adb_direct.c revision 1.57 1 /* $NetBSD: adb_direct.c,v 1.57 2007/03/08 02:24:39 tsutsui Exp $ */
2
3 /* From: adb_direct.c 2.02 4/18/97 jpw */
4
5 /*
6 * Copyright (C) 1996, 1997 John P. Wittkoski
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by John P. Wittkoski.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*
36 * This code is rather messy, but I don't have time right now
37 * to clean it up as much as I would like.
38 * But it works, so I'm happy. :-) jpw
39 */
40
41 /*
42 * TO DO:
43 * - We could reduce the time spent in the adb_intr_* routines
44 * by having them save the incoming and outgoing data directly
45 * in the adbInbound and adbOutbound queues, as it would reduce
46 * the number of times we need to copy the data around. It
47 * would also make the code more readable and easier to follow.
48 * - (Related to above) Use the header part of adbCommand to
49 * reduce the number of copies we have to do of the data.
50 * - (Related to above) Actually implement the adbOutbound queue.
51 * This is fairly easy once you switch all the intr routines
52 * over to using adbCommand structs directly.
53 * - There is a bug in the state machine of adb_intr_cuda
54 * code that causes hangs, especially on 030 machines, probably
55 * because of some timing issues. Because I have been unable to
56 * determine the exact cause of this bug, I used the timeout function
57 * to check for and recover from this condition. If anyone finds
58 * the actual cause of this bug, the calls to timeout and the
59 * adb_cuda_tickle routine can be removed.
60 */
61
62 #ifdef __NetBSD__
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: adb_direct.c,v 1.57 2007/03/08 02:24:39 tsutsui Exp $");
66
67 #include "opt_adb.h"
68
69 #include <sys/param.h>
70 #include <sys/pool.h>
71 #include <sys/queue.h>
72 #include <sys/systm.h>
73 #include <sys/callout.h>
74
75 #include <machine/viareg.h>
76 #include <machine/param.h>
77 #include <machine/cpu.h>
78 #include <machine/adbsys.h> /* required for adbvar.h */
79 #include <machine/iopreg.h> /* required for IOP support */
80
81 #include <mac68k/mac68k/macrom.h>
82 #include <mac68k/dev/adbvar.h>
83 #define printf_intr printf
84 #else /* !__NetBSD__, i.e. Mac OS */
85 #include "via.h" /* for macos based testing */
86 /* #define ADB_DEBUG */ /* more verbose for testing */
87
88 /* Types of ADB hardware that we support */
89 #define ADB_HW_UNKNOWN 0x0 /* don't know */
90 #define ADB_HW_II 0x1 /* Mac II series */
91 #define ADB_HW_IISI 0x2 /* Mac IIsi series */
92 #define ADB_HW_PB 0x3 /* PowerBook series */
93 #define ADB_HW_CUDA 0x4 /* Machines with a Cuda chip */
94 #endif /* __NetBSD__ */
95
96 /* some misc. leftovers */
97 #define vPB 0x0000
98 #define vPB3 0x08
99 #define vPB4 0x10
100 #define vPB5 0x20
101 #define vSR_INT 0x04
102 #define vSR_OUT 0x10
103
104 /* the type of ADB action that we are currently preforming */
105 #define ADB_ACTION_NOTREADY 0x1 /* has not been initialized yet */
106 #define ADB_ACTION_IDLE 0x2 /* the bus is currently idle */
107 #define ADB_ACTION_OUT 0x3 /* sending out a command */
108 #define ADB_ACTION_IN 0x4 /* receiving data */
109 #define ADB_ACTION_POLLING 0x5 /* polling - II only */
110 #define ADB_ACTION_RUNNING 0x6 /* running - IOP only */
111
112 /*
113 * These describe the state of the ADB bus itself, although they
114 * don't necessarily correspond directly to ADB states.
115 * Note: these are not really used in the IIsi code.
116 */
117 #define ADB_BUS_UNKNOWN 0x1 /* we don't know yet - all models */
118 #define ADB_BUS_IDLE 0x2 /* bus is idle - all models */
119 #define ADB_BUS_CMD 0x3 /* starting a command - II models */
120 #define ADB_BUS_ODD 0x4 /* the "odd" state - II models */
121 #define ADB_BUS_EVEN 0x5 /* the "even" state - II models */
122 #define ADB_BUS_ACTIVE 0x6 /* active state - IIsi models */
123 #define ADB_BUS_ACK 0x7 /* currently ACKing - IIsi models */
124
125 /*
126 * Shortcuts for setting or testing the VIA bit states.
127 * Not all shortcuts are used for every type of ADB hardware.
128 */
129 #define ADB_SET_STATE_IDLE_II() via_reg(VIA1, vBufB) |= (vPB4 | vPB5)
130 #define ADB_SET_STATE_IDLE_IISI() via_reg(VIA1, vBufB) &= ~(vPB4 | vPB5)
131 #define ADB_SET_STATE_IDLE_CUDA() via_reg(VIA1, vBufB) |= (vPB4 | vPB5)
132 #define ADB_SET_STATE_CMD() via_reg(VIA1, vBufB) &= ~(vPB4 | vPB5)
133 #define ADB_SET_STATE_EVEN() via_reg(VIA1, vBufB) = ((via_reg(VIA1, \
134 vBufB) | vPB4) & ~vPB5)
135 #define ADB_SET_STATE_ODD() via_reg(VIA1, vBufB) = ((via_reg(VIA1, \
136 vBufB) | vPB5) & ~vPB4)
137 #define ADB_SET_STATE_ACTIVE() via_reg(VIA1, vBufB) |= vPB5
138 #define ADB_SET_STATE_INACTIVE() via_reg(VIA1, vBufB) &= ~vPB5
139 #define ADB_SET_STATE_TIP() via_reg(VIA1, vBufB) &= ~vPB5
140 #define ADB_CLR_STATE_TIP() via_reg(VIA1, vBufB) |= vPB5
141 #define ADB_SET_STATE_ACKON() via_reg(VIA1, vBufB) |= vPB4
142 #define ADB_SET_STATE_ACKOFF() via_reg(VIA1, vBufB) &= ~vPB4
143 #define ADB_TOGGLE_STATE_ACK_CUDA() via_reg(VIA1, vBufB) ^= vPB4
144 #define ADB_SET_STATE_ACKON_CUDA() via_reg(VIA1, vBufB) &= ~vPB4
145 #define ADB_SET_STATE_ACKOFF_CUDA() via_reg(VIA1, vBufB) |= vPB4
146 #define ADB_SET_SR_INPUT() via_reg(VIA1, vACR) &= ~vSR_OUT
147 #define ADB_SET_SR_OUTPUT() via_reg(VIA1, vACR) |= vSR_OUT
148 #define ADB_SR() via_reg(VIA1, vSR)
149 #define ADB_VIA_INTR_ENABLE() via_reg(VIA1, vIER) = 0x84
150 #define ADB_VIA_INTR_DISABLE() via_reg(VIA1, vIER) = 0x04
151 #define ADB_VIA_CLR_INTR() via_reg(VIA1, vIFR) = 0x04
152 #define ADB_INTR_IS_OFF (vPB3 == (via_reg(VIA1, vBufB) & vPB3))
153 #define ADB_INTR_IS_ON (0 == (via_reg(VIA1, vBufB) & vPB3))
154 #define ADB_SR_INTR_IS_OFF (0 == (via_reg(VIA1, vIFR) & vSR_INT))
155 #define ADB_SR_INTR_IS_ON (vSR_INT == (via_reg(VIA1, \
156 vIFR) & vSR_INT))
157
158 /*
159 * This is the delay that is required (in uS) between certain
160 * ADB transactions. The actual timing delay for for each uS is
161 * calculated at boot time to account for differences in machine speed.
162 */
163 #define ADB_DELAY 150
164
165 /*
166 * Maximum ADB message length; includes space for data, result, and
167 * device code - plus a little for safety.
168 */
169 #define ADB_MAX_MSG_LENGTH 16
170 #define ADB_MAX_HDR_LENGTH 8
171
172 #define ADB_QUEUE 32
173 #define ADB_TICKLE_TICKS 4
174
175 /*
176 * A structure for storing information about each ADB device.
177 */
178 struct ADBDevEntry {
179 void (*ServiceRtPtr)(void);
180 void *DataAreaAddr;
181 int devType;
182 int origAddr;
183 int currentAddr;
184 };
185
186 /*
187 * Used to hold ADB commands that are waiting to be sent out.
188 */
189 struct adbCmdHoldEntry {
190 u_char outBuf[ADB_MAX_MSG_LENGTH]; /* our message */
191 u_char *saveBuf; /* buffer to know where to save result */
192 u_char *compRout; /* completion routine pointer */
193 u_char *data; /* completion routine data pointer */
194 };
195
196 /*
197 * Eventually used for two separate queues, the queue between
198 * the upper and lower halves, and the outgoing packet queue.
199 * TO DO: adbCommand can replace all of adbCmdHoldEntry eventually
200 */
201 struct adbCommand {
202 u_char header[ADB_MAX_HDR_LENGTH]; /* not used yet */
203 u_char data[ADB_MAX_MSG_LENGTH]; /* packet data only */
204 u_char *saveBuf; /* where to save result */
205 u_char *compRout; /* completion routine pointer */
206 u_char *compData; /* completion routine data pointer */
207 u_int cmd; /* the original command for this data */
208 u_int unsol; /* 1 if packet was unsolicited */
209 u_int ack_only; /* 1 for no special processing */
210 };
211
212 /*
213 * Text representations of each hardware class
214 */
215 const char *adbHardwareDescr[MAX_ADB_HW + 1] = {
216 "unknown",
217 "II series",
218 "IIsi series",
219 "PowerBook",
220 "Cuda",
221 "IOP",
222 };
223
224 /*
225 * A few variables that we need and their initial values.
226 */
227 int adbHardware = ADB_HW_UNKNOWN;
228 int adbActionState = ADB_ACTION_NOTREADY;
229 int adbBusState = ADB_BUS_UNKNOWN;
230 int adbWaiting = 0; /* waiting for return data from the device */
231 int adbWriteDelay = 0; /* working on (or waiting to do) a write */
232 int adbOutQueueHasData = 0; /* something in the queue waiting to go out */
233 int adbNextEnd = 0; /* the next incoming bute is the last (II) */
234 int adbSoftPower = 0; /* machine supports soft power */
235
236 int adbWaitingCmd = 0; /* ADB command we are waiting for */
237 u_char *adbBuffer = (long)0; /* pointer to user data area */
238 void *adbCompRout = (long)0; /* pointer to the completion routine */
239 void *adbCompData = (long)0; /* pointer to the completion routine data */
240 long adbFakeInts = 0; /* keeps track of fake ADB interrupts for
241 * timeouts (II) */
242 int adbStarting = 1; /* doing ADBReInit so do polling differently */
243 int adbSendTalk = 0; /* the intr routine is sending the talk, not
244 * the user (II) */
245 int adbPolling = 0; /* we are polling for service request */
246 int adbPollCmd = 0; /* the last poll command we sent */
247
248 u_char adbInputBuffer[ADB_MAX_MSG_LENGTH]; /* data input buffer */
249 u_char adbOutputBuffer[ADB_MAX_MSG_LENGTH]; /* data output buffer */
250 struct adbCmdHoldEntry adbOutQueue; /* our 1 entry output queue */
251
252 int adbSentChars = 0; /* how many characters we have sent */
253 int adbLastDevice = 0; /* last ADB dev we heard from (II ONLY) */
254 int adbLastDevIndex = 0; /* last ADB dev loc in dev table (II ONLY) */
255 int adbLastCommand = 0; /* the last ADB command we sent (II) */
256
257 struct ADBDevEntry ADBDevTable[16]; /* our ADB device table */
258 int ADBNumDevices; /* num. of ADB devices found with ADBReInit */
259
260 struct adbCommand adbInbound[ADB_QUEUE]; /* incoming queue */
261 volatile int adbInCount = 0; /* how many packets in in queue */
262 int adbInHead = 0; /* head of in queue */
263 int adbInTail = 0; /* tail of in queue */
264 struct adbCommand adbOutbound[ADB_QUEUE]; /* outgoing queue - not used yet */
265 int adbOutCount = 0; /* how many packets in out queue */
266 int adbOutHead = 0; /* head of out queue */
267 int adbOutTail = 0; /* tail of out queue */
268
269 int tickle_count = 0; /* how many tickles seen for this packet? */
270 int tickle_serial = 0; /* the last packet tickled */
271 int adb_cuda_serial = 0; /* the current packet */
272
273 struct callout adb_cuda_tickle_ch = CALLOUT_INITIALIZER;
274
275 void *adb_softintr_cookie;
276
277 extern struct mac68k_machine_S mac68k_machine;
278
279 void pm_setup_adb(void);
280 void pm_hw_setup(void);
281 void pm_check_adb_devices(int);
282 void pm_intr(void *);
283 int pm_adb_op(u_char *, void *, void *, int);
284 void pm_init_adb_device(void);
285
286 /*
287 * The following are private routines.
288 */
289 #ifdef ADB_DEBUG
290 void print_single(u_char *);
291 #endif
292 void adb_intr(void *);
293 void adb_intr_II(void *);
294 void adb_intr_IIsi(void *);
295 void adb_intr_cuda(void *);
296 void adb_soft_intr(void);
297 int send_adb_II(u_char *, u_char *, void *, void *, int);
298 int send_adb_IIsi(u_char *, u_char *, void *, void *, int);
299 int send_adb_cuda(u_char *, u_char *, void *, void *, int);
300 void adb_intr_cuda_test(void);
301 void adb_cuda_tickle(void);
302 void adb_pass_up(struct adbCommand *);
303 void adb_op_comprout(void);
304 void adb_reinit(void);
305 int count_adbs(void);
306 int get_ind_adb_info(ADBDataBlock *, int);
307 int get_adb_info(ADBDataBlock *, int);
308 int set_adb_info(ADBSetInfoBlock *, int);
309 void adb_setup_hw_type(void);
310 int adb_op(Ptr, Ptr, Ptr, short);
311 void adb_read_II(u_char *);
312 void adb_hw_setup(void);
313 void adb_hw_setup_IIsi(u_char *);
314 void adb_comp_exec(void);
315 int adb_cmd_result(u_char *);
316 int adb_cmd_extra(u_char *);
317 int adb_guess_next_device(void);
318 int adb_prog_switch_enable(void);
319 int adb_prog_switch_disable(void);
320 /* we should create this and it will be the public version */
321 int send_adb(u_char *, void *, void *);
322 void adb_iop_recv(IOP *, struct iop_msg *);
323 int send_adb_iop(int, u_char *, void *, void *);
324
325 #ifdef ADB_DEBUG
326 /*
327 * print_single
328 * Diagnostic display routine. Displays the hex values of the
329 * specified elements of the u_char. The length of the "string"
330 * is in [0].
