adb_direct.c revision 1.47 1 /* $NetBSD: adb_direct.c,v 1.47 2002/05/30 21:26:13 thorpej Exp $ */
2
3 /* From: adb_direct.c 2.02 4/18/97 jpw */
4
5 /*
6 * Copyright (C) 1996, 1997 John P. Wittkoski
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by John P. Wittkoski.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*
36 * This code is rather messy, but I don't have time right now
37 * to clean it up as much as I would like.
38 * But it works, so I'm happy. :-) jpw
39 */
40
41 /*
42 * TO DO:
43 * - We could reduce the time spent in the adb_intr_* routines
44 * by having them save the incoming and outgoing data directly
45 * in the adbInbound and adbOutbound queues, as it would reduce
46 * the number of times we need to copy the data around. It
47 * would also make the code more readable and easier to follow.
48 * - (Related to above) Use the header part of adbCommand to
49 * reduce the number of copies we have to do of the data.
50 * - (Related to above) Actually implement the adbOutbound queue.
51 * This is fairly easy once you switch all the intr routines
52 * over to using adbCommand structs directly.
53 * - There is a bug in the state machine of adb_intr_cuda
54 * code that causes hangs, especially on 030 machines, probably
55 * because of some timing issues. Because I have been unable to
56 * determine the exact cause of this bug, I used the timeout function
57 * to check for and recover from this condition. If anyone finds
58 * the actual cause of this bug, the calls to timeout and the
59 * adb_cuda_tickle routine can be removed.
60 */
61
62 #ifdef __NetBSD__
63 #include "opt_adb.h"
64
65 #include <sys/param.h>
66 #include <sys/cdefs.h>
67 #include <sys/pool.h>
68 #include <sys/queue.h>
69 #include <sys/systm.h>
70 #include <sys/callout.h>
71
72 #include <machine/viareg.h>
73 #include <machine/param.h>
74 #include <machine/cpu.h>
75 #include <machine/adbsys.h> /* required for adbvar.h */
76 #include <machine/iopreg.h> /* required for IOP support */
77
78 #include <mac68k/mac68k/macrom.h>
79 #include <mac68k/dev/adbvar.h>
80 #define printf_intr printf
81 #else /* !__NetBSD__, i.e. Mac OS */
82 #include "via.h" /* for macos based testing */
83 /* #define ADB_DEBUG */ /* more verbose for testing */
84
85 /* Types of ADB hardware that we support */
86 #define ADB_HW_UNKNOWN 0x0 /* don't know */
87 #define ADB_HW_II 0x1 /* Mac II series */
88 #define ADB_HW_IISI 0x2 /* Mac IIsi series */
89 #define ADB_HW_PB 0x3 /* PowerBook series */
90 #define ADB_HW_CUDA 0x4 /* Machines with a Cuda chip */
91 #endif /* __NetBSD__ */
92
93 /* some misc. leftovers */
94 #define vPB 0x0000
95 #define vPB3 0x08
96 #define vPB4 0x10
97 #define vPB5 0x20
98 #define vSR_INT 0x04
99 #define vSR_OUT 0x10
100
101 /* the type of ADB action that we are currently preforming */
102 #define ADB_ACTION_NOTREADY 0x1 /* has not been initialized yet */
103 #define ADB_ACTION_IDLE 0x2 /* the bus is currently idle */
104 #define ADB_ACTION_OUT 0x3 /* sending out a command */
105 #define ADB_ACTION_IN 0x4 /* receiving data */
106 #define ADB_ACTION_POLLING 0x5 /* polling - II only */
107 #define ADB_ACTION_RUNNING 0x6 /* running - IOP only */
108
109 /*
110 * These describe the state of the ADB bus itself, although they
111 * don't necessarily correspond directly to ADB states.
112 * Note: these are not really used in the IIsi code.
113 */
114 #define ADB_BUS_UNKNOWN 0x1 /* we don't know yet - all models */
115 #define ADB_BUS_IDLE 0x2 /* bus is idle - all models */
116 #define ADB_BUS_CMD 0x3 /* starting a command - II models */
117 #define ADB_BUS_ODD 0x4 /* the "odd" state - II models */
118 #define ADB_BUS_EVEN 0x5 /* the "even" state - II models */
119 #define ADB_BUS_ACTIVE 0x6 /* active state - IIsi models */
120 #define ADB_BUS_ACK 0x7 /* currently ACKing - IIsi models */
121
122 /*
123 * Shortcuts for setting or testing the VIA bit states.
124 * Not all shortcuts are used for every type of ADB hardware.
125 */
126 #define ADB_SET_STATE_IDLE_II() via_reg(VIA1, vBufB) |= (vPB4 | vPB5)
127 #define ADB_SET_STATE_IDLE_IISI() via_reg(VIA1, vBufB) &= ~(vPB4 | vPB5)
128 #define ADB_SET_STATE_IDLE_CUDA() via_reg(VIA1, vBufB) |= (vPB4 | vPB5)
129 #define ADB_SET_STATE_CMD() via_reg(VIA1, vBufB) &= ~(vPB4 | vPB5)
130 #define ADB_SET_STATE_EVEN() via_reg(VIA1, vBufB) = ((via_reg(VIA1, \
131 vBufB) | vPB4) & ~vPB5)
132 #define ADB_SET_STATE_ODD() via_reg(VIA1, vBufB) = ((via_reg(VIA1, \
133 vBufB) | vPB5) & ~vPB4)
134 #define ADB_SET_STATE_ACTIVE() via_reg(VIA1, vBufB) |= vPB5
135 #define ADB_SET_STATE_INACTIVE() via_reg(VIA1, vBufB) &= ~vPB5
136 #define ADB_SET_STATE_TIP() via_reg(VIA1, vBufB) &= ~vPB5
137 #define ADB_CLR_STATE_TIP() via_reg(VIA1, vBufB) |= vPB5
138 #define ADB_SET_STATE_ACKON() via_reg(VIA1, vBufB) |= vPB4
139 #define ADB_SET_STATE_ACKOFF() via_reg(VIA1, vBufB) &= ~vPB4
140 #define ADB_TOGGLE_STATE_ACK_CUDA() via_reg(VIA1, vBufB) ^= vPB4
141 #define ADB_SET_STATE_ACKON_CUDA() via_reg(VIA1, vBufB) &= ~vPB4
142 #define ADB_SET_STATE_ACKOFF_CUDA() via_reg(VIA1, vBufB) |= vPB4
143 #define ADB_SET_SR_INPUT() via_reg(VIA1, vACR) &= ~vSR_OUT
144 #define ADB_SET_SR_OUTPUT() via_reg(VIA1, vACR) |= vSR_OUT
145 #define ADB_SR() via_reg(VIA1, vSR)
146 #define ADB_VIA_INTR_ENABLE() via_reg(VIA1, vIER) = 0x84
147 #define ADB_VIA_INTR_DISABLE() via_reg(VIA1, vIER) = 0x04
148 #define ADB_VIA_CLR_INTR() via_reg(VIA1, vIFR) = 0x04
149 #define ADB_INTR_IS_OFF (vPB3 == (via_reg(VIA1, vBufB) & vPB3))
150 #define ADB_INTR_IS_ON (0 == (via_reg(VIA1, vBufB) & vPB3))
151 #define ADB_SR_INTR_IS_OFF (0 == (via_reg(VIA1, vIFR) & vSR_INT))
152 #define ADB_SR_INTR_IS_ON (vSR_INT == (via_reg(VIA1, \
153 vIFR) & vSR_INT))
154
155 /*
156 * This is the delay that is required (in uS) between certain
157 * ADB transactions. The actual timing delay for for each uS is
158 * calculated at boot time to account for differences in machine speed.
159 */
160 #define ADB_DELAY 150
161
162 /*
163 * Maximum ADB message length; includes space for data, result, and
164 * device code - plus a little for safety.
165 */
166 #define ADB_MAX_MSG_LENGTH 16
167 #define ADB_MAX_HDR_LENGTH 8
168
169 #define ADB_QUEUE 32
170 #define ADB_TICKLE_TICKS 4
171
172 /*
173 * A structure for storing information about each ADB device.
174 */
175 struct ADBDevEntry {
176 void (*ServiceRtPtr) __P((void));
177 void *DataAreaAddr;
178 int devType;
179 int origAddr;
180 int currentAddr;
181 };
182
183 /*
184 * Used to hold ADB commands that are waiting to be sent out.
185 */
186 struct adbCmdHoldEntry {
187 u_char outBuf[ADB_MAX_MSG_LENGTH]; /* our message */
188 u_char *saveBuf; /* buffer to know where to save result */
189 u_char *compRout; /* completion routine pointer */
190 u_char *data; /* completion routine data pointer */
191 };
192
193 /*
194 * Eventually used for two separate queues, the queue between
195 * the upper and lower halves, and the outgoing packet queue.
196 * TO DO: adbCommand can replace all of adbCmdHoldEntry eventually
197 */
198 struct adbCommand {
199 u_char header[ADB_MAX_HDR_LENGTH]; /* not used yet */
200 u_char data[ADB_MAX_MSG_LENGTH]; /* packet data only */
201 u_char *saveBuf; /* where to save result */
202 u_char *compRout; /* completion routine pointer */
203 u_char *compData; /* completion routine data pointer */
204 u_int cmd; /* the original command for this data */
205 u_int unsol; /* 1 if packet was unsolicited */
206 u_int ack_only; /* 1 for no special processing */
207 };
208
209 /*
210 * Text representations of each hardware class
211 */
212 char *adbHardwareDescr[MAX_ADB_HW + 1] = {
213 "unknown",
214 "II series",
215 "IIsi series",
216 "PowerBook",
217 "Cuda",
218 "IOP",
219 };
220
221 /*
222 * A few variables that we need and their initial values.
223 */
224 int adbHardware = ADB_HW_UNKNOWN;
225 int adbActionState = ADB_ACTION_NOTREADY;
226 int adbBusState = ADB_BUS_UNKNOWN;
227 int adbWaiting = 0; /* waiting for return data from the device */
228 int adbWriteDelay = 0; /* working on (or waiting to do) a write */
229 int adbOutQueueHasData = 0; /* something in the queue waiting to go out */
230 int adbNextEnd = 0; /* the next incoming bute is the last (II) */
231 int adbSoftPower = 0; /* machine supports soft power */
232
233 int adbWaitingCmd = 0; /* ADB command we are waiting for */
234 u_char *adbBuffer = (long)0; /* pointer to user data area */
235 void *adbCompRout = (long)0; /* pointer to the completion routine */
236 void *adbCompData = (long)0; /* pointer to the completion routine data */
237 long adbFakeInts = 0; /* keeps track of fake ADB interrupts for
238 * timeouts (II) */
239 int adbStarting = 1; /* doing ADBReInit so do polling differently */
240 int adbSendTalk = 0; /* the intr routine is sending the talk, not
241 * the user (II) */
242 int adbPolling = 0; /* we are polling for service request */
243 int adbPollCmd = 0; /* the last poll command we sent */
244
245 u_char adbInputBuffer[ADB_MAX_MSG_LENGTH]; /* data input buffer */
246 u_char adbOutputBuffer[ADB_MAX_MSG_LENGTH]; /* data output buffer */
247 struct adbCmdHoldEntry adbOutQueue; /* our 1 entry output queue */
248
249 int adbSentChars = 0; /* how many characters we have sent */
250 int adbLastDevice = 0; /* last ADB dev we heard from (II ONLY) */
251 int adbLastDevIndex = 0; /* last ADB dev loc in dev table (II ONLY) */
252 int adbLastCommand = 0; /* the last ADB command we sent (II) */
253
254 struct ADBDevEntry ADBDevTable[16]; /* our ADB device table */
255 int ADBNumDevices; /* num. of ADB devices found with ADBReInit */
256
257 struct adbCommand adbInbound[ADB_QUEUE]; /* incoming queue */
258 volatile int adbInCount = 0; /* how many packets in in queue */
259 int adbInHead = 0; /* head of in queue */
260 int adbInTail = 0; /* tail of in queue */
261 struct adbCommand adbOutbound[ADB_QUEUE]; /* outgoing queue - not used yet */
262 int adbOutCount = 0; /* how many packets in out queue */
263 int adbOutHead = 0; /* head of out queue */
264 int adbOutTail = 0; /* tail of out queue */
265
266 int tickle_count = 0; /* how many tickles seen for this packet? */
267 int tickle_serial = 0; /* the last packet tickled */
268 int adb_cuda_serial = 0; /* the current packet */
269
270 struct callout adb_cuda_tickle_ch = CALLOUT_INITIALIZER;
271
272 extern struct mac68k_machine_S mac68k_machine;
273
274 void pm_setup_adb __P((void));
275 void pm_hw_setup __P((void));
276 void pm_check_adb_devices __P((int));
277 void pm_intr __P((void *));
278 int pm_adb_op __P((u_char *, void *, void *, int));
279 void pm_init_adb_device __P((void));
280
281 /*
282 * The following are private routines.
283 */
284 #ifdef ADB_DEBUG
285 void print_single __P((u_char *));
286 #endif
287 void adb_intr __P((void *));
288 void adb_intr_II __P((void *));
289 void adb_intr_IIsi __P((void *));
290 void adb_intr_cuda __P((void *));
291 void adb_soft_intr __P((void));
292 int send_adb_II __P((u_char *, u_char *, void *, void *, int));
293 int send_adb_IIsi __P((u_char *, u_char *, void *, void *, int));
294 int send_adb_cuda __P((u_char *, u_char *, void *, void *, int));
295 void adb_intr_cuda_test __P((void));
296 void adb_cuda_tickle __P((void));
297 void adb_pass_up __P((struct adbCommand *));
298 void adb_op_comprout __P((void));
299 void adb_reinit __P((void));
300 int count_adbs __P((void));
301 int get_ind_adb_info __P((ADBDataBlock *, int));
302 int get_adb_info __P((ADBDataBlock *, int));
303 int set_adb_info __P((ADBSetInfoBlock *, int));
304 void adb_setup_hw_type __P((void));
305 int adb_op __P((Ptr, Ptr, Ptr, short));
306 void adb_read_II __P((u_char *));
307 void adb_hw_setup __P((void));
308 void adb_hw_setup_IIsi __P((u_char *));
309 void adb_comp_exec __P((void));
310 int adb_cmd_result __P((u_char *));
311 int adb_cmd_extra __P((u_char *));
312 int adb_guess_next_device __P((void));
313 int adb_prog_switch_enable __P((void));
314 int adb_prog_switch_disable __P((void));
315 /* we should create this and it will be the public version */
316 int send_adb __P((u_char *, void *, void *));
317 void adb_iop_recv __P((IOP *, struct iop_msg *));
318 int send_adb_iop __P((int, u_char *, void *, void *));
319
320 #ifdef ADB_DEBUG
321 /*
322 * print_single
323 * Diagnostic display routine. Displays the hex values of the
324 * specified elements of the u_char. The length of the "string"
325 * is in [0].
