet.compData = adbCompData;
1296 packet.unsol = 0;
1297 packet.ack_only = 0;
1298 adb_pass_up(&packet);
1299
1300 adbWaitingCmd = 0; /* reset "waiting" vars */
1301 adbWaiting = 0;
1302 adbBuffer = (long)0;
1303 adbCompRout = (long)0;
1304 adbCompData = (long)0;
1305 } else {
1306 packet.unsol = 1;
1307 packet.ack_only = 0;
1308 adb_pass_up(&packet);
1309 }
1310
1311 adbActionState = ADB_ACTION_IDLE;
1312 adbInputBuffer[0] = 0; /* reset length */
1313
1314 if (adbWriteDelay == 1) { /* were we waiting to
1315 * write? */
1316 adbSentChars = 0; /* nothing sent yet */
1317 adbActionState = ADB_ACTION_OUT; /* set next state */
1318
1319 delay(ADB_DELAY); /* delay */
1320 (void)intr_dispatch(0x70); /* grab any serial interrupts */
1321
1322 if (ADB_INTR_IS_ON) { /* ADB intr low during
1323 * write */
1324 ADB_SET_STATE_IDLE_IISI(); /* reset */
1325 ADB_SET_SR_INPUT(); /* make sure SR is set
1326 * to IN */
1327 adbSentChars = 0; /* must start all over */
1328 adbActionState = ADB_ACTION_IDLE; /* new state */
1329 adbInputBuffer[0] = 0;
1330 /* may be able to take this out later */
1331 delay(ADB_DELAY); /* delay */
1332 break;
1333 }
1334 ADB_SET_STATE_ACTIVE(); /* tell ADB that we want
1335 * to send */
1336 ADB_SET_STATE_ACKOFF(); /* make sure */
1337 ADB_SET_SR_OUTPUT(); /* set shift register
1338 * for OUT */
1339 ADB_SR() = adbOutputBuffer[adbSentChars + 1];
1340 ADB_SET_STATE_ACKON(); /* tell ADB byte ready
1341 * to shift */
1342 }
1343 }
1344 break;
1345
1346 case ADB_ACTION_OUT:
1347 i = ADB_SR(); /* reset SR-intr in IFR */
1348 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
1349
1350 ADB_SET_STATE_ACKOFF(); /* finish ACK */
1351 adbSentChars++;
1352 if (ADB_INTR_IS_ON) { /* ADB intr low during write */
1353 ADB_SET_STATE_IDLE_IISI(); /* reset */
1354 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
1355 adbSentChars = 0; /* must start all over */
1356 adbActionState = ADB_ACTION_IDLE; /* new state */
1357 adbInputBuffer[0] = 0;
1358 adbWriteDelay = 1; /* must retry when done with
1359 * read */
1360 delay(ADB_DELAY); /* delay */
1361 (void)intr_dispatch(0x70); /* grab any serial interrupts */
1362 goto switch_start; /* process next state right
1363 * now */
1364 break;
1365 }
1366 delay(ADB_DELAY); /* required delay */
1367 (void)intr_dispatch(0x70); /* grab any serial interrupts */
1368
1369 if (adbOutputBuffer[0] == adbSentChars) { /* check for done */
1370 if (0 == adb_cmd_result(adbOutputBuffer)) { /* do we expect data
1371 * back? */
1372 adbWaiting = 1; /* signal waiting for return */
1373 adbWaitingCmd = adbOutputBuffer[2]; /* save waiting command */
1374 } else {/* no talk, so done */
1375 /* set up stuff for adb_pass_up */
1376 memcpy(packet.data, adbInputBuffer,
1377 adbInputBuffer[0] + 1);
1378 packet.saveBuf = adbBuffer;
1379 packet.compRout = adbCompRout;
1380 packet.compData = adbCompData;
1381 packet.cmd = adbWaitingCmd;
1382 packet.unsol = 0;
1383 packet.ack_only = 1;
1384 adb_pass_up(&packet);
1385
1386 /* reset "waiting" vars, just in case */
1387 adbWaitingCmd = 0;
1388 adbBuffer = (long)0;
1389 adbCompRout = (long)0;
1390 adbCompData = (long)0;
1391 }
1392
1393 adbWriteDelay = 0; /* done writing */
1394 adbActionState = ADB_ACTION_IDLE; /* signal bus is idle */
1395 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
1396 ADB_SET_STATE_INACTIVE(); /* end of frame */
1397 } else {
1398 ADB_SR() = adbOutputBuffer[adbSentChars + 1]; /* send next byte */
1399 ADB_SET_STATE_ACKON(); /* signal byte ready to shift */
1400 }
1401 break;
1402
1403 case ADB_ACTION_NOTREADY:
1404 #ifdef ADB_DEBUG
1405 if (adb_debug)
1406 printf_intr("adb: not yet initialized\n");
1407 #endif
1408 break;
1409
1410 default:
1411 #ifdef ADB_DEBUG
1412 if (adb_debug)
1413 printf_intr("intr: unknown ADB state\n");
1414 #endif
1415 }
1416
1417 ADB_VIA_INTR_ENABLE(); /* enable ADB interrupt on IIs. */
1418
1419 splx(s); /* restore */
1420
1421 return;
1422 } /* end adb_intr_IIsi */
1423
1424
1425 /*****************************************************************************
1426 * if the device is currently busy, and there is no data waiting to go out, then
1427 * the data is "queued" in the outgoing buffer. If we are already waiting, then
1428 * we return.
1429 * in: if (in == 0) then the command string is built from command and buffer
1430 * if (in != 0) then in is used as the command string
1431 * buffer: additional data to be sent (used only if in == 0)
1432 * this is also where return data is stored
1433 * compRout: the completion routine that is called when then return value
1434 * is received (if a return value is expected)
1435 * data: a data pointer that can be used by the completion routine
1436 * command: an ADB command to be sent (used only if in == 0)
1437 *
1438 */
1439 int
1440 send_adb_IIsi(u_char * in, u_char * buffer, void *compRout, void *data, int
1441 command)
1442 {
1443 int s, len;
1444
1445 if (adbActionState == ADB_ACTION_NOTREADY)
1446 return 1;
1447
1448 /* Don't interrupt while we are messing with the ADB */
1449 s = splhigh();
1450
1451 if ((adbActionState == ADB_ACTION_IDLE) && /* ADB available? */
1452 (ADB_INTR_IS_OFF)) {/* and no incoming interrupt? */
1453
1454 } else
1455 if (adbWriteDelay == 0) /* it's busy, but is anything waiting? */
1456 adbWriteDelay = 1; /* if no, then we'll "queue"
1457 * it up */
1458 else {
1459 splx(s);
1460 return 1; /* really busy! */
1461 }
1462
1463 if ((long)in == (long)0) { /* need to convert? */
1464 /*
1465 * Don't need to use adb_cmd_extra here because this section
1466 * will be called ONLY when it is an ADB command (no RTC or
1467 * PRAM)
1468 */
1469 if ((command & 0x0c) == 0x08) /* copy addl data ONLY if
1470 * doing a listen! */
1471 len = buffer[0]; /* length of additional data */
1472 else
1473 len = 0;/* no additional data */
1474
1475 adbOutputBuffer[0] = 2 + len; /* dev. type + command + addl.