331 */
332 void
333 print_single(u_char *str)
334 {
335 int x;
336
337 if (str == 0) {
338 printf_intr("no data - null pointer\n");
339 return;
340 }
341 if (*str == 0) {
342 printf_intr("nothing returned\n");
343 return;
344 }
345 if (*str > 20) {
346 printf_intr("ADB: ACK > 20 no way!\n");
347 *str = (u_char)20;
348 }
349 printf_intr("(length=0x%x):", (u_int)*str);
350 for (x = 1; x <= *str; x++)
351 printf_intr(" 0x%02x", (u_int)*(str + x));
352 printf_intr("\n");
353 }
354 #endif
355
356 void
357 adb_cuda_tickle(void)
358 {
359 volatile int s;
360
361 if (adbActionState == ADB_ACTION_IN) {
362 if (tickle_serial == adb_cuda_serial) {
363 if (++tickle_count > 0) {
364 s = splhigh();
365 adbActionState = ADB_ACTION_IDLE;
366 adbInputBuffer[0] = 0;
367 ADB_SET_STATE_IDLE_CUDA();
368 splx(s);
369 }
370 } else {
371 tickle_serial = adb_cuda_serial;
372 tickle_count = 0;
373 }
374 } else {
375 tickle_serial = adb_cuda_serial;
376 tickle_count = 0;
377 }
378
379 callout_reset(&adb_cuda_tickle_ch, ADB_TICKLE_TICKS,
380 (void *)adb_cuda_tickle, NULL);
381 }
382
383 /*
384 * called when when an adb interrupt happens
385 *
386 * Cuda version of adb_intr
387 * TO DO: do we want to add some calls to intr_dispatch() here to
388 * grab serial interrupts?
389 */
390 void
391 adb_intr_cuda(void *arg)
392 {
393 volatile int i, ending;
394 volatile unsigned int s;
395 struct adbCommand packet;
396
397 s = splhigh(); /* can't be too careful - might be called */
398 /* from a routine, NOT an interrupt */
399
400 ADB_VIA_CLR_INTR(); /* clear interrupt */
401 ADB_VIA_INTR_DISABLE(); /* disable ADB interrupt on IIs. */
402
403 switch_start:
404 switch (adbActionState) {
405 case ADB_ACTION_IDLE:
406 /*
407 * This is an unexpected packet, so grab the first (dummy)
408 * byte, set up the proper vars, and tell the chip we are
409 * starting to receive the packet by setting the TIP bit.
410 */
411 adbInputBuffer[1] = ADB_SR();
412 adb_cuda_serial++;
413 if (ADB_INTR_IS_OFF) /* must have been a fake start */
414 break;
415
416 ADB_SET_SR_INPUT();
417 ADB_SET_STATE_TIP();
418
419 adbInputBuffer[0] = 1;
420 adbActionState = ADB_ACTION_IN;
421 #ifdef ADB_DEBUG
422 if (adb_debug)
423 printf_intr("idle 0x%02x ", adbInputBuffer[1]);
424 #endif
425 break;
426
427 case ADB_ACTION_IN:
428 adbInputBuffer[++adbInputBuffer[0]] = ADB_SR();
429 /* intr off means this is the last byte (end of frame) */
430 if (ADB_INTR_IS_OFF)
431 ending = 1;
432 else
433 ending = 0;
434
435 if (1 == ending) { /* end of message? */
436 #ifdef ADB_DEBUG
437 if (adb_debug) {
438 printf_intr("in end 0x%02x ",
439 adbInputBuffer[adbInputBuffer[0]]);
440 print_single(adbInputBuffer);
441 }
442 #endif
443
444 /*
445 * Are we waiting AND does this packet match what we
446 * are waiting for AND is it coming from either the
447 * ADB or RTC/PRAM sub-device? This section _should_
448 * recognize all ADB and RTC/PRAM type commands, but
449 * there may be more... NOTE: commands are always at
450 * [4], even for RTC/PRAM commands.
451 */
452 /* set up data for adb_pass_up */
453 memcpy(packet.data, adbInputBuffer, adbInputBuffer[0] + 1);
454
455 if ((adbWaiting == 1) &&
456 (adbInputBuffer[4] == adbWaitingCmd) &&
457 ((adbInputBuffer[2] == 0x00) ||
458 (adbInputBuffer[2] == 0x01))) {
459 packet.saveBuf = adbBuffer;
460 packet.compRout = adbCompRout;
461 packet.compData = adbCompData;
462 packet.unsol = 0;
463 packet.ack_only = 0;
464 adb_pass_up(&packet);
465
466 adbWaitingCmd = 0; /* reset "waiting" vars */
467 adbWaiting = 0;
468 adbBuffer = (long)0;
469 adbCompRout = (long)0;
470 adbCompData = (long)0;
471 } else {
472 packet.unsol = 1;
473 packet.ack_only = 0;
474 adb_pass_up(&packet);
475 }
476
477
478 /* reset vars and signal the end of this frame */
479 adbActionState = ADB_ACTION_IDLE;
480 adbInputBuffer[0] = 0;
481 ADB_SET_STATE_IDLE_CUDA();
482 /*ADB_SET_SR_INPUT();*/
483
484 /*
485 * If there is something waiting to be sent out,
486 * the set everything up and send the first byte.
487 */
488 if (adbWriteDelay == 1) {
489 delay(ADB_DELAY); /* required */
490 adbSentChars = 0;
491 adbActionState = ADB_ACTION_OUT;
492 /*
493 * If the interrupt is on, we were too slow
494 * and the chip has already started to send
495 * something to us, so back out of the write
496 * and start a read cycle.
497 */
498 if (ADB_INTR_IS_ON) {
499 ADB_SET_SR_INPUT();
500 ADB_SET_STATE_IDLE_CUDA();
501 adbSentChars = 0;
502 adbActionState = ADB_ACTION_IDLE;
503 adbInputBuffer[0] = 0;
504 break;
505 }
506 /*
507 * If we got here, it's ok to start sending
508 * so load the first byte and tell the chip
509 * we want to send.
510 */
511 ADB_SET_STATE_TIP();
512 ADB_SET_SR_OUTPUT();
513 ADB_SR() = adbOutputBuffer[adbSentChars + 1];
514 }
515 } else {
516 ADB_TOGGLE_STATE_ACK_CUDA();
517 #ifdef ADB_DEBUG
518 if (adb_debug)
519 printf_intr("in 0x%02x ",
520 adbInputBuffer[adbInputBuffer[0]]);
521 #endif
522 }
523 break;
524
525 case ADB_ACTION_OUT:
526 i = ADB_SR(); /* reset SR-intr in IFR */
527 #ifdef ADB_DEBUG
528 if (adb_debug)
529 printf_intr("intr out 0x%02x ", i);
530 #endif
531
532 adbSentChars++;
533 if (ADB_INTR_IS_ON) { /* ADB intr low during write */
534 #ifdef ADB_DEBUG
535 if (adb_debug)
536 printf_intr("intr was on ");
537 #endif
538 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
539 ADB_SET_STATE_IDLE_CUDA();
540 adbSentChars = 0; /* must start all over */
541 adbActionState = ADB_ACTION_IDLE; /* new state */
542 adbInputBuffer[0] = 0;
543 adbWriteDelay = 1; /* must retry when done with
544 * read */
545 delay(ADB_DELAY);
546 goto switch_start; /* process next state right
547 * now */
548 break;
549 }
550 if (adbOutputBuffer[0] == adbSentChars) { /* check for done */
551 if (0 == adb_cmd_result(adbOutputBuffer)) { /* do we expect data
552 * back? */
553 adbWaiting = 1; /* signal waiting for return */
554 adbWaitingCmd = adbOutputBuffer[2]; /* save waiting command */
555 } else { /* no talk, so done */
556 /* set up stuff for adb_pass_up */
557 memcpy(packet.data, adbInputBuffer, adbInputBuffer[0] + 1);
558 packet.saveBuf = adbBuffer;
559 packet.compRout = adbCompRout;
560 packet.compData = adbCompData;
561 packet.cmd = adbWaitingCmd;
562 packet.unsol = 0;
563 packet.ack_only = 1;
564 adb_pass_up(&packet);
565
566 /* reset "waiting" vars, just in case */
567 adbWaitingCmd = 0;
568 adbBuffer = (long)0;
569 adbCompRout = (long)0;
570 adbCompData = (long)0;
571 }
572
573 adbWriteDelay = 0; /* done writing */
574 adbActionState = ADB_ACTION_IDLE; /* signal bus is idle */
575 ADB_SET_SR_INPUT();
576 ADB_SET_STATE_IDLE_CUDA();
577 #ifdef ADB_DEBUG
578 if (adb_debug)
579 printf_intr("write done ");
580 #endif
581 } else {
582 ADB_SR() = adbOutputBuffer[adbSentChars + 1]; /* send next byte */
583 ADB_TOGGLE_STATE_ACK_CUDA(); /* signal byte ready to
584 * shift */
585 #ifdef ADB_DEBUG
586 if (adb_debug)
587 printf_intr("toggle ");
588 #endif
589 }
590 break;
591
592 case ADB_ACTION_NOTREADY:
593 #ifdef ADB_DEBUG
594 if (adb_debug)
595 printf_intr("adb: not yet initialized\n");
596 #endif
597 break;
598
599 default:
600 #ifdef ADB_DEBUG
601 if (adb_debug)
602 printf_intr("intr: unknown ADB state\n");
603 #endif
604 break;
605 }
606
607 ADB_VIA_INTR_ENABLE(); /* enable ADB interrupt on IIs. */
608
609 splx(s); /* restore */
610
611 return;
612 } /* end adb_intr_cuda */
613
614
615 int
616 send_adb_cuda(u_char *in, u_char *buffer, void *compRout, void *data, int
617 command)
618 {
619 int s, len;
620
621 #ifdef ADB_DEBUG
622 if (adb_debug)
623 printf_intr("SEND\n");
624 #endif
625
626 if (adbActionState == ADB_ACTION_NOTREADY)
627 return 1;
628
629 /* Don't interrupt while we are messing with the ADB */
630 s = splhigh();
631
632 if ((adbActionState == ADB_ACTION_IDLE) && /* ADB available? */
633 (ADB_INTR_IS_OFF)) { /* and no incoming interrupt? */
634 } else
635 if (adbWriteDelay == 0) /* it's busy, but is anything waiting? */
636 adbWriteDelay = 1; /* if no, then we'll "queue"
637 * it up */
638 else {
639 splx(s);
640 return 1; /* really busy! */
641 }
642
643 #ifdef ADB_DEBUG
644 if (adb_debug)
645 printf_intr("QUEUE\n");
646 #endif
647 if ((long)in == (long)0) { /* need to convert? */
648 /*
649 * Don't need to use adb_cmd_extra here because this section
650 * will be called ONLY when it is an ADB command (no RTC or
651 * PRAM)
652 */
653 if ((command & 0x0c) == 0x08) /* copy addl data ONLY if
654 * doing a listen! */
655 len = buffer[0]; /* length of additional data */
656 else
657 len = 0;/* no additional data */
658
659 adbOutputBuffer[0] = 2 + len; /* dev. type + command + addl.