326 */
327 void
328 print_single(str)
329 u_char *str;
330 {
331 int x;
332
333 if (str == 0) {
334 printf_intr("no data - null pointer\n");
335 return;
336 }
337 if (*str == 0) {
338 printf_intr("nothing returned\n");
339 return;
340 }
341 if (*str > 20) {
342 printf_intr("ADB: ACK > 20 no way!\n");
343 *str = (u_char)20;
344 }
345 printf_intr("(length=0x%x):", (u_int)*str);
346 for (x = 1; x <= *str; x++)
347 printf_intr(" 0x%02x", (u_int)*(str + x));
348 printf_intr("\n");
349 }
350 #endif
351
352 void
353 adb_cuda_tickle(void)
354 {
355 volatile int s;
356
357 if (adbActionState == ADB_ACTION_IN) {
358 if (tickle_serial == adb_cuda_serial) {
359 if (++tickle_count > 0) {
360 s = splhigh();
361 adbActionState = ADB_ACTION_IDLE;
362 adbInputBuffer[0] = 0;
363 ADB_SET_STATE_IDLE_CUDA();
364 splx(s);
365 }
366 } else {
367 tickle_serial = adb_cuda_serial;
368 tickle_count = 0;
369 }
370 } else {
371 tickle_serial = adb_cuda_serial;
372 tickle_count = 0;
373 }
374
375 callout_reset(&adb_cuda_tickle_ch, ADB_TICKLE_TICKS,
376 (void *)adb_cuda_tickle, NULL);
377 }
378
379 /*
380 * called when when an adb interrupt happens
381 *
382 * Cuda version of adb_intr
383 * TO DO: do we want to add some calls to intr_dispatch() here to
384 * grab serial interrupts?
385 */
386 void
387 adb_intr_cuda(void *arg)
388 {
389 volatile int i, ending;
390 volatile unsigned int s;
391 struct adbCommand packet;
392
393 s = splhigh(); /* can't be too careful - might be called */
394 /* from a routine, NOT an interrupt */
395
396 ADB_VIA_CLR_INTR(); /* clear interrupt */
397 ADB_VIA_INTR_DISABLE(); /* disable ADB interrupt on IIs. */
398
399 switch_start:
400 switch (adbActionState) {
401 case ADB_ACTION_IDLE:
402 /*
403 * This is an unexpected packet, so grab the first (dummy)
404 * byte, set up the proper vars, and tell the chip we are
405 * starting to receive the packet by setting the TIP bit.
406 */
407 adbInputBuffer[1] = ADB_SR();
408 adb_cuda_serial++;
409 if (ADB_INTR_IS_OFF) /* must have been a fake start */
410 break;
411
412 ADB_SET_SR_INPUT();
413 ADB_SET_STATE_TIP();
414
415 adbInputBuffer[0] = 1;
416 adbActionState = ADB_ACTION_IN;
417 #ifdef ADB_DEBUG
418 if (adb_debug)
419 printf_intr("idle 0x%02x ", adbInputBuffer[1]);
420 #endif
421 break;
422
423 case ADB_ACTION_IN:
424 adbInputBuffer[++adbInputBuffer[0]] = ADB_SR();
425 /* intr off means this is the last byte (end of frame) */
426 if (ADB_INTR_IS_OFF)
427 ending = 1;
428 else
429 ending = 0;
430
431 if (1 == ending) { /* end of message? */
432 #ifdef ADB_DEBUG
433 if (adb_debug) {
434 printf_intr("in end 0x%02x ",
435 adbInputBuffer[adbInputBuffer[0]]);
436 print_single(adbInputBuffer);
437 }
438 #endif
439
440 /*
441 * Are we waiting AND does this packet match what we
442 * are waiting for AND is it coming from either the
443 * ADB or RTC/PRAM sub-device? This section _should_
444 * recognize all ADB and RTC/PRAM type commands, but
445 * there may be more... NOTE: commands are always at
446 * [4], even for RTC/PRAM commands.
447 */
448 /* set up data for adb_pass_up */
449 memcpy(packet.data, adbInputBuffer, adbInputBuffer[0] + 1);
450
451 if ((adbWaiting == 1) &&
452 (adbInputBuffer[4] == adbWaitingCmd) &&
453 ((adbInputBuffer[2] == 0x00) ||
454 (adbInputBuffer[2] == 0x01))) {
455 packet.saveBuf = adbBuffer;
456 packet.compRout = adbCompRout;
457 packet.compData = adbCompData;
458 packet.unsol = 0;
459 packet.ack_only = 0;
460 adb_pass_up(&packet);
461
462 adbWaitingCmd = 0; /* reset "waiting" vars */
463 adbWaiting = 0;
464 adbBuffer = (long)0;
465 adbCompRout = (long)0;
466 adbCompData = (long)0;
467 } else {
468 packet.unsol = 1;
469 packet.ack_only = 0;
470 adb_pass_up(&packet);
471 }
472
473
474 /* reset vars and signal the end of this frame */
475 adbActionState = ADB_ACTION_IDLE;
476 adbInputBuffer[0] = 0;
477 ADB_SET_STATE_IDLE_CUDA();
478 /*ADB_SET_SR_INPUT();*/
479
480 /*
481 * If there is something waiting to be sent out,
482 * the set everything up and send the first byte.
483 */
484 if (adbWriteDelay == 1) {
485 delay(ADB_DELAY); /* required */
486 adbSentChars = 0;
487 adbActionState = ADB_ACTION_OUT;
488 /*
489 * If the interrupt is on, we were too slow
490 * and the chip has already started to send
491 * something to us, so back out of the write
492 * and start a read cycle.
493 */
494 if (ADB_INTR_IS_ON) {
495 ADB_SET_SR_INPUT();
496 ADB_SET_STATE_IDLE_CUDA();
497 adbSentChars = 0;
498 adbActionState = ADB_ACTION_IDLE;
499 adbInputBuffer[0] = 0;
500 break;
501 }
502 /*
503 * If we got here, it's ok to start sending
504 * so load the first byte and tell the chip
505 * we want to send.
506 */
507 ADB_SET_STATE_TIP();
508 ADB_SET_SR_OUTPUT();
509 ADB_SR() = adbOutputBuffer[adbSentChars + 1];
510 }
511 } else {
512 ADB_TOGGLE_STATE_ACK_CUDA();
513 #ifdef ADB_DEBUG
514 if (adb_debug)
515 printf_intr("in 0x%02x ",
516 adbInputBuffer[adbInputBuffer[0]]);
517 #endif
518 }
519 break;
520
521 case ADB_ACTION_OUT:
522 i = ADB_SR(); /* reset SR-intr in IFR */
523 #ifdef ADB_DEBUG
524 if (adb_debug)
525 printf_intr("intr out 0x%02x ", i);
526 #endif
527
528 adbSentChars++;
529 if (ADB_INTR_IS_ON) { /* ADB intr low during write */
530 #ifdef ADB_DEBUG
531 if (adb_debug)
532 printf_intr("intr was on ");
533 #endif
534 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
535 ADB_SET_STATE_IDLE_CUDA();
536 adbSentChars = 0; /* must start all over */
537 adbActionState = ADB_ACTION_IDLE; /* new state */
538 adbInputBuffer[0] = 0;
539 adbWriteDelay = 1; /* must retry when done with
540 * read */
541 delay(ADB_DELAY);
542 goto switch_start; /* process next state right
543 * now */
544 break;
545 }
546 if (adbOutputBuffer[0] == adbSentChars) { /* check for done */
547 if (0 == adb_cmd_result(adbOutputBuffer)) { /* do we expect data
548 * back? */
549 adbWaiting = 1; /* signal waiting for return */
550 adbWaitingCmd = adbOutputBuffer[2]; /* save waiting command */
551 } else { /* no talk, so done */
552 /* set up stuff for adb_pass_up */
553 memcpy(packet.data, adbInputBuffer, adbInputBuffer[0] + 1);
554 packet.saveBuf = adbBuffer;
555 packet.compRout = adbCompRout;
556 packet.compData = adbCompData;
557 packet.cmd = adbWaitingCmd;
558 packet.unsol = 0;
559 packet.ack_only = 1;
560 adb_pass_up(&packet);
561
562 /* reset "waiting" vars, just in case */
563 adbWaitingCmd = 0;
564 adbBuffer = (long)0;
565 adbCompRout = (long)0;
566 adbCompData = (long)0;
567 }
568
569 adbWriteDelay = 0; /* done writing */
570 adbActionState = ADB_ACTION_IDLE; /* signal bus is idle */
571 ADB_SET_SR_INPUT();
572 ADB_SET_STATE_IDLE_CUDA();
573 #ifdef ADB_DEBUG
574 if (adb_debug)
575 printf_intr("write done ");
576 #endif
577 } else {
578 ADB_SR() = adbOutputBuffer[adbSentChars + 1]; /* send next byte */
579 ADB_TOGGLE_STATE_ACK_CUDA(); /* signal byte ready to
580 * shift */
581 #ifdef ADB_DEBUG
582 if (adb_debug)
583 printf_intr("toggle ");
584 #endif
585 }
586 break;
587
588 case ADB_ACTION_NOTREADY:
589 #ifdef ADB_DEBUG
590 if (adb_debug)
591 printf_intr("adb: not yet initialized\n");
592 #endif
593 break;
594
595 default:
596 #ifdef ADB_DEBUG
597 if (adb_debug)
598 printf_intr("intr: unknown ADB state\n");
599 #endif
600 break;
601 }
602
603 ADB_VIA_INTR_ENABLE(); /* enable ADB interrupt on IIs. */
604
605 splx(s); /* restore */
606
607 return;
608 } /* end adb_intr_cuda */
609
610
611 int
612 send_adb_cuda(u_char * in, u_char * buffer, void *compRout, void *data, int
613 command)
614 {
615 int s, len;
616
617 #ifdef ADB_DEBUG
618 if (adb_debug)
619 printf_intr("SEND\n");
620 #endif
621
622 if (adbActionState == ADB_ACTION_NOTREADY)
623 return 1;
624
625 /* Don't interrupt while we are messing with the ADB */
626 s = splhigh();
627
628 if ((adbActionState == ADB_ACTION_IDLE) && /* ADB available? */
629 (ADB_INTR_IS_OFF)) { /* and no incoming interrupt? */
630 } else
631 if (adbWriteDelay == 0) /* it's busy, but is anything waiting? */
632 adbWriteDelay = 1; /* if no, then we'll "queue"
633 * it up */
634 else {
635 splx(s);
636 return 1; /* really busy! */
637 }
638
639 #ifdef ADB_DEBUG
640 if (adb_debug)
641 printf_intr("QUEUE\n");
642 #endif
643 if ((long)in == (long)0) { /* need to convert? */
644 /*
645 * Don't need to use adb_cmd_extra here because this section
646 * will be called ONLY when it is an ADB command (no RTC or
647 * PRAM)
648 */
649 if ((command & 0x0c) == 0x08) /* copy addl data ONLY if
650 * doing a listen! */
651 len = buffer[0]; /* length of additional data */
652 else
653 len = 0;/* no additional data */
654
655 adbOutputBuffer[0] = 2 + len; /* dev. type + command + addl.
