adb_direct.c revision 1.53 1 /* $NetBSD: adb_direct.c,v 1.53 2005/12/24 20:07:15 perry Exp $ */
2
3 /* From: adb_direct.c 2.02 4/18/97 jpw */
4
5 /*
6 * Copyright (C) 1996, 1997 John P. Wittkoski
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by John P. Wittkoski.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*
36 * This code is rather messy, but I don't have time right now
37 * to clean it up as much as I would like.
38 * But it works, so I'm happy. :-) jpw
39 */
40
41 /*
42 * TO DO:
43 * - We could reduce the time spent in the adb_intr_* routines
44 * by having them save the incoming and outgoing data directly
45 * in the adbInbound and adbOutbound queues, as it would reduce
46 * the number of times we need to copy the data around. It
47 * would also make the code more readable and easier to follow.
48 * - (Related to above) Use the header part of adbCommand to
49 * reduce the number of copies we have to do of the data.
50 * - (Related to above) Actually implement the adbOutbound queue.
51 * This is fairly easy once you switch all the intr routines
52 * over to using adbCommand structs directly.
53 * - There is a bug in the state machine of adb_intr_cuda
54 * code that causes hangs, especially on 030 machines, probably
55 * because of some timing issues. Because I have been unable to
56 * determine the exact cause of this bug, I used the timeout function
57 * to check for and recover from this condition. If anyone finds
58 * the actual cause of this bug, the calls to timeout and the
59 * adb_cuda_tickle routine can be removed.
60 */
61
62 #ifdef __NetBSD__
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: adb_direct.c,v 1.53 2005/12/24 20:07:15 perry Exp $");
66
67 #include "opt_adb.h"
68
69 #include <sys/param.h>
70 #include <sys/cdefs.h>
71 #include <sys/pool.h>
72 #include <sys/queue.h>
73 #include <sys/systm.h>
74 #include <sys/callout.h>
75
76 #include <machine/viareg.h>
77 #include <machine/param.h>
78 #include <machine/cpu.h>
79 #include <machine/adbsys.h> /* required for adbvar.h */
80 #include <machine/iopreg.h> /* required for IOP support */
81
82 #include <mac68k/mac68k/macrom.h>
83 #include <mac68k/dev/adbvar.h>
84 #define printf_intr printf
85 #else /* !__NetBSD__, i.e. Mac OS */
86 #include "via.h" /* for macos based testing */
87 /* #define ADB_DEBUG */ /* more verbose for testing */
88
89 /* Types of ADB hardware that we support */
90 #define ADB_HW_UNKNOWN 0x0 /* don't know */
91 #define ADB_HW_II 0x1 /* Mac II series */
92 #define ADB_HW_IISI 0x2 /* Mac IIsi series */
93 #define ADB_HW_PB 0x3 /* PowerBook series */
94 #define ADB_HW_CUDA 0x4 /* Machines with a Cuda chip */
95 #endif /* __NetBSD__ */
96
97 /* some misc. leftovers */
98 #define vPB 0x0000
99 #define vPB3 0x08
100 #define vPB4 0x10
101 #define vPB5 0x20
102 #define vSR_INT 0x04
103 #define vSR_OUT 0x10
104
105 /* the type of ADB action that we are currently preforming */
106 #define ADB_ACTION_NOTREADY 0x1 /* has not been initialized yet */
107 #define ADB_ACTION_IDLE 0x2 /* the bus is currently idle */
108 #define ADB_ACTION_OUT 0x3 /* sending out a command */
109 #define ADB_ACTION_IN 0x4 /* receiving data */
110 #define ADB_ACTION_POLLING 0x5 /* polling - II only */
111 #define ADB_ACTION_RUNNING 0x6 /* running - IOP only */
112
113 /*
114 * These describe the state of the ADB bus itself, although they
115 * don't necessarily correspond directly to ADB states.
116 * Note: these are not really used in the IIsi code.
117 */
118 #define ADB_BUS_UNKNOWN 0x1 /* we don't know yet - all models */
119 #define ADB_BUS_IDLE 0x2 /* bus is idle - all models */
120 #define ADB_BUS_CMD 0x3 /* starting a command - II models */
121 #define ADB_BUS_ODD 0x4 /* the "odd" state - II models */
122 #define ADB_BUS_EVEN 0x5 /* the "even" state - II models */
123 #define ADB_BUS_ACTIVE 0x6 /* active state - IIsi models */
124 #define ADB_BUS_ACK 0x7 /* currently ACKing - IIsi models */
125
126 /*
127 * Shortcuts for setting or testing the VIA bit states.
128 * Not all shortcuts are used for every type of ADB hardware.
129 */
130 #define ADB_SET_STATE_IDLE_II() via_reg(VIA1, vBufB) |= (vPB4 | vPB5)
131 #define ADB_SET_STATE_IDLE_IISI() via_reg(VIA1, vBufB) &= ~(vPB4 | vPB5)
132 #define ADB_SET_STATE_IDLE_CUDA() via_reg(VIA1, vBufB) |= (vPB4 | vPB5)
133 #define ADB_SET_STATE_CMD() via_reg(VIA1, vBufB) &= ~(vPB4 | vPB5)
134 #define ADB_SET_STATE_EVEN() via_reg(VIA1, vBufB) = ((via_reg(VIA1, \
135 vBufB) | vPB4) & ~vPB5)
136 #define ADB_SET_STATE_ODD() via_reg(VIA1, vBufB) = ((via_reg(VIA1, \
137 vBufB) | vPB5) & ~vPB4)
138 #define ADB_SET_STATE_ACTIVE() via_reg(VIA1, vBufB) |= vPB5
139 #define ADB_SET_STATE_INACTIVE() via_reg(VIA1, vBufB) &= ~vPB5
140 #define ADB_SET_STATE_TIP() via_reg(VIA1, vBufB) &= ~vPB5
141 #define ADB_CLR_STATE_TIP() via_reg(VIA1, vBufB) |= vPB5
142 #define ADB_SET_STATE_ACKON() via_reg(VIA1, vBufB) |= vPB4
143 #define ADB_SET_STATE_ACKOFF() via_reg(VIA1, vBufB) &= ~vPB4
144 #define ADB_TOGGLE_STATE_ACK_CUDA() via_reg(VIA1, vBufB) ^= vPB4
145 #define ADB_SET_STATE_ACKON_CUDA() via_reg(VIA1, vBufB) &= ~vPB4
146 #define ADB_SET_STATE_ACKOFF_CUDA() via_reg(VIA1, vBufB) |= vPB4
147 #define ADB_SET_SR_INPUT() via_reg(VIA1, vACR) &= ~vSR_OUT
148 #define ADB_SET_SR_OUTPUT() via_reg(VIA1, vACR) |= vSR_OUT
149 #define ADB_SR() via_reg(VIA1, vSR)
150 #define ADB_VIA_INTR_ENABLE() via_reg(VIA1, vIER) = 0x84
151 #define ADB_VIA_INTR_DISABLE() via_reg(VIA1, vIER) = 0x04
152 #define ADB_VIA_CLR_INTR() via_reg(VIA1, vIFR) = 0x04
153 #define ADB_INTR_IS_OFF (vPB3 == (via_reg(VIA1, vBufB) & vPB3))
154 #define ADB_INTR_IS_ON (0 == (via_reg(VIA1, vBufB) & vPB3))
155 #define ADB_SR_INTR_IS_OFF (0 == (via_reg(VIA1, vIFR) & vSR_INT))
156 #define ADB_SR_INTR_IS_ON (vSR_INT == (via_reg(VIA1, \
157 vIFR) & vSR_INT))
158
159 /*
160 * This is the delay that is required (in uS) between certain
161 * ADB transactions. The actual timing delay for for each uS is
162 * calculated at boot time to account for differences in machine speed.
163 */
164 #define ADB_DELAY 150
165
166 /*
167 * Maximum ADB message length; includes space for data, result, and
168 * device code - plus a little for safety.
169 */
170 #define ADB_MAX_MSG_LENGTH 16
171 #define ADB_MAX_HDR_LENGTH 8
172
173 #define ADB_QUEUE 32
174 #define ADB_TICKLE_TICKS 4
175
176 /*
177 * A structure for storing information about each ADB device.
178 */
179 struct ADBDevEntry {
180 void (*ServiceRtPtr)(void);
181 void *DataAreaAddr;
182 int devType;
183 int origAddr;
184 int currentAddr;
185 };
186
187 /*
188 * Used to hold ADB commands that are waiting to be sent out.
189 */
190 struct adbCmdHoldEntry {
191 u_char outBuf[ADB_MAX_MSG_LENGTH]; /* our message */
192 u_char *saveBuf; /* buffer to know where to save result */
193 u_char *compRout; /* completion routine pointer */
194 u_char *data; /* completion routine data pointer */
195 };
196
197 /*
198 * Eventually used for two separate queues, the queue between
199 * the upper and lower halves, and the outgoing packet queue.
200 * TO DO: adbCommand can replace all of adbCmdHoldEntry eventually
201 */
202 struct adbCommand {
203 u_char header[ADB_MAX_HDR_LENGTH]; /* not used yet */
204 u_char data[ADB_MAX_MSG_LENGTH]; /* packet data only */
205 u_char *saveBuf; /* where to save result */
206 u_char *compRout; /* completion routine pointer */
207 u_char *compData; /* completion routine data pointer */
208 u_int cmd; /* the original command for this data */
209 u_int unsol; /* 1 if packet was unsolicited */
210 u_int ack_only; /* 1 for no special processing */
211 };
212
213 /*
214 * Text representations of each hardware class
215 */
216 const char *adbHardwareDescr[MAX_ADB_HW + 1] = {
217 "unknown",
218 "II series",
219 "IIsi series",
220 "PowerBook",
221 "Cuda",
222 "IOP",
223 };
224
225 /*
226 * A few variables that we need and their initial values.
227 */
228 int adbHardware = ADB_HW_UNKNOWN;
229 int adbActionState = ADB_ACTION_NOTREADY;
230 int adbBusState = ADB_BUS_UNKNOWN;
231 int adbWaiting = 0; /* waiting for return data from the device */
232 int adbWriteDelay = 0; /* working on (or waiting to do) a write */
233 int adbOutQueueHasData = 0; /* something in the queue waiting to go out */
234 int adbNextEnd = 0; /* the next incoming bute is the last (II) */
235 int adbSoftPower = 0; /* machine supports soft power */
236
237 int adbWaitingCmd = 0; /* ADB command we are waiting for */
238 u_char *adbBuffer = (long)0; /* pointer to user data area */
239 void *adbCompRout = (long)0; /* pointer to the completion routine */
240 void *adbCompData = (long)0; /* pointer to the completion routine data */
241 long adbFakeInts = 0; /* keeps track of fake ADB interrupts for
242 * timeouts (II) */
243 int adbStarting = 1; /* doing ADBReInit so do polling differently */
244 int adbSendTalk = 0; /* the intr routine is sending the talk, not
245 * the user (II) */
246 int adbPolling = 0; /* we are polling for service request */
247 int adbPollCmd = 0; /* the last poll command we sent */
248
249 u_char adbInputBuffer[ADB_MAX_MSG_LENGTH]; /* data input buffer */
250 u_char adbOutputBuffer[ADB_MAX_MSG_LENGTH]; /* data output buffer */
251 struct adbCmdHoldEntry adbOutQueue; /* our 1 entry output queue */
252
253 int adbSentChars = 0; /* how many characters we have sent */
254 int adbLastDevice = 0; /* last ADB dev we heard from (II ONLY) */
255 int adbLastDevIndex = 0; /* last ADB dev loc in dev table (II ONLY) */
256 int adbLastCommand = 0; /* the last ADB command we sent (II) */
257
258 struct ADBDevEntry ADBDevTable[16]; /* our ADB device table */
259 int ADBNumDevices; /* num. of ADB devices found with ADBReInit */
260
261 struct adbCommand adbInbound[ADB_QUEUE]; /* incoming queue */
262 volatile int adbInCount = 0; /* how many packets in in queue */
263 int adbInHead = 0; /* head of in queue */
264 int adbInTail = 0; /* tail of in queue */
265 struct adbCommand adbOutbound[ADB_QUEUE]; /* outgoing queue - not used yet */
266 int adbOutCount = 0; /* how many packets in out queue */
267 int adbOutHead = 0; /* head of out queue */
268 int adbOutTail = 0; /* tail of out queue */
269
270 int tickle_count = 0; /* how many tickles seen for this packet? */
271 int tickle_serial = 0; /* the last packet tickled */
272 int adb_cuda_serial = 0; /* the current packet */
273
274 struct callout adb_cuda_tickle_ch = CALLOUT_INITIALIZER;
275
276 extern struct mac68k_machine_S mac68k_machine;
277
278 void pm_setup_adb(void);
279 void pm_hw_setup(void);
280 void pm_check_adb_devices(int);
281 void pm_intr(void *);
282 int pm_adb_op(u_char *, void *, void *, int);
283 void pm_init_adb_device(void);
284
285 /*
286 * The following are private routines.
287 */
288 #ifdef ADB_DEBUG
289 void print_single(u_char *);
290 #endif
291 void adb_intr(void *);
292 void adb_intr_II(void *);
293 void adb_intr_IIsi(void *);
294 void adb_intr_cuda(void *);
295 void adb_soft_intr(void);
296 int send_adb_II(u_char *, u_char *, void *, void *, int);
297 int send_adb_IIsi(u_char *, u_char *, void *, void *, int);
298 int send_adb_cuda(u_char *, u_char *, void *, void *, int);
299 void adb_intr_cuda_test(void);
300 void adb_cuda_tickle(void);
301 void adb_pass_up(struct adbCommand *);
302 void adb_op_comprout(void);
303 void adb_reinit(void);
304 int count_adbs(void);
305 int get_ind_adb_info(ADBDataBlock *, int);
306 int get_adb_info(ADBDataBlock *, int);
307 int set_adb_info(ADBSetInfoBlock *, int);
308 void adb_setup_hw_type(void);
309 int adb_op(Ptr, Ptr, Ptr, short);
310 void adb_read_II(u_char *);
311 void adb_hw_setup(void);
312 void adb_hw_setup_IIsi(u_char *);
313 void adb_comp_exec(void);
314 int adb_cmd_result(u_char *);
315 int adb_cmd_extra(u_char *);
316 int adb_guess_next_device(void);
317 int adb_prog_switch_enable(void);
318 int adb_prog_switch_disable(void);
319 /* we should create this and it will be the public version */
320 int send_adb(u_char *, void *, void *);
321 void adb_iop_recv(IOP *, struct iop_msg *);
322 int send_adb_iop(int, u_char *, void *, void *);
323
324 #ifdef ADB_DEBUG
325 /*
326 * print_single
327 * Diagnostic display routine. Displays the hex values of the
328 * specified elements of the u_char. The length of the "string"
329 * is in [0].
