if_ae.c revision 1.12 1 1.1 briggs /*
2 1.1 briggs * Device driver for National Semiconductor DS8390 based ethernet adapters.
3 1.1 briggs *
4 1.1 briggs * Based on original ISA bus driver by David Greenman, 29-April-1993
5 1.1 briggs *
6 1.1 briggs * Copyright (C) 1993, David Greenman. This software may be used, modified,
7 1.1 briggs * copied, distributed, and sold, in both source and binary form provided
8 1.1 briggs * that the above copyright and these terms are retained. Under no
9 1.1 briggs * circumstances is the author responsible for the proper functioning
10 1.1 briggs * of this software, nor does the author assume any responsibility
11 1.1 briggs * for damages incurred with its use.
12 1.1 briggs *
13 1.1 briggs * Adapted for MacBSD by Brad Parker <brad (at) fcr.com>
14 1.1 briggs *
15 1.1 briggs * Currently supports:
16 1.1 briggs * Apples NB Ethernet card
17 1.1 briggs * Interlan A310 Nubus Ethernet card
18 1.1 briggs * Cayman Systems GatorCard
19 1.1 briggs */
20 1.1 briggs
21 1.1 briggs /*
22 1.12 lkestel * $Id: if_ae.c,v 1.12 1994/03/20 03:03:26 lkestel Exp $
23 1.1 briggs */
24 1.1 briggs
25 1.1 briggs #include "ae.h"
26 1.1 briggs /* bpfilter included here in case it is needed in future net includes */
27 1.1 briggs #include "bpfilter.h"
28 1.1 briggs
29 1.9 briggs #include <sys/param.h>
30 1.9 briggs #include <sys/systm.h>
31 1.9 briggs #include <sys/errno.h>
32 1.9 briggs #include <sys/ioctl.h>
33 1.9 briggs #include <sys/mbuf.h>
34 1.9 briggs #include <sys/socket.h>
35 1.9 briggs #include <sys/syslog.h>
36 1.1 briggs
37 1.5 briggs #include <net/if.h>
38 1.5 briggs #include <net/if_dl.h>
39 1.5 briggs #include <net/if_types.h>
40 1.5 briggs #include <net/netisr.h>
41 1.1 briggs
42 1.1 briggs #ifdef INET
43 1.5 briggs #include <netinet/in.h>
44 1.5 briggs #include <netinet/in_systm.h>
45 1.5 briggs #include <netinet/in_var.h>
46 1.5 briggs #include <netinet/ip.h>
47 1.5 briggs #include <netinet/if_ether.h>
48 1.1 briggs #endif
49 1.1 briggs
50 1.1 briggs #ifdef NS
51 1.5 briggs #include <netns/ns.h>
52 1.5 briggs #include <netns/ns_if.h>
53 1.1 briggs #endif
54 1.1 briggs
55 1.1 briggs #if NBPFILTER > 0
56 1.5 briggs #include <net/bpf.h>
57 1.5 briggs #include <net/bpfdesc.h>
58 1.1 briggs #endif
59 1.1 briggs
60 1.5 briggs #include <sys/device.h>
61 1.3 briggs #include "nubus.h"
62 1.1 briggs #include "if_aereg.h"
63 1.1 briggs
64 1.3 briggs struct ae_device {
65 1.3 briggs struct device ae_dev;
66 1.3 briggs /* struct nubusdev ae_nu;
67 1.3 briggs struct intrhand ae_ih; */
68 1.3 briggs };
69 1.3 briggs
70 1.1 briggs /*
71 1.1 briggs * ae_softc: per line info and status
72 1.1 briggs */
73 1.1 briggs struct ae_softc {
74 1.3 briggs struct ae_device *sc_ae;
75 1.3 briggs
76 1.1 briggs struct arpcom arpcom; /* ethernet common */
77 1.1 briggs
78 1.1 briggs char *type_str; /* pointer to type string */
79 1.1 briggs u_char vendor; /* interface vendor */
80 1.1 briggs u_char type; /* interface type code */
81 1.1 briggs #define APPLE_CARD(sc) ((sc)->vendor == AE_VENDOR_APPLE)
82 1.1 briggs #define REG_MAP(sc, reg) (APPLE_CARD(sc) ? (0x0f-(reg))<<2 : (reg)<<2)
83 1.1 briggs #define NIC_GET(sc, reg) ((sc)->nic_addr[REG_MAP(sc, reg)])
84 1.1 briggs #define NIC_PUT(sc, reg, val) ((sc)->nic_addr[REG_MAP(sc, reg)] = (val))
85 1.1 briggs volatile caddr_t nic_addr; /* NIC (DS8390) I/O bus address */
86 1.1 briggs caddr_t rom_addr; /* on board prom address */
87 1.1 briggs caddr_t smem_start; /* shared memory start address */
88 1.1 briggs caddr_t smem_end; /* shared memory end address */
89 1.1 briggs u_long smem_size; /* total shared memory size */
90 1.1 briggs caddr_t smem_ring; /* start of RX ring-buffer (in smem) */
91 1.1 briggs
92 1.1 briggs caddr_t bpf; /* BPF "magic cookie" */
93 1.1 briggs
94 1.1 briggs u_char xmit_busy; /* transmitter is busy */
95 1.1 briggs u_char txb_cnt; /* Number of transmit buffers */
96 1.1 briggs u_char txb_next; /* Pointer to next buffer ready to xmit */
97 1.1 briggs u_short txb_next_len; /* next xmit buffer length */
98 1.1 briggs u_char data_buffered; /* data has been buffered in interface memory */
99 1.1 briggs u_char tx_page_start; /* first page of TX buffer area */
100 1.1 briggs
101 1.1 briggs u_char rec_page_start; /* first page of RX ring-buffer */
102 1.1 briggs u_char rec_page_stop; /* last page of RX ring-buffer */
103 1.1 briggs u_char next_packet; /* pointer to next unread RX packet */
104 1.1 briggs } ae_softc[NAE];
105 1.1 briggs
106 1.9 briggs void ae_find(), ae_attach();
107 1.9 briggs int ae_init(), aeintr(), ae_ioctl(), ae_probe(),
108 1.1 briggs ae_start(), ae_reset(), ae_watchdog();
109 1.1 briggs
110 1.3 briggs struct cfdriver aecd =
111 1.3 briggs { NULL, "ae", ae_probe, ae_attach, DV_IFNET, sizeof(struct ae_device), NULL, 0 };
112 1.3 briggs
113 1.1 briggs static void ae_stop();
114 1.1 briggs static inline void ae_rint();
115 1.1 briggs static inline void ae_xmit();
116 1.1 briggs static inline char *ae_ring_copy();
117 1.1 briggs
118 1.1 briggs extern int ether_output();
119 1.1 briggs
120 1.1 briggs #define ETHER_MIN_LEN 64
121 1.1 briggs #define ETHER_MAX_LEN 1518
122 1.1 briggs #define ETHER_ADDR_LEN 6
123 1.1 briggs #define ETHER_HDR_SIZE 14
124 1.1 briggs
125 1.1 briggs char ae_name[] = "8390 Nubus Ethernet card";
126 1.1 briggs static char zero = 0;
127 1.1 briggs static u_char ones = 0xff;
128 1.1 briggs
129 1.8 briggs struct vendor_S {
130 1.8 briggs char *manu;
131 1.8 briggs int len;
132 1.8 briggs int vendor;
133 1.8 briggs } vend[] = {
134 1.8 briggs { "Apple", 5, AE_VENDOR_APPLE },
135 1.8 briggs { "3Com", 4, AE_VENDOR_APPLE },
136 1.8 briggs { "Dayna", 5, AE_VENDOR_DAYNA },
137 1.8 briggs { "Inter", 5, AE_VENDOR_INTERLAN },
138 1.8 briggs };
139 1.8 briggs
140 1.8 briggs static int numvend = sizeof(vend)/sizeof(vend[0]);
141 1.8 briggs
142 1.12 lkestel /*
143 1.12 lkestel * XXX These two should be moved to locore, and maybe changed to use shorts
144 1.12 lkestel * instead of bytes. The reason for these is that bcopy and bzero use longs,
145 1.12 lkestel * which the ethernet cards can't handle.