1476 * data */
1477 adbOutputBuffer[1] = 0x00; /* mark as an ADB command */
1478 adbOutputBuffer[2] = (u_char)command; /* load command */
1479
1480 /* copy additional output data, if any */
1481 memcpy(adbOutputBuffer + 3, buffer + 1, len);
1482 } else
1483 /* if data ready, just copy over */
1484 memcpy(adbOutputBuffer, in, in[0] + 2);
1485
1486 adbSentChars = 0; /* nothing sent yet */
1487 adbBuffer = buffer; /* save buffer to know where to save result */
1488 adbCompRout = compRout; /* save completion routine pointer */
1489 adbCompData = data; /* save completion routine data pointer */
1490 adbWaitingCmd = adbOutputBuffer[2]; /* save wait command */
1491
1492 if (adbWriteDelay != 1) { /* start command now? */
1493 adbActionState = ADB_ACTION_OUT; /* set next state */
1494
1495 ADB_SET_STATE_ACTIVE(); /* tell ADB that we want to send */
1496 ADB_SET_STATE_ACKOFF(); /* make sure */
1497
1498 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
1499
1500 ADB_SR() = adbOutputBuffer[adbSentChars + 1]; /* load byte for output */
1501
1502 ADB_SET_STATE_ACKON(); /* tell ADB byte ready to shift */
1503 }
1504 adbWriteDelay = 1; /* something in the write "queue" */
1505
1506 splx(s);
1507
1508 if (0x0100 <= (s & 0x0700)) /* were VIA1 interrupts blocked? */
1509 /* poll until byte done */
1510 while ((adbActionState != ADB_ACTION_IDLE) || (ADB_INTR_IS_ON)
1511 || (adbWaiting == 1))
1512 if (ADB_SR_INTR_IS_ON) { /* wait for "interrupt" */
1513 adb_intr_IIsi(NULL); /* go process it */
1514 if (adb_polling)
1515 adb_soft_intr();
1516 }
1517
1518 return 0;
1519 } /* send_adb_IIsi */
1520
1521 void
1522 adb_iop_recv(IOP *iop, struct iop_msg *msg)
1523 {
1524 struct adbCommand pkt;
1525 unsigned flags;
1526
1527 if (adbActionState != ADB_ACTION_RUNNING)
1528 return;
1529
1530 switch (msg->status) {
1531 case IOP_MSGSTAT_SENT:
1532 if (0 == adb_cmd_result(msg->msg + 1)) {
1533 adbWaiting = 1;
1534 adbWaitingCmd = msg->msg[2];
1535 }
1536 break;
1537 case IOP_MSGSTAT_RECEIVED:
1538 case IOP_MSGSTAT_UNEXPECTED:
1539 flags = msg->msg[0];
1540 if (flags != 0) {
1541 printf("ADB FLAGS 0x%x", flags);
1542 break;
1543 }
1544 if (adbWaiting &&
1545 (msg->msg[2] == adbWaitingCmd)) {
1546 pkt.saveBuf = msg->msg + 1;
1547 pkt.compRout = adbCompRout;
1548 pkt.compData = adbCompData;
1549 pkt.unsol = 0;
1550 pkt.ack_only = 0;
1551 adb_pass_up(&pkt);
1552
1553 adbWaitingCmd = 0;
1554 adbWaiting = 0;
1555 } else {
1556 pkt.unsol = 1;
1557 pkt.ack_only = 0;
1558 adb_pass_up(&pkt);
1559 }
1560 break;
1561 default:
1562 return;
1563 }
1564 }
1565
1566 int
1567 send_adb_iop(int cmd, u_char * buffer, void *compRout, void *data)
1568 {
1569 u_char buff[32];
1570 int cnt;
1571
1572 if (adbActionState != ADB_ACTION_RUNNING)
1573 return -1;
1574
1575 buff[0] = IOP_ADB_FL_EXPLICIT;
1576 buff[1] = buffer[0];
1577 buff[2] = cmd;
1578 cnt = (int) buff[1];
1579 memcpy(buff + 3, buffer + 1, cnt);
1580 return iop_send_msg(ISM_IOP, IOP_CHAN_ADB, buff, cnt+3,
1581 adb_iop_recv, NULL);
1582 }
1583
1584 /*
1585 * adb_pass_up is called by the interrupt-time routines.
1586 * It takes the raw packet data that was received from the
1587 * device and puts it into the queue that the upper half
1588 * processes. It then signals for a soft ADB interrupt which
1589 * will eventually call the upper half routine (adb_soft_intr).
1590 *
1591 * If in->unsol is 0, then this is either the notification
1592 * that the packet was sent (on a LISTEN, for example), or the
1593 * response from the device (on a TALK). The completion routine
1594 * is called only if the user specified one.
1595 *
1596 * If in->unsol is 1, then this packet was unsolicited and
1597 * so we look up the device in the ADB device table to determine
1598 * what it's default service routine is.
1599 *
1600 * If in->ack_only is 1, then we really only need to call
1601 * the completion routine, so don't do any other stuff.
1602 *
1603 * Note that in->data contains the packet header AND data,
1604 * while adbInbound[]->data contains ONLY data.
1605 *
1606 * Note: Called only at interrupt time. Assumes this.
1607 */
1608 void
1609 adb_pass_up(struct adbCommand *in)
1610 {
1611 int start = 0, len = 0, cmd = 0;
1612 ADBDataBlock block;
1613
1614 /* temp for testing */
1615 /*u_char *buffer = 0;*/
1616 /*u_char *compdata = 0;*/
1617 /*u_char *comprout = 0;*/
1618
1619 if (adbInCount >= ADB_QUEUE) {
1620 #ifdef ADB_DEBUG
1621 if (adb_debug)
1622 printf_intr("adb: ring buffer overflow\n");
1623 #endif
1624 return;
1625 }
1626
1627 if (in->ack_only) {
1628 len = in->data[0];
1629 cmd = in->cmd;
1630 start = 0;
1631 } else {
1632 switch (adbHardware) {
1633 case ADB_HW_IOP:
1634 case ADB_HW_II:
1635 cmd = in->data[1];
1636 if (in->data[0] < 2)
1637 len = 0;
1638 else
1639 len = in->data[0]-1;
1640 start = 1;
1641 break;
1642
1643 case ADB_HW_IISI:
1644 case ADB_HW_CUDA:
1645 /* If it's unsolicited, accept only ADB data for now */
1646 if (in->unsol)
1647 if (0 != in->data[2])
1648 return;
1649 cmd = in->data[4];
1650 if (in->data[0] < 5)
1651 len = 0;
1652 else
1653 len = in->data[0]-4;
1654 start = 4;
1655 break;
1656
1657 case ADB_HW_PB:
1658 cmd = in->data[1];
1659 if (in->data[0] < 2)
1660 len = 0;
1661 else
1662 len = in->data[0]-1;
1663 start = 1;
1664 break;
1665
1666 case ADB_HW_UNKNOWN:
1667 return;
1668 }
1669
1670 /* Make sure there is a valid device entry for this device */
1671 if (in->unsol) {
1672 /* ignore unsolicited data during adbreinit */
1673 if (adbStarting)
1674 return;
1675 /* get device's comp. routine and data area */
1676 if (-1 == get_adb_info(&block, ADB_CMDADDR(cmd)))
1677 return;
1678 }
1679 }
1680
1681 /*
1682 * If this is an unsolicited packet, we need to fill in
1683 * some info so adb_soft_intr can process this packet
1684 * properly. If it's not unsolicited, then use what
1685 * the caller sent us.
1686 */
1687 if (in->unsol) {
1688 adbInbound[adbInTail].compRout = (void *)block.dbServiceRtPtr;
1689 adbInbound[adbInTail].compData = (void *)block.dbDataAreaAddr;
1690 adbInbound[adbInTail].saveBuf = (void *)adbInbound[adbInTail].data;
1691 } else {
1692 adbInbound[adbInTail].compRout = (void *)in->compRout;
1693 adbInbound[adbInTail].compData = (void *)in->compData;
1694 adbInbound[adbInTail].saveBuf = (void *)in->saveBuf;
1695 }
1696
1697 #ifdef ADB_DEBUG
1698 if (adb_debug && in->data[1] == 2)
1699 printf_intr("adb: caught error\n");
1700 #endif
1701
1702 /* copy the packet data over */
1703 /*
1704 * TO DO: If the *_intr routines fed their incoming data
1705 * directly into an adbCommand struct, which is passed to
1706 * this routine, then we could eliminate this copy.