660 * data */
661 adbOutputBuffer[1] = 0x00; /* mark as an ADB command */
662 adbOutputBuffer[2] = (u_char)command; /* load command */
663
664 /* copy additional output data, if any */
665 memcpy(adbOutputBuffer + 3, buffer + 1, len);
666 } else
667 /* if data ready, just copy over */
668 memcpy(adbOutputBuffer, in, in[0] + 2);
669
670 adbSentChars = 0; /* nothing sent yet */
671 adbBuffer = buffer; /* save buffer to know where to save result */
672 adbCompRout = compRout; /* save completion routine pointer */
673 adbCompData = data; /* save completion routine data pointer */
674 adbWaitingCmd = adbOutputBuffer[2]; /* save wait command */
675
676 if (adbWriteDelay != 1) { /* start command now? */
677 #ifdef ADB_DEBUG
678 if (adb_debug)
679 printf_intr("out start NOW");
680 #endif
681 delay(ADB_DELAY);
682 adbActionState = ADB_ACTION_OUT; /* set next state */
683 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
684 ADB_SR() = adbOutputBuffer[adbSentChars + 1]; /* load byte for output */
685 ADB_SET_STATE_ACKOFF_CUDA();
686 ADB_SET_STATE_TIP(); /* tell ADB that we want to send */
687 }
688 adbWriteDelay = 1; /* something in the write "queue" */
689
690 splx(s);
691
692 if (0x0100 <= (s & 0x0700)) /* were VIA1 interrupts blocked? */
693 /* poll until byte done */
694 while ((adbActionState != ADB_ACTION_IDLE) || (ADB_INTR_IS_ON)
695 || (adbWaiting == 1))
696 if (ADB_SR_INTR_IS_ON) { /* wait for "interrupt" */
697 adb_intr_cuda(NULL); /* go process it */
698 if (adb_polling)
699 adb_soft_intr();
700 }
701
702 return 0;
703 } /* send_adb_cuda */
704
705
706 void
707 adb_intr_II(void *arg)
708 {
709 struct adbCommand packet;
710 int i, intr_on = 0;
711 int send = 0;
712 unsigned int s;
713
714 s = splhigh(); /* can't be too careful - might be called */
715 /* from a routine, NOT an interrupt */
716
717 ADB_VIA_CLR_INTR(); /* clear interrupt */
718
719 ADB_VIA_INTR_DISABLE(); /* disable ADB interrupt on IIs. */
720
721 delay(ADB_DELAY); /* yuck (don't remove) */
722
723 (void)intr_dispatch(0x70); /* grab any serial interrupts */
724
725 if (ADB_INTR_IS_ON)
726 intr_on = 1; /* save for later */
727
728 switch_start:
729 switch (adbActionState) {
730 case ADB_ACTION_POLLING:
731 if (!intr_on) {
732 if (adbOutQueueHasData) {
733 #ifdef ADB_DEBUG
734 if (adb_debug & 0x80)
735 printf_intr("POLL-doing-out-queue. ");
736 #endif
737 ADB_SET_STATE_IDLE_II();
738 delay(ADB_DELAY);
739
740 /* copy over data */
741 memcpy(adbOutputBuffer, adbOutQueue.outBuf,
742 adbOutQueue.outBuf[0] + 2);
743
744 adbBuffer = adbOutQueue.saveBuf; /* user data area */
745 adbCompRout = adbOutQueue.compRout; /* completion routine */
746 adbCompData = adbOutQueue.data; /* comp. rout. data */
747 adbOutQueueHasData = 0; /* currently processing
748 * "queue" entry */
749 adbSentChars = 0; /* nothing sent yet */
750 adbActionState = ADB_ACTION_OUT; /* set next state */
751 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
752 ADB_SR() = adbOutputBuffer[1]; /* load byte for output */
753 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */
754 ADB_SET_STATE_CMD(); /* tell ADB that we want to send */
755 break;
756 } else {
757 #ifdef ADB_DEBUG
758 if (adb_debug)
759 printf_intr("pIDLE ");
760 #endif
761 adbActionState = ADB_ACTION_IDLE;
762 }
763 } else {
764 #ifdef ADB_DEBUG
765 if (adb_debug & 0x80)
766 printf_intr("pIN ");
767 #endif
768 adbActionState = ADB_ACTION_IN;
769 }
770 delay(ADB_DELAY);
771 (void)intr_dispatch(0x70); /* grab any serial interrupts */
772 goto switch_start;
773 break;
774 case ADB_ACTION_IDLE:
775 if (!intr_on) {
776 i = ADB_SR();
777 adbBusState = ADB_BUS_IDLE;
778 adbActionState = ADB_ACTION_IDLE;
779 ADB_SET_STATE_IDLE_II();
780 break;
781 }
782 adbInputBuffer[0] = 1;
783 adbInputBuffer[1] = ADB_SR(); /* get first byte */
784 #ifdef ADB_DEBUG
785 if (adb_debug & 0x80)
786 printf_intr("idle 0x%02x ", adbInputBuffer[1]);
787 #endif
788 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
789 adbActionState = ADB_ACTION_IN; /* set next state */
790 ADB_SET_STATE_EVEN(); /* set bus state to even */
791 adbBusState = ADB_BUS_EVEN;
792 break;
793
794 case ADB_ACTION_IN:
795 adbInputBuffer[++adbInputBuffer[0]] = ADB_SR(); /* get byte */
796 #ifdef ADB_DEBUG
797 if (adb_debug & 0x80)
798 printf_intr("in 0x%02x ",
799 adbInputBuffer[adbInputBuffer[0]]);
800 #endif
801 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
802
803 if (intr_on) { /* process last byte of packet */
804 adbInputBuffer[0]--; /* minus one */
805 /*
806 * If intr_on was true, and it's the second byte, then
807 * the byte we just discarded is really valid, so
808 * adjust the count
809 */
810 if (adbInputBuffer[0] == 2) {
811 adbInputBuffer[0]++;
812 }
813
814 #ifdef ADB_DEBUG
815 if (adb_debug & 0x80) {
816 printf_intr("done: ");
817 print_single(adbInputBuffer);
818 }
819 #endif
820
821 adbLastDevice = ADB_CMDADDR(adbInputBuffer[1]);
822
823 if (adbInputBuffer[0] == 1 && !adbWaiting) { /* SRQ!!!*/
824 #ifdef ADB_DEBUG
825 if (adb_debug & 0x80)
826 printf_intr(" xSRQ! ");
827 #endif
828 adb_guess_next_device();
829 #ifdef ADB_DEBUG
830 if (adb_debug & 0x80)
831 printf_intr("try 0x%0x ",
832 adbLastDevice);
833 #endif
834 adbOutputBuffer[0] = 1;
835 adbOutputBuffer[1] = ADBTALK(adbLastDevice, 0);
836
837 adbSentChars = 0; /* nothing sent yet */
838 adbActionState = ADB_ACTION_POLLING; /* set next state */
839 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
840 ADB_SR() = adbOutputBuffer[1]; /* load byte for output */
841 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */
842 ADB_SET_STATE_CMD(); /* tell ADB that we want to */
843 break;
844 }
845
846 /* set up data for adb_pass_up */
847 memcpy(packet.data, adbInputBuffer, adbInputBuffer[0] + 1);
848
849 if (!adbWaiting && (adbInputBuffer[0] != 0)) {
850 packet.unsol = 1;
851 packet.ack_only = 0;
852 adb_pass_up(&packet);
853 } else {
854 packet.saveBuf = adbBuffer;
855 packet.compRout = adbCompRout;
856 packet.compData = adbCompData;
857 packet.unsol = 0;
858 packet.ack_only = 0;
859 adb_pass_up(&packet);
860 }
861
862 adbWaiting = 0;
863 adbInputBuffer[0] = 0;
864 adbBuffer = (long)0;
865 adbCompRout = (long)0;
866 adbCompData = (long)0;
867 /*
868 * Since we are done, check whether there is any data
869 * waiting to do out. If so, start the sending the data.
870 */
871 if (adbOutQueueHasData == 1) {
872 #ifdef ADB_DEBUG
873 if (adb_debug & 0x80)
874 printf_intr("XXX: DOING OUT QUEUE\n");
875 #endif
876 /* copy over data */
877 memcpy(adbOutputBuffer, adbOutQueue.outBuf,
878 adbOutQueue.outBuf[0] + 2);
879 adbBuffer = adbOutQueue.saveBuf; /* user data area */
880 adbCompRout = adbOutQueue.compRout; /* completion routine */
881 adbCompData = adbOutQueue.data; /* comp. rout. data */
882 adbOutQueueHasData = 0; /* currently processing
883 * "queue" entry */
884 send = 1;
885 } else {
886 #ifdef ADB_DEBUG
887 if (adb_debug & 0x80)
888 printf_intr("XXending ");
889 #endif
890 adb_guess_next_device();
891 adbOutputBuffer[0] = 1;
892 adbOutputBuffer[1] = ((adbLastDevice & 0x0f) << 4) | 0x0c;
893 adbSentChars = 0; /* nothing sent yet */
894 adbActionState = ADB_ACTION_POLLING; /* set next state */
895 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
896 ADB_SR() = adbOutputBuffer[1]; /* load byte for output */
897 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */
898 ADB_SET_STATE_CMD(); /* tell ADB that we want to */
899 break;
900 }
901 }
902
903 /*
904 * If send is true then something above determined that
905 * the message has ended and we need to start sending out
906 * a new message immediately. This could be because there
907 * is data waiting to go out or because an SRQ was seen.
908 */
909 if (send) {
910 adbSentChars = 0; /* nothing sent yet */
911 adbActionState = ADB_ACTION_OUT; /* set next state */
912 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
913 ADB_SR() = adbOutputBuffer[1]; /* load byte for output */
914 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */
915 ADB_SET_STATE_CMD(); /* tell ADB that we want to
916 * send */
917 break;
918 }
919 /* We only get this far if the message hasn't ended yet. */
920 switch (adbBusState) { /* set to next state */
921 case ADB_BUS_EVEN:
922 ADB_SET_STATE_ODD(); /* set state to odd */
923 adbBusState = ADB_BUS_ODD;
924 break;
925
926 case ADB_BUS_ODD:
927 ADB_SET_STATE_EVEN(); /* set state to even */
928 adbBusState = ADB_BUS_EVEN;
929 break;
930 default:
931 printf_intr("strange state!!!\n"); /* huh? */
932 break;
933 }
934 break;
935
936 case ADB_ACTION_OUT:
937 i = ADB_SR(); /* clear interrupt */
938 adbSentChars++;
939 /*
940 * If the outgoing data was a TALK, we must
941 * switch to input mode to get the result.
942 */
943 if ((adbOutputBuffer[1] & 0x0c) == 0x0c) {
944 adbInputBuffer[0] = 1;
945 adbInputBuffer[1] = i;
946 adbActionState = ADB_ACTION_IN;
947 ADB_SET_SR_INPUT();
948 adbBusState = ADB_BUS_EVEN;
949 ADB_SET_STATE_EVEN();
950 #ifdef ADB_DEBUG
951 if (adb_debug & 0x80)
952 printf_intr("talk out 0x%02x ", i);
953 #endif
954 /* we want something back */
955 adbWaiting = 1;
956 break;
957 }
958 /*
959 * If it's not a TALK, check whether all data has been sent.
960 * If so, call the completion routine and clean up. If not,
961 * advance to the next state.
962 */
963 #ifdef ADB_DEBUG
964 if (adb_debug & 0x80)
965 printf_intr("non-talk out 0x%0x ", i);
966 #endif
967 ADB_SET_SR_OUTPUT();
968 if (adbOutputBuffer[0] == adbSentChars) { /* check for done */
969 #ifdef ADB_DEBUG
970 if (adb_debug & 0x80)
971 printf_intr("done \n");
972 #endif
973 /* set up stuff for adb_pass_up */
974 memcpy(packet.data, adbOutputBuffer, adbOutputBuffer[0] + 1);
975 packet.saveBuf = adbBuffer;
976 packet.compRout = adbCompRout;
977 packet.compData = adbCompData;
978 packet.cmd = adbWaitingCmd;
979 packet.unsol = 0;
980 packet.ack_only = 1;
981 adb_pass_up(&packet);
982
983 /* reset "waiting" vars, just in case */
984 adbBuffer = (long)0;
985 adbCompRout = (long)0;
986 adbCompData = (long)0;
987 if (adbOutQueueHasData == 1) {
988 /* copy over data */
989 memcpy(adbOutputBuffer, adbOutQueue.outBuf,
990 adbOutQueue.outBuf[0] + 2);
991 adbBuffer = adbOutQueue.saveBuf; /* user data area */
992 adbCompRout = adbOutQueue.compRout; /* completion routine */
993 adbCompData = adbOutQueue.data; /* comp. rout. data */
994 adbOutQueueHasData = 0; /* currently processing
995 * "queue" entry */
996 adbSentChars = 0; /* nothing sent yet */
997 adbActionState = ADB_ACTION_OUT; /* set next state */
998 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
999 ADB_SR() = adbOutputBuffer[1]; /* load byte for output */
1000 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */
1001 ADB_SET_STATE_CMD(); /* tell ADB that we want to
1002 * send */
1003 break;
1004 } else {
1005 /* send talk to last device instead */
1006 adbOutputBuffer[0] = 1;
1007 adbOutputBuffer[1] =
1008 ADBTALK(ADB_CMDADDR(adbOutputBuffer[1]), 0);
1009
1010 adbSentChars = 0; /* nothing sent yet */
1011 adbActionState = ADB_ACTION_IDLE; /* set next state */
1012 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
1013 ADB_SR() = adbOutputBuffer[1]; /* load byte for output */
1014 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */
1015 ADB_SET_STATE_CMD(); /* tell ADB that we want to */
1016 break;
1017 }
1018 }
1019 ADB_SR() = adbOutputBuffer[adbSentChars + 1];
1020 switch (adbBusState) { /* advance to next state */
1021 case ADB_BUS_EVEN:
1022 ADB_SET_STATE_ODD(); /* set state to odd */
1023 adbBusState = ADB_BUS_ODD;
1024 break;
1025
1026 case ADB_BUS_CMD:
1027 case ADB_BUS_ODD:
1028 ADB_SET_STATE_EVEN(); /* set state to even */
1029 adbBusState = ADB_BUS_EVEN;
1030 break;
1031
1032 default:
1033 #ifdef ADB_DEBUG
1034 if (adb_debug) {
1035 printf_intr("strange state!!! (0x%x)\n",
1036 adbBusState);
1037 }
1038 #endif
1039 break;
1040 }
1041 break;
1042
1043 default:
1044 #ifdef ADB_DEBUG
1045 if (adb_debug)
1046 printf_intr("adb: unknown ADB state (during intr)\n");
1047 #endif
1048 break;
1049 }
1050
1051 ADB_VIA_INTR_ENABLE(); /* enable ADB interrupt on IIs. */
1052
1053 splx(s); /* restore */
1054
1055 return;
1056
1057 }
1058
1059
1060 /*
1061 * send_adb version for II series machines
1062 */
1063 int
1064 send_adb_II(u_char *in, u_char *buffer, void *compRout, void *data, int command)
1065 {
1066 int s, len;
1067
1068 if (adbActionState == ADB_ACTION_NOTREADY) /* return if ADB not
1069 * available */
1070 return 1;
1071
1072 /* Don't interrupt while we are messing with the ADB */
1073 s = splhigh();
1074
1075 if (0 != adbOutQueueHasData) { /* right now, "has data" means "full" */
1076 splx(s); /* sorry, try again later */
1077 return 1;
1078 }
1079 if ((long)in == (long)0) { /* need to convert? */
1080 /*
1081 * Don't need to use adb_cmd_extra here because this section
1082 * will be called ONLY when it is an ADB command (no RTC or
1083 * PRAM), especially on II series!