146 1.12 lkestel */
147 1.12 lkestel
148 1.12 lkestel void
149 1.12 lkestel bbzero (char *addr, int len)
150 1.12 lkestel {
151 1.12 lkestel while (len--) {
152 1.12 lkestel *addr++ = 0;
153 1.12 lkestel }
154 1.12 lkestel }
155 1.12 lkestel
156 1.12 lkestel void
157 1.12 lkestel bbcopy (char *src, char *dest, int len)
158 1.12 lkestel {
159 1.12 lkestel while (len--) {
160 1.12 lkestel *dest++ = *src++;
161 1.12 lkestel }
162 1.12 lkestel }
163 1.12 lkestel
164 1.8 briggs void
165 1.8 briggs ae_id_card(nu, sc)
166 1.8 briggs struct nubus_hw *nu;
167 1.8 briggs struct ae_softc *sc;
168 1.8 briggs {
169 1.8 briggs int i;
170 1.8 briggs
171 1.8 briggs /*
172 1.8 briggs * Try to determine what type of card this is...
173 1.8 briggs */
174 1.8 briggs sc->vendor = AE_VENDOR_UNKNOWN;
175 1.8 briggs for (i=0 ; i<numvend ; i++) {
176 1.8 briggs if (!strncmp(nu->Slot.manufacturer, vend[i].manu, vend[i].len)) {
177 1.8 briggs sc->vendor = vend[i].vendor;
178 1.8 briggs break;
179 1.8 briggs }
180 1.8 briggs }
181 1.9 briggs sc->type_str = (char *) (nu->Slot.manufacturer);
182 1.8 briggs
183 1.8 briggs /* see if it's an Interlan/GatorCard
184 1.8 briggs sc->rom_addr = nu->addr + GC_ROM_OFFSET;
185 1.8 briggs if (sc->rom_addr[0x18] == 0x0 &&
186 1.8 briggs sc->rom_addr[0x1c] == 0x55) {
187 1.8 briggs sc->vendor = AE_VENDOR_INTERLAN;
188 1.8 briggs } */
189 1.8 briggs }
190 1.8 briggs
191 1.1 briggs int
192 1.3 briggs ae_probe(parent, cf, aux)
193 1.3 briggs struct cfdriver *parent;
194 1.3 briggs struct cfdata *cf;
195 1.3 briggs void *aux;
196 1.1 briggs {
197 1.3 briggs register struct nubus_hw *nu = (struct nubus_hw *) aux;
198 1.3 briggs struct ae_softc *sc = &ae_softc[cf->cf_unit];
199 1.1 briggs int i, memsize;
200 1.1 briggs int flags = 0;
201 1.1 briggs
202 1.3 briggs if (nu->Slot.type != NUBUS_NETWORK)
203 1.3 briggs return 0;
204 1.3 briggs
205 1.8 briggs ae_id_card(nu, sc);
206 1.1 briggs
207 1.1 briggs switch (sc->vendor) {
208 1.1 briggs case AE_VENDOR_INTERLAN:
209 1.1 briggs sc->nic_addr = nu->addr + GC_NIC_OFFSET;
210 1.1 briggs sc->rom_addr = nu->addr + GC_ROM_OFFSET;
211 1.1 briggs sc->smem_start = nu->addr + GC_DATA_OFFSET;
212 1.1 briggs memsize = 8192;
213 1.1 briggs
214 1.1 briggs /* reset the NIC chip */
215 1.1 briggs *((caddr_t)nu->addr + GC_RESET_OFFSET) = (char)zero;
216 1.1 briggs
217 1.1 briggs /* Get station address from on-board ROM */
218 1.1 briggs for (i = 0; i < ETHER_ADDR_LEN; ++i)
219 1.1 briggs sc->arpcom.ac_enaddr[i] = *(sc->rom_addr + i*4);
220 1.1 briggs break;
221 1.1 briggs
222 1.1 briggs case AE_VENDOR_APPLE:
223 1.1 briggs sc->nic_addr = nu->addr + AE_NIC_OFFSET;
224 1.1 briggs sc->rom_addr = nu->addr + AE_ROM_OFFSET;
225 1.1 briggs sc->smem_start = nu->addr + AE_DATA_OFFSET;
226 1.1 briggs memsize = 8192;
227 1.1 briggs
228 1.1 briggs /* Get station address from on-board ROM */
229 1.1 briggs for (i = 0; i < ETHER_ADDR_LEN; ++i)
230 1.1 briggs sc->arpcom.ac_enaddr[i] = *(sc->rom_addr + i*2);
231 1.1 briggs break;
232 1.8 briggs
233 1.8 briggs case AE_VENDOR_DAYNA:
234 1.9 briggs printf("We think we are a Dayna card, but ");
235 1.10 briggs sc->nic_addr = nu->addr + DP_NIC_OFFSET;
236 1.10 briggs sc->rom_addr = nu->addr + DP_ROM_OFFSET;
237 1.10 briggs sc->smem_start = nu->addr + DP_DATA_OFFSET;
238 1.8 briggs memsize = 8192;
239 1.8 briggs
240 1.8 briggs /* Get station address from on-board ROM */
241 1.8 briggs for (i = 0; i < ETHER_ADDR_LEN; ++i)
242 1.8 briggs sc->arpcom.ac_enaddr[i] = *(sc->rom_addr + i*2);
243 1.9 briggs printf("it is dangerous to continue.\n");
244 1.8 briggs return 0; /* Since we don't work yet... */
245 1.8 briggs break;
246 1.8 briggs
247 1.8 briggs default:
248 1.8 briggs return 0;
249 1.8 briggs break;
250 1.1 briggs }
251 1.7 briggs
252 1.1 briggs /*
253 1.1 briggs * allocate one xmit buffer if < 16k, two buffers otherwise
254 1.1 briggs */
255 1.1 briggs if ((memsize < 16384) || (flags & AE_FLAGS_NO_DOUBLE_BUFFERING)) {