1707 */
1708 memcpy(adbInbound[adbInTail].data + 1, in->data + start + 1, len);
1709 adbInbound[adbInTail].data[0] = len;
1710 adbInbound[adbInTail].cmd = cmd;
1711
1712 adbInCount++;
1713 if (++adbInTail >= ADB_QUEUE)
1714 adbInTail = 0;
1715
1716 /*
1717 * If the debugger is running, call upper half manually.
1718 * Otherwise, trigger a soft interrupt to handle the rest later.
1719 */
1720 if (adb_polling)
1721 adb_soft_intr();
1722 else
1723 setsoftadb();
1724
1725 return;
1726 }
1727
1728
1729 /*
1730 * Called to process the packets after they have been
1731 * placed in the incoming queue.
1732 *
1733 */
1734 void
1735 adb_soft_intr(void)
1736 {
1737 int s;
1738 int cmd = 0;
1739 u_char *buffer = 0;
1740 u_char *comprout = 0;
1741 u_char *compdata = 0;
1742
1743 #if 0
1744 s = splhigh();
1745 printf_intr("sr: %x\n", (s & 0x0700));
1746 splx(s);
1747 #endif
1748
1749 /*delay(2*ADB_DELAY);*/
1750
1751 while (adbInCount) {
1752 #ifdef ADB_DEBUG
1753 if (adb_debug & 0x80)
1754 printf_intr("%x %x %x ",
1755 adbInCount, adbInHead, adbInTail);
1756 #endif
1757 /* get the data we need from the queue */
1758 buffer = adbInbound[adbInHead].saveBuf;
1759 comprout = adbInbound[adbInHead].compRout;
1760 compdata = adbInbound[adbInHead].compData;
1761 cmd = adbInbound[adbInHead].cmd;
1762
1763 /* copy over data to data area if it's valid */
1764 /*
1765 * Note that for unsol packets we don't want to copy the
1766 * data anywhere, so buffer was already set to 0.
1767 * For ack_only buffer was set to 0, so don't copy.
1768 */
1769 if (buffer)
1770 memcpy(buffer, adbInbound[adbInHead].data,
1771 adbInbound[adbInHead].data[0] + 1);
1772
1773 #ifdef ADB_DEBUG
1774 if (adb_debug & 0x80) {
1775 printf_intr("%p %p %p %x ",
1776 buffer, comprout, compdata, (short)cmd);
1777 printf_intr("buf: ");
1778 print_single(adbInbound[adbInHead].data);
1779 }
1780 #endif
1781
1782 /* call default completion routine if it's valid */
1783 if (comprout) {
1784 #ifdef __NetBSD__
1785 asm(" movml #0xffff,sp@- | save all registers
1786 movl %0,a2 | compdata
1787 movl %1,a1 | comprout
1788 movl %2,a0 | buffer
1789 movl %3,d0 | cmd
1790 jbsr a1@ | go call the routine
1791 movml sp@+,#0xffff | restore all registers"
1792 :
1793 : "g"(compdata), "g"(comprout),
1794 "g"(buffer), "g"(cmd)
1795 : "d0", "a0", "a1", "a2");
1796 #else /* for macos based testing */
1797 asm
1798 {
1799 movem.l a0/a1/a2/d0, -(a7)
1800 move.l compdata, a2
1801 move.l comprout, a1
1802 move.l buffer, a0
1803 move.w cmd, d0
1804 jsr(a1)
1805 movem.l(a7)+, d0/a2/a1/a0
1806 }
1807 #endif
1808 }
1809
1810 s = splhigh();
1811 adbInCount--;
1812 if (++adbInHead >= ADB_QUEUE)
1813 adbInHead = 0;
1814 splx(s);
1815
1816 }
1817 return;
1818 }
1819
1820
1821 /*
1822 * This is my version of the ADBOp routine. It mainly just calls the
1823 * hardware-specific routine.
1824 *
1825 * data : pointer to data area to be used by compRout
1826 * compRout : completion routine
1827 * buffer : for LISTEN: points to data to send - MAX 8 data bytes,
1828 * byte 0 = # of bytes
1829 * : for TALK: points to place to save return data
1830 * command : the adb command to send
1831 * result : 0 = success
1832 * : -1 = could not complete
1833 */
1834 int
1835 adb_op(Ptr buffer, Ptr compRout, Ptr data, short command)
1836 {
1837 int result;
1838
1839 switch (adbHardware) {
1840 case ADB_HW_II:
1841 result = send_adb_II((u_char *)0, (u_char *)buffer,
1842 (void *)compRout, (void *)data, (int)command);
1843 if (result == 0)
1844 return 0;
1845 else
1846 return -1;
1847 break;
1848
1849 case ADB_HW_IOP:
1850 #ifdef __notyet__
1851 result = send_adb_iop((int)command, (u_char *)buffer,
1852 (void *)compRout, (void *)data);
1853 if (result == 0)
1854 return 0;
1855 else
1856 #endif
1857 return -1;
1858 break;
1859
1860 case ADB_HW_IISI:
1861 result = send_adb_IIsi((u_char *)0, (u_char *)buffer,
1862 (void *)compRout, (void *)data, (int)command);
1863 /*
1864 * I wish I knew why this delay is needed. It usually needs to
1865 * be here when several commands are sent in close succession,
1866 * especially early in device probes when doing collision
1867 * detection. It must be some race condition. Sigh. - jpw
1868 */
1869 delay(100);
1870 if (result == 0)
1871 return 0;
1872 else
1873 return -1;
1874 break;
1875
1876 case ADB_HW_PB:
1877 result = pm_adb_op((u_char *)buffer, (void *)compRout,
1878 (void *)data, (int)command);
1879
1880 if (result == 0)
1881 return 0;
1882 else
1883 return -1;
1884 break;
1885
1886 case ADB_HW_CUDA:
1887 result = send_adb_cuda((u_char *)0, (u_char *)buffer,
1888 (void *)compRout, (void *)data, (int)command);
1889 if (result == 0)
1890 return 0;
1891 else
1892 return -1;
1893 break;
1894
1895 case ADB_HW_UNKNOWN:
1896 default:
1897 return -1;
1898 }
1899 }
1900
1901
1902 /*
1903 * adb_hw_setup
1904 * This routine sets up the possible machine specific hardware
1905 * config (mainly VIA settings) for the various models.