330 */
331 void
332 print_single(u_char *str)
333 {
334 int x;
335
336 if (str == 0) {
337 printf_intr("no data - null pointer\n");
338 return;
339 }
340 if (*str == 0) {
341 printf_intr("nothing returned\n");
342 return;
343 }
344 if (*str > 20) {
345 printf_intr("ADB: ACK > 20 no way!\n");
346 *str = (u_char)20;
347 }
348 printf_intr("(length=0x%x):", (u_int)*str);
349 for (x = 1; x <= *str; x++)
350 printf_intr(" 0x%02x", (u_int)*(str + x));
351 printf_intr("\n");
352 }
353 #endif
354
355 void
356 adb_cuda_tickle(void)
357 {
358 volatile int s;
359
360 if (adbActionState == ADB_ACTION_IN) {
361 if (tickle_serial == adb_cuda_serial) {
362 if (++tickle_count > 0) {
363 s = splhigh();
364 adbActionState = ADB_ACTION_IDLE;
365 adbInputBuffer[0] = 0;
366 ADB_SET_STATE_IDLE_CUDA();
367 splx(s);
368 }
369 } else {
370 tickle_serial = adb_cuda_serial;
371 tickle_count = 0;
372 }
373 } else {
374 tickle_serial = adb_cuda_serial;
375 tickle_count = 0;
376 }
377
378 callout_reset(&adb_cuda_tickle_ch, ADB_TICKLE_TICKS,
379 (void *)adb_cuda_tickle, NULL);
380 }
381
382 /*
383 * called when when an adb interrupt happens
384 *
385 * Cuda version of adb_intr
386 * TO DO: do we want to add some calls to intr_dispatch() here to
387 * grab serial interrupts?
388 */
389 void
390 adb_intr_cuda(void *arg)
391 {
392 volatile int i, ending;
393 volatile unsigned int s;
394 struct adbCommand packet;
395
396 s = splhigh(); /* can't be too careful - might be called */
397 /* from a routine, NOT an interrupt */
398
399 ADB_VIA_CLR_INTR(); /* clear interrupt */
400 ADB_VIA_INTR_DISABLE(); /* disable ADB interrupt on IIs. */
401
402 switch_start:
403 switch (adbActionState) {
404 case ADB_ACTION_IDLE:
405 /*
406 * This is an unexpected packet, so grab the first (dummy)
407 * byte, set up the proper vars, and tell the chip we are
408 * starting to receive the packet by setting the TIP bit.
409 */
410 adbInputBuffer[1] = ADB_SR();
411 adb_cuda_serial++;
412 if (ADB_INTR_IS_OFF) /* must have been a fake start */
413 break;
414
415 ADB_SET_SR_INPUT();
416 ADB_SET_STATE_TIP();
417
418 adbInputBuffer[0] = 1;
419 adbActionState = ADB_ACTION_IN;
420 #ifdef ADB_DEBUG
421 if (adb_debug)
422 printf_intr("idle 0x%02x ", adbInputBuffer[1]);
423 #endif
424 break;
425
426 case ADB_ACTION_IN:
427 adbInputBuffer[++adbInputBuffer[0]] = ADB_SR();
428 /* intr off means this is the last byte (end of frame) */
429 if (ADB_INTR_IS_OFF)
430 ending = 1;
431 else
432 ending = 0;
433
434 if (1 == ending) { /* end of message? */
435 #ifdef ADB_DEBUG
436 if (adb_debug) {
437 printf_intr("in end 0x%02x ",
438 adbInputBuffer[adbInputBuffer[0]]);
439 print_single(adbInputBuffer);
440 }
441 #endif
442
443 /*
444 * Are we waiting AND does this packet match what we
445 * are waiting for AND is it coming from either the
446 * ADB or RTC/PRAM sub-device? This section _should_
447 * recognize all ADB and RTC/PRAM type commands, but
448 * there may be more... NOTE: commands are always at
449 * [4], even for RTC/PRAM commands.
450 */
451 /* set up data for adb_pass_up */
452 memcpy(packet.data, adbInputBuffer, adbInputBuffer[0] + 1);
453
454 if ((adbWaiting == 1) &&
455 (adbInputBuffer[4] == adbWaitingCmd) &&
456 ((adbInputBuffer[2] == 0x00) ||
457 (adbInputBuffer[2] == 0x01))) {
458 packet.saveBuf = adbBuffer;
459 packet.compRout = adbCompRout;
460 packet.compData = adbCompData;
461 packet.unsol = 0;
462 packet.ack_only = 0;
463 adb_pass_up(&packet);
464
465 adbWaitingCmd = 0; /* reset "waiting" vars */
466 adbWaiting = 0;
467 adbBuffer = (long)0;
468 adbCompRout = (long)0;
469 adbCompData = (long)0;
470 } else {
471 packet.unsol = 1;
472 packet.ack_only = 0;
473 adb_pass_up(&packet);
474 }
475
476
477 /* reset vars and signal the end of this frame */
478 adbActionState = ADB_ACTION_IDLE;
479 adbInputBuffer[0] = 0;
480 ADB_SET_STATE_IDLE_CUDA();
481 /*ADB_SET_SR_INPUT();*/
482
483 /*
484 * If there is something waiting to be sent out,
485 * the set everything up and send the first byte.
486 */
487 if (adbWriteDelay == 1) {
488 delay(ADB_DELAY); /* required */
489 adbSentChars = 0;
490 adbActionState = ADB_ACTION_OUT;
491 /*
492 * If the interrupt is on, we were too slow
493 * and the chip has already started to send
494 * something to us, so back out of the write
495 * and start a read cycle.
496 */
497 if (ADB_INTR_IS_ON) {
498 ADB_SET_SR_INPUT();
499 ADB_SET_STATE_IDLE_CUDA();
500 adbSentChars = 0;
501 adbActionState = ADB_ACTION_IDLE;
502 adbInputBuffer[0] = 0;
503 break;
504 }
505 /*
506 * If we got here, it's ok to start sending
507 * so load the first byte and tell the chip
508 * we want to send.
509 */
510 ADB_SET_STATE_TIP();
511 ADB_SET_SR_OUTPUT();
512 ADB_SR() = adbOutputBuffer[adbSentChars + 1];
513 }
514 } else {
515 ADB_TOGGLE_STATE_ACK_CUDA();
516 #ifdef ADB_DEBUG
517 if (adb_debug)
518 printf_intr("in 0x%02x ",
519 adbInputBuffer[adbInputBuffer[0]]);
520 #endif
521 }
522 break;
523
524 case ADB_ACTION_OUT:
525 i = ADB_SR(); /* reset SR-intr in IFR */
526 #ifdef ADB_DEBUG
527 if (adb_debug)
528 printf_intr("intr out 0x%02x ", i);
529 #endif
530
531 adbSentChars++;
532 if (ADB_INTR_IS_ON) { /* ADB intr low during write */
533 #ifdef ADB_DEBUG
534 if (adb_debug)
535 printf_intr("intr was on ");
536 #endif
537 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
538 ADB_SET_STATE_IDLE_CUDA();
539 adbSentChars = 0; /* must start all over */
540 adbActionState = ADB_ACTION_IDLE; /* new state */
541 adbInputBuffer[0] = 0;
542 adbWriteDelay = 1; /* must retry when done with
543 * read */
544 delay(ADB_DELAY);
545 goto switch_start; /* process next state right
546 * now */
547 break;
548 }
549 if (adbOutputBuffer[0] == adbSentChars) { /* check for done */
550 if (0 == adb_cmd_result(adbOutputBuffer)) { /* do we expect data
551 * back? */
552 adbWaiting = 1; /* signal waiting for return */
553 adbWaitingCmd = adbOutputBuffer[2]; /* save waiting command */
554 } else { /* no talk, so done */
555 /* set up stuff for adb_pass_up */
556 memcpy(packet.data, adbInputBuffer, adbInputBuffer[0] + 1);
557 packet.saveBuf = adbBuffer;
558 packet.compRout = adbCompRout;
559 packet.compData = adbCompData;
560 packet.cmd = adbWaitingCmd;
561 packet.unsol = 0;
562 packet.ack_only = 1;
563 adb_pass_up(&packet);
564
565 /* reset "waiting" vars, just in case */
566 adbWaitingCmd = 0;
567 adbBuffer = (long)0;
568 adbCompRout = (long)0;
569 adbCompData = (long)0;
570 }
571
572 adbWriteDelay = 0; /* done writing */
573 adbActionState = ADB_ACTION_IDLE; /* signal bus is idle */
574 ADB_SET_SR_INPUT();
575 ADB_SET_STATE_IDLE_CUDA();
576 #ifdef ADB_DEBUG
577 if (adb_debug)
578 printf_intr("write done ");
579 #endif
580 } else {
581 ADB_SR() = adbOutputBuffer[adbSentChars + 1]; /* send next byte */
582 ADB_TOGGLE_STATE_ACK_CUDA(); /* signal byte ready to
583 * shift */
584 #ifdef ADB_DEBUG
585 if (adb_debug)
586 printf_intr("toggle ");
587 #endif
588 }
589 break;
590
591 case ADB_ACTION_NOTREADY:
592 #ifdef ADB_DEBUG
593 if (adb_debug)
594 printf_intr("adb: not yet initialized\n");
595 #endif
596 break;
597
598 default:
599 #ifdef ADB_DEBUG
600 if (adb_debug)
601 printf_intr("intr: unknown ADB state\n");
602 #endif
603 break;
604 }
605
606 ADB_VIA_INTR_ENABLE(); /* enable ADB interrupt on IIs. */
607
608 splx(s); /* restore */
609
610 return;
611 } /* end adb_intr_cuda */
612
613
614 int
615 send_adb_cuda(u_char *in, u_char *buffer, void *compRout, void *data, int
616 command)
617 {
618 int s, len;
619
620 #ifdef ADB_DEBUG
621 if (adb_debug)
622 printf_intr("SEND\n");
623 #endif
624
625 if (adbActionState == ADB_ACTION_NOTREADY)
626 return 1;
627
628 /* Don't interrupt while we are messing with the ADB */
629 s = splhigh();
630
631 if ((adbActionState == ADB_ACTION_IDLE) && /* ADB available? */
632 (ADB_INTR_IS_OFF)) { /* and no incoming interrupt? */
633 } else
634 if (adbWriteDelay == 0) /* it's busy, but is anything waiting? */
635 adbWriteDelay = 1; /* if no, then we'll "queue"
636 * it up */
637 else {
638 splx(s);
639 return 1; /* really busy! */
640 }
641
642 #ifdef ADB_DEBUG
643 if (adb_debug)
644 printf_intr("QUEUE\n");
645 #endif
646 if ((long)in == (long)0) { /* need to convert? */
647 /*
648 * Don't need to use adb_cmd_extra here because this section
649 * will be called ONLY when it is an ADB command (no RTC or
650 * PRAM)
651 */
652 if ((command & 0x0c) == 0x08) /* copy addl data ONLY if
653 * doing a listen! */
654 len = buffer[0]; /* length of additional data */
655 else
656 len = 0;/* no additional data */
657
658 adbOutputBuffer[0] = 2 + len; /* dev. type + command + addl.