256 1.1 briggs sc->smem_ring = sc->smem_start + (AE_PAGE_SIZE * AE_TXBUF_SIZE);
257 1.1 briggs sc->txb_cnt = 1;
258 1.1 briggs sc->rec_page_start = AE_TXBUF_SIZE;
259 1.1 briggs } else {
260 1.1 briggs sc->smem_ring = sc->smem_start + (AE_PAGE_SIZE * AE_TXBUF_SIZE * 2);
261 1.1 briggs sc->txb_cnt = 2;
262 1.1 briggs sc->rec_page_start = AE_TXBUF_SIZE * 2;
263 1.1 briggs }
264 1.1 briggs
265 1.1 briggs sc->smem_size = memsize;
266 1.1 briggs sc->smem_end = sc->smem_start + memsize;
267 1.1 briggs sc->rec_page_stop = memsize / AE_PAGE_SIZE;
268 1.1 briggs sc->tx_page_start = 0;
269 1.1 briggs
270 1.1 briggs /*
271 1.1 briggs * Now zero memory and verify that it is clear
272 1.1 briggs */
273 1.12 lkestel bbzero(sc->smem_start, memsize);
274 1.1 briggs
275 1.1 briggs for (i = 0; i < memsize; ++i)
276 1.1 briggs if (sc->smem_start[i]) {
277 1.3 briggs printf(": failed to clear shared memory at %x\n",
278 1.3 briggs sc->smem_start + i);
279 1.1 briggs
280 1.1 briggs return(0);
281 1.1 briggs }
282 1.1 briggs
283 1.1 briggs #ifdef DEBUG_PRINT
284 1.1 briggs printf("nic_addr %x, rom_addr %x\n",
285 1.1 briggs sc->nic_addr, sc->rom_addr);
286 1.1 briggs printf("smem_size %d\n", sc->smem_size);
287 1.1 briggs printf("smem_start %x, smem_ring %x, smem_end %x\n",
288 1.1 briggs sc->smem_start, sc->smem_ring, sc->smem_end);
289 1.1 briggs printf("phys address %02x:%02x:%02x:%02x:%02x:%02x\n",
290 1.1 briggs sc->arpcom.ac_enaddr[0],
291 1.1 briggs sc->arpcom.ac_enaddr[1],
292 1.1 briggs sc->arpcom.ac_enaddr[2],
293 1.1 briggs sc->arpcom.ac_enaddr[3],
294 1.1 briggs sc->arpcom.ac_enaddr[4],
295 1.1 briggs sc->arpcom.ac_enaddr[5]);
296 1.1 briggs #endif
297 1.1 briggs
298 1.1 briggs return(1);
299 1.1 briggs }
300 1.1 briggs
301 1.1 briggs /*
302 1.1 briggs * Install interface into kernel networking data structures
303 1.1 briggs */
304 1.9 briggs void
305 1.3 briggs ae_attach(parent, self, aux)
306 1.3 briggs struct cfdriver *parent, *self;
307 1.3 briggs void *aux;
308 1.1 briggs {
309 1.3 briggs struct nubus_hw *nu = aux;
310 1.3 briggs struct ae_device *ae = (struct ae_device *) self;
311 1.3 briggs struct ae_softc *sc = &ae_softc[ae->ae_dev.dv_unit];
312 1.3 briggs struct cfdata *cf = ae->ae_dev.dv_cfdata;
313 1.1 briggs struct ifnet *ifp = &sc->arpcom.ac_if;
314 1.1 briggs struct ifaddr *ifa;
315 1.1 briggs struct sockaddr_dl *sdl;
316 1.1 briggs
317 1.3 briggs sc->sc_ae = ae;
318 1.3 briggs
319 1.1 briggs /*
320 1.1 briggs * Set interface to stopped condition (reset)
321 1.1 briggs */
322 1.3 briggs ae_stop(sc);
323 1.1 briggs
324 1.1 briggs /*
325 1.1 briggs * Initialize ifnet structure
326 1.1 briggs */
327 1.3 briggs ifp->if_unit = ae->ae_dev.dv_unit;
328 1.3 briggs ifp->if_name = aecd.cd_name;
329 1.1 briggs ifp->if_mtu = ETHERMTU;
330 1.3 briggs ifp->if_output = ether_output;
331 1.1 briggs ifp->if_start = ae_start;
332 1.1 briggs ifp->if_ioctl = ae_ioctl;
333 1.1 briggs ifp->if_reset = ae_reset;
334 1.1 briggs ifp->if_watchdog = ae_watchdog;
335 1.1 briggs ifp->if_flags = (IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS);
336 1.1 briggs
337 1.3 briggs #if 0
338 1.3 briggs /*
339 1.3 briggs * Set default state for ALTPHYS flag (used to disable the transceiver
340 1.3 briggs * for AUI operation), based on compile-time config option.
341 1.3 briggs */
342 1.3 briggs if (cf->cf_flags & AE_FLAGS_DISABLE_TRANSCEIVER)
343 1.3 briggs ifp->if_flags |= IFF_ALTPHYS;
344 1.3 briggs #endif
345 1.3 briggs
346 1.1 briggs /*
347 1.1 briggs * Attach the interface
348 1.1 briggs */
349 1.1 briggs if_attach(ifp);
350 1.1 briggs
351 1.1 briggs /*
352 1.1 briggs * Search down the ifa address list looking for the AF_LINK type entry
353 1.1 briggs */
354 1.1 briggs ifa = ifp->if_addrlist;
355 1.1 briggs while ((ifa != 0) && (ifa->ifa_addr != 0) &&
356 1.1 briggs (ifa->ifa_addr->sa_family != AF_LINK))
357 1.1 briggs ifa = ifa->ifa_next;
358 1.1 briggs /*
359 1.1 briggs * If we find an AF_LINK type entry we fill in the hardware address.