1906 */
1907 void
1908 adb_hw_setup(void)
1909 {
1910 volatile int i;
1911 u_char send_string[ADB_MAX_MSG_LENGTH];
1912
1913 switch (adbHardware) {
1914 case ADB_HW_II:
1915 via1_register_irq(2, adb_intr_II, NULL);
1916
1917 via_reg(VIA1, vDirB) |= 0x30; /* register B bits 4 and 5:
1918 * outputs */
1919 via_reg(VIA1, vDirB) &= 0xf7; /* register B bit 3: input */
1920 via_reg(VIA1, vACR) &= ~vSR_OUT; /* make sure SR is set
1921 * to IN (II, IIsi) */
1922 adbActionState = ADB_ACTION_IDLE; /* used by all types of
1923 * hardware (II, IIsi) */
1924 adbBusState = ADB_BUS_IDLE; /* this var. used in II-series
1925 * code only */
1926 via_reg(VIA1, vIER) = 0x84; /* make sure VIA interrupts
1927 * are on (II, IIsi) */
1928 ADB_SET_STATE_IDLE_II(); /* set ADB bus state to idle */
1929
1930 ADB_VIA_CLR_INTR(); /* clear interrupt */
1931 break;
1932
1933 case ADB_HW_IOP:
1934 via_reg(VIA1, vIER) = 0x84;
1935 via_reg(VIA1, vIFR) = 0x04;
1936 #ifdef __notyet__
1937 adbActionState = ADB_ACTION_RUNNING;
1938 #endif
1939 break;
1940
1941 case ADB_HW_IISI:
1942 via1_register_irq(2, adb_intr_IIsi, NULL);
1943 via_reg(VIA1, vDirB) |= 0x30; /* register B bits 4 and 5:
1944 * outputs */
1945 via_reg(VIA1, vDirB) &= 0xf7; /* register B bit 3: input */
1946 via_reg(VIA1, vACR) &= ~vSR_OUT; /* make sure SR is set
1947 * to IN (II, IIsi) */
1948 adbActionState = ADB_ACTION_IDLE; /* used by all types of
1949 * hardware (II, IIsi) */
1950 adbBusState = ADB_BUS_IDLE; /* this var. used in II-series
1951 * code only */
1952 via_reg(VIA1, vIER) = 0x84; /* make sure VIA interrupts
1953 * are on (II, IIsi) */
1954 ADB_SET_STATE_IDLE_IISI(); /* set ADB bus state to idle */
1955
1956 /* get those pesky clock ticks we missed while booting */
1957 for (i = 0; i < 30; i++) {
1958 delay(ADB_DELAY);
1959 adb_hw_setup_IIsi(send_string);
1960 #ifdef ADB_DEBUG
1961 if (adb_debug) {
1962 printf_intr("adb: cleanup: ");
1963 print_single(send_string);
1964 }
1965 #endif
1966 delay(ADB_DELAY);
1967 if (ADB_INTR_IS_OFF)
1968 break;
1969 }
1970 break;
1971
1972 case ADB_HW_PB:
1973 /*
1974 * XXX - really PM_VIA_CLR_INTR - should we put it in
1975 * pm_direct.h?
1976 */
1977 pm_hw_setup();
1978 break;
1979
1980 case ADB_HW_CUDA:
1981 via1_register_irq(2, adb_intr_cuda, NULL);
1982 via_reg(VIA1, vDirB) |= 0x30; /* register B bits 4 and 5:
1983 * outputs */
1984 via_reg(VIA1, vDirB) &= 0xf7; /* register B bit 3: input */
1985 via_reg(VIA1, vACR) &= ~vSR_OUT; /* make sure SR is set
1986 * to IN */
1987 via_reg(VIA1, vACR) = (via_reg(VIA1, vACR) | 0x0c) & ~0x10;
1988 adbActionState = ADB_ACTION_IDLE; /* used by all types of
1989 * hardware */
1990 adbBusState = ADB_BUS_IDLE; /* this var. used in II-series
1991 * code only */
1992 via_reg(VIA1, vIER) = 0x84; /* make sure VIA interrupts
1993 * are on */
1994 ADB_SET_STATE_IDLE_CUDA(); /* set ADB bus state to idle */
1995
1996 /* sort of a device reset */
1997 i = ADB_SR(); /* clear interrupt */
1998 ADB_VIA_INTR_DISABLE(); /* no interrupts while clearing */
1999 ADB_SET_STATE_IDLE_CUDA(); /* reset state to idle */
2000 delay(ADB_DELAY);
2001 ADB_SET_STATE_TIP(); /* signal start of frame */
2002 delay(ADB_DELAY);
2003 ADB_TOGGLE_STATE_ACK_CUDA();
2004 delay(ADB_DELAY);
2005 ADB_CLR_STATE_TIP();
2006 delay(ADB_DELAY);
2007 ADB_SET_STATE_IDLE_CUDA(); /* back to idle state */
2008 i = ADB_SR(); /* clear interrupt */
2009 ADB_VIA_INTR_ENABLE(); /* ints ok now */
2010 break;
2011
2012 case ADB_HW_UNKNOWN:
2013 default:
2014 via_reg(VIA1, vIER) = 0x04; /* turn interrupts off - TO
2015 * DO: turn PB ints off? */
2016 return;
2017 break;
2018 }
2019 }
2020
2021
2022 /*
2023 * adb_hw_setup_IIsi
2024 * This is sort of a "read" routine that forces the adb hardware through a read cycle
2025 * if there is something waiting. This helps "clean up" any commands that may have gotten
2026 * stuck or stopped during the boot process.
2027 *
2028 */
2029 void
2030 adb_hw_setup_IIsi(u_char * buffer)
2031 {
2032 int i;
2033 int dummy;
2034 int s;
2035 long my_time;
2036 int endofframe;
2037
2038 delay(ADB_DELAY);
2039
2040 i = 1; /* skip over [0] */
2041 s = splhigh(); /* block ALL interrupts while we are working */
2042 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
2043 ADB_VIA_INTR_DISABLE(); /* disable ADB interrupt on IIs. */
2044 /* this is required, especially on faster machines */
2045 delay(ADB_DELAY);
2046
2047 if (ADB_INTR_IS_ON) {
2048 ADB_SET_STATE_ACTIVE(); /* signal start of data frame */
2049
2050 endofframe = 0;
2051 while (0 == endofframe) {
2052 /*
2053 * Poll for ADB interrupt and watch for timeout.
2054 * If time out, keep going in hopes of not hanging
2055 * the ADB chip - I think
2056 */
2057 my_time = ADB_DELAY * 5;
2058 while ((ADB_SR_INTR_IS_OFF) && (my_time-- > 0))
2059 dummy = via_reg(VIA1, vBufB);
2060
2061 buffer[i++] = ADB_SR(); /* reset interrupt flag by
2062 * reading vSR */
2063 /*
2064 * Perhaps put in a check here that ignores all data
2065 * after the first ADB_MAX_MSG_LENGTH bytes ???
2066 */
2067 if (ADB_INTR_IS_OFF) /* check for end of frame */
2068 endofframe = 1;
2069
2070 ADB_SET_STATE_ACKON(); /* send ACK to ADB chip */
2071 delay(ADB_DELAY); /* delay */
2072 ADB_SET_STATE_ACKOFF(); /* send ACK to ADB chip */
2073 }
2074 ADB_SET_STATE_INACTIVE(); /* signal end of frame and
2075 * delay */
2076
2077 /* probably don't need to delay this long */
2078 delay(ADB_DELAY);
2079 }
2080 buffer[0] = --i; /* [0] is length of message */
2081 ADB_VIA_INTR_ENABLE(); /* enable ADB interrupt on IIs. */
2082 splx(s); /* restore interrupts */
2083
2084 return;
2085 } /* adb_hw_setup_IIsi */
2086
2087
2088
2089 /*
2090 * adb_reinit sets up the adb stuff
2091 *
2092 */
2093 void
2094 adb_reinit(void)
2095 {
2096 u_char send_string[ADB_MAX_MSG_LENGTH];
2097 ADBDataBlock data; /* temp. holder for getting device info */
2098 volatile int i, x;
2099 int s;
2100 int command;
2101 int result;
2102 int saveptr; /* point to next free relocation address */
2103 int device;
2104 int nonewtimes; /* times thru loop w/o any new devices */
2105
2106 adb_setup_hw_type(); /* setup hardware type */
2107
2108 /* Make sure we are not interrupted while building the table. */
2109 /* ints must be on for PB & IOP (at least, for now) */
2110 if (adbHardware != ADB_HW_PB && adbHardware != ADB_HW_IOP)
2111 s = splhigh();
2112 else
2113 s = 0; /* XXX shut the compiler up*/
2114
2115 ADBNumDevices = 0; /* no devices yet */
2116
2117 /* Let intr routines know we are running reinit */
2118 adbStarting = 1;
2119
2120 /*
2121 * Initialize the ADB table. For now, we'll always use the same table
2122 * that is defined at the beginning of this file - no mallocs.