656 * data */
657 adbOutputBuffer[1] = 0x00; /* mark as an ADB command */
658 adbOutputBuffer[2] = (u_char)command; /* load command */
659
660 /* copy additional output data, if any */
661 memcpy(adbOutputBuffer + 3, buffer + 1, len);
662 } else
663 /* if data ready, just copy over */
664 memcpy(adbOutputBuffer, in, in[0] + 2);
665
666 adbSentChars = 0; /* nothing sent yet */
667 adbBuffer = buffer; /* save buffer to know where to save result */
668 adbCompRout = compRout; /* save completion routine pointer */
669 adbCompData = data; /* save completion routine data pointer */
670 adbWaitingCmd = adbOutputBuffer[2]; /* save wait command */
671
672 if (adbWriteDelay != 1) { /* start command now? */
673 #ifdef ADB_DEBUG
674 if (adb_debug)
675 printf_intr("out start NOW");
676 #endif
677 delay(ADB_DELAY);
678 adbActionState = ADB_ACTION_OUT; /* set next state */
679 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
680 ADB_SR() = adbOutputBuffer[adbSentChars + 1]; /* load byte for output */
681 ADB_SET_STATE_ACKOFF_CUDA();
682 ADB_SET_STATE_TIP(); /* tell ADB that we want to send */
683 }
684 adbWriteDelay = 1; /* something in the write "queue" */
685
686 splx(s);
687
688 if (0x0100 <= (s & 0x0700)) /* were VIA1 interrupts blocked? */
689 /* poll until byte done */
690 while ((adbActionState != ADB_ACTION_IDLE) || (ADB_INTR_IS_ON)
691 || (adbWaiting == 1))
692 if (ADB_SR_INTR_IS_ON) { /* wait for "interrupt" */
693 adb_intr_cuda(NULL); /* go process it */
694 if (adb_polling)
695 adb_soft_intr();
696 }
697
698 return 0;
699 } /* send_adb_cuda */
700
701
702 void
703 adb_intr_II(void *arg)
704 {
705 struct adbCommand packet;
706 int i, intr_on = 0;
707 int send = 0;
708 unsigned int s;
709
710 s = splhigh(); /* can't be too careful - might be called */
711 /* from a routine, NOT an interrupt */
712
713 ADB_VIA_CLR_INTR(); /* clear interrupt */
714
715 ADB_VIA_INTR_DISABLE(); /* disable ADB interrupt on IIs. */
716
717 delay(ADB_DELAY); /* yuck (don't remove) */
718
719 (void)intr_dispatch(0x70); /* grab any serial interrupts */
720
721 if (ADB_INTR_IS_ON)
722 intr_on = 1; /* save for later */
723
724 switch_start:
725 switch (adbActionState) {
726 case ADB_ACTION_POLLING:
727 if (!intr_on) {
728 if (adbOutQueueHasData) {
729 #ifdef ADB_DEBUG
730 if (adb_debug & 0x80)
731 printf_intr("POLL-doing-out-queue. ");
732 #endif
733 ADB_SET_STATE_IDLE_II();
734 delay(ADB_DELAY);
735
736 /* copy over data */
737 memcpy(adbOutputBuffer, adbOutQueue.outBuf,
738 adbOutQueue.outBuf[0] + 2);
739
740 adbBuffer = adbOutQueue.saveBuf; /* user data area */
741 adbCompRout = adbOutQueue.compRout; /* completion routine */
742 adbCompData = adbOutQueue.data; /* comp. rout. data */
743 adbOutQueueHasData = 0; /* currently processing
744 * "queue" entry */
745 adbSentChars = 0; /* nothing sent yet */
746 adbActionState = ADB_ACTION_OUT; /* set next state */
747 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
748 ADB_SR() = adbOutputBuffer[1]; /* load byte for output */
749 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */
750 ADB_SET_STATE_CMD(); /* tell ADB that we want to send */
751 break;
752 } else {
753 #ifdef ADB_DEBUG
754 if (adb_debug)
755 printf_intr("pIDLE ");
756 #endif
757 adbActionState = ADB_ACTION_IDLE;
758 }
759 } else {
760 #ifdef ADB_DEBUG
761 if (adb_debug & 0x80)
762 printf_intr("pIN ");
763 #endif
764 adbActionState = ADB_ACTION_IN;
765 }
766 delay(ADB_DELAY);
767 (void)intr_dispatch(0x70); /* grab any serial interrupts */
768 goto switch_start;
769 break;
770 case ADB_ACTION_IDLE:
771 if (!intr_on) {
772 i = ADB_SR();
773 adbBusState = ADB_BUS_IDLE;
774 adbActionState = ADB_ACTION_IDLE;
775 ADB_SET_STATE_IDLE_II();
776 break;
777 }
778 adbInputBuffer[0] = 1;
779 adbInputBuffer[1] = ADB_SR(); /* get first byte */
780 #ifdef ADB_DEBUG
781 if (adb_debug & 0x80)
782 printf_intr("idle 0x%02x ", adbInputBuffer[1]);
783 #endif
784 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
785 adbActionState = ADB_ACTION_IN; /* set next state */
786 ADB_SET_STATE_EVEN(); /* set bus state to even */
787 adbBusState = ADB_BUS_EVEN;
788 break;
789
790 case ADB_ACTION_IN:
791 adbInputBuffer[++adbInputBuffer[0]] = ADB_SR(); /* get byte */
792 #ifdef ADB_DEBUG
793 if (adb_debug & 0x80)
794 printf_intr("in 0x%02x ",
795 adbInputBuffer[adbInputBuffer[0]]);
796 #endif
797 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
798
799 if (intr_on) { /* process last byte of packet */
800 adbInputBuffer[0]--; /* minus one */
801 /*
802 * If intr_on was true, and it's the second byte, then
803 * the byte we just discarded is really valid, so
804 * adjust the count
805 */
806 if (adbInputBuffer[0] == 2) {
807 adbInputBuffer[0]++;
808 }
809
810 #ifdef ADB_DEBUG
811 if (adb_debug & 0x80) {
812 printf_intr("done: ");
813 print_single(adbInputBuffer);
814 }
815 #endif
816
817 adbLastDevice = ADB_CMDADDR(adbInputBuffer[1]);
818
819 if (adbInputBuffer[0] == 1 && !adbWaiting) { /* SRQ!!!*/
820 #ifdef ADB_DEBUG
821 if (adb_debug & 0x80)
822 printf_intr(" xSRQ! ");
823 #endif
824 adb_guess_next_device();
825 #ifdef ADB_DEBUG
826 if (adb_debug & 0x80)
827 printf_intr("try 0x%0x ",
828 adbLastDevice);
829 #endif
830 adbOutputBuffer[0] = 1;
831 adbOutputBuffer[1] = ADBTALK(adbLastDevice, 0);
832
833 adbSentChars = 0; /* nothing sent yet */
834 adbActionState = ADB_ACTION_POLLING; /* set next state */
835 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
836 ADB_SR() = adbOutputBuffer[1]; /* load byte for output */
837 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */
838 ADB_SET_STATE_CMD(); /* tell ADB that we want to */
839 break;
840 }
841
842 /* set up data for adb_pass_up */
843 memcpy(packet.data, adbInputBuffer, adbInputBuffer[0] + 1);
844
845 if (!adbWaiting && (adbInputBuffer[0] != 0)) {
846 packet.unsol = 1;
847 packet.ack_only = 0;
848 adb_pass_up(&packet);
849 } else {
850 packet.saveBuf = adbBuffer;
851 packet.compRout = adbCompRout;
852 packet.compData = adbCompData;
853 packet.unsol = 0;
854 packet.ack_only = 0;
855 adb_pass_up(&packet);
856 }
857
858 adbWaiting = 0;
859 adbInputBuffer[0] = 0;
860 adbBuffer = (long)0;
861 adbCompRout = (long)0;
862 adbCompData = (long)0;
863 /*
864 * Since we are done, check whether there is any data
865 * waiting to do out. If so, start the sending the data.
866 */
867 if (adbOutQueueHasData == 1) {
868 #ifdef ADB_DEBUG
869 if (adb_debug & 0x80)
870 printf_intr("XXX: DOING OUT QUEUE\n");
871 #endif
872 /* copy over data */
873 memcpy(adbOutputBuffer, adbOutQueue.outBuf,
874 adbOutQueue.outBuf[0] + 2);
875 adbBuffer = adbOutQueue.saveBuf; /* user data area */
876 adbCompRout = adbOutQueue.compRout; /* completion routine */
877 adbCompData = adbOutQueue.data; /* comp. rout. data */
878 adbOutQueueHasData = 0; /* currently processing
879 * "queue" entry */
880 send = 1;
881 } else {
882 #ifdef ADB_DEBUG
883 if (adb_debug & 0x80)
884 printf_intr("XXending ");
885 #endif
886 adb_guess_next_device();
887 adbOutputBuffer[0] = 1;
888 adbOutputBuffer[1] = ((adbLastDevice & 0x0f) << 4) | 0x0c;
889 adbSentChars = 0; /* nothing sent yet */
890 adbActionState = ADB_ACTION_POLLING; /* set next state */
891 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
892 ADB_SR() = adbOutputBuffer[1]; /* load byte for output */
893 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */
894 ADB_SET_STATE_CMD(); /* tell ADB that we want to */
895 break;
896 }
897 }
898
899 /*
900 * If send is true then something above determined that
901 * the message has ended and we need to start sending out
902 * a new message immediately. This could be because there
903 * is data waiting to go out or because an SRQ was seen.
904 */
905 if (send) {
906 adbSentChars = 0; /* nothing sent yet */
907 adbActionState = ADB_ACTION_OUT; /* set next state */
908 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
909 ADB_SR() = adbOutputBuffer[1]; /* load byte for output */
910 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */
911 ADB_SET_STATE_CMD(); /* tell ADB that we want to
912 * send */
913 break;
914 }
915 /* We only get this far if the message hasn't ended yet. */
916 switch (adbBusState) { /* set to next state */
917 case ADB_BUS_EVEN:
918 ADB_SET_STATE_ODD(); /* set state to odd */
919 adbBusState = ADB_BUS_ODD;
920 break;
921
922 case ADB_BUS_ODD:
923 ADB_SET_STATE_EVEN(); /* set state to even */
924 adbBusState = ADB_BUS_EVEN;
925 break;
926 default:
927 printf_intr("strange state!!!\n"); /* huh? */
928 break;
929 }
930 break;
931
932 case ADB_ACTION_OUT:
933 i = ADB_SR(); /* clear interrupt */
934 adbSentChars++;
935 /*
936 * If the outgoing data was a TALK, we must
937 * switch to input mode to get the result.
938 */
939 if ((adbOutputBuffer[1] & 0x0c) == 0x0c) {
940 adbInputBuffer[0] = 1;
941 adbInputBuffer[1] = i;
942 adbActionState = ADB_ACTION_IN;
943 ADB_SET_SR_INPUT();
944 adbBusState = ADB_BUS_EVEN;
945 ADB_SET_STATE_EVEN();
946 #ifdef ADB_DEBUG
947 if (adb_debug & 0x80)
948 printf_intr("talk out 0x%02x ", i);
949 #endif
950 /* we want something back */
951 adbWaiting = 1;
952 break;
953 }
954 /*
955 * If it's not a TALK, check whether all data has been sent.
956 * If so, call the completion routine and clean up. If not,
957 * advance to the next state.
958 */
959 #ifdef ADB_DEBUG
960 if (adb_debug & 0x80)
961 printf_intr("non-talk out 0x%0x ", i);
962 #endif
963 ADB_SET_SR_OUTPUT();
964 if (adbOutputBuffer[0] == adbSentChars) { /* check for done */
965 #ifdef ADB_DEBUG
966 if (adb_debug & 0x80)
967 printf_intr("done \n");
968 #endif
969 /* set up stuff for adb_pass_up */
970 memcpy(packet.data, adbOutputBuffer, adbOutputBuffer[0] + 1);
971 packet.saveBuf = adbBuffer;
972 packet.compRout = adbCompRout;
973 packet.compData = adbCompData;
974 packet.cmd = adbWaitingCmd;
975 packet.unsol = 0;
976 packet.ack_only = 1;
977 adb_pass_up(&packet);
978
979 /* reset "waiting" vars, just in case */
980 adbBuffer = (long)0;
981 adbCompRout = (long)0;
982 adbCompData = (long)0;
983 if (adbOutQueueHasData == 1) {
984 /* copy over data */
985 memcpy(adbOutputBuffer, adbOutQueue.outBuf,
986 adbOutQueue.outBuf[0] + 2);
987 adbBuffer = adbOutQueue.saveBuf; /* user data area */
988 adbCompRout = adbOutQueue.compRout; /* completion routine */
989 adbCompData = adbOutQueue.data; /* comp. rout. data */
990 adbOutQueueHasData = 0; /* currently processing
991 * "queue" entry */
992 adbSentChars = 0; /* nothing sent yet */
993 adbActionState = ADB_ACTION_OUT; /* set next state */
994 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
995 ADB_SR() = adbOutputBuffer[1]; /* load byte for output */
996 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */
997 ADB_SET_STATE_CMD(); /* tell ADB that we want to
998 * send */
999 break;
1000 } else {
1001 /* send talk to last device instead */
1002 adbOutputBuffer[0] = 1;
1003 adbOutputBuffer[1] =
1004 ADBTALK(ADB_CMDADDR(adbOutputBuffer[1]), 0);
1005
1006 adbSentChars = 0; /* nothing sent yet */
1007 adbActionState = ADB_ACTION_IDLE; /* set next state */
1008 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
1009 ADB_SR() = adbOutputBuffer[1]; /* load byte for output */
1010 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */
1011 ADB_SET_STATE_CMD(); /* tell ADB that we want to */
1012 break;
1013 }
1014 }
1015 ADB_SR() = adbOutputBuffer[adbSentChars + 1];
1016 switch (adbBusState) { /* advance to next state */
1017 case ADB_BUS_EVEN:
1018 ADB_SET_STATE_ODD(); /* set state to odd */
1019 adbBusState = ADB_BUS_ODD;
1020 break;
1021
1022 case ADB_BUS_CMD:
1023 case ADB_BUS_ODD:
1024 ADB_SET_STATE_EVEN(); /* set state to even */
1025 adbBusState = ADB_BUS_EVEN;
1026 break;
1027
1028 default:
1029 #ifdef ADB_DEBUG
1030 if (adb_debug) {
1031 printf_intr("strange state!!! (0x%x)\n",
1032 adbBusState);
1033 }
1034 #endif
1035 break;
1036 }
1037 break;
1038
1039 default:
1040 #ifdef ADB_DEBUG
1041 if (adb_debug)
1042 printf_intr("adb: unknown ADB state (during intr)\n");
1043 #endif
1044 break;
1045 }
1046
1047 ADB_VIA_INTR_ENABLE(); /* enable ADB interrupt on IIs. */
1048
1049 splx(s); /* restore */
1050
1051 return;
1052
1053 }
1054
1055
1056 /*
1057 * send_adb version for II series machines
1058 */
1059 int
1060 send_adb_II(u_char * in, u_char * buffer, void *compRout, void *data, int command)
1061 {
1062 int s, len;
1063
1064 if (adbActionState == ADB_ACTION_NOTREADY) /* return if ADB not
1065 * available */
1066 return 1;
1067
1068 /* Don't interrupt while we are messing with the ADB */
1069 s = splhigh();
1070
1071 if (0 != adbOutQueueHasData) { /* right now, "has data" means "full" */
1072 splx(s); /* sorry, try again later */
1073 return 1;
1074 }
1075 if ((long)in == (long)0) { /* need to convert? */
1076 /*
1077 * Don't need to use adb_cmd_extra here because this section
1078 * will be called ONLY when it is an ADB command (no RTC or
1079 * PRAM), especially on II series!