360 1.1 briggs * This is useful for netstat(1) to keep track of which interface
361 1.1 briggs * is which.
362 1.1 briggs */
363 1.1 briggs if ((ifa != 0) && (ifa->ifa_addr != 0)) {
364 1.1 briggs /*
365 1.1 briggs * Fill in the link-level address for this interface
366 1.1 briggs */
367 1.1 briggs sdl = (struct sockaddr_dl *)ifa->ifa_addr;
368 1.1 briggs sdl->sdl_type = IFT_ETHER;
369 1.1 briggs sdl->sdl_alen = ETHER_ADDR_LEN;
370 1.1 briggs sdl->sdl_slen = 0;
371 1.12 lkestel bbcopy(sc->arpcom.ac_enaddr, LLADDR(sdl), ETHER_ADDR_LEN);
372 1.1 briggs }
373 1.1 briggs
374 1.1 briggs /*
375 1.1 briggs * Print additional info when attached
376 1.1 briggs */
377 1.3 briggs printf(": address %s, ", ether_sprintf(sc->arpcom.ac_enaddr));
378 1.1 briggs
379 1.1 briggs if (sc->type_str && (*sc->type_str != 0))
380 1.1 briggs printf("type %s ", sc->type_str);
381 1.1 briggs else
382 1.1 briggs printf("type unknown (0x%x) ", sc->type);
383 1.1 briggs
384 1.1 briggs printf("\n");
385 1.1 briggs
386 1.1 briggs /*
387 1.1 briggs * If BPF is in the kernel, call the attach for it
388 1.1 briggs */
389 1.1 briggs #if NBPFILTER > 0
390 1.1 briggs bpfattach(&sc->bpf, ifp, DLT_EN10MB, sizeof(struct ether_header));
391 1.1 briggs #endif
392 1.3 briggs }
393 1.1 briggs
394 1.1 briggs /*
395 1.1 briggs * Reset interface.
396 1.1 briggs */
397 1.1 briggs int
398 1.3 briggs ae_reset(sc)
399 1.3 briggs struct ae_softc *sc;
400 1.1 briggs {
401 1.1 briggs int s;
402 1.1 briggs
403 1.1 briggs s = splnet();
404 1.1 briggs
405 1.1 briggs /*
406 1.1 briggs * Stop interface and re-initialize.
407 1.1 briggs */
408 1.3 briggs ae_stop(sc);
409 1.3 briggs ae_init(sc);
410 1.1 briggs
411 1.1 briggs (void) splx(s);
412 1.1 briggs }
413 1.1 briggs
414 1.1 briggs /*
415 1.1 briggs * Take interface offline.
416 1.1 briggs */
417 1.1 briggs void
418 1.3 briggs ae_stop(sc)
419 1.3 briggs struct ae_softc *sc;
420 1.1 briggs {
421 1.1 briggs int n = 5000;
422 1.1 briggs
423 1.1 briggs /*
424 1.1 briggs * Stop everything on the interface, and select page 0 registers.
425 1.1 briggs */
426 1.1 briggs NIC_PUT(sc, AE_P0_CR, AE_CR_RD2|AE_CR_STP);
427 1.1 briggs
428 1.1 briggs /*
429 1.1 briggs * Wait for interface to enter stopped state, but limit # of checks
430 1.1 briggs * to 'n' (about 5ms). It shouldn't even take 5us on modern
431 1.1 briggs * DS8390's, but just in case it's an old one.
432 1.1 briggs */
433 1.1 briggs while (((NIC_GET(sc, AE_P0_ISR) & AE_ISR_RST) == 0) && --n);
434 1.1 briggs }
435 1.1 briggs
436 1.1 briggs /*
437 1.1 briggs * Device timeout/watchdog routine. Entered if the device neglects to
438 1.1 briggs * generate an interrupt after a transmit has been started on it.
439 1.1 briggs */
440 1.1 briggs int
441 1.1 briggs ae_watchdog(unit)
442 1.3 briggs short unit;
443 1.1 briggs {
444 1.1 briggs log(LOG_ERR, "ae%d: device timeout\n", unit);
445 1.1 briggs {
446 1.1 briggs struct ae_softc *sc = &ae_softc[unit];
447 1.1 briggs printf("cr %x, isr %x\n", NIC_GET(sc, AE_P0_CR), NIC_GET(sc, AE_P0_ISR));
448 1.3 briggs /* via_dump(); */
449 1.1 briggs if (NIC_GET(sc, AE_P0_ISR)) {
450 1.1 briggs aeintr(0);
451 1.1 briggs return;
452 1.1 briggs }
453 1.1 briggs }
454 1.1 briggs ae_reset(unit);
455 1.1 briggs }
456 1.1 briggs
457 1.1 briggs /*
458 1.1 briggs * Initialize device.
459 1.1 briggs */
460 1.3 briggs ae_init(sc)
461 1.3 briggs struct ae_softc *sc;
462 1.1 briggs {
463 1.1 briggs struct ifnet *ifp = &sc->arpcom.ac_if;
464 1.1 briggs int i, s;
465 1.1 briggs u_char command;
466 1.1 briggs
467 1.1 briggs
468 1.1 briggs /* address not known */
469 1.1 briggs if (ifp->if_addrlist == (struct ifaddr *)0) return;
470 1.1 briggs
471 1.1 briggs /*
472 1.1 briggs * Initialize the NIC in the exact order outlined in the NS manual.
473 1.1 briggs * This init procedure is "mandatory"...don't change what or when
474 1.1 briggs * things happen.