1084 */
1085 if ((command & 0x0c) == 0x08) /* copy addl data ONLY if
1086 * doing a listen! */
1087 len = buffer[0]; /* length of additional data */
1088 else
1089 len = 0;/* no additional data */
1090
1091 adbOutQueue.outBuf[0] = 1 + len; /* command + addl. data */
1092 adbOutQueue.outBuf[1] = (u_char)command; /* load command */
1093
1094 /* copy additional output data, if any */
1095 memcpy(adbOutQueue.outBuf + 2, buffer + 1, len);
1096 } else
1097 /* if data ready, just copy over */
1098 memcpy(adbOutQueue.outBuf, in, in[0] + 2);
1099
1100 adbOutQueue.saveBuf = buffer; /* save buffer to know where to save
1101 * result */
1102 adbOutQueue.compRout = compRout; /* save completion routine
1103 * pointer */
1104 adbOutQueue.data = data;/* save completion routine data pointer */
1105
1106 if ((adbActionState == ADB_ACTION_IDLE) && /* is ADB available? */
1107 (ADB_INTR_IS_OFF)) { /* and no incoming interrupts? */
1108 /* then start command now */
1109 memcpy(adbOutputBuffer, adbOutQueue.outBuf,
1110 adbOutQueue.outBuf[0] + 2); /* copy over data */
1111
1112 adbBuffer = adbOutQueue.saveBuf; /* pointer to user data
1113 * area */
1114 adbCompRout = adbOutQueue.compRout; /* pointer to the
1115 * completion routine */
1116 adbCompData = adbOutQueue.data; /* pointer to the completion
1117 * routine data */
1118
1119 adbSentChars = 0; /* nothing sent yet */
1120 adbActionState = ADB_ACTION_OUT; /* set next state */
1121 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */
1122
1123 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
1124
1125 ADB_SR() = adbOutputBuffer[adbSentChars + 1]; /* load byte for output */
1126 ADB_SET_STATE_CMD(); /* tell ADB that we want to send */
1127 adbOutQueueHasData = 0; /* currently processing "queue" entry */
1128 } else
1129 adbOutQueueHasData = 1; /* something in the write "queue" */
1130
1131 splx(s);
1132
1133 if (0x0100 <= (s & 0x0700)) /* were VIA1 interrupts blocked? */
1134 /* poll until message done */
1135 while ((adbActionState != ADB_ACTION_IDLE) || (ADB_INTR_IS_ON)
1136 || (adbWaiting == 1))
1137 if (ADB_SR_INTR_IS_ON) { /* wait for "interrupt" */
1138 adb_intr_II(NULL); /* go process it */
1139 if (adb_polling)
1140 adb_soft_intr();
1141 }
1142
1143 return 0;
1144 }
1145
1146
1147 /*
1148 * This routine is called from the II series interrupt routine
1149 * to determine what the "next" device is that should be polled.
1150 */
1151 int
1152 adb_guess_next_device(void)
1153 {
1154 int last, i, dummy;
1155
1156 if (adbStarting) {
1157 /*
1158 * Start polling EVERY device, since we can't be sure there is
1159 * anything in the device table yet
1160 */
1161 if (adbLastDevice < 1 || adbLastDevice > 15)
1162 adbLastDevice = 1;
1163 if (++adbLastDevice > 15) /* point to next one */
1164 adbLastDevice = 1;
1165 } else {
1166 /* find the next device using the device table */
1167 if (adbLastDevice < 1 || adbLastDevice > 15) /* let's be parinoid */
1168 adbLastDevice = 2;
1169 last = 1; /* default index location */
1170
1171 for (i = 1; i < 16; i++) /* find index entry */
1172 if (ADBDevTable[i].currentAddr == adbLastDevice) { /* look for device */
1173 last = i; /* found it */
1174 break;
1175 }
1176 dummy = last; /* index to start at */
1177 for (;;) { /* find next device in index */
1178 if (++dummy > 15) /* wrap around if needed */
1179 dummy = 1;
1180 if (dummy == last) { /* didn't find any other
1181 * device! This can happen if
1182 * there are no devices on the
1183 * bus */
1184 dummy = 1;
1185 break;
1186 }
1187 /* found the next device */
1188 if (ADBDevTable[dummy].devType != 0)
1189 break;
1190 }
1191 adbLastDevice = ADBDevTable[dummy].currentAddr;
1192 }
1193 return adbLastDevice;
1194 }
1195
1196
1197 /*
1198 * Called when when an adb interrupt happens.
1199 * This routine simply transfers control over to the appropriate
1200 * code for the machine we are running on.
1201 */
1202 void
1203 adb_intr(void *arg)
1204 {
1205 switch (adbHardware) {
1206 case ADB_HW_II:
1207 adb_intr_II(arg);
1208 break;
1209
1210 case ADB_HW_IISI:
1211 adb_intr_IIsi(arg);
1212 break;
1213
1214 case ADB_HW_PB: /* Should not come through here. */
1215 break;
1216
1217 case ADB_HW_CUDA:
1218 adb_intr_cuda(arg);
1219 break;
1220
1221 case ADB_HW_IOP: /* Should not come through here. */
1222 break;
1223
1224 case ADB_HW_UNKNOWN:
1225 break;
1226 }
1227 }
1228
1229
1230 /*
1231 * called when when an adb interrupt happens
1232 *
1233 * IIsi version of adb_intr
1234 *
1235 */
1236 void
1237 adb_intr_IIsi(void *arg)
1238 {
1239 struct adbCommand packet;
1240 int i, ending;
1241 unsigned int s;
1242
1243 s = splhigh(); /* can't be too careful - might be called */
1244 /* from a routine, NOT an interrupt */
1245
1246 ADB_VIA_CLR_INTR(); /* clear interrupt */
1247
1248 ADB_VIA_INTR_DISABLE(); /* disable ADB interrupt on IIs. */
1249
1250 switch_start:
1251 switch (adbActionState) {
1252 case ADB_ACTION_IDLE:
1253 delay(ADB_DELAY); /* short delay is required before the
1254 * first byte */
1255
1256 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
1257 ADB_SET_STATE_ACTIVE(); /* signal start of data frame */
1258 adbInputBuffer[1] = ADB_SR(); /* get byte */
1259 adbInputBuffer[0] = 1;
1260 adbActionState = ADB_ACTION_IN; /* set next state */
1261
1262 ADB_SET_STATE_ACKON(); /* start ACK to ADB chip */
1263 delay(ADB_DELAY); /* delay */
1264 ADB_SET_STATE_ACKOFF(); /* end ACK to ADB chip */
1265 (void)intr_dispatch(0x70); /* grab any serial interrupts */
1266 break;
1267
1268 case ADB_ACTION_IN:
1269 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
1270 adbInputBuffer[++adbInputBuffer[0]] = ADB_SR(); /* get byte */
1271 if (ADB_INTR_IS_OFF) /* check for end of frame */
1272 ending = 1;
1273 else
1274 ending = 0;
1275
1276 ADB_SET_STATE_ACKON(); /* start ACK to ADB chip */
1277 delay(ADB_DELAY); /* delay */
1278 ADB_SET_STATE_ACKOFF(); /* end ACK to ADB chip */
1279 (void)intr_dispatch(0x70); /* grab any serial interrupts */
1280
1281 if (1 == ending) { /* end of message? */
1282 ADB_SET_STATE_INACTIVE(); /* signal end of frame */
1283 /*
1284 * This section _should_ handle all ADB and RTC/PRAM
1285 * type commands, but there may be more... Note:
1286 * commands are always at [4], even for rtc/pram
1287 * commands
1288 */
1289 /* set up data for adb_pass_up */
1290 memcpy(packet.data, adbInputBuffer, adbInputBuffer[0] + 1);
1291
1292 if ((adbWaiting == 1) && /* are we waiting AND */
1293 (adbInputBuffer[4] == adbWaitingCmd) && /* the cmd we sent AND */
1294 ((adbInputBuffer[2] == 0x00) || /* it's from the ADB
1295 * device OR */
1296 (adbInputBuffer[2] == 0x01))) { /* it's from the
1297 * PRAM/RTC device */
1298
1299 packet.saveBuf = adbBuffer;
1300 packet.compRout = adbCompRout;
1301 packet.compData = adbCompData;
1302 packet.unsol = 0;
1303 packet.ack_only = 0;
1304 adb_pass_up(&packet);
1305
1306 adbWaitingCmd = 0; /* reset "waiting" vars */
1307 adbWaiting = 0;
1308 adbBuffer = (long)0;
1309 adbCompRout = (long)0;
1310 adbCompData = (long)0;
1311 } else {
1312 packet.unsol = 1;
1313 packet.ack_only = 0;
1314 adb_pass_up(&packet);
1315 }
1316
1317 adbActionState = ADB_ACTION_IDLE;
1318 adbInputBuffer[0] = 0; /* reset length */
1319
1320 if (adbWriteDelay == 1) { /* were we waiting to
1321 * write? */
1322 adbSentChars = 0; /* nothing sent yet */
1323 adbActionState = ADB_ACTION_OUT; /* set next state */
1324
1325 delay(ADB_DELAY); /* delay */
1326 (void)intr_dispatch(0x70); /* grab any serial interrupts */
1327
1328 if (ADB_INTR_IS_ON) { /* ADB intr low during
1329 * write */
1330 ADB_SET_STATE_IDLE_IISI(); /* reset */
1331 ADB_SET_SR_INPUT(); /* make sure SR is set
1332 * to IN */
1333 adbSentChars = 0; /* must start all over */
1334 adbActionState = ADB_ACTION_IDLE; /* new state */
1335 adbInputBuffer[0] = 0;
1336 /* may be able to take this out later */
1337 delay(ADB_DELAY); /* delay */
1338 break;
1339 }
1340 ADB_SET_STATE_ACTIVE(); /* tell ADB that we want
1341 * to send */
1342 ADB_SET_STATE_ACKOFF(); /* make sure */
1343 ADB_SET_SR_OUTPUT(); /* set shift register
1344 * for OUT */
1345 ADB_SR() = adbOutputBuffer[adbSentChars + 1];
1346 ADB_SET_STATE_ACKON(); /* tell ADB byte ready
1347 * to shift */
1348 }
1349 }
1350 break;
1351
1352 case ADB_ACTION_OUT:
1353 i = ADB_SR(); /* reset SR-intr in IFR */
1354 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
1355
1356 ADB_SET_STATE_ACKOFF(); /* finish ACK */
1357 adbSentChars++;
1358 if (ADB_INTR_IS_ON) { /* ADB intr low during write */
1359 ADB_SET_STATE_IDLE_IISI(); /* reset */
1360 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
1361 adbSentChars = 0; /* must start all over */
1362 adbActionState = ADB_ACTION_IDLE; /* new state */
1363 adbInputBuffer[0] = 0;
1364 adbWriteDelay = 1; /* must retry when done with
1365 * read */
1366 delay(ADB_DELAY); /* delay */
1367 (void)intr_dispatch(0x70); /* grab any serial interrupts */
1368 goto switch_start; /* process next state right
1369 * now */
1370 break;
1371 }
1372 delay(ADB_DELAY); /* required delay */
1373 (void)intr_dispatch(0x70); /* grab any serial interrupts */
1374
1375 if (adbOutputBuffer[0] == adbSentChars) { /* check for done */
1376 if (0 == adb_cmd_result(adbOutputBuffer)) { /* do we expect data
1377 * back? */
1378 adbWaiting = 1; /* signal waiting for return */
1379 adbWaitingCmd = adbOutputBuffer[2]; /* save waiting command */
1380 } else {/* no talk, so done */
1381 /* set up stuff for adb_pass_up */
1382 memcpy(packet.data, adbInputBuffer,
1383 adbInputBuffer[0] + 1);
1384 packet.saveBuf = adbBuffer;
1385 packet.compRout = adbCompRout;
1386 packet.compData = adbCompData;
1387 packet.cmd = adbWaitingCmd;
1388 packet.unsol = 0;
1389 packet.ack_only = 1;
1390 adb_pass_up(&packet);
1391
1392 /* reset "waiting" vars, just in case */
1393 adbWaitingCmd = 0;
1394 adbBuffer = (long)0;
1395 adbCompRout = (long)0;
1396 adbCompData = (long)0;
1397 }
1398
1399 adbWriteDelay = 0; /* done writing */
1400 adbActionState = ADB_ACTION_IDLE; /* signal bus is idle */
1401 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
1402 ADB_SET_STATE_INACTIVE(); /* end of frame */
1403 } else {
1404 ADB_SR() = adbOutputBuffer[adbSentChars + 1]; /* send next byte */
1405 ADB_SET_STATE_ACKON(); /* signal byte ready to shift */
1406 }
1407 break;
1408
1409 case ADB_ACTION_NOTREADY:
1410 #ifdef ADB_DEBUG
1411 if (adb_debug)
1412 printf_intr("adb: not yet initialized\n");
1413 #endif
1414 break;
1415
1416 default:
1417 #ifdef ADB_DEBUG
1418 if (adb_debug)
1419 printf_intr("intr: unknown ADB state\n");
1420 #endif
1421 break;
1422 }
1423
1424 ADB_VIA_INTR_ENABLE(); /* enable ADB interrupt on IIs. */
1425
1426 splx(s); /* restore */
1427
1428 return;
1429 } /* end adb_intr_IIsi */
1430
1431
1432 /*****************************************************************************
1433 * if the device is currently busy, and there is no data waiting to go out, then
1434 * the data is "queued" in the outgoing buffer. If we are already waiting, then
1435 * we return.
1436 * in: if (in == 0) then the command string is built from command and buffer
1437 * if (in != 0) then in is used as the command string
1438 * buffer: additional data to be sent (used only if in == 0)
1439 * this is also where return data is stored
1440 * compRout: the completion routine that is called when then return value
1441 * is received (if a return value is expected)
1442 * data: a data pointer that can be used by the completion routine
1443 * command: an ADB command to be sent (used only if in == 0)
1444 *
1445 */
1446 int
1447 send_adb_IIsi(u_char *in, u_char *buffer, void *compRout, void *data, int
1448 command)
1449 {
1450 int s, len;
1451
1452 if (adbActionState == ADB_ACTION_NOTREADY)
1453 return 1;
1454
1455 /* Don't interrupt while we are messing with the ADB */
1456 s = splhigh();
1457
1458 if ((adbActionState == ADB_ACTION_IDLE) && /* ADB available? */
1459 (ADB_INTR_IS_OFF)) {/* and no incoming interrupt? */
1460
1461 } else
1462 if (adbWriteDelay == 0) /* it's busy, but is anything waiting? */
1463 adbWriteDelay = 1; /* if no, then we'll "queue"
1464 * it up */
1465 else {
1466 splx(s);
1467 return 1; /* really busy! */
1468 }
1469
1470 if ((long)in == (long)0) { /* need to convert? */
1471 /*
1472 * Don't need to use adb_cmd_extra here because this section
1473 * will be called ONLY when it is an ADB command (no RTC or
1474 * PRAM)
1475 */
1476 if ((command & 0x0c) == 0x08) /* copy addl data ONLY if
1477 * doing a listen! */
1478 len = buffer[0]; /* length of additional data */
1479 else
1480 len = 0;/* no additional data */
1481
1482 adbOutputBuffer[0] = 2 + len; /* dev. type + command + addl.