659 * data */
660 adbOutputBuffer[1] = 0x00; /* mark as an ADB command */
661 adbOutputBuffer[2] = (u_char)command; /* load command */
662
663 /* copy additional output data, if any */
664 memcpy(adbOutputBuffer + 3, buffer + 1, len);
665 } else
666 /* if data ready, just copy over */
667 memcpy(adbOutputBuffer, in, in[0] + 2);
668
669 adbSentChars = 0; /* nothing sent yet */
670 adbBuffer = buffer; /* save buffer to know where to save result */
671 adbCompRout = compRout; /* save completion routine pointer */
672 adbCompData = data; /* save completion routine data pointer */
673 adbWaitingCmd = adbOutputBuffer[2]; /* save wait command */
674
675 if (adbWriteDelay != 1) { /* start command now? */
676 #ifdef ADB_DEBUG
677 if (adb_debug)
678 printf_intr("out start NOW");
679 #endif
680 delay(ADB_DELAY);
681 adbActionState = ADB_ACTION_OUT; /* set next state */
682 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
683 ADB_SR() = adbOutputBuffer[adbSentChars + 1]; /* load byte for output */
684 ADB_SET_STATE_ACKOFF_CUDA();
685 ADB_SET_STATE_TIP(); /* tell ADB that we want to send */
686 }
687 adbWriteDelay = 1; /* something in the write "queue" */
688
689 splx(s);
690
691 if (0x0100 <= (s & 0x0700)) /* were VIA1 interrupts blocked? */
692 /* poll until byte done */
693 while ((adbActionState != ADB_ACTION_IDLE) || (ADB_INTR_IS_ON)
694 || (adbWaiting == 1))
695 if (ADB_SR_INTR_IS_ON) { /* wait for "interrupt" */
696 adb_intr_cuda(NULL); /* go process it */
697 if (adb_polling)
698 adb_soft_intr();
699 }
700
701 return 0;
702 } /* send_adb_cuda */
703
704
705 void
706 adb_intr_II(void *arg)
707 {
708 struct adbCommand packet;
709 int i, intr_on = 0;
710 int send = 0;
711 unsigned int s;
712
713 s = splhigh(); /* can't be too careful - might be called */
714 /* from a routine, NOT an interrupt */
715
716 ADB_VIA_CLR_INTR(); /* clear interrupt */
717
718 ADB_VIA_INTR_DISABLE(); /* disable ADB interrupt on IIs. */
719
720 delay(ADB_DELAY); /* yuck (don't remove) */
721
722 (void)intr_dispatch(0x70); /* grab any serial interrupts */
723
724 if (ADB_INTR_IS_ON)
725 intr_on = 1; /* save for later */
726
727 switch_start:
728 switch (adbActionState) {
729 case ADB_ACTION_POLLING:
730 if (!intr_on) {
731 if (adbOutQueueHasData) {
732 #ifdef ADB_DEBUG
733 if (adb_debug & 0x80)
734 printf_intr("POLL-doing-out-queue. ");
735 #endif
736 ADB_SET_STATE_IDLE_II();
737 delay(ADB_DELAY);
738
739 /* copy over data */
740 memcpy(adbOutputBuffer, adbOutQueue.outBuf,
741 adbOutQueue.outBuf[0] + 2);
742
743 adbBuffer = adbOutQueue.saveBuf; /* user data area */
744 adbCompRout = adbOutQueue.compRout; /* completion routine */
745 adbCompData = adbOutQueue.data; /* comp. rout. data */
746 adbOutQueueHasData = 0; /* currently processing
747 * "queue" entry */
748 adbSentChars = 0; /* nothing sent yet */
749 adbActionState = ADB_ACTION_OUT; /* set next state */
750 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
751 ADB_SR() = adbOutputBuffer[1]; /* load byte for output */
752 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */
753 ADB_SET_STATE_CMD(); /* tell ADB that we want to send */
754 break;
755 } else {
756 #ifdef ADB_DEBUG
757 if (adb_debug)
758 printf_intr("pIDLE ");
759 #endif
760 adbActionState = ADB_ACTION_IDLE;
761 }
762 } else {
763 #ifdef ADB_DEBUG
764 if (adb_debug & 0x80)
765 printf_intr("pIN ");
766 #endif
767 adbActionState = ADB_ACTION_IN;
768 }
769 delay(ADB_DELAY);
770 (void)intr_dispatch(0x70); /* grab any serial interrupts */
771 goto switch_start;
772 break;
773 case ADB_ACTION_IDLE:
774 if (!intr_on) {
775 i = ADB_SR();
776 adbBusState = ADB_BUS_IDLE;
777 adbActionState = ADB_ACTION_IDLE;
778 ADB_SET_STATE_IDLE_II();
779 break;
780 }
781 adbInputBuffer[0] = 1;
782 adbInputBuffer[1] = ADB_SR(); /* get first byte */
783 #ifdef ADB_DEBUG
784 if (adb_debug & 0x80)
785 printf_intr("idle 0x%02x ", adbInputBuffer[1]);
786 #endif
787 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
788 adbActionState = ADB_ACTION_IN; /* set next state */
789 ADB_SET_STATE_EVEN(); /* set bus state to even */
790 adbBusState = ADB_BUS_EVEN;
791 break;
792
793 case ADB_ACTION_IN:
794 adbInputBuffer[++adbInputBuffer[0]] = ADB_SR(); /* get byte */
795 #ifdef ADB_DEBUG
796 if (adb_debug & 0x80)
797 printf_intr("in 0x%02x ",
798 adbInputBuffer[adbInputBuffer[0]]);
799 #endif
800 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
801
802 if (intr_on) { /* process last byte of packet */
803 adbInputBuffer[0]--; /* minus one */
804 /*
805 * If intr_on was true, and it's the second byte, then
806 * the byte we just discarded is really valid, so
807 * adjust the count
808 */
809 if (adbInputBuffer[0] == 2) {
810 adbInputBuffer[0]++;
811 }
812
813 #ifdef ADB_DEBUG
814 if (adb_debug & 0x80) {
815 printf_intr("done: ");
816 print_single(adbInputBuffer);
817 }
818 #endif
819
820 adbLastDevice = ADB_CMDADDR(adbInputBuffer[1]);
821
822 if (adbInputBuffer[0] == 1 && !adbWaiting) { /* SRQ!!!*/
823 #ifdef ADB_DEBUG
824 if (adb_debug & 0x80)
825 printf_intr(" xSRQ! ");
826 #endif
827 adb_guess_next_device();
828 #ifdef ADB_DEBUG
829 if (adb_debug & 0x80)
830 printf_intr("try 0x%0x ",
831 adbLastDevice);
832 #endif
833 adbOutputBuffer[0] = 1;
834 adbOutputBuffer[1] = ADBTALK(adbLastDevice, 0);
835
836 adbSentChars = 0; /* nothing sent yet */
837 adbActionState = ADB_ACTION_POLLING; /* set next state */
838 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
839 ADB_SR() = adbOutputBuffer[1]; /* load byte for output */
840 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */
841 ADB_SET_STATE_CMD(); /* tell ADB that we want to */
842 break;
843 }
844
845 /* set up data for adb_pass_up */
846 memcpy(packet.data, adbInputBuffer, adbInputBuffer[0] + 1);
847
848 if (!adbWaiting && (adbInputBuffer[0] != 0)) {
849 packet.unsol = 1;
850 packet.ack_only = 0;
851 adb_pass_up(&packet);
852 } else {
853 packet.saveBuf = adbBuffer;
854 packet.compRout = adbCompRout;
855 packet.compData = adbCompData;
856 packet.unsol = 0;
857 packet.ack_only = 0;
858 adb_pass_up(&packet);
859 }
860
861 adbWaiting = 0;
862 adbInputBuffer[0] = 0;
863 adbBuffer = (long)0;
864 adbCompRout = (long)0;
865 adbCompData = (long)0;
866 /*
867 * Since we are done, check whether there is any data
868 * waiting to do out. If so, start the sending the data.
869 */
870 if (adbOutQueueHasData == 1) {
871 #ifdef ADB_DEBUG
872 if (adb_debug & 0x80)
873 printf_intr("XXX: DOING OUT QUEUE\n");
874 #endif
875 /* copy over data */
876 memcpy(adbOutputBuffer, adbOutQueue.outBuf,
877 adbOutQueue.outBuf[0] + 2);
878 adbBuffer = adbOutQueue.saveBuf; /* user data area */
879 adbCompRout = adbOutQueue.compRout; /* completion routine */
880 adbCompData = adbOutQueue.data; /* comp. rout. data */
881 adbOutQueueHasData = 0; /* currently processing
882 * "queue" entry */
883 send = 1;
884 } else {
885 #ifdef ADB_DEBUG
886 if (adb_debug & 0x80)
887 printf_intr("XXending ");
888 #endif
889 adb_guess_next_device();
890 adbOutputBuffer[0] = 1;
891 adbOutputBuffer[1] = ((adbLastDevice & 0x0f) << 4) | 0x0c;
892 adbSentChars = 0; /* nothing sent yet */
893 adbActionState = ADB_ACTION_POLLING; /* set next state */
894 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
895 ADB_SR() = adbOutputBuffer[1]; /* load byte for output */
896 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */
897 ADB_SET_STATE_CMD(); /* tell ADB that we want to */
898 break;
899 }
900 }
901
902 /*
903 * If send is true then something above determined that
904 * the message has ended and we need to start sending out
905 * a new message immediately. This could be because there
906 * is data waiting to go out or because an SRQ was seen.
907 */
908 if (send) {
909 adbSentChars = 0; /* nothing sent yet */
910 adbActionState = ADB_ACTION_OUT; /* set next state */
911 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
912 ADB_SR() = adbOutputBuffer[1]; /* load byte for output */
913 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */
914 ADB_SET_STATE_CMD(); /* tell ADB that we want to
915 * send */
916 break;
917 }
918 /* We only get this far if the message hasn't ended yet. */
919 switch (adbBusState) { /* set to next state */
920 case ADB_BUS_EVEN:
921 ADB_SET_STATE_ODD(); /* set state to odd */
922 adbBusState = ADB_BUS_ODD;
923 break;
924
925 case ADB_BUS_ODD:
926 ADB_SET_STATE_EVEN(); /* set state to even */
927 adbBusState = ADB_BUS_EVEN;
928 break;
929 default:
930 printf_intr("strange state!!!\n"); /* huh? */
931 break;
932 }
933 break;
934
935 case ADB_ACTION_OUT:
936 i = ADB_SR(); /* clear interrupt */
937 adbSentChars++;
938 /*
939 * If the outgoing data was a TALK, we must
940 * switch to input mode to get the result.
941 */
942 if ((adbOutputBuffer[1] & 0x0c) == 0x0c) {
943 adbInputBuffer[0] = 1;
944 adbInputBuffer[1] = i;
945 adbActionState = ADB_ACTION_IN;
946 ADB_SET_SR_INPUT();
947 adbBusState = ADB_BUS_EVEN;
948 ADB_SET_STATE_EVEN();
949 #ifdef ADB_DEBUG
950 if (adb_debug & 0x80)
951 printf_intr("talk out 0x%02x ", i);
952 #endif
953 /* we want something back */
954 adbWaiting = 1;
955 break;
956 }
957 /*
958 * If it's not a TALK, check whether all data has been sent.
959 * If so, call the completion routine and clean up. If not,
960 * advance to the next state.
961 */
962 #ifdef ADB_DEBUG
963 if (adb_debug & 0x80)
964 printf_intr("non-talk out 0x%0x ", i);
965 #endif
966 ADB_SET_SR_OUTPUT();
967 if (adbOutputBuffer[0] == adbSentChars) { /* check for done */
968 #ifdef ADB_DEBUG
969 if (adb_debug & 0x80)
970 printf_intr("done \n");
971 #endif
972 /* set up stuff for adb_pass_up */
973 memcpy(packet.data, adbOutputBuffer, adbOutputBuffer[0] + 1);
974 packet.saveBuf = adbBuffer;
975 packet.compRout = adbCompRout;
976 packet.compData = adbCompData;
977 packet.cmd = adbWaitingCmd;
978 packet.unsol = 0;
979 packet.ack_only = 1;
980 adb_pass_up(&packet);
981
982 /* reset "waiting" vars, just in case */
983 adbBuffer = (long)0;
984 adbCompRout = (long)0;
985 adbCompData = (long)0;
986 if (adbOutQueueHasData == 1) {
987 /* copy over data */
988 memcpy(adbOutputBuffer, adbOutQueue.outBuf,
989 adbOutQueue.outBuf[0] + 2);
990 adbBuffer = adbOutQueue.saveBuf; /* user data area */
991 adbCompRout = adbOutQueue.compRout; /* completion routine */
992 adbCompData = adbOutQueue.data; /* comp. rout. data */
993 adbOutQueueHasData = 0; /* currently processing
994 * "queue" entry */
995 adbSentChars = 0; /* nothing sent yet */
996 adbActionState = ADB_ACTION_OUT; /* set next state */
997 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
998 ADB_SR() = adbOutputBuffer[1]; /* load byte for output */
999 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */
1000 ADB_SET_STATE_CMD(); /* tell ADB that we want to
1001 * send */
1002 break;
1003 } else {
1004 /* send talk to last device instead */
1005 adbOutputBuffer[0] = 1;
1006 adbOutputBuffer[1] =
1007 ADBTALK(ADB_CMDADDR(adbOutputBuffer[1]), 0);
1008
1009 adbSentChars = 0; /* nothing sent yet */
1010 adbActionState = ADB_ACTION_IDLE; /* set next state */
1011 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
1012 ADB_SR() = adbOutputBuffer[1]; /* load byte for output */
1013 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */
1014 ADB_SET_STATE_CMD(); /* tell ADB that we want to */
1015 break;
1016 }
1017 }
1018 ADB_SR() = adbOutputBuffer[adbSentChars + 1];
1019 switch (adbBusState) { /* advance to next state */
1020 case ADB_BUS_EVEN:
1021 ADB_SET_STATE_ODD(); /* set state to odd */
1022 adbBusState = ADB_BUS_ODD;
1023 break;
1024
1025 case ADB_BUS_CMD:
1026 case ADB_BUS_ODD:
1027 ADB_SET_STATE_EVEN(); /* set state to even */
1028 adbBusState = ADB_BUS_EVEN;
1029 break;
1030
1031 default:
1032 #ifdef ADB_DEBUG
1033 if (adb_debug) {
1034 printf_intr("strange state!!! (0x%x)\n",
1035 adbBusState);
1036 }
1037 #endif
1038 break;
1039 }
1040 break;
1041
1042 default:
1043 #ifdef ADB_DEBUG
1044 if (adb_debug)
1045 printf_intr("adb: unknown ADB state (during intr)\n");
1046 #endif
1047 break;
1048 }
1049
1050 ADB_VIA_INTR_ENABLE(); /* enable ADB interrupt on IIs. */
1051
1052 splx(s); /* restore */
1053
1054 return;
1055
1056 }
1057
1058
1059 /*
1060 * send_adb version for II series machines
1061 */
1062 int
1063 send_adb_II(u_char *in, u_char *buffer, void *compRout, void *data, int command)
1064 {
1065 int s, len;
1066
1067 if (adbActionState == ADB_ACTION_NOTREADY) /* return if ADB not
1068 * available */
1069 return 1;
1070
1071 /* Don't interrupt while we are messing with the ADB */
1072 s = splhigh();
1073
1074 if (0 != adbOutQueueHasData) { /* right now, "has data" means "full" */
1075 splx(s); /* sorry, try again later */
1076 return 1;
1077 }
1078 if ((long)in == (long)0) { /* need to convert? */
1079 /*
1080 * Don't need to use adb_cmd_extra here because this section
1081 * will be called ONLY when it is an ADB command (no RTC or
1082 * PRAM), especially on II series!