2123 */
2124 for (i = 0; i < 16; i++) {
2125 ADBDevTable[i].devType = 0;
2126 ADBDevTable[i].origAddr = ADBDevTable[i].currentAddr = 0;
2127 }
2128
2129 adb_hw_setup(); /* init the VIA bits and hard reset ADB */
2130
2131 delay(1000);
2132
2133 /* send an ADB reset first */
2134 (void)adb_op_sync((Ptr)0, (Ptr)0, (Ptr)0, (short)0x00);
2135 delay(3000);
2136
2137 /*
2138 * Probe for ADB devices. Probe devices 1-15 quickly to determine
2139 * which device addresses are in use and which are free. For each
2140 * address that is in use, move the device at that address to a higher
2141 * free address. Continue doing this at that address until no device
2142 * responds at that address. Then move the last device that was moved
2143 * back to the original address. Do this for the remaining addresses
2144 * that we determined were in use.
2145 *
2146 * When finished, do this entire process over again with the updated
2147 * list of in use addresses. Do this until no new devices have been
2148 * found in 20 passes though the in use address list. (This probably
2149 * seems long and complicated, but it's the best way to detect multiple
2150 * devices at the same address - sometimes it takes a couple of tries
2151 * before the collision is detected.)
2152 */
2153
2154 /* initial scan through the devices */
2155 for (i = 1; i < 16; i++) {
2156 command = ADBTALK(i, 3);
2157 result = adb_op_sync((Ptr)send_string, (Ptr)0,
2158 (Ptr)0, (short)command);
2159
2160 if (result == 0 && send_string[0] != 0) {
2161 /* found a device */
2162 ++ADBNumDevices;
2163 KASSERT(ADBNumDevices < 16);
2164 ADBDevTable[ADBNumDevices].devType =
2165 (int)(send_string[2]);
2166 ADBDevTable[ADBNumDevices].origAddr = i;
2167 ADBDevTable[ADBNumDevices].currentAddr = i;
2168 ADBDevTable[ADBNumDevices].DataAreaAddr =
2169 (long)0;
2170 ADBDevTable[ADBNumDevices].ServiceRtPtr = (void *)0;
2171 pm_check_adb_devices(i); /* tell pm driver device
2172 * is here */
2173 }
2174 }
2175
2176 /* find highest unused address */
2177 for (saveptr = 15; saveptr > 0; saveptr--)
2178 if (-1 == get_adb_info(&data, saveptr))
2179 break;
2180
2181 #ifdef ADB_DEBUG
2182 if (adb_debug & 0x80) {
2183 printf_intr("first free is: 0x%02x\n", saveptr);
2184 printf_intr("devices: %i\n", ADBNumDevices);
2185 }
2186 #endif
2187
2188 nonewtimes = 0; /* no loops w/o new devices */
2189 while (saveptr > 0 && nonewtimes++ < 11) {
2190 for (i = 1;saveptr > 0 && i <= ADBNumDevices; i++) {
2191 device = ADBDevTable[i].currentAddr;
2192 #ifdef ADB_DEBUG
2193 if (adb_debug & 0x80)
2194 printf_intr("moving device 0x%02x to 0x%02x "
2195 "(index 0x%02x) ", device, saveptr, i);
2196 #endif
2197
2198 /* send TALK R3 to address */
2199 command = ADBTALK(device, 3);
2200 (void)adb_op_sync((Ptr)send_string, (Ptr)0,
2201 (Ptr)0, (short)command);
2202
2203 /* move device to higher address */
2204 command = ADBLISTEN(device, 3);
2205 send_string[0] = 2;
2206 send_string[1] = (u_char)(saveptr | 0x60);
2207 send_string[2] = 0xfe;
2208 (void)adb_op_sync((Ptr)send_string, (Ptr)0,
2209 (Ptr)0, (short)command);
2210 delay(1000);
2211
2212 /* send TALK R3 - anthing at new address? */
2213 command = ADBTALK(saveptr, 3);
2214 send_string[0] = 0;
2215 result = adb_op_sync((Ptr)send_string, (Ptr)0,
2216 (Ptr)0, (short)command);
2217 delay(1000);
2218
2219 if (result != 0 || send_string[0] == 0) {
2220 /*
2221 * maybe there's a communication breakdown;
2222 * just in case, move it back from whence it
2223 * came, and we'll try again later
2224 */
2225 command = ADBLISTEN(saveptr, 3);
2226 send_string[0] = 2;
2227 send_string[1] = (u_char)(device | 0x60);
2228 send_string[2] = 0x00;
2229 (void)adb_op_sync((Ptr)send_string, (Ptr)0,
2230 (Ptr)0, (short)command);
2231 #ifdef ADB_DEBUG
2232 if (adb_debug & 0x80)
2233 printf_intr("failed, continuing\n");
2234 #endif
2235 delay(1000);
2236 continue;
2237 }
2238
2239 /* send TALK R3 - anything at old address? */
2240 command = ADBTALK(device, 3);
2241 send_string[0] = 0;
2242 result = adb_op_sync((Ptr)send_string, (Ptr)0,
2243 (Ptr)0, (short)command);
2244 if (result == 0 && send_string[0] != 0) {
2245 /* new device found */
2246 /* update data for previously moved device */
2247 ADBDevTable[i].currentAddr = saveptr;
2248 #ifdef ADB_DEBUG
2249 if (adb_debug & 0x80)
2250 printf_intr("old device at index %i\n",i);
2251 #endif
2252 /* add new device in table */
2253 #ifdef ADB_DEBUG
2254 if (adb_debug & 0x80)
2255 printf_intr("new device found\n");
2256 #endif
2257 if (saveptr > ADBNumDevices) {
2258 ++ADBNumDevices;
2259 KASSERT(ADBNumDevices < 16);
2260 }
2261 ADBDevTable[ADBNumDevices].devType =
2262 (int)(send_string[2]);
2263 ADBDevTable[ADBNumDevices].origAddr = device;
2264 ADBDevTable[ADBNumDevices].currentAddr = device;
2265 /* These will be set correctly in adbsys.c */
2266 /* Until then, unsol. data will be ignored. */
2267 ADBDevTable[ADBNumDevices].DataAreaAddr =
2268 (long)0;
2269 ADBDevTable[ADBNumDevices].ServiceRtPtr =
2270 (void *)0;
2271 /* find next unused address */
2272 for (x = saveptr; x > 0; x--) {
2273 if (-1 == get_adb_info(&data, x)) {
2274 saveptr = x;
2275 break;
2276 }
2277 }
2278 if (x == 0)
2279 saveptr = 0;
2280 #ifdef ADB_DEBUG
2281 if (adb_debug & 0x80)
2282 printf_intr("new free is 0x%02x\n",
2283 saveptr);
2284 #endif
2285 nonewtimes = 0;
2286 /* tell pm driver device is here */
2287 pm_check_adb_devices(device);
2288 } else {
2289 #ifdef ADB_DEBUG
2290 if (adb_debug & 0x80)
2291 printf_intr("moving back...\n");
2292 #endif
2293 /* move old device back */
2294 command = ADBLISTEN(saveptr, 3);
2295 send_string[0] = 2;
2296 send_string[1] = (u_char)(device | 0x60);
2297 send_string[2] = 0xfe;
2298 (void)adb_op_sync((Ptr)send_string, (Ptr)0,
2299 (Ptr)0, (short)command);
2300 delay(1000);
2301 }
2302 }
2303 }
2304
2305 #ifdef ADB_DEBUG
2306 if (adb_debug) {
2307 for (i = 1; i <= ADBNumDevices; i++) {
2308 x = get_ind_adb_info(&data, i);
2309 if (x != -1)
2310 printf_intr("index 0x%x, addr 0x%x, type 0x%hx\n",
2311 i, x, data.devType);
2312 }
2313 }
2314 #endif
2315
2316 #ifndef MRG_ADB
2317 /* enable the programmer's switch, if we have one */
2318 adb_prog_switch_enable();
2319 #endif
2320
2321 #ifdef ADB_DEBUG
2322 if (adb_debug) {
2323 if (0 == ADBNumDevices) /* tell user if no devices found */
2324 printf_intr("adb: no devices found\n");
2325 }
2326 #endif
2327
2328 adbStarting = 0; /* not starting anymore */
2329 #ifdef ADB_DEBUG
2330 if (adb_debug)
2331 printf_intr("adb: ADBReInit complete\n");
2332 #endif
2333
2334 if (adbHardware == ADB_HW_CUDA)
2335 callout_reset(&adb_cuda_tickle_ch, ADB_TICKLE_TICKS,
2336 (void *)adb_cuda_tickle, NULL);
2337
2338 /* ints must be on for PB & IOP (at least, for now) */
2339 if (adbHardware != ADB_HW_PB && adbHardware != ADB_HW_IOP)
2340 splx(s);
2341
2342 return;
2343 }
2344
2345
2346 /*
2347 * adb_comp_exec
2348 * This is a general routine that calls the completion routine if there is one.