1483 * data */
1484 adbOutputBuffer[1] = 0x00; /* mark as an ADB command */
1485 adbOutputBuffer[2] = (u_char)command; /* load command */
1486
1487 /* copy additional output data, if any */
1488 memcpy(adbOutputBuffer + 3, buffer + 1, len);
1489 } else
1490 /* if data ready, just copy over */
1491 memcpy(adbOutputBuffer, in, in[0] + 2);
1492
1493 adbSentChars = 0; /* nothing sent yet */
1494 adbBuffer = buffer; /* save buffer to know where to save result */
1495 adbCompRout = compRout; /* save completion routine pointer */
1496 adbCompData = data; /* save completion routine data pointer */
1497 adbWaitingCmd = adbOutputBuffer[2]; /* save wait command */
1498
1499 if (adbWriteDelay != 1) { /* start command now? */
1500 adbActionState = ADB_ACTION_OUT; /* set next state */
1501
1502 ADB_SET_STATE_ACTIVE(); /* tell ADB that we want to send */
1503 ADB_SET_STATE_ACKOFF(); /* make sure */
1504
1505 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
1506
1507 ADB_SR() = adbOutputBuffer[adbSentChars + 1]; /* load byte for output */
1508
1509 ADB_SET_STATE_ACKON(); /* tell ADB byte ready to shift */
1510 }
1511 adbWriteDelay = 1; /* something in the write "queue" */
1512
1513 splx(s);
1514
1515 if (0x0100 <= (s & 0x0700)) /* were VIA1 interrupts blocked? */
1516 /* poll until byte done */
1517 while ((adbActionState != ADB_ACTION_IDLE) || (ADB_INTR_IS_ON)
1518 || (adbWaiting == 1))
1519 if (ADB_SR_INTR_IS_ON) { /* wait for "interrupt" */
1520 adb_intr_IIsi(NULL); /* go process it */
1521 if (adb_polling)
1522 adb_soft_intr();
1523 }
1524
1525 return 0;
1526 } /* send_adb_IIsi */
1527
1528 void
1529 adb_iop_recv(IOP *iop, struct iop_msg *msg)
1530 {
1531 struct adbCommand pkt;
1532 unsigned flags;
1533
1534 if (adbActionState != ADB_ACTION_RUNNING)
1535 return;
1536
1537 switch (msg->status) {
1538 case IOP_MSGSTAT_SENT:
1539 if (0 == adb_cmd_result(msg->msg + 1)) {
1540 adbWaiting = 1;
1541 adbWaitingCmd = msg->msg[2];
1542 }
1543 break;
1544 case IOP_MSGSTAT_RECEIVED:
1545 case IOP_MSGSTAT_UNEXPECTED:
1546 flags = msg->msg[0];
1547 if (flags != 0) {
1548 printf("ADB FLAGS 0x%x", flags);
1549 break;
1550 }
1551 if (adbWaiting &&
1552 (msg->msg[2] == adbWaitingCmd)) {
1553 pkt.saveBuf = msg->msg + 1;
1554 pkt.compRout = adbCompRout;
1555 pkt.compData = adbCompData;
1556 pkt.unsol = 0;
1557 pkt.ack_only = 0;
1558 adb_pass_up(&pkt);
1559
1560 adbWaitingCmd = 0;
1561 adbWaiting = 0;
1562 } else {
1563 pkt.unsol = 1;
1564 pkt.ack_only = 0;
1565 adb_pass_up(&pkt);
1566 }
1567 break;
1568 default:
1569 return;
1570 }
1571 }
1572
1573 int
1574 send_adb_iop(int cmd, u_char * buffer, void *compRout, void *data)
1575 {
1576 u_char buff[32];
1577 int cnt;
1578
1579 if (adbActionState != ADB_ACTION_RUNNING)
1580 return -1;
1581
1582 buff[0] = IOP_ADB_FL_EXPLICIT;
1583 buff[1] = buffer[0];
1584 buff[2] = cmd;
1585 cnt = (int) buff[1];
1586 memcpy(buff + 3, buffer + 1, cnt);
1587 return iop_send_msg(ISM_IOP, IOP_CHAN_ADB, buff, cnt+3,
1588 adb_iop_recv, NULL);
1589 }
1590
1591 /*
1592 * adb_pass_up is called by the interrupt-time routines.
1593 * It takes the raw packet data that was received from the
1594 * device and puts it into the queue that the upper half
1595 * processes. It then signals for a soft ADB interrupt which
1596 * will eventually call the upper half routine (adb_soft_intr).
1597 *
1598 * If in->unsol is 0, then this is either the notification
1599 * that the packet was sent (on a LISTEN, for example), or the
1600 * response from the device (on a TALK). The completion routine
1601 * is called only if the user specified one.
1602 *
1603 * If in->unsol is 1, then this packet was unsolicited and
1604 * so we look up the device in the ADB device table to determine
1605 * what it's default service routine is.
1606 *
1607 * If in->ack_only is 1, then we really only need to call
1608 * the completion routine, so don't do any other stuff.
1609 *
1610 * Note that in->data contains the packet header AND data,
1611 * while adbInbound[]->data contains ONLY data.
1612 *
1613 * Note: Called only at interrupt time. Assumes this.
1614 */
1615 void
1616 adb_pass_up(struct adbCommand *in)
1617 {
1618 int start = 0, len = 0, cmd = 0;
1619 ADBDataBlock block;
1620
1621 /* temp for testing */
1622 /*u_char *buffer = 0;*/
1623 /*u_char *compdata = 0;*/
1624 /*u_char *comprout = 0;*/
1625
1626 if (adbInCount >= ADB_QUEUE) {
1627 #ifdef ADB_DEBUG
1628 if (adb_debug)
1629 printf_intr("adb: ring buffer overflow\n");
1630 #endif
1631 return;
1632 }
1633
1634 if (in->ack_only) {
1635 len = in->data[0];
1636 cmd = in->cmd;
1637 start = 0;
1638 } else {
1639 switch (adbHardware) {
1640 case ADB_HW_IOP:
1641 case ADB_HW_II:
1642 cmd = in->data[1];
1643 if (in->data[0] < 2)
1644 len = 0;
1645 else
1646 len = in->data[0]-1;
1647 start = 1;
1648 break;
1649
1650 case ADB_HW_IISI:
1651 case ADB_HW_CUDA:
1652 /* If it's unsolicited, accept only ADB data for now */
1653 if (in->unsol)
1654 if (0 != in->data[2])
1655 return;
1656 cmd = in->data[4];
1657 if (in->data[0] < 5)
1658 len = 0;
1659 else
1660 len = in->data[0]-4;
1661 start = 4;
1662 break;
1663
1664 case ADB_HW_PB:
1665 cmd = in->data[1];
1666 if (in->data[0] < 2)
1667 len = 0;
1668 else
1669 len = in->data[0]-1;
1670 start = 1;
1671 break;
1672
1673 case ADB_HW_UNKNOWN:
1674 return;
1675 }
1676
1677 /* Make sure there is a valid device entry for this device */
1678 if (in->unsol) {
1679 /* ignore unsolicited data during adbreinit */
1680 if (adbStarting)
1681 return;
1682 /* get device's comp. routine and data area */
1683 if (-1 == get_adb_info(&block, ADB_CMDADDR(cmd)))
1684 return;
1685 }
1686 }
1687
1688 /*
1689 * If this is an unsolicited packet, we need to fill in
1690 * some info so adb_soft_intr can process this packet
1691 * properly. If it's not unsolicited, then use what
1692 * the caller sent us.
1693 */
1694 if (in->unsol) {
1695 adbInbound[adbInTail].compRout = (void *)block.dbServiceRtPtr;
1696 adbInbound[adbInTail].compData = (void *)block.dbDataAreaAddr;
1697 adbInbound[adbInTail].saveBuf = (void *)adbInbound[adbInTail].data;
1698 } else {
1699 adbInbound[adbInTail].compRout = (void *)in->compRout;
1700 adbInbound[adbInTail].compData = (void *)in->compData;
1701 adbInbound[adbInTail].saveBuf = (void *)in->saveBuf;
1702 }
1703
1704 #ifdef ADB_DEBUG
1705 if (adb_debug && in->data[1] == 2)
1706 printf_intr("adb: caught error\n");
1707 #endif
1708
1709 /* copy the packet data over */
1710 /*
1711 * TO DO: If the *_intr routines fed their incoming data
1712 * directly into an adbCommand struct, which is passed to
1713 * this routine, then we could eliminate this copy.
1714 */
1715 memcpy(adbInbound[adbInTail].data + 1, in->data + start + 1, len);
1716 adbInbound[adbInTail].data[0] = len;
1717 adbInbound[adbInTail].cmd = cmd;
1718
1719 adbInCount++;
1720 if (++adbInTail >= ADB_QUEUE)
1721 adbInTail = 0;
1722
1723 /*
1724 * If the debugger is running, call upper half manually.
1725 * Otherwise, trigger a soft interrupt to handle the rest later.
1726 */
1727 if (adb_polling)
1728 adb_soft_intr();
1729 else
1730 softintr_schedule(adb_softintr_cookie);
1731
1732 return;
1733 }
1734
1735
1736 /*
1737 * Called to process the packets after they have been
1738 * placed in the incoming queue.
1739 *
1740 */
1741 void
1742 adb_soft_intr(void)
1743 {
1744 int s;
1745 int cmd = 0;
1746 u_char *buffer = 0;
1747 u_char *comprout = 0;
1748 u_char *compdata = 0;
1749
1750 #if 0
1751 s = splhigh();
1752 printf_intr("sr: %x\n", (s & 0x0700));
1753 splx(s);
1754 #endif
1755
1756 /*delay(2*ADB_DELAY);*/
1757
1758 while (adbInCount) {
1759 #ifdef ADB_DEBUG
1760 if (adb_debug & 0x80)
1761 printf_intr("%x %x %x ",
1762 adbInCount, adbInHead, adbInTail);
1763 #endif
1764 /* get the data we need from the queue */
1765 buffer = adbInbound[adbInHead].saveBuf;
1766 comprout = adbInbound[adbInHead].compRout;
1767 compdata = adbInbound[adbInHead].compData;
1768 cmd = adbInbound[adbInHead].cmd;
1769
1770 /* copy over data to data area if it's valid */
1771 /*
1772 * Note that for unsol packets we don't want to copy the
1773 * data anywhere, so buffer was already set to 0.
1774 * For ack_only buffer was set to 0, so don't copy.
1775 */
1776 if (buffer)
1777 memcpy(buffer, adbInbound[adbInHead].data,
1778 adbInbound[adbInHead].data[0] + 1);
1779
1780 #ifdef ADB_DEBUG
1781 if (adb_debug & 0x80) {
1782 printf_intr("%p %p %p %x ",
1783 buffer, comprout, compdata, (short)cmd);
1784 printf_intr("buf: ");
1785 print_single(adbInbound[adbInHead].data);
1786 }
1787 #endif
1788
1789 /* call default completion routine if it's valid */
1790 if (comprout) {
1791 #ifdef __NetBSD__
1792 __asm volatile (
1793 " movml #0xffff,%%sp@- \n" /* save all regs */
1794 " movl %0,%%a2 \n" /* compdata */
1795 " movl %1,%%a1 \n" /* comprout */
1796 " movl %2,%%a0 \n" /* buffer */
1797 " movl %3,%%d0 \n" /* cmd */
1798 " jbsr %%a1@ \n" /* go call routine */
1799 " movml %%sp@+,#0xffff" /* restore all regs */
1800 :
1801 : "g"(compdata), "g"(comprout),
1802 "g"(buffer), "g"(cmd)
1803 : "d0", "a0", "a1", "a2");
1804 #else /* for macos based testing */
1805 asm
1806 {
1807 movem.l a0/a1/a2/d0, -(a7)
1808 move.l compdata, a2
1809 move.l comprout, a1
1810 move.l buffer, a0
1811 move.w cmd, d0
1812 jsr(a1)
1813 movem.l(a7)+, d0/a2/a1/a0
1814 }
1815 #endif
1816 }
1817
1818 s = splhigh();
1819 adbInCount--;
1820 if (++adbInHead >= ADB_QUEUE)
1821 adbInHead = 0;
1822 splx(s);
1823
1824 }
1825 return;
1826 }
1827
1828
1829 /*
1830 * This is my version of the ADBOp routine. It mainly just calls the
1831 * hardware-specific routine.