1080 */
1081 if ((command & 0x0c) == 0x08) /* copy addl data ONLY if
1082 * doing a listen! */
1083 len = buffer[0]; /* length of additional data */
1084 else
1085 len = 0;/* no additional data */
1086
1087 adbOutQueue.outBuf[0] = 1 + len; /* command + addl. data */
1088 adbOutQueue.outBuf[1] = (u_char)command; /* load command */
1089
1090 /* copy additional output data, if any */
1091 memcpy(adbOutQueue.outBuf + 2, buffer + 1, len);
1092 } else
1093 /* if data ready, just copy over */
1094 memcpy(adbOutQueue.outBuf, in, in[0] + 2);
1095
1096 adbOutQueue.saveBuf = buffer; /* save buffer to know where to save
1097 * result */
1098 adbOutQueue.compRout = compRout; /* save completion routine
1099 * pointer */
1100 adbOutQueue.data = data;/* save completion routine data pointer */
1101
1102 if ((adbActionState == ADB_ACTION_IDLE) && /* is ADB available? */
1103 (ADB_INTR_IS_OFF)) { /* and no incoming interrupts? */
1104 /* then start command now */
1105 memcpy(adbOutputBuffer, adbOutQueue.outBuf,
1106 adbOutQueue.outBuf[0] + 2); /* copy over data */
1107
1108 adbBuffer = adbOutQueue.saveBuf; /* pointer to user data
1109 * area */
1110 adbCompRout = adbOutQueue.compRout; /* pointer to the
1111 * completion routine */
1112 adbCompData = adbOutQueue.data; /* pointer to the completion
1113 * routine data */
1114
1115 adbSentChars = 0; /* nothing sent yet */
1116 adbActionState = ADB_ACTION_OUT; /* set next state */
1117 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */
1118
1119 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
1120
1121 ADB_SR() = adbOutputBuffer[adbSentChars + 1]; /* load byte for output */
1122 ADB_SET_STATE_CMD(); /* tell ADB that we want to send */
1123 adbOutQueueHasData = 0; /* currently processing "queue" entry */
1124 } else
1125 adbOutQueueHasData = 1; /* something in the write "queue" */
1126
1127 splx(s);
1128
1129 if (0x0100 <= (s & 0x0700)) /* were VIA1 interrupts blocked? */
1130 /* poll until message done */
1131 while ((adbActionState != ADB_ACTION_IDLE) || (ADB_INTR_IS_ON)
1132 || (adbWaiting == 1))
1133 if (ADB_SR_INTR_IS_ON) { /* wait for "interrupt" */
1134 adb_intr_II(NULL); /* go process it */
1135 if (adb_polling)
1136 adb_soft_intr();
1137 }
1138
1139 return 0;
1140 }
1141
1142
1143 /*
1144 * This routine is called from the II series interrupt routine
1145 * to determine what the "next" device is that should be polled.
1146 */
1147 int
1148 adb_guess_next_device(void)
1149 {
1150 int last, i, dummy;
1151
1152 if (adbStarting) {
1153 /*
1154 * Start polling EVERY device, since we can't be sure there is
1155 * anything in the device table yet
1156 */
1157 if (adbLastDevice < 1 || adbLastDevice > 15)
1158 adbLastDevice = 1;
1159 if (++adbLastDevice > 15) /* point to next one */
1160 adbLastDevice = 1;
1161 } else {
1162 /* find the next device using the device table */
1163 if (adbLastDevice < 1 || adbLastDevice > 15) /* let's be parinoid */
1164 adbLastDevice = 2;
1165 last = 1; /* default index location */
1166
1167 for (i = 1; i < 16; i++) /* find index entry */
1168 if (ADBDevTable[i].currentAddr == adbLastDevice) { /* look for device */
1169 last = i; /* found it */
1170 break;
1171 }
1172 dummy = last; /* index to start at */
1173 for (;;) { /* find next device in index */
1174 if (++dummy > 15) /* wrap around if needed */
1175 dummy = 1;
1176 if (dummy == last) { /* didn't find any other
1177 * device! This can happen if
1178 * there are no devices on the
1179 * bus */
1180 dummy = 1;
1181 break;
1182 }
1183 /* found the next device */
1184 if (ADBDevTable[dummy].devType != 0)
1185 break;
1186 }
1187 adbLastDevice = ADBDevTable[dummy].currentAddr;
1188 }
1189 return adbLastDevice;
1190 }
1191
1192
1193 /*
1194 * Called when when an adb interrupt happens.
1195 * This routine simply transfers control over to the appropriate
1196 * code for the machine we are running on.
1197 */
1198 void
1199 adb_intr(void *arg)
1200 {
1201 switch (adbHardware) {
1202 case ADB_HW_II:
1203 adb_intr_II(arg);
1204 break;
1205
1206 case ADB_HW_IISI:
1207 adb_intr_IIsi(arg);
1208 break;
1209
1210 case ADB_HW_PB: /* Should not come through here. */
1211 break;
1212
1213 case ADB_HW_CUDA:
1214 adb_intr_cuda(arg);
1215 break;
1216
1217 case ADB_HW_IOP: /* Should not come through here. */
1218 break;
1219
1220 case ADB_HW_UNKNOWN:
1221 break;
1222 }
1223 }
1224
1225
1226 /*
1227 * called when when an adb interrupt happens
1228 *
1229 * IIsi version of adb_intr
1230 *
1231 */
1232 void
1233 adb_intr_IIsi(void *arg)
1234 {
1235 struct adbCommand packet;
1236 int i, ending;
1237 unsigned int s;
1238
1239 s = splhigh(); /* can't be too careful - might be called */
1240 /* from a routine, NOT an interrupt */
1241
1242 ADB_VIA_CLR_INTR(); /* clear interrupt */
1243
1244 ADB_VIA_INTR_DISABLE(); /* disable ADB interrupt on IIs. */
1245
1246 switch_start:
1247 switch (adbActionState) {
1248 case ADB_ACTION_IDLE:
1249 delay(ADB_DELAY); /* short delay is required before the
1250 * first byte */
1251
1252 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
1253 ADB_SET_STATE_ACTIVE(); /* signal start of data frame */
1254 adbInputBuffer[1] = ADB_SR(); /* get byte */
1255 adbInputBuffer[0] = 1;
1256 adbActionState = ADB_ACTION_IN; /* set next state */
1257
1258 ADB_SET_STATE_ACKON(); /* start ACK to ADB chip */
1259 delay(ADB_DELAY); /* delay */
1260 ADB_SET_STATE_ACKOFF(); /* end ACK to ADB chip */
1261 (void)intr_dispatch(0x70); /* grab any serial interrupts */
1262 break;
1263
1264 case ADB_ACTION_IN:
1265 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
1266 adbInputBuffer[++adbInputBuffer[0]] = ADB_SR(); /* get byte */
1267 if (ADB_INTR_IS_OFF) /* check for end of frame */
1268 ending = 1;
1269 else
1270 ending = 0;
1271
1272 ADB_SET_STATE_ACKON(); /* start ACK to ADB chip */
1273 delay(ADB_DELAY); /* delay */
1274 ADB_SET_STATE_ACKOFF(); /* end ACK to ADB chip */
1275 (void)intr_dispatch(0x70); /* grab any serial interrupts */
1276
1277 if (1 == ending) { /* end of message? */
1278 ADB_SET_STATE_INACTIVE(); /* signal end of frame */
1279 /*
1280 * This section _should_ handle all ADB and RTC/PRAM
1281 * type commands, but there may be more... Note:
1282 * commands are always at [4], even for rtc/pram
1283 * commands
1284 */
1285 /* set up data for adb_pass_up */
1286 memcpy(packet.data, adbInputBuffer, adbInputBuffer[0] + 1);
1287
1288 if ((adbWaiting == 1) && /* are we waiting AND */
1289 (adbInputBuffer[4] == adbWaitingCmd) && /* the cmd we sent AND */
1290 ((adbInputBuffer[2] == 0x00) || /* it's from the ADB
1291 * device OR */
1292 (adbInputBuffer[2] == 0x01))) { /* it's from the
1293 * PRAM/RTC device */
1294
1295 packet.saveBuf = adbBuffer;
1296 packet.compRout = adbCompRout;
1297 packet.compData = adbCompData;
1298 packet.unsol = 0;
1299 packet.ack_only = 0;
1300 adb_pass_up(&packet);
1301
1302 adbWaitingCmd = 0; /* reset "waiting" vars */
1303 adbWaiting = 0;
1304 adbBuffer = (long)0;
1305 adbCompRout = (long)0;
1306 adbCompData = (long)0;
1307 } else {
1308 packet.unsol = 1;
1309 packet.ack_only = 0;
1310 adb_pass_up(&packet);
1311 }
1312
1313 adbActionState = ADB_ACTION_IDLE;
1314 adbInputBuffer[0] = 0; /* reset length */
1315
1316 if (adbWriteDelay == 1) { /* were we waiting to
1317 * write? */
1318 adbSentChars = 0; /* nothing sent yet */
1319 adbActionState = ADB_ACTION_OUT; /* set next state */
1320
1321 delay(ADB_DELAY); /* delay */
1322 (void)intr_dispatch(0x70); /* grab any serial interrupts */
1323
1324 if (ADB_INTR_IS_ON) { /* ADB intr low during
1325 * write */
1326 ADB_SET_STATE_IDLE_IISI(); /* reset */
1327 ADB_SET_SR_INPUT(); /* make sure SR is set
1328 * to IN */
1329 adbSentChars = 0; /* must start all over */
1330 adbActionState = ADB_ACTION_IDLE; /* new state */
1331 adbInputBuffer[0] = 0;
1332 /* may be able to take this out later */
1333 delay(ADB_DELAY); /* delay */
1334 break;
1335 }
1336 ADB_SET_STATE_ACTIVE(); /* tell ADB that we want
1337 * to send */
1338 ADB_SET_STATE_ACKOFF(); /* make sure */
1339 ADB_SET_SR_OUTPUT(); /* set shift register
1340 * for OUT */
1341 ADB_SR() = adbOutputBuffer[adbSentChars + 1];
1342 ADB_SET_STATE_ACKON(); /* tell ADB byte ready
1343 * to shift */
1344 }
1345 }
1346 break;
1347
1348 case ADB_ACTION_OUT:
1349 i = ADB_SR(); /* reset SR-intr in IFR */
1350 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
1351
1352 ADB_SET_STATE_ACKOFF(); /* finish ACK */
1353 adbSentChars++;
1354 if (ADB_INTR_IS_ON) { /* ADB intr low during write */
1355 ADB_SET_STATE_IDLE_IISI(); /* reset */
1356 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
1357 adbSentChars = 0; /* must start all over */
1358 adbActionState = ADB_ACTION_IDLE; /* new state */
1359 adbInputBuffer[0] = 0;
1360 adbWriteDelay = 1; /* must retry when done with
1361 * read */
1362 delay(ADB_DELAY); /* delay */
1363 (void)intr_dispatch(0x70); /* grab any serial interrupts */
1364 goto switch_start; /* process next state right
1365 * now */
1366 break;
1367 }
1368 delay(ADB_DELAY); /* required delay */
1369 (void)intr_dispatch(0x70); /* grab any serial interrupts */
1370
1371 if (adbOutputBuffer[0] == adbSentChars) { /* check for done */
1372 if (0 == adb_cmd_result(adbOutputBuffer)) { /* do we expect data
1373 * back? */
1374 adbWaiting = 1; /* signal waiting for return */
1375 adbWaitingCmd = adbOutputBuffer[2]; /* save waiting command */
1376 } else {/* no talk, so done */
1377 /* set up stuff for adb_pass_up */
1378 memcpy(packet.data, adbInputBuffer,
1379 adbInputBuffer[0] + 1);
1380 packet.saveBuf = adbBuffer;
1381 packet.compRout = adbCompRout;
1382 packet.compData = adbCompData;
1383 packet.cmd = adbWaitingCmd;
1384 packet.unsol = 0;
1385 packet.ack_only = 1;
1386 adb_pass_up(&packet);
1387
1388 /* reset "waiting" vars, just in case */
1389 adbWaitingCmd = 0;
1390 adbBuffer = (long)0;
1391 adbCompRout = (long)0;
1392 adbCompData = (long)0;
1393 }
1394
1395 adbWriteDelay = 0; /* done writing */
1396 adbActionState = ADB_ACTION_IDLE; /* signal bus is idle */
1397 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
1398 ADB_SET_STATE_INACTIVE(); /* end of frame */
1399 } else {
1400 ADB_SR() = adbOutputBuffer[adbSentChars + 1]; /* send next byte */
1401 ADB_SET_STATE_ACKON(); /* signal byte ready to shift */
1402 }
1403 break;
1404
1405 case ADB_ACTION_NOTREADY:
1406 #ifdef ADB_DEBUG
1407 if (adb_debug)
1408 printf_intr("adb: not yet initialized\n");
1409 #endif
1410 break;
1411
1412 default:
1413 #ifdef ADB_DEBUG
1414 if (adb_debug)
1415 printf_intr("intr: unknown ADB state\n");
1416 #endif
1417 break;
1418 }
1419
1420 ADB_VIA_INTR_ENABLE(); /* enable ADB interrupt on IIs. */
1421
1422 splx(s); /* restore */
1423
1424 return;
1425 } /* end adb_intr_IIsi */
1426
1427
1428 /*****************************************************************************
1429 * if the device is currently busy, and there is no data waiting to go out, then
1430 * the data is "queued" in the outgoing buffer. If we are already waiting, then
1431 * we return.