1083 */
1084 if ((command & 0x0c) == 0x08) /* copy addl data ONLY if
1085 * doing a listen! */
1086 len = buffer[0]; /* length of additional data */
1087 else
1088 len = 0;/* no additional data */
1089
1090 adbOutQueue.outBuf[0] = 1 + len; /* command + addl. data */
1091 adbOutQueue.outBuf[1] = (u_char)command; /* load command */
1092
1093 /* copy additional output data, if any */
1094 memcpy(adbOutQueue.outBuf + 2, buffer + 1, len);
1095 } else
1096 /* if data ready, just copy over */
1097 memcpy(adbOutQueue.outBuf, in, in[0] + 2);
1098
1099 adbOutQueue.saveBuf = buffer; /* save buffer to know where to save
1100 * result */
1101 adbOutQueue.compRout = compRout; /* save completion routine
1102 * pointer */
1103 adbOutQueue.data = data;/* save completion routine data pointer */
1104
1105 if ((adbActionState == ADB_ACTION_IDLE) && /* is ADB available? */
1106 (ADB_INTR_IS_OFF)) { /* and no incoming interrupts? */
1107 /* then start command now */
1108 memcpy(adbOutputBuffer, adbOutQueue.outBuf,
1109 adbOutQueue.outBuf[0] + 2); /* copy over data */
1110
1111 adbBuffer = adbOutQueue.saveBuf; /* pointer to user data
1112 * area */
1113 adbCompRout = adbOutQueue.compRout; /* pointer to the
1114 * completion routine */
1115 adbCompData = adbOutQueue.data; /* pointer to the completion
1116 * routine data */
1117
1118 adbSentChars = 0; /* nothing sent yet */
1119 adbActionState = ADB_ACTION_OUT; /* set next state */
1120 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */
1121
1122 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
1123
1124 ADB_SR() = adbOutputBuffer[adbSentChars + 1]; /* load byte for output */
1125 ADB_SET_STATE_CMD(); /* tell ADB that we want to send */
1126 adbOutQueueHasData = 0; /* currently processing "queue" entry */
1127 } else
1128 adbOutQueueHasData = 1; /* something in the write "queue" */
1129
1130 splx(s);
1131
1132 if (0x0100 <= (s & 0x0700)) /* were VIA1 interrupts blocked? */
1133 /* poll until message done */
1134 while ((adbActionState != ADB_ACTION_IDLE) || (ADB_INTR_IS_ON)
1135 || (adbWaiting == 1))
1136 if (ADB_SR_INTR_IS_ON) { /* wait for "interrupt" */
1137 adb_intr_II(NULL); /* go process it */
1138 if (adb_polling)
1139 adb_soft_intr();
1140 }
1141
1142 return 0;
1143 }
1144
1145
1146 /*
1147 * This routine is called from the II series interrupt routine
1148 * to determine what the "next" device is that should be polled.
1149 */
1150 int
1151 adb_guess_next_device(void)
1152 {
1153 int last, i, dummy;
1154
1155 if (adbStarting) {
1156 /*
1157 * Start polling EVERY device, since we can't be sure there is
1158 * anything in the device table yet
1159 */
1160 if (adbLastDevice < 1 || adbLastDevice > 15)
1161 adbLastDevice = 1;
1162 if (++adbLastDevice > 15) /* point to next one */
1163 adbLastDevice = 1;
1164 } else {
1165 /* find the next device using the device table */
1166 if (adbLastDevice < 1 || adbLastDevice > 15) /* let's be parinoid */
1167 adbLastDevice = 2;
1168 last = 1; /* default index location */
1169
1170 for (i = 1; i < 16; i++) /* find index entry */
1171 if (ADBDevTable[i].currentAddr == adbLastDevice) { /* look for device */
1172 last = i; /* found it */
1173 break;
1174 }
1175 dummy = last; /* index to start at */
1176 for (;;) { /* find next device in index */
1177 if (++dummy > 15) /* wrap around if needed */
1178 dummy = 1;
1179 if (dummy == last) { /* didn't find any other
1180 * device! This can happen if
1181 * there are no devices on the
1182 * bus */
1183 dummy = 1;
1184 break;
1185 }
1186 /* found the next device */
1187 if (ADBDevTable[dummy].devType != 0)
1188 break;
1189 }
1190 adbLastDevice = ADBDevTable[dummy].currentAddr;
1191 }
1192 return adbLastDevice;
1193 }
1194
1195
1196 /*
1197 * Called when when an adb interrupt happens.
1198 * This routine simply transfers control over to the appropriate
1199 * code for the machine we are running on.
1200 */
1201 void
1202 adb_intr(void *arg)
1203 {
1204 switch (adbHardware) {
1205 case ADB_HW_II:
1206 adb_intr_II(arg);
1207 break;
1208
1209 case ADB_HW_IISI:
1210 adb_intr_IIsi(arg);
1211 break;
1212
1213 case ADB_HW_PB: /* Should not come through here. */
1214 break;
1215
1216 case ADB_HW_CUDA:
1217 adb_intr_cuda(arg);
1218 break;
1219
1220 case ADB_HW_IOP: /* Should not come through here. */
1221 break;
1222
1223 case ADB_HW_UNKNOWN:
1224 break;
1225 }
1226 }
1227
1228
1229 /*
1230 * called when when an adb interrupt happens
1231 *
1232 * IIsi version of adb_intr
1233 *
1234 */
1235 void
1236 adb_intr_IIsi(void *arg)
1237 {
1238 struct adbCommand packet;
1239 int i, ending;
1240 unsigned int s;
1241
1242 s = splhigh(); /* can't be too careful - might be called */
1243 /* from a routine, NOT an interrupt */
1244
1245 ADB_VIA_CLR_INTR(); /* clear interrupt */
1246
1247 ADB_VIA_INTR_DISABLE(); /* disable ADB interrupt on IIs. */
1248
1249 switch_start:
1250 switch (adbActionState) {
1251 case ADB_ACTION_IDLE:
1252 delay(ADB_DELAY); /* short delay is required before the
1253 * first byte */
1254
1255 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
1256 ADB_SET_STATE_ACTIVE(); /* signal start of data frame */
1257 adbInputBuffer[1] = ADB_SR(); /* get byte */
1258 adbInputBuffer[0] = 1;
1259 adbActionState = ADB_ACTION_IN; /* set next state */
1260
1261 ADB_SET_STATE_ACKON(); /* start ACK to ADB chip */
1262 delay(ADB_DELAY); /* delay */
1263 ADB_SET_STATE_ACKOFF(); /* end ACK to ADB chip */
1264 (void)intr_dispatch(0x70); /* grab any serial interrupts */
1265 break;
1266
1267 case ADB_ACTION_IN:
1268 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
1269 adbInputBuffer[++adbInputBuffer[0]] = ADB_SR(); /* get byte */
1270 if (ADB_INTR_IS_OFF) /* check for end of frame */
1271 ending = 1;
1272 else
1273 ending = 0;
1274
1275 ADB_SET_STATE_ACKON(); /* start ACK to ADB chip */
1276 delay(ADB_DELAY); /* delay */
1277 ADB_SET_STATE_ACKOFF(); /* end ACK to ADB chip */
1278 (void)intr_dispatch(0x70); /* grab any serial interrupts */
1279
1280 if (1 == ending) { /* end of message? */
1281 ADB_SET_STATE_INACTIVE(); /* signal end of frame */
1282 /*
1283 * This section _should_ handle all ADB and RTC/PRAM
1284 * type commands, but there may be more... Note:
1285 * commands are always at [4], even for rtc/pram
1286 * commands
1287 */
1288 /* set up data for adb_pass_up */
1289 memcpy(packet.data, adbInputBuffer, adbInputBuffer[0] + 1);
1290
1291 if ((adbWaiting == 1) && /* are we waiting AND */
1292 (adbInputBuffer[4] == adbWaitingCmd) && /* the cmd we sent AND */
1293 ((adbInputBuffer[2] == 0x00) || /* it's from the ADB
1294 * device OR */
1295 (adbInputBuffer[2] == 0x01))) { /* it's from the
1296 * PRAM/RTC device */
1297
1298 packet.saveBuf = adbBuffer;
1299 packet.compRout = adbCompRout;
1300 packet.compData = adbCompData;
1301 packet.unsol = 0;
1302 packet.ack_only = 0;
1303 adb_pass_up(&packet);
1304
1305 adbWaitingCmd = 0; /* reset "waiting" vars */
1306 adbWaiting = 0;
1307 adbBuffer = (long)0;
1308 adbCompRout = (long)0;
1309 adbCompData = (long)0;
1310 } else {
1311 packet.unsol = 1;
1312 packet.ack_only = 0;
1313 adb_pass_up(&packet);
1314 }
1315
1316 adbActionState = ADB_ACTION_IDLE;
1317 adbInputBuffer[0] = 0; /* reset length */
1318
1319 if (adbWriteDelay == 1) { /* were we waiting to
1320 * write? */
1321 adbSentChars = 0; /* nothing sent yet */
1322 adbActionState = ADB_ACTION_OUT; /* set next state */
1323
1324 delay(ADB_DELAY); /* delay */
1325 (void)intr_dispatch(0x70); /* grab any serial interrupts */
1326
1327 if (ADB_INTR_IS_ON) { /* ADB intr low during
1328 * write */
1329 ADB_SET_STATE_IDLE_IISI(); /* reset */
1330 ADB_SET_SR_INPUT(); /* make sure SR is set
1331 * to IN */
1332 adbSentChars = 0; /* must start all over */
1333 adbActionState = ADB_ACTION_IDLE; /* new state */
1334 adbInputBuffer[0] = 0;
1335 /* may be able to take this out later */
1336 delay(ADB_DELAY); /* delay */
1337 break;
1338 }
1339 ADB_SET_STATE_ACTIVE(); /* tell ADB that we want
1340 * to send */
1341 ADB_SET_STATE_ACKOFF(); /* make sure */
1342 ADB_SET_SR_OUTPUT(); /* set shift register
1343 * for OUT */
1344 ADB_SR() = adbOutputBuffer[adbSentChars + 1];
1345 ADB_SET_STATE_ACKON(); /* tell ADB byte ready
1346 * to shift */
1347 }
1348 }
1349 break;
1350
1351 case ADB_ACTION_OUT:
1352 i = ADB_SR(); /* reset SR-intr in IFR */
1353 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
1354
1355 ADB_SET_STATE_ACKOFF(); /* finish ACK */
1356 adbSentChars++;
1357 if (ADB_INTR_IS_ON) { /* ADB intr low during write */
1358 ADB_SET_STATE_IDLE_IISI(); /* reset */
1359 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
1360 adbSentChars = 0; /* must start all over */
1361 adbActionState = ADB_ACTION_IDLE; /* new state */
1362 adbInputBuffer[0] = 0;
1363 adbWriteDelay = 1; /* must retry when done with
1364 * read */
1365 delay(ADB_DELAY); /* delay */
1366 (void)intr_dispatch(0x70); /* grab any serial interrupts */
1367 goto switch_start; /* process next state right
1368 * now */
1369 break;
1370 }
1371 delay(ADB_DELAY); /* required delay */
1372 (void)intr_dispatch(0x70); /* grab any serial interrupts */
1373
1374 if (adbOutputBuffer[0] == adbSentChars) { /* check for done */
1375 if (0 == adb_cmd_result(adbOutputBuffer)) { /* do we expect data
1376 * back? */
1377 adbWaiting = 1; /* signal waiting for return */
1378 adbWaitingCmd = adbOutputBuffer[2]; /* save waiting command */
1379 } else {/* no talk, so done */
1380 /* set up stuff for adb_pass_up */
1381 memcpy(packet.data, adbInputBuffer,
1382 adbInputBuffer[0] + 1);
1383 packet.saveBuf = adbBuffer;
1384 packet.compRout = adbCompRout;
1385 packet.compData = adbCompData;
1386 packet.cmd = adbWaitingCmd;
1387 packet.unsol = 0;
1388 packet.ack_only = 1;
1389 adb_pass_up(&packet);
1390
1391 /* reset "waiting" vars, just in case */
1392 adbWaitingCmd = 0;
1393 adbBuffer = (long)0;
1394 adbCompRout = (long)0;
1395 adbCompData = (long)0;
1396 }
1397
1398 adbWriteDelay = 0; /* done writing */
1399 adbActionState = ADB_ACTION_IDLE; /* signal bus is idle */
1400 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
1401 ADB_SET_STATE_INACTIVE(); /* end of frame */
1402 } else {
1403 ADB_SR() = adbOutputBuffer[adbSentChars + 1]; /* send next byte */
1404 ADB_SET_STATE_ACKON(); /* signal byte ready to shift */
1405 }
1406 break;
1407
1408 case ADB_ACTION_NOTREADY:
1409 #ifdef ADB_DEBUG
1410 if (adb_debug)
1411 printf_intr("adb: not yet initialized\n");
1412 #endif
1413 break;
1414
1415 default:
1416 #ifdef ADB_DEBUG
1417 if (adb_debug)
1418 printf_intr("intr: unknown ADB state\n");
1419 #endif
1420 break;
1421 }
1422
1423 ADB_VIA_INTR_ENABLE(); /* enable ADB interrupt on IIs. */
1424
1425 splx(s); /* restore */
1426
1427 return;
1428 } /* end adb_intr_IIsi */
1429
1430
1431 /*****************************************************************************
1432 * if the device is currently busy, and there is no data waiting to go out, then
1433 * the data is "queued" in the outgoing buffer. If we are already waiting, then
1434 * we return.
1435 * in: if (in == 0) then the command string is built from command and buffer
1436 * if (in != 0) then in is used as the command string
1437 * buffer: additional data to be sent (used only if in == 0)
1438 * this is also where return data is stored
1439 * compRout: the completion routine that is called when then return value
1440 * is received (if a return value is expected)
1441 * data: a data pointer that can be used by the completion routine
1442 * command: an ADB command to be sent (used only if in == 0)
1443 *
1444 */
1445 int
1446 send_adb_IIsi(u_char *in, u_char *buffer, void *compRout, void *data, int
1447 command)
1448 {
1449 int s, len;
1450
1451 if (adbActionState == ADB_ACTION_NOTREADY)
1452 return 1;
1453
1454 /* Don't interrupt while we are messing with the ADB */
1455 s = splhigh();
1456
1457 if ((adbActionState == ADB_ACTION_IDLE) && /* ADB available? */
1458 (ADB_INTR_IS_OFF)) {/* and no incoming interrupt? */
1459
1460 } else
1461 if (adbWriteDelay == 0) /* it's busy, but is anything waiting? */
1462 adbWriteDelay = 1; /* if no, then we'll "queue"
1463 * it up */
1464 else {
1465 splx(s);
1466 return 1; /* really busy! */
1467 }
1468
1469 if ((long)in == (long)0) { /* need to convert? */
1470 /*
1471 * Don't need to use adb_cmd_extra here because this section
1472 * will be called ONLY when it is an ADB command (no RTC or
1473 * PRAM)
1474 */
1475 if ((command & 0x0c) == 0x08) /* copy addl data ONLY if
1476 * doing a listen! */
1477 len = buffer[0]; /* length of additional data */
1478 else
1479 len = 0;/* no additional data */
1480
1481 adbOutputBuffer[0] = 2 + len; /* dev. type + command + addl.