1832 *
1833 * data : pointer to data area to be used by compRout
1834 * compRout : completion routine
1835 * buffer : for LISTEN: points to data to send - MAX 8 data bytes,
1836 * byte 0 = # of bytes
1837 * : for TALK: points to place to save return data
1838 * command : the adb command to send
1839 * result : 0 = success
1840 * : -1 = could not complete
1841 */
1842 int
1843 adb_op(Ptr buffer, Ptr compRout, Ptr data, short command)
1844 {
1845 int result;
1846
1847 switch (adbHardware) {
1848 case ADB_HW_II:
1849 result = send_adb_II((u_char *)0, (u_char *)buffer,
1850 (void *)compRout, (void *)data, (int)command);
1851 if (result == 0)
1852 return 0;
1853 else
1854 return -1;
1855 break;
1856
1857 case ADB_HW_IOP:
1858 #ifdef __notyet__
1859 result = send_adb_iop((int)command, (u_char *)buffer,
1860 (void *)compRout, (void *)data);
1861 if (result == 0)
1862 return 0;
1863 else
1864 #endif
1865 return -1;
1866 break;
1867
1868 case ADB_HW_IISI:
1869 result = send_adb_IIsi((u_char *)0, (u_char *)buffer,
1870 (void *)compRout, (void *)data, (int)command);
1871 /*
1872 * I wish I knew why this delay is needed. It usually needs to
1873 * be here when several commands are sent in close succession,
1874 * especially early in device probes when doing collision
1875 * detection. It must be some race condition. Sigh. - jpw
1876 */
1877 delay(100);
1878 if (result == 0)
1879 return 0;
1880 else
1881 return -1;
1882 break;
1883
1884 case ADB_HW_PB:
1885 result = pm_adb_op((u_char *)buffer, (void *)compRout,
1886 (void *)data, (int)command);
1887
1888 if (result == 0)
1889 return 0;
1890 else
1891 return -1;
1892 break;
1893
1894 case ADB_HW_CUDA:
1895 result = send_adb_cuda((u_char *)0, (u_char *)buffer,
1896 (void *)compRout, (void *)data, (int)command);
1897 if (result == 0)
1898 return 0;
1899 else
1900 return -1;
1901 break;
1902
1903 case ADB_HW_UNKNOWN:
1904 default:
1905 return -1;
1906 }
1907 }
1908
1909
1910 /*
1911 * adb_hw_setup
1912 * This routine sets up the possible machine specific hardware
1913 * config (mainly VIA settings) for the various models.
1914 */
1915 void
1916 adb_hw_setup(void)
1917 {
1918 volatile int i;
1919 u_char send_string[ADB_MAX_MSG_LENGTH];
1920
1921 switch (adbHardware) {
1922 case ADB_HW_II:
1923 via1_register_irq(2, adb_intr_II, NULL);
1924
1925 via_reg(VIA1, vDirB) |= 0x30; /* register B bits 4 and 5:
1926 * outputs */
1927 via_reg(VIA1, vDirB) &= 0xf7; /* register B bit 3: input */
1928 via_reg(VIA1, vACR) &= ~vSR_OUT; /* make sure SR is set
1929 * to IN (II, IIsi) */
1930 adbActionState = ADB_ACTION_IDLE; /* used by all types of
1931 * hardware (II, IIsi) */
1932 adbBusState = ADB_BUS_IDLE; /* this var. used in II-series
1933 * code only */
1934 via_reg(VIA1, vIER) = 0x84; /* make sure VIA interrupts
1935 * are on (II, IIsi) */
1936 ADB_SET_STATE_IDLE_II(); /* set ADB bus state to idle */
1937
1938 ADB_VIA_CLR_INTR(); /* clear interrupt */
1939 break;
1940
1941 case ADB_HW_IOP:
1942 via_reg(VIA1, vIER) = 0x84;
1943 via_reg(VIA1, vIFR) = 0x04;
1944 #ifdef __notyet__
1945 adbActionState = ADB_ACTION_RUNNING;
1946 #endif
1947 break;
1948
1949 case ADB_HW_IISI:
1950 via1_register_irq(2, adb_intr_IIsi, NULL);
1951 via_reg(VIA1, vDirB) |= 0x30; /* register B bits 4 and 5:
1952 * outputs */
1953 via_reg(VIA1, vDirB) &= 0xf7; /* register B bit 3: input */
1954 via_reg(VIA1, vACR) &= ~vSR_OUT; /* make sure SR is set
1955 * to IN (II, IIsi) */
1956 adbActionState = ADB_ACTION_IDLE; /* used by all types of
1957 * hardware (II, IIsi) */
1958 adbBusState = ADB_BUS_IDLE; /* this var. used in II-series
1959 * code only */
1960 via_reg(VIA1, vIER) = 0x84; /* make sure VIA interrupts
1961 * are on (II, IIsi) */
1962 ADB_SET_STATE_IDLE_IISI(); /* set ADB bus state to idle */
1963
1964 /* get those pesky clock ticks we missed while booting */
1965 for (i = 0; i < 30; i++) {
1966 delay(ADB_DELAY);
1967 adb_hw_setup_IIsi(send_string);
1968 #ifdef ADB_DEBUG
1969 if (adb_debug) {
1970 printf_intr("adb: cleanup: ");
1971 print_single(send_string);
1972 }
1973 #endif
1974 delay(ADB_DELAY);
1975 if (ADB_INTR_IS_OFF)
1976 break;
1977 }
1978 break;
1979
1980 case ADB_HW_PB:
1981 /*
1982 * XXX - really PM_VIA_CLR_INTR - should we put it in
1983 * pm_direct.h?
1984 */
1985 pm_hw_setup();
1986 break;
1987
1988 case ADB_HW_CUDA:
1989 via1_register_irq(2, adb_intr_cuda, NULL);
1990 via_reg(VIA1, vDirB) |= 0x30; /* register B bits 4 and 5:
1991 * outputs */
1992 via_reg(VIA1, vDirB) &= 0xf7; /* register B bit 3: input */
1993 via_reg(VIA1, vACR) &= ~vSR_OUT; /* make sure SR is set
1994 * to IN */
1995 via_reg(VIA1, vACR) = (via_reg(VIA1, vACR) | 0x0c) & ~0x10;
1996 adbActionState = ADB_ACTION_IDLE; /* used by all types of
1997 * hardware */
1998 adbBusState = ADB_BUS_IDLE; /* this var. used in II-series
1999 * code only */
2000 via_reg(VIA1, vIER) = 0x84; /* make sure VIA interrupts
2001 * are on */
2002 ADB_SET_STATE_IDLE_CUDA(); /* set ADB bus state to idle */
2003
2004 /* sort of a device reset */
2005 i = ADB_SR(); /* clear interrupt */
2006 ADB_VIA_INTR_DISABLE(); /* no interrupts while clearing */
2007 ADB_SET_STATE_IDLE_CUDA(); /* reset state to idle */
2008 delay(ADB_DELAY);
2009 ADB_SET_STATE_TIP(); /* signal start of frame */
2010 delay(ADB_DELAY);
2011 ADB_TOGGLE_STATE_ACK_CUDA();
2012 delay(ADB_DELAY);
2013 ADB_CLR_STATE_TIP();
2014 delay(ADB_DELAY);
2015 ADB_SET_STATE_IDLE_CUDA(); /* back to idle state */
2016 i = ADB_SR(); /* clear interrupt */
2017 ADB_VIA_INTR_ENABLE(); /* ints ok now */
2018 break;
2019
2020 case ADB_HW_UNKNOWN:
2021 default:
2022 via_reg(VIA1, vIER) = 0x04; /* turn interrupts off - TO
2023 * DO: turn PB ints off? */
2024 return;
2025 break;
2026 }
2027 }
2028
2029
2030 /*
2031 * adb_hw_setup_IIsi
2032 * This is sort of a "read" routine that forces the adb hardware through a read cycle
2033 * if there is something waiting. This helps "clean up" any commands that may have gotten
2034 * stuck or stopped during the boot process.
2035 *
2036 */
2037 void
2038 adb_hw_setup_IIsi(u_char *buffer)
2039 {
2040 int i;
2041 int dummy;
2042 int s;
2043 long my_time;
2044 int endofframe;
2045
2046 delay(ADB_DELAY);
2047
2048 i = 1; /* skip over [0] */
2049 s = splhigh(); /* block ALL interrupts while we are working */
2050 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
2051 ADB_VIA_INTR_DISABLE(); /* disable ADB interrupt on IIs. */
2052 /* this is required, especially on faster machines */
2053 delay(ADB_DELAY);
2054
2055 if (ADB_INTR_IS_ON) {
2056 ADB_SET_STATE_ACTIVE(); /* signal start of data frame */
2057
2058 endofframe = 0;
2059 while (0 == endofframe) {
2060 /*
2061 * Poll for ADB interrupt and watch for timeout.
2062 * If time out, keep going in hopes of not hanging
2063 * the ADB chip - I think
2064 */
2065 my_time = ADB_DELAY * 5;
2066 while ((ADB_SR_INTR_IS_OFF) && (my_time-- > 0))
2067 dummy = via_reg(VIA1, vBufB);
2068
2069 buffer[i++] = ADB_SR(); /* reset interrupt flag by
2070 * reading vSR */
2071 /*
2072 * Perhaps put in a check here that ignores all data
2073 * after the first ADB_MAX_MSG_LENGTH bytes ???
2074 */
2075 if (ADB_INTR_IS_OFF) /* check for end of frame */
2076 endofframe = 1;
2077
2078 ADB_SET_STATE_ACKON(); /* send ACK to ADB chip */
2079 delay(ADB_DELAY); /* delay */
2080 ADB_SET_STATE_ACKOFF(); /* send ACK to ADB chip */
2081 }
2082 ADB_SET_STATE_INACTIVE(); /* signal end of frame and
2083 * delay */
2084
2085 /* probably don't need to delay this long */
2086 delay(ADB_DELAY);
2087 }
2088 buffer[0] = --i; /* [0] is length of message */
2089 ADB_VIA_INTR_ENABLE(); /* enable ADB interrupt on IIs. */
2090 splx(s); /* restore interrupts */
2091
2092 return;
2093 } /* adb_hw_setup_IIsi */
2094
2095
2096
2097 /*
2098 * adb_reinit sets up the adb stuff
2099 *
2100 */
2101 void
2102 adb_reinit(void)
2103 {
2104 u_char send_string[ADB_MAX_MSG_LENGTH];
2105 ADBDataBlock data; /* temp. holder for getting device info */
2106 volatile int i, x;
2107 int s;
2108 int command;
2109 int result;
2110 int saveptr; /* point to next free relocation address */
2111 int device;
2112 int nonewtimes; /* times thru loop w/o any new devices */
2113
2114 adb_setup_hw_type(); /* setup hardware type */
2115
2116 /* Make sure we are not interrupted while building the table. */
2117 /* ints must be on for PB & IOP (at least, for now) */
2118 if (adbHardware != ADB_HW_PB && adbHardware != ADB_HW_IOP)
2119 s = splhigh();
2120 else
2121 s = 0; /* XXX shut the compiler up*/
2122
2123 ADBNumDevices = 0; /* no devices yet */
2124
2125 /* Let intr routines know we are running reinit */
2126 adbStarting = 1;
2127
2128 /*
2129 * Initialize the ADB table. For now, we'll always use the same table
2130 * that is defined at the beginning of this file - no mallocs.
2131 */
2132 for (i = 0; i < 16; i++) {
2133 ADBDevTable[i].devType = 0;
2134 ADBDevTable[i].origAddr = ADBDevTable[i].currentAddr = 0;
2135 }
2136
2137 adb_hw_setup(); /* init the VIA bits and hard reset ADB */
2138
2139 delay(1000);
2140
2141 /* send an ADB reset first */
2142 (void)adb_op_sync((Ptr)0, (Ptr)0, (Ptr)0, (short)0x00);
2143 delay(3000);
2144
2145 /*
2146 * Probe for ADB devices. Probe devices 1-15 quickly to determine
2147 * which device addresses are in use and which are free. For each
2148 * address that is in use, move the device at that address to a higher
2149 * free address. Continue doing this at that address until no device
2150 * responds at that address. Then move the last device that was moved
2151 * back to the original address. Do this for the remaining addresses
2152 * that we determined were in use.
2153 *
2154 * When finished, do this entire process over again with the updated
2155 * list of in use addresses. Do this until no new devices have been
2156 * found in 20 passes though the in use address list. (This probably
2157 * seems long and complicated, but it's the best way to detect multiple
2158 * devices at the same address - sometimes it takes a couple of tries
2159 * before the collision is detected.)