475 1.1 briggs */
476 1.1 briggs s = splnet();
477 1.1 briggs
478 1.1 briggs /* reset transmitter flags */
479 1.1 briggs sc->data_buffered = 0;
480 1.1 briggs sc->xmit_busy = 0;
481 1.1 briggs sc->arpcom.ac_if.if_timer = 0;
482 1.1 briggs
483 1.1 briggs sc->txb_next = 0;
484 1.1 briggs
485 1.1 briggs /* This variable is used below - don't move this assignment */
486 1.1 briggs sc->next_packet = sc->rec_page_start + 1;
487 1.1 briggs
488 1.1 briggs #ifdef DEBUG_PRINT
489 1.1 briggs printf("page_start %d, page_stop %d, next %d\n",
490 1.1 briggs sc->rec_page_start, sc->rec_page_stop, sc->next_packet);
491 1.1 briggs #endif
492 1.1 briggs
493 1.1 briggs /*
494 1.1 briggs * Set interface for page 0, Remote DMA complete, Stopped
495 1.1 briggs */
496 1.1 briggs NIC_PUT(sc, AE_P0_CR, AE_CR_RD2|AE_CR_STP);
497 1.1 briggs
498 1.1 briggs /*
499 1.1 briggs * Set FIFO threshold to 4, No auto-init Remote DMA, Burst mode,
500 1.1 briggs * byte order=80x86, word-wide DMA xfers,
501 1.1 briggs */
502 1.1 briggs NIC_PUT(sc, AE_P0_DCR, AE_DCR_FT1|AE_DCR_BMS|AE_DCR_WTS);
503 1.1 briggs
504 1.1 briggs /*
505 1.1 briggs * Clear Remote Byte Count Registers
506 1.1 briggs */
507 1.1 briggs NIC_PUT(sc, AE_P0_RBCR0, zero);
508 1.1 briggs NIC_PUT(sc, AE_P0_RBCR1, zero);
509 1.1 briggs
510 1.1 briggs /*
511 1.1 briggs * Enable reception of broadcast packets
512 1.1 briggs */
513 1.1 briggs NIC_PUT(sc, AE_P0_RCR, AE_RCR_AB);
514 1.1 briggs
515 1.1 briggs /*
516 1.1 briggs * Place NIC in internal loopback mode
517 1.1 briggs */
518 1.1 briggs NIC_PUT(sc, AE_P0_TCR, AE_TCR_LB0);
519 1.1 briggs
520 1.1 briggs /*
521 1.1 briggs * Initialize transmit/receive (ring-buffer) Page Start
522 1.1 briggs */
523 1.1 briggs NIC_PUT(sc, AE_P0_TPSR, sc->tx_page_start);
524 1.1 briggs NIC_PUT(sc, AE_P0_PSTART, sc->rec_page_start);
525 1.1 briggs
526 1.1 briggs /*
527 1.1 briggs * Initialize Receiver (ring-buffer) Page Stop and Boundry
528 1.1 briggs */
529 1.1 briggs NIC_PUT(sc, AE_P0_PSTOP, sc->rec_page_stop);
530 1.1 briggs NIC_PUT(sc, AE_P0_BNRY, sc->rec_page_start);
531 1.1 briggs
532 1.1 briggs /*
533 1.1 briggs * Clear all interrupts. A '1' in each bit position clears the
534 1.1 briggs * corresponding flag.
535 1.1 briggs */
536 1.1 briggs NIC_PUT(sc, AE_P0_ISR, ones);
537 1.1 briggs
538 1.1 briggs /*
539 1.1 briggs * Enable the following interrupts: receive/transmit complete,
540 1.1 briggs * receive/transmit error, and Receiver OverWrite.
541 1.1 briggs *
542 1.1 briggs * Counter overflow and Remote DMA complete are *not* enabled.
543 1.1 briggs */
544 1.1 briggs NIC_PUT(sc, AE_P0_IMR,
545 1.1 briggs AE_IMR_PRXE|AE_IMR_PTXE|AE_IMR_RXEE|AE_IMR_TXEE|AE_IMR_OVWE);
546 1.1 briggs
547 1.1 briggs /*
548 1.1 briggs * Program Command Register for page 1
549 1.1 briggs */
550 1.1 briggs NIC_PUT(sc, AE_P0_CR, AE_CR_PAGE_1|AE_CR_RD2|AE_CR_STP);
551 1.1 briggs
552 1.1 briggs /*
553 1.1 briggs * Copy out our station address
554 1.1 briggs */
555 1.1 briggs for (i = 0; i < ETHER_ADDR_LEN; ++i)
556 1.1 briggs NIC_PUT(sc, AE_P1_PAR0 + i, sc->arpcom.ac_enaddr[i]);
557 1.1 briggs
558 1.1 briggs #if NBPFILTER > 0
559 1.1 briggs /*
560 1.1 briggs * Initialize multicast address hashing registers to accept
561 1.1 briggs * all multicasts (only used when in promiscuous mode)
562 1.1 briggs */
563 1.1 briggs for (i = 0; i < 8; ++i)
564 1.1 briggs NIC_PUT(sc, AE_P1_MAR0 + i, 0xff);
565 1.1 briggs #endif
566 1.1 briggs
567 1.1 briggs /*
568 1.1 briggs * Set Current Page pointer to next_packet (initialized above)
569 1.1 briggs */
570 1.1 briggs NIC_PUT(sc, AE_P1_CURR, sc->next_packet);
571 1.1 briggs
572 1.1 briggs /*
573 1.1 briggs * Set Command Register for page 0, Remote DMA complete,
574 1.1 briggs * and interface Start.
575 1.1 briggs */
576 1.1 briggs NIC_PUT(sc, AE_P1_CR, AE_CR_RD2|AE_CR_STA);
577 1.1 briggs
578 1.1 briggs /*
579 1.1 briggs * Take interface out of loopback
580 1.1 briggs */
581 1.1 briggs NIC_PUT(sc, AE_P0_TCR, zero);
582 1.1 briggs
583 1.1 briggs /*
584 1.1 briggs * Set 'running' flag, and clear output active flag.
585 1.1 briggs */
586 1.1 briggs ifp->if_flags |= IFF_RUNNING;
587 1.1 briggs ifp->if_flags &= ~IFF_OACTIVE;
588 1.1 briggs
589 1.3 briggs /* XXXXXX */
590 1.12 lkestel add_nubus_intr((int)sc->rom_addr & 0xFF000000, aeintr, sc - ae_softc);
591 1.1 briggs
592 1.1 briggs /*
593 1.1 briggs * ...and attempt to start output
594 1.1 briggs */
595 1.1 briggs ae_start(ifp);
596 1.1 briggs
597 1.1 briggs (void) splx(s);
598 1.1 briggs }
599 1.1 briggs
600 1.1 briggs /*
601 1.1 briggs * This routine actually starts the transmission on the interface
602 1.1 briggs */
603 1.1 briggs static inline void ae_xmit(ifp)
604 1.1 briggs struct ifnet *ifp;
605 1.1 briggs {
606 1.1 briggs struct ae_softc *sc = &ae_softc[ifp->if_unit];
607 1.1 briggs u_short len = sc->txb_next_len;
608 1.1 briggs
609 1.1 briggs /*
610 1.1 briggs * Set NIC for page 0 register access
611 1.1 briggs */
612 1.1 briggs NIC_PUT(sc, AE_P0_CR, AE_CR_RD2|AE_CR_STA);
613 1.1 briggs
614 1.1 briggs /*
615 1.1 briggs * Set TX buffer start page
616 1.1 briggs */
617 1.1 briggs NIC_PUT(sc, AE_P0_TPSR, sc->tx_page_start +
618 1.1 briggs sc->txb_next * AE_TXBUF_SIZE);
619 1.1 briggs
620 1.1 briggs /*
621 1.1 briggs * Set TX length
622 1.1 briggs */
623 1.1 briggs NIC_PUT(sc, AE_P0_TBCR0, len & 0xff);
624 1.1 briggs NIC_PUT(sc, AE_P0_TBCR1, len >> 8);
625 1.1 briggs
626 1.1 briggs /*
627 1.1 briggs * Set page 0, Remote DMA complete, Transmit Packet, and *Start*
628 1.1 briggs */
629 1.1 briggs NIC_PUT(sc, AE_P0_CR, AE_CR_RD2|AE_CR_TXP|AE_CR_STA);
630 1.1 briggs
631 1.1 briggs sc->xmit_busy = 1;
632 1.1 briggs sc->data_buffered = 0;
633 1.1 briggs
634 1.1 briggs /*
635 1.1 briggs * Switch buffers if we are doing double-buffered transmits
636 1.1 briggs */
637 1.1 briggs if ((sc->txb_next == 0) && (sc->txb_cnt > 1))
638 1.1 briggs sc->txb_next = 1;
639 1.1 briggs else
640 1.1 briggs sc->txb_next = 0;
641 1.1 briggs
642 1.1 briggs /*
643 1.1 briggs * Set a timer just in case we never hear from the board again
644 1.1 briggs */
645 1.1 briggs ifp->if_timer = 2;
646 1.1 briggs }
647 1.1 briggs
648 1.1 briggs /*
649 1.1 briggs * Start output on interface.