1482 * data */
1483 adbOutputBuffer[1] = 0x00; /* mark as an ADB command */
1484 adbOutputBuffer[2] = (u_char)command; /* load command */
1485
1486 /* copy additional output data, if any */
1487 memcpy(adbOutputBuffer + 3, buffer + 1, len);
1488 } else
1489 /* if data ready, just copy over */
1490 memcpy(adbOutputBuffer, in, in[0] + 2);
1491
1492 adbSentChars = 0; /* nothing sent yet */
1493 adbBuffer = buffer; /* save buffer to know where to save result */
1494 adbCompRout = compRout; /* save completion routine pointer */
1495 adbCompData = data; /* save completion routine data pointer */
1496 adbWaitingCmd = adbOutputBuffer[2]; /* save wait command */
1497
1498 if (adbWriteDelay != 1) { /* start command now? */
1499 adbActionState = ADB_ACTION_OUT; /* set next state */
1500
1501 ADB_SET_STATE_ACTIVE(); /* tell ADB that we want to send */
1502 ADB_SET_STATE_ACKOFF(); /* make sure */
1503
1504 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
1505
1506 ADB_SR() = adbOutputBuffer[adbSentChars + 1]; /* load byte for output */
1507
1508 ADB_SET_STATE_ACKON(); /* tell ADB byte ready to shift */
1509 }
1510 adbWriteDelay = 1; /* something in the write "queue" */
1511
1512 splx(s);
1513
1514 if (0x0100 <= (s & 0x0700)) /* were VIA1 interrupts blocked? */
1515 /* poll until byte done */
1516 while ((adbActionState != ADB_ACTION_IDLE) || (ADB_INTR_IS_ON)
1517 || (adbWaiting == 1))
1518 if (ADB_SR_INTR_IS_ON) { /* wait for "interrupt" */
1519 adb_intr_IIsi(NULL); /* go process it */
1520 if (adb_polling)
1521 adb_soft_intr();
1522 }
1523
1524 return 0;
1525 } /* send_adb_IIsi */
1526
1527 void
1528 adb_iop_recv(IOP *iop, struct iop_msg *msg)
1529 {
1530 struct adbCommand pkt;
1531 unsigned flags;
1532
1533 if (adbActionState != ADB_ACTION_RUNNING)
1534 return;
1535
1536 switch (msg->status) {
1537 case IOP_MSGSTAT_SENT:
1538 if (0 == adb_cmd_result(msg->msg + 1)) {
1539 adbWaiting = 1;
1540 adbWaitingCmd = msg->msg[2];
1541 }
1542 break;
1543 case IOP_MSGSTAT_RECEIVED:
1544 case IOP_MSGSTAT_UNEXPECTED:
1545 flags = msg->msg[0];
1546 if (flags != 0) {
1547 printf("ADB FLAGS 0x%x", flags);
1548 break;
1549 }
1550 if (adbWaiting &&
1551 (msg->msg[2] == adbWaitingCmd)) {
1552 pkt.saveBuf = msg->msg + 1;
1553 pkt.compRout = adbCompRout;
1554 pkt.compData = adbCompData;
1555 pkt.unsol = 0;
1556 pkt.ack_only = 0;
1557 adb_pass_up(&pkt);
1558
1559 adbWaitingCmd = 0;
1560 adbWaiting = 0;
1561 } else {
1562 pkt.unsol = 1;
1563 pkt.ack_only = 0;
1564 adb_pass_up(&pkt);
1565 }
1566 break;
1567 default:
1568 return;
1569 }
1570 }
1571
1572 int
1573 send_adb_iop(int cmd, u_char * buffer, void *compRout, void *data)
1574 {
1575 u_char buff[32];
1576 int cnt;
1577
1578 if (adbActionState != ADB_ACTION_RUNNING)
1579 return -1;
1580
1581 buff[0] = IOP_ADB_FL_EXPLICIT;
1582 buff[1] = buffer[0];
1583 buff[2] = cmd;
1584 cnt = (int) buff[1];
1585 memcpy(buff + 3, buffer + 1, cnt);
1586 return iop_send_msg(ISM_IOP, IOP_CHAN_ADB, buff, cnt+3,
1587 adb_iop_recv, NULL);
1588 }
1589
1590 /*
1591 * adb_pass_up is called by the interrupt-time routines.
1592 * It takes the raw packet data that was received from the
1593 * device and puts it into the queue that the upper half
1594 * processes. It then signals for a soft ADB interrupt which
1595 * will eventually call the upper half routine (adb_soft_intr).
1596 *
1597 * If in->unsol is 0, then this is either the notification
1598 * that the packet was sent (on a LISTEN, for example), or the
1599 * response from the device (on a TALK). The completion routine
1600 * is called only if the user specified one.
1601 *
1602 * If in->unsol is 1, then this packet was unsolicited and
1603 * so we look up the device in the ADB device table to determine
1604 * what it's default service routine is.
1605 *
1606 * If in->ack_only is 1, then we really only need to call
1607 * the completion routine, so don't do any other stuff.
1608 *
1609 * Note that in->data contains the packet header AND data,
1610 * while adbInbound[]->data contains ONLY data.
1611 *
1612 * Note: Called only at interrupt time. Assumes this.
1613 */
1614 void
1615 adb_pass_up(struct adbCommand *in)
1616 {
1617 int start = 0, len = 0, cmd = 0;
1618 ADBDataBlock block;
1619
1620 /* temp for testing */
1621 /*u_char *buffer = 0;*/
1622 /*u_char *compdata = 0;*/
1623 /*u_char *comprout = 0;*/
1624
1625 if (adbInCount >= ADB_QUEUE) {
1626 #ifdef ADB_DEBUG
1627 if (adb_debug)
1628 printf_intr("adb: ring buffer overflow\n");
1629 #endif
1630 return;
1631 }
1632
1633 if (in->ack_only) {
1634 len = in->data[0];
1635 cmd = in->cmd;
1636 start = 0;
1637 } else {
1638 switch (adbHardware) {
1639 case ADB_HW_IOP:
1640 case ADB_HW_II:
1641 cmd = in->data[1];
1642 if (in->data[0] < 2)
1643 len = 0;
1644 else
1645 len = in->data[0]-1;
1646 start = 1;
1647 break;
1648
1649 case ADB_HW_IISI:
1650 case ADB_HW_CUDA:
1651 /* If it's unsolicited, accept only ADB data for now */
1652 if (in->unsol)
1653 if (0 != in->data[2])
1654 return;
1655 cmd = in->data[4];
1656 if (in->data[0] < 5)
1657 len = 0;
1658 else
1659 len = in->data[0]-4;
1660 start = 4;
1661 break;
1662
1663 case ADB_HW_PB:
1664 cmd = in->data[1];
1665 if (in->data[0] < 2)
1666 len = 0;
1667 else
1668 len = in->data[0]-1;
1669 start = 1;
1670 break;
1671
1672 case ADB_HW_UNKNOWN:
1673 return;
1674 }
1675
1676 /* Make sure there is a valid device entry for this device */
1677 if (in->unsol) {
1678 /* ignore unsolicited data during adbreinit */
1679 if (adbStarting)
1680 return;
1681 /* get device's comp. routine and data area */
1682 if (-1 == get_adb_info(&block, ADB_CMDADDR(cmd)))
1683 return;
1684 }
1685 }
1686
1687 /*
1688 * If this is an unsolicited packet, we need to fill in
1689 * some info so adb_soft_intr can process this packet
1690 * properly. If it's not unsolicited, then use what
1691 * the caller sent us.
1692 */
1693 if (in->unsol) {
1694 adbInbound[adbInTail].compRout = (void *)block.dbServiceRtPtr;
1695 adbInbound[adbInTail].compData = (void *)block.dbDataAreaAddr;
1696 adbInbound[adbInTail].saveBuf = (void *)adbInbound[adbInTail].data;
1697 } else {
1698 adbInbound[adbInTail].compRout = (void *)in->compRout;
1699 adbInbound[adbInTail].compData = (void *)in->compData;
1700 adbInbound[adbInTail].saveBuf = (void *)in->saveBuf;
1701 }
1702
1703 #ifdef ADB_DEBUG
1704 if (adb_debug && in->data[1] == 2)
1705 printf_intr("adb: caught error\n");
1706 #endif
1707
1708 /* copy the packet data over */
1709 /*
1710 * TO DO: If the *_intr routines fed their incoming data
1711 * directly into an adbCommand struct, which is passed to
1712 * this routine, then we could eliminate this copy.
1713 */
1714 memcpy(adbInbound[adbInTail].data + 1, in->data + start + 1, len);
1715 adbInbound[adbInTail].data[0] = len;
1716 adbInbound[adbInTail].cmd = cmd;
1717
1718 adbInCount++;
1719 if (++adbInTail >= ADB_QUEUE)
1720 adbInTail = 0;
1721
1722 /*
1723 * If the debugger is running, call upper half manually.
1724 * Otherwise, trigger a soft interrupt to handle the rest later.
1725 */
1726 if (adb_polling)
1727 adb_soft_intr();
1728 else
1729 setsoftadb();
1730
1731 return;
1732 }
1733
1734
1735 /*
1736 * Called to process the packets after they have been
1737 * placed in the incoming queue.
1738 *
1739 */
1740 void
1741 adb_soft_intr(void)
1742 {
1743 int s;
1744 int cmd = 0;
1745 u_char *buffer = 0;
1746 u_char *comprout = 0;
1747 u_char *compdata = 0;
1748
1749 #if 0
1750 s = splhigh();
1751 printf_intr("sr: %x\n", (s & 0x0700));
1752 splx(s);
1753 #endif
1754
1755 /*delay(2*ADB_DELAY);*/
1756
1757 while (adbInCount) {
1758 #ifdef ADB_DEBUG
1759 if (adb_debug & 0x80)
1760 printf_intr("%x %x %x ",
1761 adbInCount, adbInHead, adbInTail);
1762 #endif
1763 /* get the data we need from the queue */
1764 buffer = adbInbound[adbInHead].saveBuf;
1765 comprout = adbInbound[adbInHead].compRout;
1766 compdata = adbInbound[adbInHead].compData;
1767 cmd = adbInbound[adbInHead].cmd;
1768
1769 /* copy over data to data area if it's valid */
1770 /*
1771 * Note that for unsol packets we don't want to copy the
1772 * data anywhere, so buffer was already set to 0.
1773 * For ack_only buffer was set to 0, so don't copy.
1774 */
1775 if (buffer)
1776 memcpy(buffer, adbInbound[adbInHead].data,
1777 adbInbound[adbInHead].data[0] + 1);
1778
1779 #ifdef ADB_DEBUG
1780 if (adb_debug & 0x80) {
1781 printf_intr("%p %p %p %x ",
1782 buffer, comprout, compdata, (short)cmd);
1783 printf_intr("buf: ");
1784 print_single(adbInbound[adbInHead].data);
1785 }
1786 #endif
1787
1788 /* call default completion routine if it's valid */
1789 if (comprout) {
1790 #ifdef __NetBSD__
1791 __asm volatile (
1792 " movml #0xffff,%%sp@- \n" /* save all regs */
1793 " movl %0,%%a2 \n" /* compdata */
1794 " movl %1,%%a1 \n" /* comprout */
1795 " movl %2,%%a0 \n" /* buffer */
1796 " movl %3,%%d0 \n" /* cmd */
1797 " jbsr %%a1@ \n" /* go call routine */
1798 " movml %%sp@+,#0xffff" /* restore all regs */
1799 :
1800 : "g"(compdata), "g"(comprout),
1801 "g"(buffer), "g"(cmd)
1802 : "d0", "a0", "a1", "a2");
1803 #else /* for macos based testing */
1804 asm
1805 {
1806 movem.l a0/a1/a2/d0, -(a7)
1807 move.l compdata, a2
1808 move.l comprout, a1
1809 move.l buffer, a0
1810 move.w cmd, d0
1811 jsr(a1)
1812 movem.l(a7)+, d0/a2/a1/a0
1813 }
1814 #endif
1815 }
1816
1817 s = splhigh();
1818 adbInCount--;
1819 if (++adbInHead >= ADB_QUEUE)
1820 adbInHead = 0;
1821 splx(s);
1822
1823 }
1824 return;
1825 }
1826
1827
1828 /*
1829 * This is my version of the ADBOp routine. It mainly just calls the
1830 * hardware-specific routine.