2349 * NOTE: This routine is now only used by pm_direct.c
2350 * All the code in this file (adb_direct.c) uses
2351 * the adb_pass_up routine now.
2352 */
2353 void
2354 adb_comp_exec(void)
2355 {
2356 if ((long)0 != adbCompRout) /* don't call if empty return location */
2357 #ifdef __NetBSD__
2358 asm(" movml #0xffff,sp@- | save all registers
2359 movl %0,a2 | adbCompData
2360 movl %1,a1 | adbCompRout
2361 movl %2,a0 | adbBuffer
2362 movl %3,d0 | adbWaitingCmd
2363 jbsr a1@ | go call the routine
2364 movml sp@+,#0xffff | restore all registers"
2365 :
2366 : "g"(adbCompData), "g"(adbCompRout),
2367 "g"(adbBuffer), "g"(adbWaitingCmd)
2368 : "d0", "a0", "a1", "a2");
2369 #else /* for Mac OS-based testing */
2370 asm {
2371 movem.l a0/a1/a2/d0, -(a7)
2372 move.l adbCompData, a2
2373 move.l adbCompRout, a1
2374 move.l adbBuffer, a0
2375 move.w adbWaitingCmd, d0
2376 jsr(a1)
2377 movem.l(a7) +, d0/a2/a1/a0
2378 }
2379 #endif
2380 }
2381
2382
2383 /*
2384 * adb_cmd_result
2385 *
2386 * This routine lets the caller know whether the specified adb command string
2387 * should expect a returned result, such as a TALK command.
2388 *
2389 * returns: 0 if a result should be expected
2390 * 1 if a result should NOT be expected
2391 */
2392 int
2393 adb_cmd_result(u_char *in)
2394 {
2395 switch (adbHardware) {
2396 case ADB_HW_IOP:
2397 case ADB_HW_II:
2398 /* was it an ADB talk command? */
2399 if ((in[1] & 0x0c) == 0x0c)
2400 return 0;
2401 return 1;
2402
2403 case ADB_HW_IISI:
2404 case ADB_HW_CUDA:
2405 /* was it an ADB talk command? */
2406 if ((in[1] == 0x00) && ((in[2] & 0x0c) == 0x0c))
2407 return 0;
2408 /* was it an RTC/PRAM read date/time? */
2409 if ((in[1] == 0x01) && (in[2] == 0x03))
2410 return 0;
2411 return 1;
2412
2413 case ADB_HW_PB:
2414 return 1;
2415
2416 case ADB_HW_UNKNOWN:
2417 default:
2418 return 1;
2419 }
2420 }
2421
2422
2423 /*
2424 * adb_cmd_extra
2425 *
2426 * This routine lets the caller know whether the specified adb command string
2427 * may have extra data appended to the end of it, such as a LISTEN command.
2428 *
2429 * returns: 0 if extra data is allowed
2430 * 1 if extra data is NOT allowed
2431 */
2432 int
2433 adb_cmd_extra(u_char *in)
2434 {
2435 switch (adbHardware) {
2436 case ADB_HW_II:
2437 case ADB_HW_IOP:
2438 if ((in[1] & 0x0c) == 0x08) /* was it a listen command? */
2439 return 0;
2440 return 1;
2441
2442 case ADB_HW_IISI:
2443 case ADB_HW_CUDA:
2444 /*
2445 * TO DO: support needs to be added to recognize RTC and PRAM
2446 * commands
2447 */
2448 if ((in[2] & 0x0c) == 0x08) /* was it a listen command? */
2449 return 0;
2450 /* add others later */
2451 return 1;
2452
2453 case ADB_HW_PB:
2454 return 1;
2455
2456 case ADB_HW_UNKNOWN:
2457 default:
2458 return 1;
2459 }
2460 }
2461
2462
2463 void
2464 adb_setup_hw_type(void)
2465 {
2466 long response;
2467
2468 response = mac68k_machine.machineid;
2469
2470 /*
2471 * Determine what type of ADB hardware we are running on.
2472 */
2473 switch (response) {
2474 case MACH_MACC610: /* Centris 610 */
2475 case MACH_MACC650: /* Centris 650 */
2476 case MACH_MACII: /* II */
2477 case MACH_MACIICI: /* IIci */
2478 case MACH_MACIICX: /* IIcx */
2479 case MACH_MACIIX: /* IIx */
2480 case MACH_MACQ610: /* Quadra 610 */
2481 case MACH_MACQ650: /* Quadra 650 */
2482 case MACH_MACQ700: /* Quadra 700 */
2483 case MACH_MACQ800: /* Quadra 800 */
2484 case MACH_MACSE30: /* SE/30 */
2485 adbHardware = ADB_HW_II;
2486 #ifdef ADB_DEBUG
2487 if (adb_debug)
2488 printf_intr("adb: using II series hardware support\n");
2489 #endif
2490 break;
2491
2492 case MACH_MACCLASSICII: /* Classic II */
2493 case MACH_MACLCII: /* LC II, Performa 400/405/430 */
2494 case MACH_MACLCIII: /* LC III, Performa 450 */
2495 case MACH_MACIISI: /* IIsi */
2496 case MACH_MACIIVI: /* IIvi */
2497 case MACH_MACIIVX: /* IIvx */
2498 case MACH_MACP460: /* Performa 460/465/467 */
2499 case MACH_MACP600: /* Performa 600 */
2500 adbHardware = ADB_HW_IISI;
2501 #ifdef ADB_DEBUG
2502 if (adb_debug)
2503 printf_intr("adb: using IIsi series hardware support\n");
2504 #endif
2505 break;
2506
2507 case MACH_MACPB140: /* PowerBook 140 */
2508 case MACH_MACPB145: /* PowerBook 145 */
2509 case MACH_MACPB150: /* PowerBook 150 */
2510 case MACH_MACPB160: /* PowerBook 160 */
2511 case MACH_MACPB165: /* PowerBook 165 */
2512 case MACH_MACPB165C: /* PowerBook 165c */
2513 case MACH_MACPB170: /* PowerBook 170 */
2514 case MACH_MACPB180: /* PowerBook 180 */
2515 case MACH_MACPB180C: /* PowerBook 180c */
2516 adbHardware = ADB_HW_PB;
2517 pm_setup_adb();
2518 #ifdef ADB_DEBUG
2519 if (adb_debug)
2520 printf_intr("adb: using PowerBook 100-series hardware support\n");
2521 #endif
2522 break;
2523
2524 case MACH_MACPB210: /* PowerBook Duo 210 */
2525 case MACH_MACPB230: /* PowerBook Duo 230 */
2526 case MACH_MACPB250: /* PowerBook Duo 250 */
2527 case MACH_MACPB270: /* PowerBook Duo 270 */
2528 case MACH_MACPB280: /* PowerBook Duo 280 */
2529 case MACH_MACPB280C: /* PowerBook Duo 280c */
2530 case MACH_MACPB500: /* PowerBook 500 series */
2531 adbHardware = ADB_HW_PB;
2532 pm_setup_adb();
2533 #ifdef ADB_DEBUG
2534 if (adb_debug)
2535 printf_intr("adb: using PowerBook Duo-series and PowerBook 500-series hardware support\n");
2536 #endif
2537 break;
2538
2539 case MACH_MACC660AV: /* Centris 660AV */
2540 case MACH_MACCCLASSIC: /* Color Classic */
2541 case MACH_MACCCLASSICII: /* Color Classic II */
2542 case MACH_MACLC475: /* LC 475, Performa 475/476 */
2543 case MACH_MACLC475_33: /* Clock-chipped 47x */
2544 case MACH_MACLC520: /* LC 520 */