650 1.1 briggs * We make two assumptions here:
651 1.1 briggs * 1) that the current priority is set to splnet _before_ this code
652 1.1 briggs * is called *and* is returned to the appropriate priority after
653 1.1 briggs * return
654 1.1 briggs * 2) that the IFF_OACTIVE flag is checked before this code is called
655 1.1 briggs * (i.e. that the output part of the interface is idle)
656 1.1 briggs */
657 1.1 briggs int
658 1.1 briggs ae_start(ifp)
659 1.1 briggs struct ifnet *ifp;
660 1.1 briggs {
661 1.1 briggs struct ae_softc *sc = &ae_softc[ifp->if_unit];
662 1.1 briggs struct mbuf *m0, *m;
663 1.1 briggs caddr_t buffer;
664 1.1 briggs int len;
665 1.1 briggs
666 1.1 briggs outloop:
667 1.1 briggs /*
668 1.1 briggs * See if there is room to send more data (i.e. one or both of the
669 1.1 briggs * buffers is empty).
670 1.1 briggs */
671 1.1 briggs if (sc->data_buffered)
672 1.1 briggs if (sc->xmit_busy) {
673 1.1 briggs /*
674 1.1 briggs * No room. Indicate this to the outside world
675 1.1 briggs * and exit.
676 1.1 briggs */
677 1.1 briggs ifp->if_flags |= IFF_OACTIVE;
678 1.1 briggs return;
679 1.1 briggs } else {
680 1.1 briggs /*
681 1.1 briggs * Data is buffered, but we're not transmitting, so
682 1.1 briggs * start the xmit on the buffered data.
683 1.1 briggs * Note that ae_xmit() resets the data_buffered flag
684 1.1 briggs * before returning.
685 1.1 briggs */
686 1.1 briggs ae_xmit(ifp);
687 1.1 briggs }
688 1.1 briggs
689 1.1 briggs IF_DEQUEUE(&sc->arpcom.ac_if.if_snd, m);
690 1.1 briggs if (m == 0) {
691 1.1 briggs /*
692 1.1 briggs * The following isn't pretty; we are using the !OACTIVE flag to
693 1.1 briggs * indicate to the outside world that we can accept an additional
694 1.1 briggs * packet rather than that the transmitter is _actually_
695 1.1 briggs * active. Indeed, the transmitter may be active, but if we haven't
696 1.1 briggs * filled the secondary buffer with data then we still want to
697 1.1 briggs * accept more.
698 1.1 briggs * Note that it isn't necessary to test the data_buffered flag -
699 1.1 briggs * we wouldn't have tried to de-queue the packet in the first place
700 1.1 briggs * if it was set.
701 1.1 briggs */
702 1.1 briggs ifp->if_flags &= ~IFF_OACTIVE;
703 1.1 briggs return;
704 1.1 briggs }
705 1.1 briggs
706 1.1 briggs /*
707 1.1 briggs * Copy the mbuf chain into the transmit buffer
708 1.1 briggs */
709 1.1 briggs buffer = sc->smem_start + (sc->txb_next * AE_TXBUF_SIZE * AE_PAGE_SIZE);
710 1.1 briggs len = 0;
711 1.1 briggs for (m0 = m; m != 0; m = m->m_next) {
712 1.1 briggs /*printf("ae: copy %d bytes @ %x\n", m->m_len, buffer);*/
713 1.12 lkestel bbcopy(mtod(m, caddr_t), buffer, m->m_len);
714 1.1 briggs buffer += m->m_len;
715 1.1 briggs len += m->m_len;
716 1.1 briggs }
717 1.1 briggs if (len & 1) len++;
718 1.1 briggs
719 1.1 briggs sc->txb_next_len = MAX(len, ETHER_MIN_LEN);
720 1.1 briggs
721 1.1 briggs if (sc->txb_cnt > 1)
722 1.1 briggs /*
723 1.1 briggs * only set 'buffered' flag if doing multiple buffers
724 1.1 briggs */
725 1.1 briggs sc->data_buffered = 1;
726 1.1 briggs
727 1.1 briggs if (sc->xmit_busy == 0)
728 1.1 briggs ae_xmit(ifp);
729 1.1 briggs /*
730 1.1 briggs * If there is BPF support in the configuration, tap off here.
731 1.1 briggs * The following has support for converting trailer packets
732 1.1 briggs * back to normal.
733 1.1 briggs */
734 1.1 briggs #if NBPFILTER > 0
735 1.1 briggs if (sc->bpf) {
736 1.1 briggs u_short etype;
737 1.1 briggs int off, datasize, resid;
738 1.1 briggs struct ether_header *eh;
739 1.1 briggs struct trailer_header {
740 1.1 briggs u_short ether_type;
741 1.1 briggs u_short ether_residual;
742 1.1 briggs } trailer_header;
743 1.1 briggs char ether_packet[ETHER_MAX_LEN];
744 1.1 briggs char *ep;
745 1.1 briggs
746 1.1 briggs ep = ether_packet;
747 1.1 briggs
748 1.1 briggs /*
749 1.1 briggs * We handle trailers below:
750 1.1 briggs * Copy ether header first, then residual data,
751 1.1 briggs * then data. Put all this in a temporary buffer
752 1.1 briggs * 'ether_packet' and send off to bpf. Since the
753 1.1 briggs * system has generated this packet, we assume
754 1.1 briggs * that all of the offsets in the packet are
755 1.1 briggs * correct; if they're not, the system will almost
756 1.1 briggs * certainly crash in m_copydata.