1831 *
1832 * data : pointer to data area to be used by compRout
1833 * compRout : completion routine
1834 * buffer : for LISTEN: points to data to send - MAX 8 data bytes,
1835 * byte 0 = # of bytes
1836 * : for TALK: points to place to save return data
1837 * command : the adb command to send
1838 * result : 0 = success
1839 * : -1 = could not complete
1840 */
1841 int
1842 adb_op(Ptr buffer, Ptr compRout, Ptr data, short command)
1843 {
1844 int result;
1845
1846 switch (adbHardware) {
1847 case ADB_HW_II:
1848 result = send_adb_II((u_char *)0, (u_char *)buffer,
1849 (void *)compRout, (void *)data, (int)command);
1850 if (result == 0)
1851 return 0;
1852 else
1853 return -1;
1854 break;
1855
1856 case ADB_HW_IOP:
1857 #ifdef __notyet__
1858 result = send_adb_iop((int)command, (u_char *)buffer,
1859 (void *)compRout, (void *)data);
1860 if (result == 0)
1861 return 0;
1862 else
1863 #endif
1864 return -1;
1865 break;
1866
1867 case ADB_HW_IISI:
1868 result = send_adb_IIsi((u_char *)0, (u_char *)buffer,
1869 (void *)compRout, (void *)data, (int)command);
1870 /*
1871 * I wish I knew why this delay is needed. It usually needs to
1872 * be here when several commands are sent in close succession,
1873 * especially early in device probes when doing collision
1874 * detection. It must be some race condition. Sigh. - jpw
1875 */
1876 delay(100);
1877 if (result == 0)
1878 return 0;
1879 else
1880 return -1;
1881 break;
1882
1883 case ADB_HW_PB:
1884 result = pm_adb_op((u_char *)buffer, (void *)compRout,
1885 (void *)data, (int)command);
1886
1887 if (result == 0)
1888 return 0;
1889 else
1890 return -1;
1891 break;
1892
1893 case ADB_HW_CUDA:
1894 result = send_adb_cuda((u_char *)0, (u_char *)buffer,
1895 (void *)compRout, (void *)data, (int)command);
1896 if (result == 0)
1897 return 0;
1898 else
1899 return -1;
1900 break;
1901
1902 case ADB_HW_UNKNOWN:
1903 default:
1904 return -1;
1905 }
1906 }
1907
1908
1909 /*
1910 * adb_hw_setup
1911 * This routine sets up the possible machine specific hardware
1912 * config (mainly VIA settings) for the various models.
1913 */
1914 void
1915 adb_hw_setup(void)
1916 {
1917 volatile int i;
1918 u_char send_string[ADB_MAX_MSG_LENGTH];
1919
1920 switch (adbHardware) {
1921 case ADB_HW_II:
1922 via1_register_irq(2, adb_intr_II, NULL);
1923
1924 via_reg(VIA1, vDirB) |= 0x30; /* register B bits 4 and 5:
1925 * outputs */
1926 via_reg(VIA1, vDirB) &= 0xf7; /* register B bit 3: input */
1927 via_reg(VIA1, vACR) &= ~vSR_OUT; /* make sure SR is set
1928 * to IN (II, IIsi) */
1929 adbActionState = ADB_ACTION_IDLE; /* used by all types of
1930 * hardware (II, IIsi) */
1931 adbBusState = ADB_BUS_IDLE; /* this var. used in II-series
1932 * code only */
1933 via_reg(VIA1, vIER) = 0x84; /* make sure VIA interrupts
1934 * are on (II, IIsi) */
1935 ADB_SET_STATE_IDLE_II(); /* set ADB bus state to idle */
1936
1937 ADB_VIA_CLR_INTR(); /* clear interrupt */
1938 break;
1939
1940 case ADB_HW_IOP:
1941 via_reg(VIA1, vIER) = 0x84;
1942 via_reg(VIA1, vIFR) = 0x04;
1943 #ifdef __notyet__
1944 adbActionState = ADB_ACTION_RUNNING;
1945 #endif
1946 break;
1947
1948 case ADB_HW_IISI:
1949 via1_register_irq(2, adb_intr_IIsi, NULL);
1950 via_reg(VIA1, vDirB) |= 0x30; /* register B bits 4 and 5:
1951 * outputs */
1952 via_reg(VIA1, vDirB) &= 0xf7; /* register B bit 3: input */
1953 via_reg(VIA1, vACR) &= ~vSR_OUT; /* make sure SR is set
1954 * to IN (II, IIsi) */
1955 adbActionState = ADB_ACTION_IDLE; /* used by all types of
1956 * hardware (II, IIsi) */
1957 adbBusState = ADB_BUS_IDLE; /* this var. used in II-series
1958 * code only */
1959 via_reg(VIA1, vIER) = 0x84; /* make sure VIA interrupts
1960 * are on (II, IIsi) */
1961 ADB_SET_STATE_IDLE_IISI(); /* set ADB bus state to idle */
1962
1963 /* get those pesky clock ticks we missed while booting */
1964 for (i = 0; i < 30; i++) {
1965 delay(ADB_DELAY);
1966 adb_hw_setup_IIsi(send_string);
1967 #ifdef ADB_DEBUG
1968 if (adb_debug) {
1969 printf_intr("adb: cleanup: ");
1970 print_single(send_string);
1971 }
1972 #endif
1973 delay(ADB_DELAY);
1974 if (ADB_INTR_IS_OFF)
1975 break;
1976 }
1977 break;
1978
1979 case ADB_HW_PB:
1980 /*
1981 * XXX - really PM_VIA_CLR_INTR - should we put it in
1982 * pm_direct.h?
1983 */
1984 pm_hw_setup();
1985 break;
1986
1987 case ADB_HW_CUDA:
1988 via1_register_irq(2, adb_intr_cuda, NULL);
1989 via_reg(VIA1, vDirB) |= 0x30; /* register B bits 4 and 5:
1990 * outputs */
1991 via_reg(VIA1, vDirB) &= 0xf7; /* register B bit 3: input */
1992 via_reg(VIA1, vACR) &= ~vSR_OUT; /* make sure SR is set
1993 * to IN */
1994 via_reg(VIA1, vACR) = (via_reg(VIA1, vACR) | 0x0c) & ~0x10;
1995 adbActionState = ADB_ACTION_IDLE; /* used by all types of
1996 * hardware */
1997 adbBusState = ADB_BUS_IDLE; /* this var. used in II-series
1998 * code only */
1999 via_reg(VIA1, vIER) = 0x84; /* make sure VIA interrupts
2000 * are on */
2001 ADB_SET_STATE_IDLE_CUDA(); /* set ADB bus state to idle */
2002
2003 /* sort of a device reset */
2004 i = ADB_SR(); /* clear interrupt */
2005 ADB_VIA_INTR_DISABLE(); /* no interrupts while clearing */
2006 ADB_SET_STATE_IDLE_CUDA(); /* reset state to idle */
2007 delay(ADB_DELAY);
2008 ADB_SET_STATE_TIP(); /* signal start of frame */
2009 delay(ADB_DELAY);
2010 ADB_TOGGLE_STATE_ACK_CUDA();
2011 delay(ADB_DELAY);
2012 ADB_CLR_STATE_TIP();
2013 delay(ADB_DELAY);
2014 ADB_SET_STATE_IDLE_CUDA(); /* back to idle state */
2015 i = ADB_SR(); /* clear interrupt */
2016 ADB_VIA_INTR_ENABLE(); /* ints ok now */
2017 break;
2018
2019 case ADB_HW_UNKNOWN:
2020 default:
2021 via_reg(VIA1, vIER) = 0x04; /* turn interrupts off - TO
2022 * DO: turn PB ints off? */
2023 return;
2024 break;
2025 }
2026 }
2027
2028
2029 /*
2030 * adb_hw_setup_IIsi
2031 * This is sort of a "read" routine that forces the adb hardware through a read cycle
2032 * if there is something waiting. This helps "clean up" any commands that may have gotten
2033 * stuck or stopped during the boot process.
2034 *
2035 */
2036 void
2037 adb_hw_setup_IIsi(u_char *buffer)
2038 {
2039 int i;
2040 int dummy;
2041 int s;
2042 long my_time;
2043 int endofframe;
2044
2045 delay(ADB_DELAY);
2046
2047 i = 1; /* skip over [0] */
2048 s = splhigh(); /* block ALL interrupts while we are working */
2049 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
2050 ADB_VIA_INTR_DISABLE(); /* disable ADB interrupt on IIs. */
2051 /* this is required, especially on faster machines */
2052 delay(ADB_DELAY);
2053
2054 if (ADB_INTR_IS_ON) {
2055 ADB_SET_STATE_ACTIVE(); /* signal start of data frame */
2056
2057 endofframe = 0;
2058 while (0 == endofframe) {
2059 /*
2060 * Poll for ADB interrupt and watch for timeout.
2061 * If time out, keep going in hopes of not hanging
2062 * the ADB chip - I think
2063 */
2064 my_time = ADB_DELAY * 5;
2065 while ((ADB_SR_INTR_IS_OFF) && (my_time-- > 0))
2066 dummy = via_reg(VIA1, vBufB);
2067
2068 buffer[i++] = ADB_SR(); /* reset interrupt flag by
2069 * reading vSR */
2070 /*
2071 * Perhaps put in a check here that ignores all data
2072 * after the first ADB_MAX_MSG_LENGTH bytes ???
2073 */
2074 if (ADB_INTR_IS_OFF) /* check for end of frame */
2075 endofframe = 1;
2076
2077 ADB_SET_STATE_ACKON(); /* send ACK to ADB chip */
2078 delay(ADB_DELAY); /* delay */
2079 ADB_SET_STATE_ACKOFF(); /* send ACK to ADB chip */
2080 }
2081 ADB_SET_STATE_INACTIVE(); /* signal end of frame and
2082 * delay */
2083
2084 /* probably don't need to delay this long */
2085 delay(ADB_DELAY);
2086 }
2087 buffer[0] = --i; /* [0] is length of message */
2088 ADB_VIA_INTR_ENABLE(); /* enable ADB interrupt on IIs. */
2089 splx(s); /* restore interrupts */
2090
2091 return;
2092 } /* adb_hw_setup_IIsi */
2093
2094
2095
2096 /*
2097 * adb_reinit sets up the adb stuff
2098 *
2099 */
2100 void
2101 adb_reinit(void)
2102 {
2103 u_char send_string[ADB_MAX_MSG_LENGTH];
2104 ADBDataBlock data; /* temp. holder for getting device info */
2105 volatile int i, x;
2106 int s;
2107 int command;
2108 int result;
2109 int saveptr; /* point to next free relocation address */
2110 int device;
2111 int nonewtimes; /* times thru loop w/o any new devices */
2112
2113 adb_setup_hw_type(); /* setup hardware type */
2114
2115 /* Make sure we are not interrupted while building the table. */
2116 /* ints must be on for PB & IOP (at least, for now) */
2117 if (adbHardware != ADB_HW_PB && adbHardware != ADB_HW_IOP)
2118 s = splhigh();
2119 else
2120 s = 0; /* XXX shut the compiler up*/
2121
2122 ADBNumDevices = 0; /* no devices yet */
2123
2124 /* Let intr routines know we are running reinit */
2125 adbStarting = 1;
2126
2127 /*
2128 * Initialize the ADB table. For now, we'll always use the same table
2129 * that is defined at the beginning of this file - no mallocs.
2130 */
2131 for (i = 0; i < 16; i++) {
2132 ADBDevTable[i].devType = 0;
2133 ADBDevTable[i].origAddr = ADBDevTable[i].currentAddr = 0;
2134 }
2135
2136 adb_hw_setup(); /* init the VIA bits and hard reset ADB */
2137
2138 delay(1000);
2139
2140 /* send an ADB reset first */
2141 (void)adb_op_sync((Ptr)0, (Ptr)0, (Ptr)0, (short)0x00);
2142 delay(3000);
2143
2144 /*
2145 * Probe for ADB devices. Probe devices 1-15 quickly to determine
2146 * which device addresses are in use and which are free. For each
2147 * address that is in use, move the device at that address to a higher
2148 * free address. Continue doing this at that address until no device
2149 * responds at that address. Then move the last device that was moved
2150 * back to the original address. Do this for the remaining addresses
2151 * that we determined were in use.
2152 *
2153 * When finished, do this entire process over again with the updated
2154 * list of in use addresses. Do this until no new devices have been
2155 * found in 20 passes though the in use address list. (This probably
2156 * seems long and complicated, but it's the best way to detect multiple
2157 * devices at the same address - sometimes it takes a couple of tries
2158 * before the collision is detected.)