2545 case MACH_MACLC575: /* LC 575, Performa 575/577/578 */
2546 case MACH_MACP550: /* LC 550, Performa 550 */
2547 case MACH_MACTV: /* Macintosh TV */
2548 case MACH_MACP580: /* Performa 580/588 */
2549 case MACH_MACQ605: /* Quadra 605 */
2550 case MACH_MACQ605_33: /* Clock-chipped Quadra 605 */
2551 case MACH_MACQ630: /* LC 630, Performa 630, Quadra 630 */
2552 case MACH_MACQ840AV: /* Quadra 840AV */
2553 adbHardware = ADB_HW_CUDA;
2554 #ifdef ADB_DEBUG
2555 if (adb_debug)
2556 printf_intr("adb: using Cuda series hardware support\n");
2557 #endif
2558 break;
2559
2560 case MACH_MACQ900: /* Quadra 900 */
2561 case MACH_MACQ950: /* Quadra 950 */
2562 case MACH_MACIIFX: /* Mac IIfx */
2563 adbHardware = ADB_HW_IOP;
2564 iop_register_listener(ISM_IOP, IOP_CHAN_ADB, adb_iop_recv, NULL);
2565 #ifdef ADB_DEBUG
2566 if (adb_debug)
2567 printf_intr("adb: using IOP-based ADB\n");
2568 #endif
2569 break;
2570
2571 default:
2572 adbHardware = ADB_HW_UNKNOWN;
2573 #ifdef ADB_DEBUG
2574 if (adb_debug) {
2575 printf_intr("adb: hardware type unknown for this machine\n");
2576 printf_intr("adb: ADB support is disabled\n");
2577 }
2578 #endif
2579 break;
2580 }
2581
2582 /*
2583 * Determine whether this machine has ADB based soft power.
2584 */
2585 switch (response) {
2586 case MACH_MACCCLASSIC: /* Color Classic */
2587 case MACH_MACCCLASSICII: /* Color Classic II */
2588 case MACH_MACIISI: /* IIsi */
2589 case MACH_MACIIVI: /* IIvi */
2590 case MACH_MACIIVX: /* IIvx */
2591 case MACH_MACLC520: /* LC 520 */
2592 case MACH_MACLC575: /* LC 575, Performa 575/577/578 */
2593 case MACH_MACP550: /* LC 550, Performa 550 */
2594 case MACH_MACTV: /* Macintosh TV */
2595 case MACH_MACP580: /* Performa 580/588 */
2596 case MACH_MACP600: /* Performa 600 */
2597 case MACH_MACQ630: /* LC 630, Performa 630, Quadra 630 */
2598 case MACH_MACQ840AV: /* Quadra 840AV */
2599 adbSoftPower = 1;
2600 break;
2601 }
2602 }
2603
2604 int
2605 count_adbs(void)
2606 {
2607 int i;
2608 int found;
2609
2610 found = 0;
2611
2612 for (i = 1; i < 16; i++)
2613 if (0 != ADBDevTable[i].currentAddr)
2614 found++;
2615
2616 return found;
2617 }
2618
2619 int
2620 get_ind_adb_info(ADBDataBlock * info, int index)
2621 {
2622 if ((index < 1) || (index > 15)) /* check range 1-15 */
2623 return (-1);
2624
2625 #ifdef ADB_DEBUG
2626 if (adb_debug & 0x80)
2627 printf_intr("index 0x%x devType is: 0x%x\n", index,
2628 ADBDevTable[index].devType);
2629 #endif
2630 if (0 == ADBDevTable[index].devType) /* make sure it's a valid entry */
2631 return (-1);
2632
2633 info->devType = (unsigned char)(ADBDevTable[index].devType);
2634 info->origADBAddr = (unsigned char)(ADBDevTable[index].origAddr);
2635 info->dbServiceRtPtr = (Ptr)ADBDevTable[index].ServiceRtPtr;
2636 info->dbDataAreaAddr = (Ptr)ADBDevTable[index].DataAreaAddr;
2637
2638 return (ADBDevTable[index].currentAddr);
2639 }
2640
2641 int
2642 get_adb_info(ADBDataBlock * info, int adbAddr)
2643 {
2644 int i;
2645
2646 if ((adbAddr < 1) || (adbAddr > 15)) /* check range 1-15 */
2647 return (-1);
2648
2649 for (i = 1; i < 15; i++)
2650 if (ADBDevTable[i].currentAddr == adbAddr) {
2651 info->devType = (unsigned char)(ADBDevTable[i].devType);
2652 info->origADBAddr = (unsigned char)(ADBDevTable[i].origAddr);
2653 info->dbServiceRtPtr = (Ptr)ADBDevTable[i].ServiceRtPtr;
2654 info->dbDataAreaAddr = ADBDevTable[i].DataAreaAddr;
2655 return 0; /* found */
2656 }
2657
2658 return (-1); /* not found */
2659 }
2660
2661 int
2662 set_adb_info(ADBSetInfoBlock * info, int adbAddr)
2663 {
2664 int i;
2665
2666 if ((adbAddr < 1) || (adbAddr > 15)) /* check range 1-15 */
2667 return (-1);
2668
2669 for (i = 1; i < 15; i++)
2670 if (ADBDevTable[i].currentAddr == adbAddr) {
2671 ADBDevTable[i].ServiceRtPtr =
2672 (void *)(info->siServiceRtPtr);
2673 ADBDevTable[i].DataAreaAddr = info->siDataAreaAddr;
2674 return 0; /* found */
2675 }
2676
2677 return (-1); /* not found */
2678
2679 }
2680
2681 #ifndef MRG_ADB
2682 long
2683 mrg_adbintr(void)
2684 {
2685 adb_intr(NULL);
2686 return 1; /* mimic mrg_adbintr in macrom.h just in case */
2687 }
2688
2689 long
2690 mrg_pmintr(void)
2691 {
2692 pm_intr(NULL);
2693 return 1; /* mimic mrg_pmintr in macrom.h just in case */
2694 }
2695
2696 /* caller should really use machine-independant version: getPramTime */
2697 /* this version does pseudo-adb access only */
2698 int
2699 adb_read_date_time(unsigned long *time)
2700 {
2701 u_char output[ADB_MAX_MSG_LENGTH];
2702 int result;
2703 volatile int flag = 0;
2704
2705 switch (adbHardware) {
2706 case ADB_HW_II:
2707 return -1;
2708
2709 case ADB_HW_IOP:
2710 return -1;
2711
2712 case ADB_HW_IISI:
2713 output[0] = 0x02; /* 2 byte message */
2714 output[1] = 0x01; /* to pram/rtc device */
2715 output[2] = 0x03; /* read date/time */
2716 result = send_adb_IIsi((u_char *)output, (u_char *)output,
2717 (void *)adb_op_comprout, (int *)&flag, (int)0);
2718 if (result != 0) /* exit if not sent */
2719 return -1;
2720
2721 while (0 == flag) /* wait for result */
2722 ;
2723
2724 *time = (long)(*(long *)(output + 1));
2725 return 0;
2726
2727 case ADB_HW_PB:
2728 return -1;
2729
2730 case ADB_HW_CUDA:
2731 output[0] = 0x02; /* 2 byte message */
2732 output[1] = 0x01; /* to pram/rtc device */
2733 output[2] = 0x03; /* read date/time */
2734 result = send_adb_cuda((u_char *)output, (u_char *)output,
2735 (void *)adb_op_comprout, (void *)&flag, (int)0);
2736 if (result != 0) /* exit if not sent */
2737 return -1;
2738
2739 while (0 == flag) /* wait for result */
2740 ;
2741
2742 *time = (long)(*(long *)(output + 1));