757 1.1 briggs * We make no assumptions about how the data is
758 1.1 briggs * arranged in the mbuf chain (i.e. how much
759 1.1 briggs * data is in each mbuf, if mbuf clusters are
760 1.1 briggs * used, etc.), which is why we use m_copydata
761 1.1 briggs * to get the ether header rather than assume
762 1.1 briggs * that this is located in the first mbuf.
763 1.1 briggs */
764 1.1 briggs /* copy ether header */
765 1.1 briggs m_copydata(m0, 0, sizeof(struct ether_header), ep);
766 1.1 briggs eh = (struct ether_header *) ep;
767 1.1 briggs ep += sizeof(struct ether_header);
768 1.1 briggs etype = ntohs(eh->ether_type);
769 1.1 briggs if (etype >= ETHERTYPE_TRAIL &&
770 1.1 briggs etype < ETHERTYPE_TRAIL+ETHERTYPE_NTRAILER) {
771 1.1 briggs datasize = ((etype - ETHERTYPE_TRAIL) << 9);
772 1.1 briggs off = datasize + sizeof(struct ether_header);
773 1.1 briggs
774 1.1 briggs /* copy trailer_header into a data structure */
775 1.1 briggs m_copydata(m0, off, sizeof(struct trailer_header),
776 1.1 briggs &trailer_header.ether_type);
777 1.1 briggs
778 1.1 briggs /* copy residual data */
779 1.1 briggs m_copydata(m0, off+sizeof(struct trailer_header),
780 1.1 briggs resid = ntohs(trailer_header.ether_residual) -
781 1.1 briggs sizeof(struct trailer_header), ep);
782 1.1 briggs ep += resid;
783 1.1 briggs
784 1.1 briggs /* copy data */
785 1.1 briggs m_copydata(m0, sizeof(struct ether_header),
786 1.1 briggs datasize, ep);
787 1.1 briggs ep += datasize;
788 1.1 briggs
789 1.1 briggs /* restore original ether packet type */
790 1.1 briggs eh->ether_type = trailer_header.ether_type;
791 1.1 briggs
792 1.1 briggs bpf_tap(sc->bpf, ether_packet, ep - ether_packet);
793 1.1 briggs } else
794 1.1 briggs bpf_mtap(sc->bpf, m0);
795 1.1 briggs }
796 1.1 briggs #endif
797 1.1 briggs
798 1.1 briggs m_freem(m0);
799 1.1 briggs
800 1.1 briggs /*
801 1.1 briggs * If we are doing double-buffering, a buffer might be free to
802 1.1 briggs * fill with another packet, so loop back to the top.
803 1.1 briggs */
804 1.1 briggs if (sc->txb_cnt > 1)
805 1.1 briggs goto outloop;
806 1.1 briggs else {
807 1.1 briggs ifp->if_flags |= IFF_OACTIVE;
808 1.1 briggs return;
809 1.1 briggs }
810 1.1 briggs }
811 1.1 briggs
812 1.1 briggs /*
813 1.1 briggs * Ethernet interface receiver interrupt.
814 1.1 briggs */
815 1.1 briggs static inline void
816 1.1 briggs ae_rint(unit)
817 1.1 briggs int unit;
818 1.1 briggs {
819 1.1 briggs register struct ae_softc *sc = &ae_softc[unit];
820 1.1 briggs u_char boundry, current;
821 1.1 briggs u_short len;
822 1.1 briggs struct ae_ring *packet_ptr;
823 1.1 briggs
824 1.1 briggs /*
825 1.1 briggs * Set NIC to page 1 registers to get 'current' pointer
826 1.1 briggs */
827 1.1 briggs NIC_PUT(sc, AE_P0_CR, AE_CR_PAGE_1|AE_CR_RD2|AE_CR_STA);
828 1.1 briggs
829 1.1 briggs /*
830 1.1 briggs * 'sc->next_packet' is the logical beginning of the ring-buffer - i.e.
831 1.1 briggs * it points to where new data has been buffered. The 'CURR'
832 1.1 briggs * (current) register points to the logical end of the ring-buffer
833 1.1 briggs * - i.e. it points to where additional new data will be added.
834 1.1 briggs * We loop here until the logical beginning equals the logical
835 1.1 briggs * end (or in other words, until the ring-buffer is empty).
836 1.1 briggs */
837 1.1 briggs while (sc->next_packet != NIC_GET(sc, AE_P1_CURR)) {
838 1.1 briggs
839 1.1 briggs /* get pointer to this buffer header structure */
840 1.1 briggs packet_ptr = (struct ae_ring *)(sc->smem_ring +
841 1.1 briggs (sc->next_packet - sc->rec_page_start) * AE_PAGE_SIZE);
842 1.1 briggs
843 1.1 briggs /*
844 1.1 briggs * The byte count includes the FCS - Frame Check Sequence (a
845 1.1 briggs * 32 bit CRC).
846 1.1 briggs */
847 1.1 briggs len = packet_ptr->count[0] | (packet_ptr->count[1] << 8);
848 1.1 briggs if ((len >= ETHER_MIN_LEN) && (len <= ETHER_MAX_LEN)) {
849 1.1 briggs /*
850 1.1 briggs * Go get packet. len - 4 removes CRC from length.
851 1.1 briggs * (packet_ptr + 1) points to data just after the packet ring
852 1.1 briggs * header (+4 bytes)
853 1.1 briggs */
854 1.1 briggs ae_get_packet(sc, (caddr_t)(packet_ptr + 1), len - 4);
855 1.1 briggs ++sc->arpcom.ac_if.if_ipackets;
856 1.1 briggs } else {
857 1.1 briggs /*
858 1.1 briggs * Really BAD...probably indicates that the ring pointers
859 1.1 briggs * are corrupted. Also seen on early rev chips under
860 1.1 briggs * high load - the byte order of the length gets switched.