1432 * in: if (in == 0) then the command string is built from command and buffer
1433 * if (in != 0) then in is used as the command string
1434 * buffer: additional data to be sent (used only if in == 0)
1435 * this is also where return data is stored
1436 * compRout: the completion routine that is called when then return value
1437 * is received (if a return value is expected)
1438 * data: a data pointer that can be used by the completion routine
1439 * command: an ADB command to be sent (used only if in == 0)
1440 *
1441 */
1442 int
1443 send_adb_IIsi(u_char * in, u_char * buffer, void *compRout, void *data, int
1444 command)
1445 {
1446 int s, len;
1447
1448 if (adbActionState == ADB_ACTION_NOTREADY)
1449 return 1;
1450
1451 /* Don't interrupt while we are messing with the ADB */
1452 s = splhigh();
1453
1454 if ((adbActionState == ADB_ACTION_IDLE) && /* ADB available? */
1455 (ADB_INTR_IS_OFF)) {/* and no incoming interrupt? */
1456
1457 } else
1458 if (adbWriteDelay == 0) /* it's busy, but is anything waiting? */
1459 adbWriteDelay = 1; /* if no, then we'll "queue"
1460 * it up */
1461 else {
1462 splx(s);
1463 return 1; /* really busy! */
1464 }
1465
1466 if ((long)in == (long)0) { /* need to convert? */
1467 /*
1468 * Don't need to use adb_cmd_extra here because this section
1469 * will be called ONLY when it is an ADB command (no RTC or
1470 * PRAM)
1471 */
1472 if ((command & 0x0c) == 0x08) /* copy addl data ONLY if
1473 * doing a listen! */
1474 len = buffer[0]; /* length of additional data */
1475 else
1476 len = 0;/* no additional data */
1477
1478 adbOutputBuffer[0] = 2 + len; /* dev. type + command + addl.
1479 * data */
1480 adbOutputBuffer[1] = 0x00; /* mark as an ADB command */
1481 adbOutputBuffer[2] = (u_char)command; /* load command */
1482
1483 /* copy additional output data, if any */
1484 memcpy(adbOutputBuffer + 3, buffer + 1, len);
1485 } else
1486 /* if data ready, just copy over */
1487 memcpy(adbOutputBuffer, in, in[0] + 2);
1488
1489 adbSentChars = 0; /* nothing sent yet */
1490 adbBuffer = buffer; /* save buffer to know where to save result */
1491 adbCompRout = compRout; /* save completion routine pointer */
1492 adbCompData = data; /* save completion routine data pointer */
1493 adbWaitingCmd = adbOutputBuffer[2]; /* save wait command */
1494
1495 if (adbWriteDelay != 1) { /* start command now? */
1496 adbActionState = ADB_ACTION_OUT; /* set next state */
1497
1498 ADB_SET_STATE_ACTIVE(); /* tell ADB that we want to send */
1499 ADB_SET_STATE_ACKOFF(); /* make sure */
1500
1501 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
1502
1503 ADB_SR() = adbOutputBuffer[adbSentChars + 1]; /* load byte for output */
1504
1505 ADB_SET_STATE_ACKON(); /* tell ADB byte ready to shift */
1506 }
1507 adbWriteDelay = 1; /* something in the write "queue" */
1508
1509 splx(s);
1510
1511 if (0x0100 <= (s & 0x0700)) /* were VIA1 interrupts blocked? */
1512 /* poll until byte done */
1513 while ((adbActionState != ADB_ACTION_IDLE) || (ADB_INTR_IS_ON)
1514 || (adbWaiting == 1))
1515 if (ADB_SR_INTR_IS_ON) { /* wait for "interrupt" */
1516 adb_intr_IIsi(NULL); /* go process it */
1517 if (adb_polling)
1518 adb_soft_intr();
1519 }
1520
1521 return 0;
1522 } /* send_adb_IIsi */
1523
1524 void
1525 adb_iop_recv(IOP *iop, struct iop_msg *msg)
1526 {
1527 struct adbCommand pkt;
1528 unsigned flags;
1529
1530 if (adbActionState != ADB_ACTION_RUNNING)
1531 return;
1532
1533 switch (msg->status) {
1534 case IOP_MSGSTAT_SENT:
1535 if (0 == adb_cmd_result(msg->msg + 1)) {
1536 adbWaiting = 1;
1537 adbWaitingCmd = msg->msg[2];
1538 }
1539 break;
1540 case IOP_MSGSTAT_RECEIVED:
1541 case IOP_MSGSTAT_UNEXPECTED:
1542 flags = msg->msg[0];
1543 if (flags != 0) {
1544 printf("ADB FLAGS 0x%x", flags);
1545 break;
1546 }
1547 if (adbWaiting &&
1548 (msg->msg[2] == adbWaitingCmd)) {
1549 pkt.saveBuf = msg->msg + 1;
1550 pkt.compRout = adbCompRout;
1551 pkt.compData = adbCompData;
1552 pkt.unsol = 0;
1553 pkt.ack_only = 0;
1554 adb_pass_up(&pkt);
1555
1556 adbWaitingCmd = 0;
1557 adbWaiting = 0;
1558 } else {
1559 pkt.unsol = 1;
1560 pkt.ack_only = 0;
1561 adb_pass_up(&pkt);
1562 }
1563 break;
1564 default:
1565 return;
1566 }
1567 }
1568
1569 int
1570 send_adb_iop(int cmd, u_char * buffer, void *compRout, void *data)
1571 {
1572 u_char buff[32];
1573 int cnt;
1574
1575 if (adbActionState != ADB_ACTION_RUNNING)
1576 return -1;
1577
1578 buff[0] = IOP_ADB_FL_EXPLICIT;
1579 buff[1] = buffer[0];
1580 buff[2] = cmd;
1581 cnt = (int) buff[1];
1582 memcpy(buff + 3, buffer + 1, cnt);
1583 return iop_send_msg(ISM_IOP, IOP_CHAN_ADB, buff, cnt+3,
1584 adb_iop_recv, NULL);
1585 }
1586
1587 /*
1588 * adb_pass_up is called by the interrupt-time routines.
1589 * It takes the raw packet data that was received from the
1590 * device and puts it into the queue that the upper half
1591 * processes. It then signals for a soft ADB interrupt which
1592 * will eventually call the upper half routine (adb_soft_intr).
1593 *
1594 * If in->unsol is 0, then this is either the notification
1595 * that the packet was sent (on a LISTEN, for example), or the
1596 * response from the device (on a TALK). The completion routine
1597 * is called only if the user specified one.
1598 *
1599 * If in->unsol is 1, then this packet was unsolicited and
1600 * so we look up the device in the ADB device table to determine
1601 * what it's default service routine is.
1602 *
1603 * If in->ack_only is 1, then we really only need to call
1604 * the completion routine, so don't do any other stuff.
1605 *
1606 * Note that in->data contains the packet header AND data,
1607 * while adbInbound[]->data contains ONLY data.
1608 *
1609 * Note: Called only at interrupt time. Assumes this.
1610 */
1611 void
1612 adb_pass_up(struct adbCommand *in)
1613 {
1614 int start = 0, len = 0, cmd = 0;
1615 ADBDataBlock block;
1616
1617 /* temp for testing */
1618 /*u_char *buffer = 0;*/
1619 /*u_char *compdata = 0;*/
1620 /*u_char *comprout = 0;*/
1621
1622 if (adbInCount >= ADB_QUEUE) {
1623 #ifdef ADB_DEBUG
1624 if (adb_debug)
1625 printf_intr("adb: ring buffer overflow\n");
1626 #endif
1627 return;
1628 }
1629
1630 if (in->ack_only) {
1631 len = in->data[0];
1632 cmd = in->cmd;
1633 start = 0;
1634 } else {
1635 switch (adbHardware) {
1636 case ADB_HW_IOP:
1637 case ADB_HW_II:
1638 cmd = in->data[1];
1639 if (in->data[0] < 2)
1640 len = 0;
1641 else
1642 len = in->data[0]-1;
1643 start = 1;
1644 break;
1645
1646 case ADB_HW_IISI:
1647 case ADB_HW_CUDA:
1648 /* If it's unsolicited, accept only ADB data for now */
1649 if (in->unsol)
1650 if (0 != in->data[2])
1651 return;
1652 cmd = in->data[4];
1653 if (in->data[0] < 5)
1654 len = 0;
1655 else
1656 len = in->data[0]-4;
1657 start = 4;
1658 break;
1659
1660 case ADB_HW_PB:
1661 cmd = in->data[1];
1662 if (in->data[0] < 2)
1663 len = 0;
1664 else
1665 len = in->data[0]-1;
1666 start = 1;
1667 break;
1668
1669 case ADB_HW_UNKNOWN:
1670 return;
1671 }
1672
1673 /* Make sure there is a valid device entry for this device */
1674 if (in->unsol) {
1675 /* ignore unsolicited data during adbreinit */
1676 if (adbStarting)
1677 return;
1678 /* get device's comp. routine and data area */
1679 if (-1 == get_adb_info(&block, ADB_CMDADDR(cmd)))
1680 return;
1681 }
1682 }
1683
1684 /*
1685 * If this is an unsolicited packet, we need to fill in
1686 * some info so adb_soft_intr can process this packet
1687 * properly. If it's not unsolicited, then use what
1688 * the caller sent us.
1689 */
1690 if (in->unsol) {
1691 adbInbound[adbInTail].compRout = (void *)block.dbServiceRtPtr;
1692 adbInbound[adbInTail].compData = (void *)block.dbDataAreaAddr;
1693 adbInbound[adbInTail].saveBuf = (void *)adbInbound[adbInTail].data;
1694 } else {
1695 adbInbound[adbInTail].compRout = (void *)in->compRout;
1696 adbInbound[adbInTail].compData = (void *)in->compData;
1697 adbInbound[adbInTail].saveBuf = (void *)in->saveBuf;
1698 }
1699
1700 #ifdef ADB_DEBUG
1701 if (adb_debug && in->data[1] == 2)
1702 printf_intr("adb: caught error\n");
1703 #endif
1704
1705 /* copy the packet data over */
1706 /*
1707 * TO DO: If the *_intr routines fed their incoming data
1708 * directly into an adbCommand struct, which is passed to
1709 * this routine, then we could eliminate this copy.
1710 */
1711 memcpy(adbInbound[adbInTail].data + 1, in->data + start + 1, len);
1712 adbInbound[adbInTail].data[0] = len;
1713 adbInbound[adbInTail].cmd = cmd;
1714
1715 adbInCount++;
1716 if (++adbInTail >= ADB_QUEUE)
1717 adbInTail = 0;
1718
1719 /*
1720 * If the debugger is running, call upper half manually.
1721 * Otherwise, trigger a soft interrupt to handle the rest later.
1722 */
1723 if (adb_polling)
1724 adb_soft_intr();
1725 else
1726 setsoftadb();
1727
1728 return;
1729 }
1730
1731
1732 /*
1733 * Called to process the packets after they have been
1734 * placed in the incoming queue.
1735 *
1736 */
1737 void
1738 adb_soft_intr(void)
1739 {
1740 int s;
1741 int cmd = 0;
1742 u_char *buffer = 0;
1743 u_char *comprout = 0;
1744 u_char *compdata = 0;
1745
1746 #if 0
1747 s = splhigh();
1748 printf_intr("sr: %x\n", (s & 0x0700));
1749 splx(s);
1750 #endif
1751
1752 /*delay(2*ADB_DELAY);*/
1753
1754 while (adbInCount) {
1755 #ifdef ADB_DEBUG
1756 if (adb_debug & 0x80)
1757 printf_intr("%x %x %x ",
1758 adbInCount, adbInHead, adbInTail);
1759 #endif
1760 /* get the data we need from the queue */
1761 buffer = adbInbound[adbInHead].saveBuf;
1762 comprout = adbInbound[adbInHead].compRout;
1763 compdata = adbInbound[adbInHead].compData;
1764 cmd = adbInbound[adbInHead].cmd;
1765
1766 /* copy over data to data area if it's valid */
1767 /*
1768 * Note that for unsol packets we don't want to copy the
1769 * data anywhere, so buffer was already set to 0.
1770 * For ack_only buffer was set to 0, so don't copy.
1771 */
1772 if (buffer)
1773 memcpy(buffer, adbInbound[adbInHead].data,
1774 adbInbound[adbInHead].data[0] + 1);
1775
1776 #ifdef ADB_DEBUG
1777 if (adb_debug & 0x80) {
1778 printf_intr("%p %p %p %x ",
1779 buffer, comprout, compdata, (short)cmd);
1780 printf_intr("buf: ");
1781 print_single(adbInbound[adbInHead].data);
1782 }
1783 #endif
1784
1785 /* call default completion routine if it's valid */
1786 if (comprout) {
1787 #ifdef __NetBSD__
1788 __asm __volatile (
1789 " movml #0xffff,%%sp@- \n" /* save all regs */
1790 " movl %0,%%a2 \n" /* compdata */
1791 " movl %1,%%a1 \n" /* comprout */
1792 " movl %2,%%a0 \n" /* buffer */
1793 " movl %3,%%d0 \n" /* cmd */
1794 " jbsr %%a1@ \n" /* go call routine */
1795 " movml %%sp@+,#0xffff" /* restore all regs */
1796 :
1797 : "g"(compdata), "g"(comprout),
1798 "g"(buffer), "g"(cmd)
1799 : "d0", "a0", "a1", "a2");
1800 #else /* for macos based testing */
1801 asm
1802 {
1803 movem.l a0/a1/a2/d0, -(a7)
1804 move.l compdata, a2
1805 move.l comprout, a1
1806 move.l buffer, a0
1807 move.w cmd, d0
1808 jsr(a1)
1809 movem.l(a7)+, d0/a2/a1/a0
1810 }
1811 #endif
1812 }
1813
1814 s = splhigh();
1815 adbInCount--;
1816 if (++adbInHead >= ADB_QUEUE)
1817 adbInHead = 0;
1818 splx(s);
1819
1820 }
1821 return;
1822 }
1823
1824
1825 /*
1826 * This is my version of the ADBOp routine. It mainly just calls the
1827 * hardware-specific routine.