2743 return 0;
2744
2745 case ADB_HW_UNKNOWN:
2746 default:
2747 return -1;
2748 }
2749 }
2750
2751 /* caller should really use machine-independant version: setPramTime */
2752 /* this version does pseudo-adb access only */
2753 int
2754 adb_set_date_time(unsigned long time)
2755 {
2756 u_char output[ADB_MAX_MSG_LENGTH];
2757 int result;
2758 volatile int flag = 0;
2759
2760 switch (adbHardware) {
2761 case ADB_HW_II:
2762 return -1;
2763
2764 case ADB_HW_IOP:
2765 return -1;
2766
2767 case ADB_HW_IISI:
2768 output[0] = 0x06; /* 6 byte message */
2769 output[1] = 0x01; /* to pram/rtc device */
2770 output[2] = 0x09; /* set date/time */
2771 output[3] = (u_char)(time >> 24);
2772 output[4] = (u_char)(time >> 16);
2773 output[5] = (u_char)(time >> 8);
2774 output[6] = (u_char)(time);
2775 result = send_adb_IIsi((u_char *)output, (u_char *)0,
2776 (void *)adb_op_comprout, (void *)&flag, (int)0);
2777 if (result != 0) /* exit if not sent */
2778 return -1;
2779
2780 while (0 == flag) /* wait for send to finish */
2781 ;
2782
2783 return 0;
2784
2785 case ADB_HW_PB:
2786 return -1;
2787
2788 case ADB_HW_CUDA:
2789 output[0] = 0x06; /* 6 byte message */
2790 output[1] = 0x01; /* to pram/rtc device */
2791 output[2] = 0x09; /* set date/time */
2792 output[3] = (u_char)(time >> 24);
2793 output[4] = (u_char)(time >> 16);
2794 output[5] = (u_char)(time >> 8);
2795 output[6] = (u_char)(time);
2796 result = send_adb_cuda((u_char *)output, (u_char *)0,
2797 (void *)adb_op_comprout, (void *)&flag, (int)0);
2798 if (result != 0) /* exit if not sent */
2799 return -1;
2800
2801 while (0 == flag) /* wait for send to finish */
2802 ;
2803
2804 return 0;
2805
2806 case ADB_HW_UNKNOWN:
2807 default:
2808 return -1;
2809 }
2810 }
2811
2812
2813 int
2814 adb_poweroff(void)
2815 {
2816 u_char output[ADB_MAX_MSG_LENGTH];
2817 int result;
2818
2819 if (!adbSoftPower)
2820 return -1;
2821
2822 adb_polling = 1;
2823
2824 switch (adbHardware) {
2825 case ADB_HW_IISI:
2826 output[0] = 0x02; /* 2 byte message */
2827 output[1] = 0x01; /* to pram/rtc/soft-power device */
2828 output[2] = 0x0a; /* set date/time */
2829 result = send_adb_IIsi((u_char *)output, (u_char *)0,
2830 (void *)0, (void *)0, (int)0);
2831 if (result != 0) /* exit if not sent */
2832 return -1;
2833
2834 for (;;); /* wait for power off */
2835
2836 return 0;
2837
2838 case ADB_HW_PB:
2839 return -1;
2840
2841 case ADB_HW_CUDA:
2842 output[0] = 0x02; /* 2 byte message */
2843 output[1] = 0x01; /* to pram/rtc/soft-power device */
2844 output[2] = 0x0a; /* set date/time */
2845 result = send_adb_cuda((u_char *)output, (u_char *)0,
2846 (void *)0, (void *)0, (int)0);
2847 if (result != 0) /* exit if not sent */
2848 return -1;
2849
2850 for (;;); /* wait for power off */
2851
2852 return 0;
2853
2854 case ADB_HW_II: /* II models don't do ADB soft power */
2855 case ADB_HW_IOP: /* IOP models don't do ADB soft power */
2856 case ADB_HW_UNKNOWN:
2857 default:
2858 return -1;
2859 }
2860 }
2861
2862 int
2863 adb_prog_switch_enable(void)
2864 {
2865 u_char output[ADB_MAX_MSG_LENGTH];
2866 int result;
2867 volatile int flag = 0;
2868
2869 switch (adbHardware) {
2870 case ADB_HW_IISI:
2871 output[0] = 0x03; /* 3 byte message */
2872 output[1] = 0x01; /* to pram/rtc/soft-power device */
2873 output[2] = 0x1c; /* prog. switch control */
2874 output[3] = 0x01; /* enable */
2875 result = send_adb_IIsi((u_char *)output, (u_char *)0,
2876 (void *)adb_op_comprout, (void *)&flag, (int)0);
2877 if (result != 0) /* exit if not sent */
2878 return -1;
2879
2880 while (0 == flag) /* wait for send to finish */
2881 ;
2882
2883 return 0;
2884
2885 case ADB_HW_PB:
2886 return -1;
2887
2888 case ADB_HW_II: /* II models don't do prog. switch */
2889 case ADB_HW_IOP: /* IOP models don't do prog. switch */
2890 case ADB_HW_CUDA: /* cuda doesn't do prog. switch TO DO: verify this */
2891 case ADB_HW_UNKNOWN:
2892 default:
2893 return -1;
2894 }
2895 }
2896
2897 int
2898 adb_prog_switch_disable(void)
2899 {
2900 u_char output[ADB_MAX_MSG_LENGTH];
2901 int result;
2902 volatile int flag = 0;
2903
2904 switch (adbHardware) {
2905 case ADB_HW_IISI:
2906 output[0] = 0x03; /* 3 byte message */
2907 output[1] = 0x01; /* to pram/rtc/soft-power device */
2908 output[2] = 0x1c; /* prog. switch control */
2909 output[3] = 0x01; /* disable */
2910 result = send_adb_IIsi((u_char *)output, (u_char *)0,
2911 (void *)adb_op_comprout, (void *)&flag, (int)0);
2912 if (result != 0) /* exit if not sent */
2913 return -1;
2914
2915 while (0 == flag) /* wait for send to finish */
2916 ;
2917
2918 return 0;
2919
2920 case ADB_HW_PB:
2921 return -1;
2922
2923 case ADB_HW_II: /* II models don't do prog. switch */
2924 case ADB_HW_IOP: /* IOP models don't do prog. switch */
2925 case ADB_HW_CUDA: /* cuda doesn't do prog. switch */
2926 case ADB_HW_UNKNOWN:
2927 default:
2928 return -1;
2929 }
2930 }
2931
2932 int
2933 CountADBs(void)
2934 {
2935 return (count_adbs());
2936 }
2937
2938 void
2939 ADBReInit(void)
2940 {
2941 adb_reinit();
2942 }
2943
2944 int
2945 GetIndADB(ADBDataBlock * info, int index)
2946 {
2947 return (get_ind_adb_info(info, index));
2948 }
2949
2950 int
2951 GetADBInfo(ADBDataBlock * info, int adbAddr)
2952 {
2953 return (get_adb_info(info, adbAddr));
2954 }
2955
2956 int
2957 SetADBInfo(ADBSetInfoBlock * info, int adbAddr)
2958 {
2959 return (set_adb_info(info, adbAddr));
2960 }
2961
2962 int
2963 ADBOp(Ptr buffer, Ptr compRout, Ptr data, short commandNum)
2964 {
2965 return (adb_op(buffer, compRout, data, commandNum));
2966 }
2967
2968 #endif
2969