2160 */
2161
2162 /* initial scan through the devices */
2163 for (i = 1; i < 16; i++) {
2164 command = ADBTALK(i, 3);
2165 result = adb_op_sync((Ptr)send_string, (Ptr)0,
2166 (Ptr)0, (short)command);
2167
2168 if (result == 0 && send_string[0] != 0) {
2169 /* found a device */
2170 ++ADBNumDevices;
2171 KASSERT(ADBNumDevices < 16);
2172 ADBDevTable[ADBNumDevices].devType =
2173 (int)(send_string[2]);
2174 ADBDevTable[ADBNumDevices].origAddr = i;
2175 ADBDevTable[ADBNumDevices].currentAddr = i;
2176 ADBDevTable[ADBNumDevices].DataAreaAddr =
2177 (long)0;
2178 ADBDevTable[ADBNumDevices].ServiceRtPtr = (void *)0;
2179 pm_check_adb_devices(i); /* tell pm driver device
2180 * is here */
2181 }
2182 }
2183
2184 /* find highest unused address */
2185 for (saveptr = 15; saveptr > 0; saveptr--)
2186 if (-1 == get_adb_info(&data, saveptr))
2187 break;
2188
2189 #ifdef ADB_DEBUG
2190 if (adb_debug & 0x80) {
2191 printf_intr("first free is: 0x%02x\n", saveptr);
2192 printf_intr("devices: %i\n", ADBNumDevices);
2193 }
2194 #endif
2195
2196 nonewtimes = 0; /* no loops w/o new devices */
2197 while (saveptr > 0 && nonewtimes++ < 11) {
2198 for (i = 1;saveptr > 0 && i <= ADBNumDevices; i++) {
2199 device = ADBDevTable[i].currentAddr;
2200 #ifdef ADB_DEBUG
2201 if (adb_debug & 0x80)
2202 printf_intr("moving device 0x%02x to 0x%02x "
2203 "(index 0x%02x) ", device, saveptr, i);
2204 #endif
2205
2206 /* send TALK R3 to address */
2207 command = ADBTALK(device, 3);
2208 (void)adb_op_sync((Ptr)send_string, (Ptr)0,
2209 (Ptr)0, (short)command);
2210
2211 /* move device to higher address */
2212 command = ADBLISTEN(device, 3);
2213 send_string[0] = 2;
2214 send_string[1] = (u_char)(saveptr | 0x60);
2215 send_string[2] = 0xfe;
2216 (void)adb_op_sync((Ptr)send_string, (Ptr)0,
2217 (Ptr)0, (short)command);
2218 delay(1000);
2219
2220 /* send TALK R3 - anthing at new address? */
2221 command = ADBTALK(saveptr, 3);
2222 send_string[0] = 0;
2223 result = adb_op_sync((Ptr)send_string, (Ptr)0,
2224 (Ptr)0, (short)command);
2225 delay(1000);
2226
2227 if (result != 0 || send_string[0] == 0) {
2228 /*
2229 * maybe there's a communication breakdown;
2230 * just in case, move it back from whence it
2231 * came, and we'll try again later
2232 */
2233 command = ADBLISTEN(saveptr, 3);
2234 send_string[0] = 2;
2235 send_string[1] = (u_char)(device | 0x60);
2236 send_string[2] = 0x00;
2237 (void)adb_op_sync((Ptr)send_string, (Ptr)0,
2238 (Ptr)0, (short)command);
2239 #ifdef ADB_DEBUG
2240 if (adb_debug & 0x80)
2241 printf_intr("failed, continuing\n");
2242 #endif
2243 delay(1000);
2244 continue;
2245 }
2246
2247 /* send TALK R3 - anything at old address? */
2248 command = ADBTALK(device, 3);
2249 send_string[0] = 0;
2250 result = adb_op_sync((Ptr)send_string, (Ptr)0,
2251 (Ptr)0, (short)command);
2252 if (result == 0 && send_string[0] != 0) {
2253 /* new device found */
2254 /* update data for previously moved device */
2255 ADBDevTable[i].currentAddr = saveptr;
2256 #ifdef ADB_DEBUG
2257 if (adb_debug & 0x80)
2258 printf_intr("old device at index %i\n",i);
2259 #endif
2260 /* add new device in table */
2261 #ifdef ADB_DEBUG
2262 if (adb_debug & 0x80)
2263 printf_intr("new device found\n");
2264 #endif
2265 if (saveptr > ADBNumDevices) {
2266 ++ADBNumDevices;
2267 KASSERT(ADBNumDevices < 16);
2268 }
2269 ADBDevTable[ADBNumDevices].devType =
2270 (int)(send_string[2]);
2271 ADBDevTable[ADBNumDevices].origAddr = device;
2272 ADBDevTable[ADBNumDevices].currentAddr = device;
2273 /* These will be set correctly in adbsys.c */
2274 /* Until then, unsol. data will be ignored. */
2275 ADBDevTable[ADBNumDevices].DataAreaAddr =
2276 (long)0;
2277 ADBDevTable[ADBNumDevices].ServiceRtPtr =
2278 (void *)0;
2279 /* find next unused address */
2280 for (x = saveptr; x > 0; x--) {
2281 if (-1 == get_adb_info(&data, x)) {
2282 saveptr = x;
2283 break;
2284 }
2285 }
2286 if (x == 0)
2287 saveptr = 0;
2288 #ifdef ADB_DEBUG
2289 if (adb_debug & 0x80)
2290 printf_intr("new free is 0x%02x\n",
2291 saveptr);
2292 #endif
2293 nonewtimes = 0;
2294 /* tell pm driver device is here */
2295 pm_check_adb_devices(device);
2296 } else {
2297 #ifdef ADB_DEBUG
2298 if (adb_debug & 0x80)
2299 printf_intr("moving back...\n");
2300 #endif
2301 /* move old device back */
2302 command = ADBLISTEN(saveptr, 3);
2303 send_string[0] = 2;
2304 send_string[1] = (u_char)(device | 0x60);
2305 send_string[2] = 0xfe;
2306 (void)adb_op_sync((Ptr)send_string, (Ptr)0,
2307 (Ptr)0, (short)command);
2308 delay(1000);
2309 }
2310 }
2311 }
2312
2313 #ifdef ADB_DEBUG
2314 if (adb_debug) {
2315 for (i = 1; i <= ADBNumDevices; i++) {
2316 x = get_ind_adb_info(&data, i);
2317 if (x != -1)
2318 printf_intr("index 0x%x, addr 0x%x, type 0x%hx\n",
2319 i, x, data.devType);
2320 }
2321 }
2322 #endif
2323
2324 #ifndef MRG_ADB
2325 /* enable the programmer's switch, if we have one */
2326 adb_prog_switch_enable();
2327 #endif
2328
2329 #ifdef ADB_DEBUG
2330 if (adb_debug) {
2331 if (0 == ADBNumDevices) /* tell user if no devices found */
2332 printf_intr("adb: no devices found\n");
2333 }
2334 #endif
2335
2336 adbStarting = 0; /* not starting anymore */
2337 #ifdef ADB_DEBUG
2338 if (adb_debug)
2339 printf_intr("adb: ADBReInit complete\n");
2340 #endif
2341
2342 if (adbHardware == ADB_HW_CUDA)
2343 callout_reset(&adb_cuda_tickle_ch, ADB_TICKLE_TICKS,
2344 (void *)adb_cuda_tickle, NULL);
2345
2346 /* ints must be on for PB & IOP (at least, for now) */
2347 if (adbHardware != ADB_HW_PB && adbHardware != ADB_HW_IOP)
2348 splx(s);
2349
2350 return;
2351 }
2352
2353
2354 /*
2355 * adb_comp_exec
2356 * This is a general routine that calls the completion routine if there is one.
2357 * NOTE: This routine is now only used by pm_direct.c
2358 * All the code in this file (adb_direct.c) uses
2359 * the adb_pass_up routine now.
2360 */
2361 void
2362 adb_comp_exec(void)
2363 {
2364 if ((long)0 != adbCompRout) /* don't call if empty return location */
2365 #ifdef __NetBSD__
2366 __asm volatile(
2367 " movml #0xffff,%%sp@- \n" /* save all registers */
2368 " movl %0,%%a2 \n" /* adbCompData */
2369 " movl %1,%%a1 \n" /* adbCompRout */
2370 " movl %2,%%a0 \n" /* adbBuffer */
2371 " movl %3,%%d0 \n" /* adbWaitingCmd */
2372 " jbsr %%a1@ \n" /* go call the routine */
2373 " movml %%sp@+,#0xffff" /* restore all registers */
2374 :
2375 : "g"(adbCompData), "g"(adbCompRout),
2376 "g"(adbBuffer), "g"(adbWaitingCmd)
2377 : "d0", "a0", "a1", "a2");
2378 #else /* for Mac OS-based testing */
2379 asm {
2380 movem.l a0/a1/a2/d0, -(a7)
2381 move.l adbCompData, a2
2382 move.l adbCompRout, a1
2383 move.l adbBuffer, a0
2384 move.w adbWaitingCmd, d0
2385 jsr(a1)
2386 movem.l(a7) +, d0/a2/a1/a0
2387 }
2388 #endif
2389 }
2390
2391
2392 /*
2393 * adb_cmd_result
2394 *
2395 * This routine lets the caller know whether the specified adb command string
2396 * should expect a returned result, such as a TALK command.
2397 *
2398 * returns: 0 if a result should be expected
2399 * 1 if a result should NOT be expected
2400 */
2401 int
2402 adb_cmd_result(u_char *in)
2403 {
2404 switch (adbHardware) {
2405 case ADB_HW_IOP:
2406 case ADB_HW_II:
2407 /* was it an ADB talk command? */
2408 if ((in[1] & 0x0c) == 0x0c)
2409 return 0;
2410 return 1;
2411
2412 case ADB_HW_IISI:
2413 case ADB_HW_CUDA:
2414 /* was it an ADB talk command? */
2415 if ((in[1] == 0x00) && ((in[2] & 0x0c) == 0x0c))
2416 return 0;
2417 /* was it an RTC/PRAM read date/time? */
2418 if ((in[1] == 0x01) && (in[2] == 0x03))
2419 return 0;
2420 return 1;
2421
2422 case ADB_HW_PB:
2423 return 1;
2424
2425 case ADB_HW_UNKNOWN:
2426 default:
2427 return 1;
2428 }
2429 }
2430
2431
2432 /*
2433 * adb_cmd_extra
2434 *
2435 * This routine lets the caller know whether the specified adb command string
2436 * may have extra data appended to the end of it, such as a LISTEN command.
2437 *
2438 * returns: 0 if extra data is allowed
2439 * 1 if extra data is NOT allowed
2440 */
2441 int
2442 adb_cmd_extra(u_char *in)
2443 {
2444 switch (adbHardware) {
2445 case ADB_HW_II:
2446 case ADB_HW_IOP:
2447 if ((in[1] & 0x0c) == 0x08) /* was it a listen command? */
2448 return 0;
2449 return 1;
2450
2451 case ADB_HW_IISI:
2452 case ADB_HW_CUDA:
2453 /*
2454 * TO DO: support needs to be added to recognize RTC and PRAM
2455 * commands
2456 */
2457 if ((in[2] & 0x0c) == 0x08) /* was it a listen command? */
2458 return 0;
2459 /* add others later */
2460 return 1;
2461
2462 case ADB_HW_PB:
2463 return 1;
2464
2465 case ADB_HW_UNKNOWN:
2466 default:
2467 return 1;
2468 }
2469 }
2470
2471
2472 void
2473 adb_setup_hw_type(void)
2474 {
2475 long response;
2476
2477 response = mac68k_machine.machineid;
2478
2479 /*
2480 * Determine what type of ADB hardware we are running on.
2481 */
2482 switch (response) {
2483 case MACH_MACC610: /* Centris 610 */
2484 case MACH_MACC650: /* Centris 650 */
2485 case MACH_MACII: /* II */
2486 case MACH_MACIICI: /* IIci */
2487 case MACH_MACIICX: /* IIcx */
2488 case MACH_MACIIX: /* IIx */
2489 case MACH_MACQ610: /* Quadra 610 */
2490 case MACH_MACQ650: /* Quadra 650 */
2491 case MACH_MACQ700: /* Quadra 700 */
2492 case MACH_MACQ800: /* Quadra 800 */
2493 case MACH_MACSE30: /* SE/30 */
2494 adbHardware = ADB_HW_II;
2495 #ifdef ADB_DEBUG
2496 if (adb_debug)
2497 printf_intr("adb: using II series hardware support\n");
2498 #endif
2499 break;
2500
2501 case MACH_MACCLASSICII: /* Classic II */
2502 case MACH_MACLCII: /* LC II, Performa 400/405/430 */
2503 case MACH_MACLCIII: /* LC III, Performa 450 */
2504 case MACH_MACIISI: /* IIsi */
2505 case MACH_MACIIVI: /* IIvi */
2506 case MACH_MACIIVX: /* IIvx */
2507 case MACH_MACP460: /* Performa 460/465/467 */
2508 case MACH_MACP600: /* Performa 600 */
2509 adbHardware = ADB_HW_IISI;
2510 #ifdef ADB_DEBUG
2511 if (adb_debug)
2512 printf_intr("adb: using IIsi series hardware support\n");
2513 #endif
2514 break;
2515
2516 case MACH_MACPB140: /* PowerBook 140 */
2517 case MACH_MACPB145: /* PowerBook 145 */
2518 case MACH_MACPB160: /* PowerBook 160 */
2519 case MACH_MACPB165: /* PowerBook 165 */
2520 case MACH_MACPB165C: /* PowerBook 165c */
2521 case MACH_MACPB170: /* PowerBook 170 */
2522 case MACH_MACPB180: /* PowerBook 180 */
2523 case MACH_MACPB180C: /* PowerBook 180c */
2524 adbHardware = ADB_HW_PB;
2525 pm_setup_adb();
2526 #ifdef ADB_DEBUG
2527 if (adb_debug)
2528 printf_intr("adb: using PowerBook 100-series hardware support\n");
2529 #endif
2530 break;
2531
2532 case MACH_MACPB150: /* PowerBook 150 */
2533 case MACH_MACPB210: /* PowerBook Duo 210 */
2534 case MACH_MACPB230: /* PowerBook Duo 230 */
2535 case MACH_MACPB250: /* PowerBook Duo 250 */
2536 case MACH_MACPB270: /* PowerBook Duo 270 */
2537 case MACH_MACPB280: /* PowerBook Duo 280 */
2538 case MACH_MACPB280C: /* PowerBook Duo 280c */
2539 case MACH_MACPB500: /* PowerBook 500 series */
2540 case MACH_MACPB190: /* PowerBook 190 */
2541 case MACH_MACPB190CS: /* PowerBook 190cs */
2542 adbHardware = ADB_HW_PB;
2543 pm_setup_adb();
2544 #ifdef ADB_DEBUG
2545 if (adb_debug)
2546 printf_intr("adb: using PowerBook Duo-series and PowerBook 500-series hardware support\n");
2547 #endif
2548 break;
2549
2550 case MACH_MACC660AV: /* Centris 660AV */
2551 case MACH_MACCCLASSIC: /* Color Classic */
2552 case MACH_MACCCLASSICII: /* Color Classic II */
2553 case MACH_MACLC475: /* LC 475, Performa 475/476 */
2554 case MACH_MACLC475_33: /* Clock-chipped 47x */
2555 case MACH_MACLC520: /* LC 520 */
2556 case MACH_MACLC575: /* LC 575, Performa 575/577/578 */
2557 case MACH_MACP550: /* LC 550, Performa 550 */
2558 case MACH_MACTV: /* Macintosh TV */
2559 case MACH_MACP580: /* Performa 580/588 */
2560 case MACH_MACQ605: /* Quadra 605 */
2561 case MACH_MACQ605_33: /* Clock-chipped Quadra 605 */
2562 case MACH_MACQ630: /* LC 630, Performa 630, Quadra 630 */
2563 case MACH_MACQ840AV: /* Quadra 840AV */
2564 adbHardware = ADB_HW_CUDA;
2565 #ifdef ADB_DEBUG
2566 if (adb_debug)
2567 printf_intr("adb: using Cuda series hardware support\n");
2568 #endif
2569 break;
2570
2571 case MACH_MACQ900: /* Quadra 900 */
2572 case MACH_MACQ950: /* Quadra 950 */
2573 case MACH_MACIIFX: /* Mac IIfx */
2574 adbHardware = ADB_HW_IOP;
2575 iop_register_listener(ISM_IOP, IOP_CHAN_ADB, adb_iop_recv, NULL);
2576 #ifdef ADB_DEBUG
2577 if (adb_debug)
2578 printf_intr("adb: using IOP-based ADB\n");
2579 #endif
2580 break;
2581
2582 default:
2583 adbHardware = ADB_HW_UNKNOWN;
2584 #ifdef ADB_DEBUG
2585 if (adb_debug) {
2586 printf_intr("adb: hardware type unknown for this machine\n");
2587 printf_intr("adb: ADB support is disabled\n");
2588 }
2589 #endif
2590 break;
2591 }
2592
2593 /*
2594 * Determine whether this machine has ADB based soft power.