1828 *
1829 * data : pointer to data area to be used by compRout
1830 * compRout : completion routine
1831 * buffer : for LISTEN: points to data to send - MAX 8 data bytes,
1832 * byte 0 = # of bytes
1833 * : for TALK: points to place to save return data
1834 * command : the adb command to send
1835 * result : 0 = success
1836 * : -1 = could not complete
1837 */
1838 int
1839 adb_op(Ptr buffer, Ptr compRout, Ptr data, short command)
1840 {
1841 int result;
1842
1843 switch (adbHardware) {
1844 case ADB_HW_II:
1845 result = send_adb_II((u_char *)0, (u_char *)buffer,
1846 (void *)compRout, (void *)data, (int)command);
1847 if (result == 0)
1848 return 0;
1849 else
1850 return -1;
1851 break;
1852
1853 case ADB_HW_IOP:
1854 #ifdef __notyet__
1855 result = send_adb_iop((int)command, (u_char *)buffer,
1856 (void *)compRout, (void *)data);
1857 if (result == 0)
1858 return 0;
1859 else
1860 #endif
1861 return -1;
1862 break;
1863
1864 case ADB_HW_IISI:
1865 result = send_adb_IIsi((u_char *)0, (u_char *)buffer,
1866 (void *)compRout, (void *)data, (int)command);
1867 /*
1868 * I wish I knew why this delay is needed. It usually needs to
1869 * be here when several commands are sent in close succession,
1870 * especially early in device probes when doing collision
1871 * detection. It must be some race condition. Sigh. - jpw
1872 */
1873 delay(100);
1874 if (result == 0)
1875 return 0;
1876 else
1877 return -1;
1878 break;
1879
1880 case ADB_HW_PB:
1881 result = pm_adb_op((u_char *)buffer, (void *)compRout,
1882 (void *)data, (int)command);
1883
1884 if (result == 0)
1885 return 0;
1886 else
1887 return -1;
1888 break;
1889
1890 case ADB_HW_CUDA:
1891 result = send_adb_cuda((u_char *)0, (u_char *)buffer,
1892 (void *)compRout, (void *)data, (int)command);
1893 if (result == 0)
1894 return 0;
1895 else
1896 return -1;
1897 break;
1898
1899 case ADB_HW_UNKNOWN:
1900 default:
1901 return -1;
1902 }
1903 }
1904
1905
1906 /*
1907 * adb_hw_setup
1908 * This routine sets up the possible machine specific hardware
1909 * config (mainly VIA settings) for the various models.
1910 */
1911 void
1912 adb_hw_setup(void)
1913 {
1914 volatile int i;
1915 u_char send_string[ADB_MAX_MSG_LENGTH];
1916
1917 switch (adbHardware) {
1918 case ADB_HW_II:
1919 via1_register_irq(2, adb_intr_II, NULL);
1920
1921 via_reg(VIA1, vDirB) |= 0x30; /* register B bits 4 and 5:
1922 * outputs */
1923 via_reg(VIA1, vDirB) &= 0xf7; /* register B bit 3: input */
1924 via_reg(VIA1, vACR) &= ~vSR_OUT; /* make sure SR is set
1925 * to IN (II, IIsi) */
1926 adbActionState = ADB_ACTION_IDLE; /* used by all types of
1927 * hardware (II, IIsi) */
1928 adbBusState = ADB_BUS_IDLE; /* this var. used in II-series
1929 * code only */
1930 via_reg(VIA1, vIER) = 0x84; /* make sure VIA interrupts
1931 * are on (II, IIsi) */
1932 ADB_SET_STATE_IDLE_II(); /* set ADB bus state to idle */
1933
1934 ADB_VIA_CLR_INTR(); /* clear interrupt */
1935 break;
1936
1937 case ADB_HW_IOP:
1938 via_reg(VIA1, vIER) = 0x84;
1939 via_reg(VIA1, vIFR) = 0x04;
1940 #ifdef __notyet__
1941 adbActionState = ADB_ACTION_RUNNING;
1942 #endif
1943 break;
1944
1945 case ADB_HW_IISI:
1946 via1_register_irq(2, adb_intr_IIsi, NULL);
1947 via_reg(VIA1, vDirB) |= 0x30; /* register B bits 4 and 5:
1948 * outputs */
1949 via_reg(VIA1, vDirB) &= 0xf7; /* register B bit 3: input */
1950 via_reg(VIA1, vACR) &= ~vSR_OUT; /* make sure SR is set
1951 * to IN (II, IIsi) */
1952 adbActionState = ADB_ACTION_IDLE; /* used by all types of
1953 * hardware (II, IIsi) */
1954 adbBusState = ADB_BUS_IDLE; /* this var. used in II-series
1955 * code only */
1956 via_reg(VIA1, vIER) = 0x84; /* make sure VIA interrupts
1957 * are on (II, IIsi) */
1958 ADB_SET_STATE_IDLE_IISI(); /* set ADB bus state to idle */
1959
1960 /* get those pesky clock ticks we missed while booting */
1961 for (i = 0; i < 30; i++) {
1962 delay(ADB_DELAY);
1963 adb_hw_setup_IIsi(send_string);
1964 #ifdef ADB_DEBUG
1965 if (adb_debug) {
1966 printf_intr("adb: cleanup: ");
1967 print_single(send_string);
1968 }
1969 #endif
1970 delay(ADB_DELAY);
1971 if (ADB_INTR_IS_OFF)
1972 break;
1973 }
1974 break;
1975
1976 case ADB_HW_PB:
1977 /*
1978 * XXX - really PM_VIA_CLR_INTR - should we put it in
1979 * pm_direct.h?
1980 */
1981 pm_hw_setup();
1982 break;
1983
1984 case ADB_HW_CUDA:
1985 via1_register_irq(2, adb_intr_cuda, NULL);
1986 via_reg(VIA1, vDirB) |= 0x30; /* register B bits 4 and 5:
1987 * outputs */
1988 via_reg(VIA1, vDirB) &= 0xf7; /* register B bit 3: input */
1989 via_reg(VIA1, vACR) &= ~vSR_OUT; /* make sure SR is set
1990 * to IN */
1991 via_reg(VIA1, vACR) = (via_reg(VIA1, vACR) | 0x0c) & ~0x10;
1992 adbActionState = ADB_ACTION_IDLE; /* used by all types of
1993 * hardware */
1994 adbBusState = ADB_BUS_IDLE; /* this var. used in II-series
1995 * code only */
1996 via_reg(VIA1, vIER) = 0x84; /* make sure VIA interrupts
1997 * are on */
1998 ADB_SET_STATE_IDLE_CUDA(); /* set ADB bus state to idle */
1999
2000 /* sort of a device reset */
2001 i = ADB_SR(); /* clear interrupt */
2002 ADB_VIA_INTR_DISABLE(); /* no interrupts while clearing */
2003 ADB_SET_STATE_IDLE_CUDA(); /* reset state to idle */
2004 delay(ADB_DELAY);
2005 ADB_SET_STATE_TIP(); /* signal start of frame */
2006 delay(ADB_DELAY);
2007 ADB_TOGGLE_STATE_ACK_CUDA();
2008 delay(ADB_DELAY);
2009 ADB_CLR_STATE_TIP();
2010 delay(ADB_DELAY);
2011 ADB_SET_STATE_IDLE_CUDA(); /* back to idle state */
2012 i = ADB_SR(); /* clear interrupt */
2013 ADB_VIA_INTR_ENABLE(); /* ints ok now */
2014 break;
2015
2016 case ADB_HW_UNKNOWN:
2017 default:
2018 via_reg(VIA1, vIER) = 0x04; /* turn interrupts off - TO
2019 * DO: turn PB ints off? */
2020 return;
2021 break;
2022 }
2023 }
2024
2025
2026 /*
2027 * adb_hw_setup_IIsi
2028 * This is sort of a "read" routine that forces the adb hardware through a read cycle
2029 * if there is something waiting. This helps "clean up" any commands that may have gotten
2030 * stuck or stopped during the boot process.
2031 *
2032 */
2033 void
2034 adb_hw_setup_IIsi(u_char * buffer)
2035 {
2036 int i;
2037 int dummy;
2038 int s;
2039 long my_time;
2040 int endofframe;
2041
2042 delay(ADB_DELAY);
2043
2044 i = 1; /* skip over [0] */
2045 s = splhigh(); /* block ALL interrupts while we are working */
2046 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
2047 ADB_VIA_INTR_DISABLE(); /* disable ADB interrupt on IIs. */
2048 /* this is required, especially on faster machines */
2049 delay(ADB_DELAY);
2050
2051 if (ADB_INTR_IS_ON) {
2052 ADB_SET_STATE_ACTIVE(); /* signal start of data frame */
2053
2054 endofframe = 0;
2055 while (0 == endofframe) {
2056 /*
2057 * Poll for ADB interrupt and watch for timeout.
2058 * If time out, keep going in hopes of not hanging
2059 * the ADB chip - I think
2060 */
2061 my_time = ADB_DELAY * 5;
2062 while ((ADB_SR_INTR_IS_OFF) && (my_time-- > 0))
2063 dummy = via_reg(VIA1, vBufB);
2064
2065 buffer[i++] = ADB_SR(); /* reset interrupt flag by
2066 * reading vSR */
2067 /*
2068 * Perhaps put in a check here that ignores all data
2069 * after the first ADB_MAX_MSG_LENGTH bytes ???
2070 */
2071 if (ADB_INTR_IS_OFF) /* check for end of frame */
2072 endofframe = 1;
2073
2074 ADB_SET_STATE_ACKON(); /* send ACK to ADB chip */
2075 delay(ADB_DELAY); /* delay */
2076 ADB_SET_STATE_ACKOFF(); /* send ACK to ADB chip */
2077 }
2078 ADB_SET_STATE_INACTIVE(); /* signal end of frame and
2079 * delay */
2080
2081 /* probably don't need to delay this long */
2082 delay(ADB_DELAY);
2083 }
2084 buffer[0] = --i; /* [0] is length of message */
2085 ADB_VIA_INTR_ENABLE(); /* enable ADB interrupt on IIs. */
2086 splx(s); /* restore interrupts */
2087
2088 return;
2089 } /* adb_hw_setup_IIsi */
2090
2091
2092
2093 /*
2094 * adb_reinit sets up the adb stuff
2095 *
2096 */
2097 void
2098 adb_reinit(void)
2099 {
2100 u_char send_string[ADB_MAX_MSG_LENGTH];
2101 ADBDataBlock data; /* temp. holder for getting device info */
2102 volatile int i, x;
2103 int s;
2104 int command;
2105 int result;
2106 int saveptr; /* point to next free relocation address */
2107 int device;
2108 int nonewtimes; /* times thru loop w/o any new devices */
2109
2110 adb_setup_hw_type(); /* setup hardware type */
2111
2112 /* Make sure we are not interrupted while building the table. */
2113 /* ints must be on for PB & IOP (at least, for now) */
2114 if (adbHardware != ADB_HW_PB && adbHardware != ADB_HW_IOP)
2115 s = splhigh();
2116 else
2117 s = 0; /* XXX shut the compiler up*/
2118
2119 ADBNumDevices = 0; /* no devices yet */
2120
2121 /* Let intr routines know we are running reinit */
2122 adbStarting = 1;
2123
2124 /*
2125 * Initialize the ADB table. For now, we'll always use the same table
2126 * that is defined at the beginning of this file - no mallocs.
2127 */
2128 for (i = 0; i < 16; i++) {
2129 ADBDevTable[i].devType = 0;
2130 ADBDevTable[i].origAddr = ADBDevTable[i].currentAddr = 0;
2131 }
2132
2133 adb_hw_setup(); /* init the VIA bits and hard reset ADB */
2134
2135 delay(1000);
2136
2137 /* send an ADB reset first */
2138 (void)adb_op_sync((Ptr)0, (Ptr)0, (Ptr)0, (short)0x00);
2139 delay(3000);
2140
2141 /*
2142 * Probe for ADB devices. Probe devices 1-15 quickly to determine
2143 * which device addresses are in use and which are free. For each
2144 * address that is in use, move the device at that address to a higher
2145 * free address. Continue doing this at that address until no device
2146 * responds at that address. Then move the last device that was moved
2147 * back to the original address. Do this for the remaining addresses
2148 * that we determined were in use.
2149 *
2150 * When finished, do this entire process over again with the updated
2151 * list of in use addresses. Do this until no new devices have been
2152 * found in 20 passes though the in use address list. (This probably
2153 * seems long and complicated, but it's the best way to detect multiple
2154 * devices at the same address - sometimes it takes a couple of tries
2155 * before the collision is detected.)