2159 */
2160
2161 /* initial scan through the devices */
2162 for (i = 1; i < 16; i++) {
2163 command = ADBTALK(i, 3);
2164 result = adb_op_sync((Ptr)send_string, (Ptr)0,
2165 (Ptr)0, (short)command);
2166
2167 if (result == 0 && send_string[0] != 0) {
2168 /* found a device */
2169 ++ADBNumDevices;
2170 KASSERT(ADBNumDevices < 16);
2171 ADBDevTable[ADBNumDevices].devType =
2172 (int)(send_string[2]);
2173 ADBDevTable[ADBNumDevices].origAddr = i;
2174 ADBDevTable[ADBNumDevices].currentAddr = i;
2175 ADBDevTable[ADBNumDevices].DataAreaAddr =
2176 (long)0;
2177 ADBDevTable[ADBNumDevices].ServiceRtPtr = (void *)0;
2178 pm_check_adb_devices(i); /* tell pm driver device
2179 * is here */
2180 }
2181 }
2182
2183 /* find highest unused address */
2184 for (saveptr = 15; saveptr > 0; saveptr--)
2185 if (-1 == get_adb_info(&data, saveptr))
2186 break;
2187
2188 #ifdef ADB_DEBUG
2189 if (adb_debug & 0x80) {
2190 printf_intr("first free is: 0x%02x\n", saveptr);
2191 printf_intr("devices: %i\n", ADBNumDevices);
2192 }
2193 #endif
2194
2195 nonewtimes = 0; /* no loops w/o new devices */
2196 while (saveptr > 0 && nonewtimes++ < 11) {
2197 for (i = 1;saveptr > 0 && i <= ADBNumDevices; i++) {
2198 device = ADBDevTable[i].currentAddr;
2199 #ifdef ADB_DEBUG
2200 if (adb_debug & 0x80)
2201 printf_intr("moving device 0x%02x to 0x%02x "
2202 "(index 0x%02x) ", device, saveptr, i);
2203 #endif
2204
2205 /* send TALK R3 to address */
2206 command = ADBTALK(device, 3);
2207 (void)adb_op_sync((Ptr)send_string, (Ptr)0,
2208 (Ptr)0, (short)command);
2209
2210 /* move device to higher address */
2211 command = ADBLISTEN(device, 3);
2212 send_string[0] = 2;
2213 send_string[1] = (u_char)(saveptr | 0x60);
2214 send_string[2] = 0xfe;
2215 (void)adb_op_sync((Ptr)send_string, (Ptr)0,
2216 (Ptr)0, (short)command);
2217 delay(1000);
2218
2219 /* send TALK R3 - anthing at new address? */
2220 command = ADBTALK(saveptr, 3);
2221 send_string[0] = 0;
2222 result = adb_op_sync((Ptr)send_string, (Ptr)0,
2223 (Ptr)0, (short)command);
2224 delay(1000);
2225
2226 if (result != 0 || send_string[0] == 0) {
2227 /*
2228 * maybe there's a communication breakdown;
2229 * just in case, move it back from whence it
2230 * came, and we'll try again later
2231 */
2232 command = ADBLISTEN(saveptr, 3);
2233 send_string[0] = 2;
2234 send_string[1] = (u_char)(device | 0x60);
2235 send_string[2] = 0x00;
2236 (void)adb_op_sync((Ptr)send_string, (Ptr)0,
2237 (Ptr)0, (short)command);
2238 #ifdef ADB_DEBUG
2239 if (adb_debug & 0x80)
2240 printf_intr("failed, continuing\n");
2241 #endif
2242 delay(1000);
2243 continue;
2244 }
2245
2246 /* send TALK R3 - anything at old address? */
2247 command = ADBTALK(device, 3);
2248 send_string[0] = 0;
2249 result = adb_op_sync((Ptr)send_string, (Ptr)0,
2250 (Ptr)0, (short)command);
2251 if (result == 0 && send_string[0] != 0) {
2252 /* new device found */
2253 /* update data for previously moved device */
2254 ADBDevTable[i].currentAddr = saveptr;
2255 #ifdef ADB_DEBUG
2256 if (adb_debug & 0x80)
2257 printf_intr("old device at index %i\n",i);
2258 #endif
2259 /* add new device in table */
2260 #ifdef ADB_DEBUG
2261 if (adb_debug & 0x80)
2262 printf_intr("new device found\n");
2263 #endif
2264 if (saveptr > ADBNumDevices) {
2265 ++ADBNumDevices;
2266 KASSERT(ADBNumDevices < 16);
2267 }
2268 ADBDevTable[ADBNumDevices].devType =
2269 (int)(send_string[2]);
2270 ADBDevTable[ADBNumDevices].origAddr = device;
2271 ADBDevTable[ADBNumDevices].currentAddr = device;
2272 /* These will be set correctly in adbsys.c */
2273 /* Until then, unsol. data will be ignored. */
2274 ADBDevTable[ADBNumDevices].DataAreaAddr =
2275 (long)0;
2276 ADBDevTable[ADBNumDevices].ServiceRtPtr =
2277 (void *)0;
2278 /* find next unused address */
2279 for (x = saveptr; x > 0; x--) {
2280 if (-1 == get_adb_info(&data, x)) {
2281 saveptr = x;
2282 break;
2283 }
2284 }
2285 if (x == 0)
2286 saveptr = 0;
2287 #ifdef ADB_DEBUG
2288 if (adb_debug & 0x80)
2289 printf_intr("new free is 0x%02x\n",
2290 saveptr);
2291 #endif
2292 nonewtimes = 0;
2293 /* tell pm driver device is here */
2294 pm_check_adb_devices(device);
2295 } else {
2296 #ifdef ADB_DEBUG
2297 if (adb_debug & 0x80)
2298 printf_intr("moving back...\n");
2299 #endif
2300 /* move old device back */
2301 command = ADBLISTEN(saveptr, 3);
2302 send_string[0] = 2;
2303 send_string[1] = (u_char)(device | 0x60);
2304 send_string[2] = 0xfe;
2305 (void)adb_op_sync((Ptr)send_string, (Ptr)0,
2306 (Ptr)0, (short)command);
2307 delay(1000);
2308 }
2309 }
2310 }
2311
2312 #ifdef ADB_DEBUG
2313 if (adb_debug) {
2314 for (i = 1; i <= ADBNumDevices; i++) {
2315 x = get_ind_adb_info(&data, i);
2316 if (x != -1)
2317 printf_intr("index 0x%x, addr 0x%x, type 0x%hx\n",
2318 i, x, data.devType);
2319 }
2320 }
2321 #endif
2322
2323 #ifndef MRG_ADB
2324 /* enable the programmer's switch, if we have one */
2325 adb_prog_switch_enable();
2326 #endif
2327
2328 #ifdef ADB_DEBUG
2329 if (adb_debug) {
2330 if (0 == ADBNumDevices) /* tell user if no devices found */
2331 printf_intr("adb: no devices found\n");
2332 }
2333 #endif
2334
2335 adbStarting = 0; /* not starting anymore */
2336 #ifdef ADB_DEBUG
2337 if (adb_debug)
2338 printf_intr("adb: ADBReInit complete\n");
2339 #endif
2340
2341 if (adbHardware == ADB_HW_CUDA)
2342 callout_reset(&adb_cuda_tickle_ch, ADB_TICKLE_TICKS,
2343 (void *)adb_cuda_tickle, NULL);
2344
2345 /* ints must be on for PB & IOP (at least, for now) */
2346 if (adbHardware != ADB_HW_PB && adbHardware != ADB_HW_IOP)
2347 splx(s);
2348
2349 return;
2350 }
2351
2352
2353 /*
2354 * adb_comp_exec
2355 * This is a general routine that calls the completion routine if there is one.
2356 * NOTE: This routine is now only used by pm_direct.c
2357 * All the code in this file (adb_direct.c) uses
2358 * the adb_pass_up routine now.
2359 */
2360 void
2361 adb_comp_exec(void)
2362 {
2363 if ((long)0 != adbCompRout) /* don't call if empty return location */
2364 #ifdef __NetBSD__
2365 __asm volatile(
2366 " movml #0xffff,%%sp@- \n" /* save all registers */
2367 " movl %0,%%a2 \n" /* adbCompData */
2368 " movl %1,%%a1 \n" /* adbCompRout */
2369 " movl %2,%%a0 \n" /* adbBuffer */
2370 " movl %3,%%d0 \n" /* adbWaitingCmd */
2371 " jbsr %%a1@ \n" /* go call the routine */
2372 " movml %%sp@+,#0xffff" /* restore all registers */
2373 :
2374 : "g"(adbCompData), "g"(adbCompRout),
2375 "g"(adbBuffer), "g"(adbWaitingCmd)
2376 : "d0", "a0", "a1", "a2");
2377 #else /* for Mac OS-based testing */
2378 asm {
2379 movem.l a0/a1/a2/d0, -(a7)
2380 move.l adbCompData, a2
2381 move.l adbCompRout, a1
2382 move.l adbBuffer, a0
2383 move.w adbWaitingCmd, d0
2384 jsr(a1)
2385 movem.l(a7) +, d0/a2/a1/a0
2386 }
2387 #endif
2388 }
2389
2390
2391 /*
2392 * adb_cmd_result
2393 *
2394 * This routine lets the caller know whether the specified adb command string
2395 * should expect a returned result, such as a TALK command.
2396 *
2397 * returns: 0 if a result should be expected
2398 * 1 if a result should NOT be expected
2399 */
2400 int
2401 adb_cmd_result(u_char *in)
2402 {
2403 switch (adbHardware) {
2404 case ADB_HW_IOP:
2405 case ADB_HW_II:
2406 /* was it an ADB talk command? */
2407 if ((in[1] & 0x0c) == 0x0c)
2408 return 0;
2409 return 1;
2410
2411 case ADB_HW_IISI:
2412 case ADB_HW_CUDA:
2413 /* was it an ADB talk command? */
2414 if ((in[1] == 0x00) && ((in[2] & 0x0c) == 0x0c))
2415 return 0;
2416 /* was it an RTC/PRAM read date/time? */
2417 if ((in[1] == 0x01) && (in[2] == 0x03))
2418 return 0;
2419 return 1;
2420
2421 case ADB_HW_PB:
2422 return 1;
2423
2424 case ADB_HW_UNKNOWN:
2425 default:
2426 return 1;
2427 }
2428 }
2429
2430
2431 /*
2432 * adb_cmd_extra
2433 *
2434 * This routine lets the caller know whether the specified adb command string
2435 * may have extra data appended to the end of it, such as a LISTEN command.
2436 *
2437 * returns: 0 if extra data is allowed
2438 * 1 if extra data is NOT allowed
2439 */
2440 int
2441 adb_cmd_extra(u_char *in)
2442 {
2443 switch (adbHardware) {
2444 case ADB_HW_II:
2445 case ADB_HW_IOP:
2446 if ((in[1] & 0x0c) == 0x08) /* was it a listen command? */
2447 return 0;
2448 return 1;
2449
2450 case ADB_HW_IISI:
2451 case ADB_HW_CUDA:
2452 /*
2453 * TO DO: support needs to be added to recognize RTC and PRAM
2454 * commands
2455 */
2456 if ((in[2] & 0x0c) == 0x08) /* was it a listen command? */
2457 return 0;
2458 /* add others later */
2459 return 1;
2460
2461 case ADB_HW_PB:
2462 return 1;
2463
2464 case ADB_HW_UNKNOWN:
2465 default:
2466 return 1;
2467 }
2468 }
2469
2470
2471 void
2472 adb_setup_hw_type(void)
2473 {
2474 long response;
2475
2476 response = mac68k_machine.machineid;
2477
2478 /*
2479 * Determine what type of ADB hardware we are running on.
2480 */
2481 switch (response) {
2482 case MACH_MACC610: /* Centris 610 */
2483 case MACH_MACC650: /* Centris 650 */
2484 case MACH_MACII: /* II */
2485 case MACH_MACIICI: /* IIci */
2486 case MACH_MACIICX: /* IIcx */
2487 case MACH_MACIIX: /* IIx */
2488 case MACH_MACQ610: /* Quadra 610 */
2489 case MACH_MACQ650: /* Quadra 650 */
2490 case MACH_MACQ700: /* Quadra 700 */
2491 case MACH_MACQ800: /* Quadra 800 */
2492 case MACH_MACSE30: /* SE/30 */
2493 adbHardware = ADB_HW_II;
2494 #ifdef ADB_DEBUG
2495 if (adb_debug)
2496 printf_intr("adb: using II series hardware support\n");
2497 #endif
2498 break;
2499
2500 case MACH_MACCLASSICII: /* Classic II */
2501 case MACH_MACLCII: /* LC II, Performa 400/405/430 */
2502 case MACH_MACLCIII: /* LC III, Performa 450 */
2503 case MACH_MACIISI: /* IIsi */
2504 case MACH_MACIIVI: /* IIvi */
2505 case MACH_MACIIVX: /* IIvx */
2506 case MACH_MACP460: /* Performa 460/465/467 */
2507 case MACH_MACP600: /* Performa 600 */
2508 adbHardware = ADB_HW_IISI;
2509 #ifdef ADB_DEBUG
2510 if (adb_debug)
2511 printf_intr("adb: using IIsi series hardware support\n");
2512 #endif
2513 break;
2514
2515 case MACH_MACPB140: /* PowerBook 140 */
2516 case MACH_MACPB145: /* PowerBook 145 */
2517 case MACH_MACPB160: /* PowerBook 160 */
2518 case MACH_MACPB165: /* PowerBook 165 */
2519 case MACH_MACPB165C: /* PowerBook 165c */
2520 case MACH_MACPB170: /* PowerBook 170 */
2521 case MACH_MACPB180: /* PowerBook 180 */
2522 case MACH_MACPB180C: /* PowerBook 180c */
2523 adbHardware = ADB_HW_PB;
2524 pm_setup_adb();
2525 #ifdef ADB_DEBUG
2526 if (adb_debug)
2527 printf_intr("adb: using PowerBook 100-series hardware support\n");
2528 #endif
2529 break;
2530
2531 case MACH_MACPB150: /* PowerBook 150 */
2532 case MACH_MACPB210: /* PowerBook Duo 210 */
2533 case MACH_MACPB230: /* PowerBook Duo 230 */
2534 case MACH_MACPB250: /* PowerBook Duo 250 */
2535 case MACH_MACPB270: /* PowerBook Duo 270 */
2536 case MACH_MACPB280: /* PowerBook Duo 280 */
2537 case MACH_MACPB280C: /* PowerBook Duo 280c */
2538 case MACH_MACPB500: /* PowerBook 500 series */
2539 case MACH_MACPB190: /* PowerBook 190 */
2540 case MACH_MACPB190CS: /* PowerBook 190cs */
2541 adbHardware = ADB_HW_PB;
2542 pm_setup_adb();
2543 #ifdef ADB_DEBUG
2544 if (adb_debug)
2545 printf_intr("adb: using PowerBook Duo-series and PowerBook 500-series hardware support\n");
2546 #endif
2547 break;
2548
2549 case MACH_MACC660AV: /* Centris 660AV */
2550 case MACH_MACCCLASSIC: /* Color Classic */
2551 case MACH_MACCCLASSICII: /* Color Classic II */
2552 case MACH_MACLC475: /* LC 475, Performa 475/476 */
2553 case MACH_MACLC475_33: /* Clock-chipped 47x */
2554 case MACH_MACLC520: /* LC 520 */
2555 case MACH_MACLC575: /* LC 575, Performa 575/577/578 */
2556 case MACH_MACP550: /* LC 550, Performa 550 */
2557 case MACH_MACTV: /* Macintosh TV */
2558 case MACH_MACP580: /* Performa 580/588 */
2559 case MACH_MACQ605: /* Quadra 605 */
2560 case MACH_MACQ605_33: /* Clock-chipped Quadra 605 */
2561 case MACH_MACQ630: /* LC 630, Performa 630, Quadra 630 */
2562 case MACH_MACQ840AV: /* Quadra 840AV */
2563 adbHardware = ADB_HW_CUDA;
2564 #ifdef ADB_DEBUG
2565 if (adb_debug)
2566 printf_intr("adb: using Cuda series hardware support\n");
2567 #endif
2568 break;
2569
2570 case MACH_MACQ900: /* Quadra 900 */
2571 case MACH_MACQ950: /* Quadra 950 */
2572 case MACH_MACIIFX: /* Mac IIfx */
2573 adbHardware = ADB_HW_IOP;
2574 iop_register_listener(ISM_IOP, IOP_CHAN_ADB, adb_iop_recv, NULL);
2575 #ifdef ADB_DEBUG
2576 if (adb_debug)
2577 printf_intr("adb: using IOP-based ADB\n");
2578 #endif
2579 break;
2580
2581 default:
2582 adbHardware = ADB_HW_UNKNOWN;
2583 #ifdef ADB_DEBUG
2584 if (adb_debug) {
2585 printf_intr("adb: hardware type unknown for this machine\n");
2586 printf_intr("adb: ADB support is disabled\n");
2587 }
2588 #endif
2589 break;
2590 }
2591
2592 /*
2593 * Determine whether this machine has ADB based soft power.