2595 */
2596 switch (response) {
2597 case MACH_MACCCLASSIC: /* Color Classic */
2598 case MACH_MACCCLASSICII: /* Color Classic II */
2599 case MACH_MACIISI: /* IIsi */
2600 case MACH_MACIIVI: /* IIvi */
2601 case MACH_MACIIVX: /* IIvx */
2602 case MACH_MACLC520: /* LC 520 */
2603 case MACH_MACLC575: /* LC 575, Performa 575/577/578 */
2604 case MACH_MACP550: /* LC 550, Performa 550 */
2605 case MACH_MACTV: /* Macintosh TV */
2606 case MACH_MACP580: /* Performa 580/588 */
2607 case MACH_MACP600: /* Performa 600 */
2608 case MACH_MACQ630: /* LC 630, Performa 630, Quadra 630 */
2609 case MACH_MACQ840AV: /* Quadra 840AV */
2610 adbSoftPower = 1;
2611 break;
2612 }
2613 }
2614
2615 int
2616 count_adbs(void)
2617 {
2618 int i;
2619 int found;
2620
2621 found = 0;
2622
2623 for (i = 1; i < 16; i++)
2624 if (0 != ADBDevTable[i].currentAddr)
2625 found++;
2626
2627 return found;
2628 }
2629
2630 int
2631 get_ind_adb_info(ADBDataBlock *info, int index)
2632 {
2633 if ((index < 1) || (index > 15)) /* check range 1-15 */
2634 return (-1);
2635
2636 #ifdef ADB_DEBUG
2637 if (adb_debug & 0x80)
2638 printf_intr("index 0x%x devType is: 0x%x\n", index,
2639 ADBDevTable[index].devType);
2640 #endif
2641 if (0 == ADBDevTable[index].devType) /* make sure it's a valid entry */
2642 return (-1);
2643
2644 info->devType = (unsigned char)(ADBDevTable[index].devType);
2645 info->origADBAddr = (unsigned char)(ADBDevTable[index].origAddr);
2646 info->dbServiceRtPtr = (Ptr)ADBDevTable[index].ServiceRtPtr;
2647 info->dbDataAreaAddr = (Ptr)ADBDevTable[index].DataAreaAddr;
2648
2649 return (ADBDevTable[index].currentAddr);
2650 }
2651
2652 int
2653 get_adb_info(ADBDataBlock *info, int adbAddr)
2654 {
2655 int i;
2656
2657 if ((adbAddr < 1) || (adbAddr > 15)) /* check range 1-15 */
2658 return (-1);
2659
2660 for (i = 1; i < 15; i++)
2661 if (ADBDevTable[i].currentAddr == adbAddr) {
2662 info->devType = (unsigned char)(ADBDevTable[i].devType);
2663 info->origADBAddr = (unsigned char)(ADBDevTable[i].origAddr);
2664 info->dbServiceRtPtr = (Ptr)ADBDevTable[i].ServiceRtPtr;
2665 info->dbDataAreaAddr = ADBDevTable[i].DataAreaAddr;
2666 return 0; /* found */
2667 }
2668
2669 return (-1); /* not found */
2670 }
2671
2672 int
2673 set_adb_info(ADBSetInfoBlock *info, int adbAddr)
2674 {
2675 int i;
2676
2677 if ((adbAddr < 1) || (adbAddr > 15)) /* check range 1-15 */
2678 return (-1);
2679
2680 for (i = 1; i < 15; i++)
2681 if (ADBDevTable[i].currentAddr == adbAddr) {
2682 ADBDevTable[i].ServiceRtPtr =
2683 (void *)(info->siServiceRtPtr);
2684 ADBDevTable[i].DataAreaAddr = info->siDataAreaAddr;
2685 return 0; /* found */
2686 }
2687
2688 return (-1); /* not found */
2689
2690 }
2691
2692 #ifndef MRG_ADB
2693 long
2694 mrg_adbintr(void)
2695 {
2696 adb_intr(NULL);
2697 return 1; /* mimic mrg_adbintr in macrom.h just in case */
2698 }
2699
2700 long
2701 mrg_pmintr(void)
2702 {
2703 pm_intr(NULL);
2704 return 1; /* mimic mrg_pmintr in macrom.h just in case */
2705 }
2706
2707 /* caller should really use machine-independent version: getPramTime */
2708 /* this version does pseudo-adb access only */
2709 int
2710 adb_read_date_time(unsigned long *curtime)
2711 {
2712 u_char output[ADB_MAX_MSG_LENGTH];
2713 int result;
2714 volatile int flag = 0;
2715
2716 switch (adbHardware) {
2717 case ADB_HW_II:
2718 return -1;
2719
2720 case ADB_HW_IOP:
2721 return -1;
2722
2723 case ADB_HW_IISI:
2724 output[0] = 0x02; /* 2 byte message */
2725 output[1] = 0x01; /* to pram/rtc device */
2726 output[2] = 0x03; /* read date/time */
2727 result = send_adb_IIsi((u_char *)output, (u_char *)output,
2728 (void *)adb_op_comprout, __UNVOLATILE(&flag), (int)0);
2729 if (result != 0) /* exit if not sent */
2730 return -1;
2731
2732 while (0 == flag) /* wait for result */
2733 ;
2734
2735 *curtime = (long)(*(long *)(output + 1));
2736 return 0;
2737
2738 case ADB_HW_PB:
2739 return -1;
2740
2741 case ADB_HW_CUDA:
2742 output[0] = 0x02; /* 2 byte message */
2743 output[1] = 0x01; /* to pram/rtc device */
2744 output[2] = 0x03; /* read date/time */
2745 result = send_adb_cuda((u_char *)output, (u_char *)output,
2746 (void *)adb_op_comprout, __UNVOLATILE(&flag), (int)0);
2747 if (result != 0) /* exit if not sent */
2748 return -1;
2749
2750 while (0 == flag) /* wait for result */
2751 ;
2752
2753 *curtime = (long)(*(long *)(output + 1));
2754 return 0;
2755
2756 case ADB_HW_UNKNOWN:
2757 default:
2758 return -1;
2759 }
2760 }
2761
2762 /* caller should really use machine-independent version: setPramTime */
2763 /* this version does pseudo-adb access only */
2764 int
2765 adb_set_date_time(unsigned long curtime)
2766 {
2767 u_char output[ADB_MAX_MSG_LENGTH];
2768 int result;
2769 volatile int flag = 0;
2770
2771 switch (adbHardware) {
2772 case ADB_HW_II:
2773 return -1;
2774
2775 case ADB_HW_IOP:
2776 return -1;
2777
2778 case ADB_HW_IISI:
2779 output[0] = 0x06; /* 6 byte message */
2780 output[1] = 0x01; /* to pram/rtc device */
2781 output[2] = 0x09; /* set date/time */
2782 output[3] = (u_char)(curtime >> 24);
2783 output[4] = (u_char)(curtime >> 16);
2784 output[5] = (u_char)(curtime >> 8);
2785 output[6] = (u_char)(curtime);
2786 result = send_adb_IIsi((u_char *)output, (u_char *)0,
2787 (void *)adb_op_comprout, __UNVOLATILE(&flag), (int)0);
2788 if (result != 0) /* exit if not sent */
2789 return -1;
2790
2791 while (0 == flag) /* wait for send to finish */
2792 ;
2793
2794 return 0;
2795
2796 case ADB_HW_PB:
2797 return -1;
2798
2799 case ADB_HW_CUDA:
2800 output[0] = 0x06; /* 6 byte message */
2801 output[1] = 0x01; /* to pram/rtc device */
2802 output[2] = 0x09; /* set date/time */
2803 output[3] = (u_char)(curtime >> 24);
2804 output[4] = (u_char)(curtime >> 16);
2805 output[5] = (u_char)(curtime >> 8);
2806 output[6] = (u_char)(curtime);
2807 result = send_adb_cuda((u_char *)output, (u_char *)0,
2808 (void *)adb_op_comprout, __UNVOLATILE(&flag), (int)0);
2809 if (result != 0) /* exit if not sent */
2810 return -1;
2811
2812 while (0 == flag) /* wait for send to finish */
2813 ;
2814
2815 return 0;
2816
2817 case ADB_HW_UNKNOWN:
2818 default:
2819 return -1;
2820 }
2821 }
2822
2823
2824 int
2825 adb_poweroff(void)
2826 {
2827 u_char output[ADB_MAX_MSG_LENGTH];
2828 int result;
2829
2830 if (!adbSoftPower)
2831 return -1;
2832
2833 adb_polling = 1;
2834
2835 switch (adbHardware) {
2836 case ADB_HW_IISI:
2837 output[0] = 0x02; /* 2 byte message */
2838 output[1] = 0x01; /* to pram/rtc/soft-power device */
2839 output[2] = 0x0a; /* set date/time */
2840 result = send_adb_IIsi((u_char *)output, (u_char *)0,
2841 (void *)0, (void *)0, (int)0);
2842 if (result != 0) /* exit if not sent */
2843 return -1;
2844
2845 for (;;); /* wait for power off */
2846
2847 return 0;
2848
2849 case ADB_HW_PB:
2850 return -1;
2851
2852 case ADB_HW_CUDA:
2853 output[0] = 0x02; /* 2 byte message */
2854 output[1] = 0x01; /* to pram/rtc/soft-power device */
2855 output[2] = 0x0a; /* set date/time */
2856 result = send_adb_cuda((u_char *)output, (u_char *)0,
2857 (void *)0, (void *)0, (int)0);
2858 if (result != 0) /* exit if not sent */
2859 return -1;
2860
2861 for (;;); /* wait for power off */
2862
2863 return 0;
2864
2865 case ADB_HW_II: /* II models don't do ADB soft power */
2866 case ADB_HW_IOP: /* IOP models don't do ADB soft power */
2867 case ADB_HW_UNKNOWN:
2868 default:
2869 return -1;
2870 }
2871 }
2872
2873 int
2874 adb_prog_switch_enable(void)
2875 {
2876 u_char output[ADB_MAX_MSG_LENGTH];
2877 int result;
2878 volatile int flag = 0;
2879
2880 switch (adbHardware) {
2881 case ADB_HW_IISI:
2882 output[0] = 0x03; /* 3 byte message */
2883 output[1] = 0x01; /* to pram/rtc/soft-power device */
2884 output[2] = 0x1c; /* prog. switch control */
2885 output[3] = 0x01; /* enable */
2886 result = send_adb_IIsi((u_char *)output, (u_char *)0,
2887 (void *)adb_op_comprout, __UNVOLATILE(&flag), (int)0);
2888 if (result != 0) /* exit if not sent */
2889 return -1;
2890
2891 while (0 == flag) /* wait for send to finish */
2892 ;
2893
2894 return 0;
2895
2896 case ADB_HW_PB:
2897 return -1;
2898
2899 case ADB_HW_II: /* II models don't do prog. switch */
2900 case ADB_HW_IOP: /* IOP models don't do prog. switch */
2901 case ADB_HW_CUDA: /* cuda doesn't do prog. switch TO DO: verify this */
2902 case ADB_HW_UNKNOWN:
2903 default:
2904 return -1;
2905 }
2906 }
2907
2908 int
2909 adb_prog_switch_disable(void)
2910 {
2911 u_char output[ADB_MAX_MSG_LENGTH];
2912 int result;
2913 volatile int flag = 0;
2914
2915 switch (adbHardware) {
2916 case ADB_HW_IISI:
2917 output[0] = 0x03; /* 3 byte message */
2918 output[1] = 0x01; /* to pram/rtc/soft-power device */
2919 output[2] = 0x1c; /* prog. switch control */
2920 output[3] = 0x01; /* disable */
2921 result = send_adb_IIsi((u_char *)output, (u_char *)0,
2922 (void *)adb_op_comprout, __UNVOLATILE(&flag), (int)0);
2923 if (result != 0) /* exit if not sent */
2924 return -1;
2925
2926 while (0 == flag) /* wait for send to finish */
2927 ;
2928
2929 return 0;
2930
2931 case ADB_HW_PB:
2932 return -1;
2933
2934 case ADB_HW_II: /* II models don't do prog. switch */
2935 case ADB_HW_IOP: /* IOP models don't do prog. switch */
2936 case ADB_HW_CUDA: /* cuda doesn't do prog. switch */
2937 case ADB_HW_UNKNOWN:
2938 default:
2939 return -1;
2940 }
2941 }
2942
2943 int
2944 CountADBs(void)
2945 {
2946 return (count_adbs());
2947 }
2948
2949 void
2950 ADBReInit(void)
2951 {
2952 adb_reinit();
2953 }
2954
2955 int
2956 GetIndADB(ADBDataBlock *info, int index)
2957 {
2958 return (get_ind_adb_info(info, index));
2959 }
2960
2961 int
2962 GetADBInfo(ADBDataBlock *info, int adbAddr)
2963 {
2964 return (get_adb_info(info, adbAddr));
2965 }
2966
2967 int
2968 SetADBInfo(ADBSetInfoBlock *info, int adbAddr)
2969 {
2970 return (set_adb_info(info, adbAddr));
2971 }
2972
2973 int
2974 ADBOp(Ptr buffer, Ptr compRout, Ptr data, short commandNum)
2975 {
2976 return (adb_op(buffer, compRout, data, commandNum));
2977 }
2978
2979 #endif
2980