2156 */
2157
2158 /* initial scan through the devices */
2159 for (i = 1; i < 16; i++) {
2160 command = ADBTALK(i, 3);
2161 result = adb_op_sync((Ptr)send_string, (Ptr)0,
2162 (Ptr)0, (short)command);
2163
2164 if (result == 0 && send_string[0] != 0) {
2165 /* found a device */
2166 ++ADBNumDevices;
2167 KASSERT(ADBNumDevices < 16);
2168 ADBDevTable[ADBNumDevices].devType =
2169 (int)(send_string[2]);
2170 ADBDevTable[ADBNumDevices].origAddr = i;
2171 ADBDevTable[ADBNumDevices].currentAddr = i;
2172 ADBDevTable[ADBNumDevices].DataAreaAddr =
2173 (long)0;
2174 ADBDevTable[ADBNumDevices].ServiceRtPtr = (void *)0;
2175 pm_check_adb_devices(i); /* tell pm driver device
2176 * is here */
2177 }
2178 }
2179
2180 /* find highest unused address */
2181 for (saveptr = 15; saveptr > 0; saveptr--)
2182 if (-1 == get_adb_info(&data, saveptr))
2183 break;
2184
2185 #ifdef ADB_DEBUG
2186 if (adb_debug & 0x80) {
2187 printf_intr("first free is: 0x%02x\n", saveptr);
2188 printf_intr("devices: %i\n", ADBNumDevices);
2189 }
2190 #endif
2191
2192 nonewtimes = 0; /* no loops w/o new devices */
2193 while (saveptr > 0 && nonewtimes++ < 11) {
2194 for (i = 1;saveptr > 0 && i <= ADBNumDevices; i++) {
2195 device = ADBDevTable[i].currentAddr;
2196 #ifdef ADB_DEBUG
2197 if (adb_debug & 0x80)
2198 printf_intr("moving device 0x%02x to 0x%02x "
2199 "(index 0x%02x) ", device, saveptr, i);
2200 #endif
2201
2202 /* send TALK R3 to address */
2203 command = ADBTALK(device, 3);
2204 (void)adb_op_sync((Ptr)send_string, (Ptr)0,
2205 (Ptr)0, (short)command);
2206
2207 /* move device to higher address */
2208 command = ADBLISTEN(device, 3);
2209 send_string[0] = 2;
2210 send_string[1] = (u_char)(saveptr | 0x60);
2211 send_string[2] = 0xfe;
2212 (void)adb_op_sync((Ptr)send_string, (Ptr)0,
2213 (Ptr)0, (short)command);
2214 delay(1000);
2215
2216 /* send TALK R3 - anthing at new address? */
2217 command = ADBTALK(saveptr, 3);
2218 send_string[0] = 0;
2219 result = adb_op_sync((Ptr)send_string, (Ptr)0,
2220 (Ptr)0, (short)command);
2221 delay(1000);
2222
2223 if (result != 0 || send_string[0] == 0) {
2224 /*
2225 * maybe there's a communication breakdown;
2226 * just in case, move it back from whence it
2227 * came, and we'll try again later
2228 */
2229 command = ADBLISTEN(saveptr, 3);
2230 send_string[0] = 2;
2231 send_string[1] = (u_char)(device | 0x60);
2232 send_string[2] = 0x00;
2233 (void)adb_op_sync((Ptr)send_string, (Ptr)0,
2234 (Ptr)0, (short)command);
2235 #ifdef ADB_DEBUG
2236 if (adb_debug & 0x80)
2237 printf_intr("failed, continuing\n");
2238 #endif
2239 delay(1000);
2240 continue;
2241 }
2242
2243 /* send TALK R3 - anything at old address? */
2244 command = ADBTALK(device, 3);
2245 send_string[0] = 0;
2246 result = adb_op_sync((Ptr)send_string, (Ptr)0,
2247 (Ptr)0, (short)command);
2248 if (result == 0 && send_string[0] != 0) {
2249 /* new device found */
2250 /* update data for previously moved device */
2251 ADBDevTable[i].currentAddr = saveptr;
2252 #ifdef ADB_DEBUG
2253 if (adb_debug & 0x80)
2254 printf_intr("old device at index %i\n",i);
2255 #endif
2256 /* add new device in table */
2257 #ifdef ADB_DEBUG
2258 if (adb_debug & 0x80)
2259 printf_intr("new device found\n");
2260 #endif
2261 if (saveptr > ADBNumDevices) {
2262 ++ADBNumDevices;
2263 KASSERT(ADBNumDevices < 16);
2264 }
2265 ADBDevTable[ADBNumDevices].devType =
2266 (int)(send_string[2]);
2267 ADBDevTable[ADBNumDevices].origAddr = device;
2268 ADBDevTable[ADBNumDevices].currentAddr = device;
2269 /* These will be set correctly in adbsys.c */
2270 /* Until then, unsol. data will be ignored. */
2271 ADBDevTable[ADBNumDevices].DataAreaAddr =
2272 (long)0;
2273 ADBDevTable[ADBNumDevices].ServiceRtPtr =
2274 (void *)0;
2275 /* find next unused address */
2276 for (x = saveptr; x > 0; x--) {
2277 if (-1 == get_adb_info(&data, x)) {
2278 saveptr = x;
2279 break;
2280 }
2281 }
2282 if (x == 0)
2283 saveptr = 0;
2284 #ifdef ADB_DEBUG
2285 if (adb_debug & 0x80)
2286 printf_intr("new free is 0x%02x\n",
2287 saveptr);
2288 #endif
2289 nonewtimes = 0;
2290 /* tell pm driver device is here */
2291 pm_check_adb_devices(device);
2292 } else {
2293 #ifdef ADB_DEBUG
2294 if (adb_debug & 0x80)
2295 printf_intr("moving back...\n");
2296 #endif
2297 /* move old device back */
2298 command = ADBLISTEN(saveptr, 3);
2299 send_string[0] = 2;
2300 send_string[1] = (u_char)(device | 0x60);
2301 send_string[2] = 0xfe;
2302 (void)adb_op_sync((Ptr)send_string, (Ptr)0,
2303 (Ptr)0, (short)command);
2304 delay(1000);
2305 }
2306 }
2307 }
2308
2309 #ifdef ADB_DEBUG
2310 if (adb_debug) {
2311 for (i = 1; i <= ADBNumDevices; i++) {
2312 x = get_ind_adb_info(&data, i);
2313 if (x != -1)
2314 printf_intr("index 0x%x, addr 0x%x, type 0x%hx\n",
2315 i, x, data.devType);
2316 }
2317 }
2318 #endif
2319
2320 #ifndef MRG_ADB
2321 /* enable the programmer's switch, if we have one */
2322 adb_prog_switch_enable();
2323 #endif
2324
2325 #ifdef ADB_DEBUG
2326 if (adb_debug) {
2327 if (0 == ADBNumDevices) /* tell user if no devices found */
2328 printf_intr("adb: no devices found\n");
2329 }
2330 #endif
2331
2332 adbStarting = 0; /* not starting anymore */
2333 #ifdef ADB_DEBUG
2334 if (adb_debug)
2335 printf_intr("adb: ADBReInit complete\n");
2336 #endif
2337
2338 if (adbHardware == ADB_HW_CUDA)
2339 callout_reset(&adb_cuda_tickle_ch, ADB_TICKLE_TICKS,
2340 (void *)adb_cuda_tickle, NULL);
2341
2342 /* ints must be on for PB & IOP (at least, for now) */
2343 if (adbHardware != ADB_HW_PB && adbHardware != ADB_HW_IOP)
2344 splx(s);
2345
2346 return;
2347 }
2348
2349
2350 /*
2351 * adb_comp_exec
2352 * This is a general routine that calls the completion routine if there is one.
2353 * NOTE: This routine is now only used by pm_direct.c
2354 * All the code in this file (adb_direct.c) uses
2355 * the adb_pass_up routine now.
2356 */
2357 void
2358 adb_comp_exec(void)
2359 {
2360 if ((long)0 != adbCompRout) /* don't call if empty return location */
2361 #ifdef __NetBSD__
2362 __asm __volatile(
2363 " movml #0xffff,%%sp@- \n" /* save all registers */
2364 " movl %0,%%a2 \n" /* adbCompData */
2365 " movl %1,%%a1 \n" /* adbCompRout */
2366 " movl %2,%%a0 \n" /* adbBuffer */
2367 " movl %3,%%d0 \n" /* adbWaitingCmd */
2368 " jbsr %%a1@ \n" /* go call the routine */
2369 " movml %%sp@+,#0xffff" /* restore all registers */
2370 :
2371 : "g"(adbCompData), "g"(adbCompRout),
2372 "g"(adbBuffer), "g"(adbWaitingCmd)
2373 : "d0", "a0", "a1", "a2");
2374 #else /* for Mac OS-based testing */
2375 asm {
2376 movem.l a0/a1/a2/d0, -(a7)
2377 move.l adbCompData, a2
2378 move.l adbCompRout, a1
2379 move.l adbBuffer, a0
2380 move.w adbWaitingCmd, d0
2381 jsr(a1)
2382 movem.l(a7) +, d0/a2/a1/a0
2383 }
2384 #endif
2385 }
2386
2387
2388 /*
2389 * adb_cmd_result
2390 *
2391 * This routine lets the caller know whether the specified adb command string
2392 * should expect a returned result, such as a TALK command.
2393 *
2394 * returns: 0 if a result should be expected
2395 * 1 if a result should NOT be expected
2396 */
2397 int
2398 adb_cmd_result(u_char *in)
2399 {
2400 switch (adbHardware) {
2401 case ADB_HW_IOP:
2402 case ADB_HW_II:
2403 /* was it an ADB talk command? */
2404 if ((in[1] & 0x0c) == 0x0c)
2405 return 0;
2406 return 1;
2407
2408 case ADB_HW_IISI:
2409 case ADB_HW_CUDA:
2410 /* was it an ADB talk command? */
2411 if ((in[1] == 0x00) && ((in[2] & 0x0c) == 0x0c))
2412 return 0;
2413 /* was it an RTC/PRAM read date/time? */
2414 if ((in[1] == 0x01) && (in[2] == 0x03))
2415 return 0;
2416 return 1;
2417
2418 case ADB_HW_PB:
2419 return 1;
2420
2421 case ADB_HW_UNKNOWN:
2422 default:
2423 return 1;
2424 }
2425 }
2426
2427
2428 /*
2429 * adb_cmd_extra
2430 *
2431 * This routine lets the caller know whether the specified adb command string
2432 * may have extra data appended to the end of it, such as a LISTEN command.
2433 *
2434 * returns: 0 if extra data is allowed
2435 * 1 if extra data is NOT allowed
2436 */
2437 int
2438 adb_cmd_extra(u_char *in)
2439 {
2440 switch (adbHardware) {
2441 case ADB_HW_II:
2442 case ADB_HW_IOP:
2443 if ((in[1] & 0x0c) == 0x08) /* was it a listen command? */
2444 return 0;
2445 return 1;
2446
2447 case ADB_HW_IISI:
2448 case ADB_HW_CUDA:
2449 /*
2450 * TO DO: support needs to be added to recognize RTC and PRAM
2451 * commands
2452 */
2453 if ((in[2] & 0x0c) == 0x08) /* was it a listen command? */
2454 return 0;
2455 /* add others later */
2456 return 1;
2457
2458 case ADB_HW_PB:
2459 return 1;
2460
2461 case ADB_HW_UNKNOWN:
2462 default:
2463 return 1;
2464 }
2465 }
2466
2467
2468 void
2469 adb_setup_hw_type(void)
2470 {
2471 long response;
2472
2473 response = mac68k_machine.machineid;
2474
2475 /*
2476 * Determine what type of ADB hardware we are running on.
2477 */
2478 switch (response) {
2479 case MACH_MACC610: /* Centris 610 */
2480 case MACH_MACC650: /* Centris 650 */
2481 case MACH_MACII: /* II */
2482 case MACH_MACIICI: /* IIci */
2483 case MACH_MACIICX: /* IIcx */
2484 case MACH_MACIIX: /* IIx */
2485 case MACH_MACQ610: /* Quadra 610 */
2486 case MACH_MACQ650: /* Quadra 650 */
2487 case MACH_MACQ700: /* Quadra 700 */
2488 case MACH_MACQ800: /* Quadra 800 */
2489 case MACH_MACSE30: /* SE/30 */
2490 adbHardware = ADB_HW_II;
2491 #ifdef ADB_DEBUG
2492 if (adb_debug)
2493 printf_intr("adb: using II series hardware support\n");
2494 #endif
2495 break;
2496
2497 case MACH_MACCLASSICII: /* Classic II */
2498 case MACH_MACLCII: /* LC II, Performa 400/405/430 */
2499 case MACH_MACLCIII: /* LC III, Performa 450 */
2500 case MACH_MACIISI: /* IIsi */
2501 case MACH_MACIIVI: /* IIvi */
2502 case MACH_MACIIVX: /* IIvx */
2503 case MACH_MACP460: /* Performa 460/465/467 */
2504 case MACH_MACP600: /* Performa 600 */
2505 adbHardware = ADB_HW_IISI;
2506 #ifdef ADB_DEBUG
2507 if (adb_debug)
2508 printf_intr("adb: using IIsi series hardware support\n");
2509 #endif
2510 break;
2511
2512 case MACH_MACPB140: /* PowerBook 140 */
2513 case MACH_MACPB145: /* PowerBook 145 */
2514 case MACH_MACPB160: /* PowerBook 160 */
2515 case MACH_MACPB165: /* PowerBook 165 */
2516 case MACH_MACPB165C: /* PowerBook 165c */
2517 case MACH_MACPB170: /* PowerBook 170 */
2518 case MACH_MACPB180: /* PowerBook 180 */
2519 case MACH_MACPB180C: /* PowerBook 180c */
2520 adbHardware = ADB_HW_PB;
2521 pm_setup_adb();
2522 #ifdef ADB_DEBUG
2523 if (adb_debug)
2524 printf_intr("adb: using PowerBook 100-series hardware support\n");
2525 #endif
2526 break;
2527
2528 case MACH_MACPB150: /* PowerBook 150 */
2529 case MACH_MACPB210: /* PowerBook Duo 210 */
2530 case MACH_MACPB230: /* PowerBook Duo 230 */
2531 case MACH_MACPB250: /* PowerBook Duo 250 */
2532 case MACH_MACPB270: /* PowerBook Duo 270 */
2533 case MACH_MACPB280: /* PowerBook Duo 280 */
2534 case MACH_MACPB280C: /* PowerBook Duo 280c */
2535 case MACH_MACPB500: /* PowerBook 500 series */
2536 adbHardware = ADB_HW_PB;
2537 pm_setup_adb();
2538 #ifdef ADB_DEBUG
2539 if (adb_debug)
2540 printf_intr("adb: using PowerBook Duo-series and PowerBook 500-series hardware support\n");
2541 #endif
2542 break;
2543
2544 case MACH_MACC660AV: /* Centris 660AV */
2545 case MACH_MACCCLASSIC: /* Color Classic */
2546 case MACH_MACCCLASSICII: /* Color Classic II */
2547 case MACH_MACLC475: /* LC 475, Performa 475/476 */
2548 case MACH_MACLC475_33: /* Clock-chipped 47x */
2549 case MACH_MACLC520: /* LC 520 */
2550 case MACH_MACLC575: /* LC 575, Performa 575/577/578 */
2551 case MACH_MACP550: /* LC 550, Performa 550 */
2552 case MACH_MACTV: /* Macintosh TV */
2553 case MACH_MACP580: /* Performa 580/588 */
2554 case MACH_MACQ605: /* Quadra 605 */
2555 case MACH_MACQ605_33: /* Clock-chipped Quadra 605 */
2556 case MACH_MACQ630: /* LC 630, Performa 630, Quadra 630 */
2557 case MACH_MACQ840AV: /* Quadra 840AV */
2558 adbHardware = ADB_HW_CUDA;
2559 #ifdef ADB_DEBUG
2560 if (adb_debug)
2561 printf_intr("adb: using Cuda series hardware support\n");
2562 #endif
2563 break;
2564
2565 case MACH_MACQ900: /* Quadra 900 */
2566 case MACH_MACQ950: /* Quadra 950 */
2567 case MACH_MACIIFX: /* Mac IIfx */
2568 adbHardware = ADB_HW_IOP;
2569 iop_register_listener(ISM_IOP, IOP_CHAN_ADB, adb_iop_recv, NULL);
2570 #ifdef ADB_DEBUG
2571 if (adb_debug)
2572 printf_intr("adb: using IOP-based ADB\n");
2573 #endif
2574 break;
2575
2576 default:
2577 adbHardware = ADB_HW_UNKNOWN;
2578 #ifdef ADB_DEBUG
2579 if (adb_debug) {
2580 printf_intr("adb: hardware type unknown for this machine\n");
2581 printf_intr("adb: ADB support is disabled\n");
2582 }
2583 #endif
2584 break;
2585 }
2586
2587 /*
2588 * Determine whether this machine has ADB based soft power.