2594 */
2595 switch (response) {
2596 case MACH_MACCCLASSIC: /* Color Classic */
2597 case MACH_MACCCLASSICII: /* Color Classic II */
2598 case MACH_MACIISI: /* IIsi */
2599 case MACH_MACIIVI: /* IIvi */
2600 case MACH_MACIIVX: /* IIvx */
2601 case MACH_MACLC520: /* LC 520 */
2602 case MACH_MACLC575: /* LC 575, Performa 575/577/578 */
2603 case MACH_MACP550: /* LC 550, Performa 550 */
2604 case MACH_MACTV: /* Macintosh TV */
2605 case MACH_MACP580: /* Performa 580/588 */
2606 case MACH_MACP600: /* Performa 600 */
2607 case MACH_MACQ630: /* LC 630, Performa 630, Quadra 630 */
2608 case MACH_MACQ840AV: /* Quadra 840AV */
2609 adbSoftPower = 1;
2610 break;
2611 }
2612 }
2613
2614 int
2615 count_adbs(void)
2616 {
2617 int i;
2618 int found;
2619
2620 found = 0;
2621
2622 for (i = 1; i < 16; i++)
2623 if (0 != ADBDevTable[i].currentAddr)
2624 found++;
2625
2626 return found;
2627 }
2628
2629 int
2630 get_ind_adb_info(ADBDataBlock *info, int index)
2631 {
2632 if ((index < 1) || (index > 15)) /* check range 1-15 */
2633 return (-1);
2634
2635 #ifdef ADB_DEBUG
2636 if (adb_debug & 0x80)
2637 printf_intr("index 0x%x devType is: 0x%x\n", index,
2638 ADBDevTable[index].devType);
2639 #endif
2640 if (0 == ADBDevTable[index].devType) /* make sure it's a valid entry */
2641 return (-1);
2642
2643 info->devType = (unsigned char)(ADBDevTable[index].devType);
2644 info->origADBAddr = (unsigned char)(ADBDevTable[index].origAddr);
2645 info->dbServiceRtPtr = (Ptr)ADBDevTable[index].ServiceRtPtr;
2646 info->dbDataAreaAddr = (Ptr)ADBDevTable[index].DataAreaAddr;
2647
2648 return (ADBDevTable[index].currentAddr);
2649 }
2650
2651 int
2652 get_adb_info(ADBDataBlock *info, int adbAddr)
2653 {
2654 int i;
2655
2656 if ((adbAddr < 1) || (adbAddr > 15)) /* check range 1-15 */
2657 return (-1);
2658
2659 for (i = 1; i < 15; i++)
2660 if (ADBDevTable[i].currentAddr == adbAddr) {
2661 info->devType = (unsigned char)(ADBDevTable[i].devType);
2662 info->origADBAddr = (unsigned char)(ADBDevTable[i].origAddr);
2663 info->dbServiceRtPtr = (Ptr)ADBDevTable[i].ServiceRtPtr;
2664 info->dbDataAreaAddr = ADBDevTable[i].DataAreaAddr;
2665 return 0; /* found */
2666 }
2667
2668 return (-1); /* not found */
2669 }
2670
2671 int
2672 set_adb_info(ADBSetInfoBlock *info, int adbAddr)
2673 {
2674 int i;
2675
2676 if ((adbAddr < 1) || (adbAddr > 15)) /* check range 1-15 */
2677 return (-1);
2678
2679 for (i = 1; i < 15; i++)
2680 if (ADBDevTable[i].currentAddr == adbAddr) {
2681 ADBDevTable[i].ServiceRtPtr =
2682 (void *)(info->siServiceRtPtr);
2683 ADBDevTable[i].DataAreaAddr = info->siDataAreaAddr;
2684 return 0; /* found */
2685 }
2686
2687 return (-1); /* not found */
2688
2689 }
2690
2691 #ifndef MRG_ADB
2692 long
2693 mrg_adbintr(void)
2694 {
2695 adb_intr(NULL);
2696 return 1; /* mimic mrg_adbintr in macrom.h just in case */
2697 }
2698
2699 long
2700 mrg_pmintr(void)
2701 {
2702 pm_intr(NULL);
2703 return 1; /* mimic mrg_pmintr in macrom.h just in case */
2704 }
2705
2706 /* caller should really use machine-independant version: getPramTime */
2707 /* this version does pseudo-adb access only */
2708 int
2709 adb_read_date_time(unsigned long *time)
2710 {
2711 u_char output[ADB_MAX_MSG_LENGTH];
2712 int result;
2713 volatile int flag = 0;
2714
2715 switch (adbHardware) {
2716 case ADB_HW_II:
2717 return -1;
2718
2719 case ADB_HW_IOP:
2720 return -1;
2721
2722 case ADB_HW_IISI:
2723 output[0] = 0x02; /* 2 byte message */
2724 output[1] = 0x01; /* to pram/rtc device */
2725 output[2] = 0x03; /* read date/time */
2726 result = send_adb_IIsi((u_char *)output, (u_char *)output,
2727 (void *)adb_op_comprout, __UNVOLATILE(&flag), (int)0);
2728 if (result != 0) /* exit if not sent */
2729 return -1;
2730
2731 while (0 == flag) /* wait for result */
2732 ;
2733
2734 *time = (long)(*(long *)(output + 1));
2735 return 0;
2736
2737 case ADB_HW_PB:
2738 return -1;
2739
2740 case ADB_HW_CUDA:
2741 output[0] = 0x02; /* 2 byte message */
2742 output[1] = 0x01; /* to pram/rtc device */
2743 output[2] = 0x03; /* read date/time */
2744 result = send_adb_cuda((u_char *)output, (u_char *)output,
2745 (void *)adb_op_comprout, __UNVOLATILE(&flag), (int)0);
2746 if (result != 0) /* exit if not sent */
2747 return -1;
2748
2749 while (0 == flag) /* wait for result */
2750 ;
2751
2752 *time = (long)(*(long *)(output + 1));
2753 return 0;
2754
2755 case ADB_HW_UNKNOWN:
2756 default:
2757 return -1;
2758 }
2759 }
2760
2761 /* caller should really use machine-independant version: setPramTime */
2762 /* this version does pseudo-adb access only */
2763 int
2764 adb_set_date_time(unsigned long time)
2765 {
2766 u_char output[ADB_MAX_MSG_LENGTH];
2767 int result;
2768 volatile int flag = 0;
2769
2770 switch (adbHardware) {
2771 case ADB_HW_II:
2772 return -1;
2773
2774 case ADB_HW_IOP:
2775 return -1;
2776
2777 case ADB_HW_IISI:
2778 output[0] = 0x06; /* 6 byte message */
2779 output[1] = 0x01; /* to pram/rtc device */
2780 output[2] = 0x09; /* set date/time */
2781 output[3] = (u_char)(time >> 24);
2782 output[4] = (u_char)(time >> 16);
2783 output[5] = (u_char)(time >> 8);
2784 output[6] = (u_char)(time);
2785 result = send_adb_IIsi((u_char *)output, (u_char *)0,
2786 (void *)adb_op_comprout, __UNVOLATILE(&flag), (int)0);
2787 if (result != 0) /* exit if not sent */
2788 return -1;
2789
2790 while (0 == flag) /* wait for send to finish */
2791 ;
2792
2793 return 0;
2794
2795 case ADB_HW_PB:
2796 return -1;
2797
2798 case ADB_HW_CUDA:
2799 output[0] = 0x06; /* 6 byte message */
2800 output[1] = 0x01; /* to pram/rtc device */
2801 output[2] = 0x09; /* set date/time */
2802 output[3] = (u_char)(time >> 24);
2803 output[4] = (u_char)(time >> 16);
2804 output[5] = (u_char)(time >> 8);
2805 output[6] = (u_char)(time);
2806 result = send_adb_cuda((u_char *)output, (u_char *)0,
2807 (void *)adb_op_comprout, __UNVOLATILE(&flag), (int)0);
2808 if (result != 0) /* exit if not sent */
2809 return -1;
2810
2811 while (0 == flag) /* wait for send to finish */
2812 ;
2813
2814 return 0;
2815
2816 case ADB_HW_UNKNOWN:
2817 default:
2818 return -1;
2819 }
2820 }
2821
2822
2823 int
2824 adb_poweroff(void)
2825 {
2826 u_char output[ADB_MAX_MSG_LENGTH];
2827 int result;
2828
2829 if (!adbSoftPower)
2830 return -1;
2831
2832 adb_polling = 1;
2833
2834 switch (adbHardware) {
2835 case ADB_HW_IISI:
2836 output[0] = 0x02; /* 2 byte message */
2837 output[1] = 0x01; /* to pram/rtc/soft-power device */
2838 output[2] = 0x0a; /* set date/time */
2839 result = send_adb_IIsi((u_char *)output, (u_char *)0,
2840 (void *)0, (void *)0, (int)0);
2841 if (result != 0) /* exit if not sent */
2842 return -1;
2843
2844 for (;;); /* wait for power off */
2845
2846 return 0;
2847
2848 case ADB_HW_PB:
2849 return -1;
2850
2851 case ADB_HW_CUDA:
2852 output[0] = 0x02; /* 2 byte message */
2853 output[1] = 0x01; /* to pram/rtc/soft-power device */
2854 output[2] = 0x0a; /* set date/time */
2855 result = send_adb_cuda((u_char *)output, (u_char *)0,
2856 (void *)0, (void *)0, (int)0);
2857 if (result != 0) /* exit if not sent */
2858 return -1;
2859
2860 for (;;); /* wait for power off */
2861
2862 return 0;
2863
2864 case ADB_HW_II: /* II models don't do ADB soft power */
2865 case ADB_HW_IOP: /* IOP models don't do ADB soft power */
2866 case ADB_HW_UNKNOWN:
2867 default:
2868 return -1;
2869 }
2870 }
2871
2872 int
2873 adb_prog_switch_enable(void)
2874 {
2875 u_char output[ADB_MAX_MSG_LENGTH];
2876 int result;
2877 volatile int flag = 0;
2878
2879 switch (adbHardware) {
2880 case ADB_HW_IISI:
2881 output[0] = 0x03; /* 3 byte message */
2882 output[1] = 0x01; /* to pram/rtc/soft-power device */
2883 output[2] = 0x1c; /* prog. switch control */
2884 output[3] = 0x01; /* enable */
2885 result = send_adb_IIsi((u_char *)output, (u_char *)0,
2886 (void *)adb_op_comprout, __UNVOLATILE(&flag), (int)0);
2887 if (result != 0) /* exit if not sent */
2888 return -1;
2889
2890 while (0 == flag) /* wait for send to finish */
2891 ;
2892
2893 return 0;
2894
2895 case ADB_HW_PB:
2896 return -1;
2897
2898 case ADB_HW_II: /* II models don't do prog. switch */
2899 case ADB_HW_IOP: /* IOP models don't do prog. switch */
2900 case ADB_HW_CUDA: /* cuda doesn't do prog. switch TO DO: verify this */
2901 case ADB_HW_UNKNOWN:
2902 default:
2903 return -1;
2904 }
2905 }
2906
2907 int
2908 adb_prog_switch_disable(void)
2909 {
2910 u_char output[ADB_MAX_MSG_LENGTH];
2911 int result;
2912 volatile int flag = 0;
2913
2914 switch (adbHardware) {
2915 case ADB_HW_IISI:
2916 output[0] = 0x03; /* 3 byte message */
2917 output[1] = 0x01; /* to pram/rtc/soft-power device */
2918 output[2] = 0x1c; /* prog. switch control */
2919 output[3] = 0x01; /* disable */
2920 result = send_adb_IIsi((u_char *)output, (u_char *)0,
2921 (void *)adb_op_comprout, __UNVOLATILE(&flag), (int)0);
2922 if (result != 0) /* exit if not sent */
2923 return -1;
2924
2925 while (0 == flag) /* wait for send to finish */
2926 ;
2927
2928 return 0;
2929
2930 case ADB_HW_PB:
2931 return -1;
2932
2933 case ADB_HW_II: /* II models don't do prog. switch */
2934 case ADB_HW_IOP: /* IOP models don't do prog. switch */
2935 case ADB_HW_CUDA: /* cuda doesn't do prog. switch */
2936 case ADB_HW_UNKNOWN:
2937 default:
2938 return -1;
2939 }
2940 }
2941
2942 int
2943 CountADBs(void)
2944 {
2945 return (count_adbs());
2946 }
2947
2948 void
2949 ADBReInit(void)
2950 {
2951 adb_reinit();
2952 }
2953
2954 int
2955 GetIndADB(ADBDataBlock *info, int index)
2956 {
2957 return (get_ind_adb_info(info, index));
2958 }
2959
2960 int
2961 GetADBInfo(ADBDataBlock *info, int adbAddr)
2962 {
2963 return (get_adb_info(info, adbAddr));
2964 }
2965
2966 int
2967 SetADBInfo(ADBSetInfoBlock *info, int adbAddr)
2968 {
2969 return (set_adb_info(info, adbAddr));
2970 }
2971
2972 int
2973 ADBOp(Ptr buffer, Ptr compRout, Ptr data, short commandNum)
2974 {
2975 return (adb_op(buffer, compRout, data, commandNum));
2976 }
2977
2978 #endif
2979