2589 */
2590 switch (response) {
2591 case MACH_MACCCLASSIC: /* Color Classic */
2592 case MACH_MACCCLASSICII: /* Color Classic II */
2593 case MACH_MACIISI: /* IIsi */
2594 case MACH_MACIIVI: /* IIvi */
2595 case MACH_MACIIVX: /* IIvx */
2596 case MACH_MACLC520: /* LC 520 */
2597 case MACH_MACLC575: /* LC 575, Performa 575/577/578 */
2598 case MACH_MACP550: /* LC 550, Performa 550 */
2599 case MACH_MACTV: /* Macintosh TV */
2600 case MACH_MACP580: /* Performa 580/588 */
2601 case MACH_MACP600: /* Performa 600 */
2602 case MACH_MACQ630: /* LC 630, Performa 630, Quadra 630 */
2603 case MACH_MACQ840AV: /* Quadra 840AV */
2604 adbSoftPower = 1;
2605 break;
2606 }
2607 }
2608
2609 int
2610 count_adbs(void)
2611 {
2612 int i;
2613 int found;
2614
2615 found = 0;
2616
2617 for (i = 1; i < 16; i++)
2618 if (0 != ADBDevTable[i].currentAddr)
2619 found++;
2620
2621 return found;
2622 }
2623
2624 int
2625 get_ind_adb_info(ADBDataBlock * info, int index)
2626 {
2627 if ((index < 1) || (index > 15)) /* check range 1-15 */
2628 return (-1);
2629
2630 #ifdef ADB_DEBUG
2631 if (adb_debug & 0x80)
2632 printf_intr("index 0x%x devType is: 0x%x\n", index,
2633 ADBDevTable[index].devType);
2634 #endif
2635 if (0 == ADBDevTable[index].devType) /* make sure it's a valid entry */
2636 return (-1);
2637
2638 info->devType = (unsigned char)(ADBDevTable[index].devType);
2639 info->origADBAddr = (unsigned char)(ADBDevTable[index].origAddr);
2640 info->dbServiceRtPtr = (Ptr)ADBDevTable[index].ServiceRtPtr;
2641 info->dbDataAreaAddr = (Ptr)ADBDevTable[index].DataAreaAddr;
2642
2643 return (ADBDevTable[index].currentAddr);
2644 }
2645
2646 int
2647 get_adb_info(ADBDataBlock * info, int adbAddr)
2648 {
2649 int i;
2650
2651 if ((adbAddr < 1) || (adbAddr > 15)) /* check range 1-15 */
2652 return (-1);
2653
2654 for (i = 1; i < 15; i++)
2655 if (ADBDevTable[i].currentAddr == adbAddr) {
2656 info->devType = (unsigned char)(ADBDevTable[i].devType);
2657 info->origADBAddr = (unsigned char)(ADBDevTable[i].origAddr);
2658 info->dbServiceRtPtr = (Ptr)ADBDevTable[i].ServiceRtPtr;
2659 info->dbDataAreaAddr = ADBDevTable[i].DataAreaAddr;
2660 return 0; /* found */
2661 }
2662
2663 return (-1); /* not found */
2664 }
2665
2666 int
2667 set_adb_info(ADBSetInfoBlock * info, int adbAddr)
2668 {
2669 int i;
2670
2671 if ((adbAddr < 1) || (adbAddr > 15)) /* check range 1-15 */
2672 return (-1);
2673
2674 for (i = 1; i < 15; i++)
2675 if (ADBDevTable[i].currentAddr == adbAddr) {
2676 ADBDevTable[i].ServiceRtPtr =
2677 (void *)(info->siServiceRtPtr);
2678 ADBDevTable[i].DataAreaAddr = info->siDataAreaAddr;
2679 return 0; /* found */
2680 }
2681
2682 return (-1); /* not found */
2683
2684 }
2685
2686 #ifndef MRG_ADB
2687 long
2688 mrg_adbintr(void)
2689 {
2690 adb_intr(NULL);
2691 return 1; /* mimic mrg_adbintr in macrom.h just in case */
2692 }
2693
2694 long
2695 mrg_pmintr(void)
2696 {
2697 pm_intr(NULL);
2698 return 1; /* mimic mrg_pmintr in macrom.h just in case */
2699 }
2700
2701 /* caller should really use machine-independant version: getPramTime */
2702 /* this version does pseudo-adb access only */
2703 int
2704 adb_read_date_time(unsigned long *time)
2705 {
2706 u_char output[ADB_MAX_MSG_LENGTH];
2707 int result;
2708 volatile int flag = 0;
2709
2710 switch (adbHardware) {
2711 case ADB_HW_II:
2712 return -1;
2713
2714 case ADB_HW_IOP:
2715 return -1;
2716
2717 case ADB_HW_IISI:
2718 output[0] = 0x02; /* 2 byte message */
2719 output[1] = 0x01; /* to pram/rtc device */
2720 output[2] = 0x03; /* read date/time */
2721 result = send_adb_IIsi((u_char *)output, (u_char *)output,
2722 (void *)adb_op_comprout, (int *)&flag, (int)0);
2723 if (result != 0) /* exit if not sent */
2724 return -1;
2725
2726 while (0 == flag) /* wait for result */
2727 ;
2728
2729 *time = (long)(*(long *)(output + 1));
2730 return 0;
2731
2732 case ADB_HW_PB:
2733 return -1;
2734
2735 case ADB_HW_CUDA:
2736 output[0] = 0x02; /* 2 byte message */
2737 output[1] = 0x01; /* to pram/rtc device */
2738 output[2] = 0x03; /* read date/time */
2739 result = send_adb_cuda((u_char *)output, (u_char *)output,
2740 (void *)adb_op_comprout, (void *)&flag, (int)0);
2741 if (result != 0) /* exit if not sent */
2742 return -1;
2743
2744 while (0 == flag) /* wait for result */
2745 ;
2746
2747 *time = (long)(*(long *)(output + 1));
2748 return 0;
2749
2750 case ADB_HW_UNKNOWN:
2751 default:
2752 return -1;
2753 }
2754 }
2755
2756 /* caller should really use machine-independant version: setPramTime */
2757 /* this version does pseudo-adb access only */
2758 int
2759 adb_set_date_time(unsigned long time)
2760 {
2761 u_char output[ADB_MAX_MSG_LENGTH];
2762 int result;
2763 volatile int flag = 0;
2764
2765 switch (adbHardware) {
2766 case ADB_HW_II:
2767 return -1;
2768
2769 case ADB_HW_IOP:
2770 return -1;
2771
2772 case ADB_HW_IISI:
2773 output[0] = 0x06; /* 6 byte message */
2774 output[1] = 0x01; /* to pram/rtc device */
2775 output[2] = 0x09; /* set date/time */
2776 output[3] = (u_char)(time >> 24);
2777 output[4] = (u_char)(time >> 16);
2778 output[5] = (u_char)(time >> 8);
2779 output[6] = (u_char)(time);
2780 result = send_adb_IIsi((u_char *)output, (u_char *)0,
2781 (void *)adb_op_comprout, (void *)&flag, (int)0);
2782 if (result != 0) /* exit if not sent */
2783 return -1;
2784
2785 while (0 == flag) /* wait for send to finish */
2786 ;
2787
2788 return 0;
2789
2790 case ADB_HW_PB:
2791 return -1;
2792
2793 case ADB_HW_CUDA:
2794 output[0] = 0x06; /* 6 byte message */
2795 output[1] = 0x01; /* to pram/rtc device */
2796 output[2] = 0x09; /* set date/time */
2797 output[3] = (u_char)(time >> 24);
2798 output[4] = (u_char)(time >> 16);
2799 output[5] = (u_char)(time >> 8);
2800 output[6] = (u_char)(time);
2801 result = send_adb_cuda((u_char *)output, (u_char *)0,
2802 (void *)adb_op_comprout, (void *)&flag, (int)0);
2803 if (result != 0) /* exit if not sent */
2804 return -1;
2805
2806 while (0 == flag) /* wait for send to finish */
2807 ;
2808
2809 return 0;
2810
2811 case ADB_HW_UNKNOWN:
2812 default:
2813 return -1;
2814 }
2815 }
2816
2817
2818 int
2819 adb_poweroff(void)
2820 {
2821 u_char output[ADB_MAX_MSG_LENGTH];
2822 int result;
2823
2824 if (!adbSoftPower)
2825 return -1;
2826
2827 adb_polling = 1;
2828
2829 switch (adbHardware) {
2830 case ADB_HW_IISI:
2831 output[0] = 0x02; /* 2 byte message */
2832 output[1] = 0x01; /* to pram/rtc/soft-power device */
2833 output[2] = 0x0a; /* set date/time */
2834 result = send_adb_IIsi((u_char *)output, (u_char *)0,
2835 (void *)0, (void *)0, (int)0);
2836 if (result != 0) /* exit if not sent */
2837 return -1;
2838
2839 for (;;); /* wait for power off */
2840
2841 return 0;
2842
2843 case ADB_HW_PB:
2844 return -1;
2845
2846 case ADB_HW_CUDA:
2847 output[0] = 0x02; /* 2 byte message */
2848 output[1] = 0x01; /* to pram/rtc/soft-power device */
2849 output[2] = 0x0a; /* set date/time */
2850 result = send_adb_cuda((u_char *)output, (u_char *)0,
2851 (void *)0, (void *)0, (int)0);
2852 if (result != 0) /* exit if not sent */
2853 return -1;
2854
2855 for (;;); /* wait for power off */
2856
2857 return 0;
2858
2859 case ADB_HW_II: /* II models don't do ADB soft power */
2860 case ADB_HW_IOP: /* IOP models don't do ADB soft power */
2861 case ADB_HW_UNKNOWN:
2862 default:
2863 return -1;
2864 }
2865 }
2866
2867 int
2868 adb_prog_switch_enable(void)
2869 {
2870 u_char output[ADB_MAX_MSG_LENGTH];
2871 int result;
2872 volatile int flag = 0;
2873
2874 switch (adbHardware) {
2875 case ADB_HW_IISI:
2876 output[0] = 0x03; /* 3 byte message */
2877 output[1] = 0x01; /* to pram/rtc/soft-power device */
2878 output[2] = 0x1c; /* prog. switch control */
2879 output[3] = 0x01; /* enable */
2880 result = send_adb_IIsi((u_char *)output, (u_char *)0,
2881 (void *)adb_op_comprout, (void *)&flag, (int)0);
2882 if (result != 0) /* exit if not sent */
2883 return -1;
2884
2885 while (0 == flag) /* wait for send to finish */
2886 ;
2887
2888 return 0;
2889
2890 case ADB_HW_PB:
2891 return -1;
2892
2893 case ADB_HW_II: /* II models don't do prog. switch */
2894 case ADB_HW_IOP: /* IOP models don't do prog. switch */
2895 case ADB_HW_CUDA: /* cuda doesn't do prog. switch TO DO: verify this */
2896 case ADB_HW_UNKNOWN:
2897 default:
2898 return -1;
2899 }
2900 }
2901
2902 int
2903 adb_prog_switch_disable(void)
2904 {
2905 u_char output[ADB_MAX_MSG_LENGTH];
2906 int result;
2907 volatile int flag = 0;
2908
2909 switch (adbHardware) {
2910 case ADB_HW_IISI:
2911 output[0] = 0x03; /* 3 byte message */
2912 output[1] = 0x01; /* to pram/rtc/soft-power device */
2913 output[2] = 0x1c; /* prog. switch control */
2914 output[3] = 0x01; /* disable */
2915 result = send_adb_IIsi((u_char *)output, (u_char *)0,
2916 (void *)adb_op_comprout, (void *)&flag, (int)0);
2917 if (result != 0) /* exit if not sent */
2918 return -1;
2919
2920 while (0 == flag) /* wait for send to finish */
2921 ;
2922
2923 return 0;
2924
2925 case ADB_HW_PB:
2926 return -1;
2927
2928 case ADB_HW_II: /* II models don't do prog. switch */
2929 case ADB_HW_IOP: /* IOP models don't do prog. switch */
2930 case ADB_HW_CUDA: /* cuda doesn't do prog. switch */
2931 case ADB_HW_UNKNOWN:
2932 default:
2933 return -1;
2934 }
2935 }
2936
2937 int
2938 CountADBs(void)
2939 {
2940 return (count_adbs());
2941 }
2942
2943 void
2944 ADBReInit(void)
2945 {
2946 adb_reinit();
2947 }
2948
2949 int
2950 GetIndADB(ADBDataBlock * info, int index)
2951 {
2952 return (get_ind_adb_info(info, index));
2953 }
2954
2955 int
2956 GetADBInfo(ADBDataBlock * info, int adbAddr)
2957 {
2958 return (get_adb_info(info, adbAddr));
2959 }
2960
2961 int
2962 SetADBInfo(ADBSetInfoBlock * info, int adbAddr)
2963 {
2964 return (set_adb_info(info, adbAddr));
2965 }
2966
2967 int
2968 ADBOp(Ptr buffer, Ptr compRout, Ptr data, short commandNum)
2969 {
2970 return (adb_op(buffer, compRout, data, commandNum));
2971 }
2972
2973 #endif
2974