861 1.1 briggs */
862 1.1 briggs log(LOG_ERR,
863 1.1 briggs "ae%d: shared memory corrupt - invalid packet length %d\n",
864 1.1 briggs unit, len);
865 1.1 briggs ae_reset(unit);
866 1.1 briggs return;
867 1.1 briggs }
868 1.1 briggs
869 1.1 briggs /*
870 1.1 briggs * Update next packet pointer
871 1.1 briggs */
872 1.1 briggs sc->next_packet = packet_ptr->next_packet;
873 1.1 briggs
874 1.1 briggs /*
875 1.1 briggs * Update NIC boundry pointer - being careful to keep it
876 1.1 briggs * one buffer behind. (as recommended by NS databook)
877 1.1 briggs */
878 1.1 briggs boundry = sc->next_packet - 1;
879 1.1 briggs if (boundry < sc->rec_page_start)
880 1.1 briggs boundry = sc->rec_page_stop - 1;
881 1.1 briggs
882 1.1 briggs /*
883 1.1 briggs * Set NIC to page 0 registers to update boundry register
884 1.1 briggs */
885 1.1 briggs NIC_PUT(sc, AE_P0_CR, AE_CR_RD2|AE_CR_STA);
886 1.1 briggs
887 1.1 briggs NIC_PUT(sc, AE_P0_BNRY, boundry);
888 1.1 briggs
889 1.1 briggs /*
890 1.1 briggs * Set NIC to page 1 registers before looping to top (prepare to
891 1.1 briggs * get 'CURR' current pointer)
892 1.1 briggs */
893 1.1 briggs NIC_PUT(sc, AE_P0_CR, AE_CR_PAGE_1|AE_CR_RD2|AE_CR_STA);
894 1.1 briggs }
895 1.1 briggs }
896 1.1 briggs
897 1.1 briggs /*
898 1.1 briggs * Ethernet interface interrupt processor
899 1.1 briggs */
900 1.1 briggs int
901 1.1 briggs aeintr(unit)
902 1.1 briggs int unit;
903 1.1 briggs {
904 1.1 briggs struct ae_softc *sc = &ae_softc[unit];
905 1.1 briggs u_char isr;
906 1.1 briggs
907 1.1 briggs /*
908 1.1 briggs * Set NIC to page 0 registers
909 1.1 briggs */
910 1.1 briggs NIC_PUT(sc, AE_P0_CR, AE_CR_RD2|AE_CR_STA);
911 1.1 briggs
912 1.1 briggs /*
913 1.1 briggs * loop until there are no more new interrupts
914 1.1 briggs */
915 1.1 briggs while (isr = NIC_GET(sc, AE_P0_ISR)) {
916 1.1 briggs
917 1.1 briggs /*
918 1.1 briggs * reset all the bits that we are 'acknowledging'
919 1.1 briggs * by writing a '1' to each bit position that was set
920 1.1 briggs * (writing a '1' *clears* the bit)
921 1.1 briggs */
922 1.1 briggs NIC_PUT(sc, AE_P0_ISR, isr);
923 1.1 briggs
924 1.1 briggs /*
925 1.1 briggs * Handle transmitter interrupts. Handle these first
926 1.1 briggs * because the receiver will reset the board under
927 1.1 briggs * some conditions.
928 1.1 briggs */
929 1.1 briggs if (isr & (AE_ISR_PTX|AE_ISR_TXE)) {
930 1.1 briggs u_char collisions = NIC_GET(sc, AE_P0_NCR);
931 1.1 briggs
932 1.1 briggs /*
933 1.1 briggs * Check for transmit error. If a TX completed with an
934 1.1 briggs * error, we end up throwing the packet away. Really
935 1.1 briggs * the only error that is possible is excessive
936 1.1 briggs * collisions, and in this case it is best to allow the
937 1.1 briggs * automatic mechanisms of TCP to backoff the flow. Of
938 1.1 briggs * course, with UDP we're screwed, but this is expected
939 1.1 briggs * when a network is heavily loaded.
940 1.1 briggs */
941 1.1 briggs if (isr & AE_ISR_TXE) {
942 1.1 briggs
943 1.1 briggs /*
944 1.1 briggs * Excessive collisions (16)
945 1.1 briggs */
946 1.1 briggs if ((NIC_GET(sc, AE_P0_TSR) & AE_TSR_ABT)
947 1.1 briggs && (collisions == 0)) {
948 1.1 briggs /*
949 1.1 briggs * When collisions total 16, the
950 1.1 briggs * P0_NCR will indicate 0, and the
951 1.1 briggs * TSR_ABT is set.
952 1.1 briggs */
953 1.1 briggs collisions = 16;
954 1.1 briggs }
955 1.1 briggs
956 1.1 briggs /*
957 1.1 briggs * update output errors counter
958 1.1 briggs */
959 1.1 briggs ++sc->arpcom.ac_if.if_oerrors;
960 1.1 briggs } else {
961 1.1 briggs /*
962 1.1 briggs * Update total number of successfully
963 1.1 briggs * transmitted packets.
964 1.1 briggs */
965 1.1 briggs ++sc->arpcom.ac_if.if_opackets;
966 1.1 briggs }
967 1.1 briggs
968 1.1 briggs /*
969 1.1 briggs * reset tx busy and output active flags
970 1.1 briggs */
971 1.1 briggs sc->xmit_busy = 0;
972 1.1 briggs sc->arpcom.ac_if.if_flags &= ~IFF_OACTIVE;
973 1.1 briggs
974 1.1 briggs /*
975 1.1 briggs * clear watchdog timer
976 1.1 briggs */
977 1.1 briggs sc->arpcom.ac_if.if_timer = 0;
978 1.1 briggs
979 1.1 briggs /*
980 1.1 briggs * Add in total number of collisions on last
981 1.1 briggs * transmission.
982 1.1 briggs */
983 1.1 briggs sc->arpcom.ac_if.if_collisions += collisions;
984 1.1 briggs
985 1.1 briggs /*
986 1.1 briggs * If data is ready to transmit, start it transmitting,
987 1.1 briggs * otherwise defer until after handling receiver
988 1.1 briggs */
989 1.1 briggs if (sc->data_buffered)
990 1.1 briggs ae_xmit(&sc->arpcom.ac_if);
991 1.1 briggs }
992 1.1 briggs
993 1.1 briggs /*
994 1.1 briggs * Handle receiver interrupts
995 1.1 briggs */
996 1.1 briggs if (isr & (AE_ISR_PRX|AE_ISR_RXE|AE_ISR_OVW)) {
997 1.1 briggs /*
998 1.1 briggs * Overwrite warning. In order to make sure that a lockup
999 1.1 briggs * of the local DMA hasn't occurred, we reset and
1000 1.1 briggs * re-init the NIC. The NSC manual suggests only a
1001 1.1 briggs * partial reset/re-init is necessary - but some
1002 1.1 briggs * chips seem to want more. The DMA lockup has been
1003 1.1 briggs * seen only with early rev chips - Methinks this
1004 1.1 briggs * bug was fixed in later revs. -DG
1005 1.1 briggs */
1006 1.1 briggs if (isr & AE_ISR_OVW) {
1007 1.1 briggs ++sc->arpcom.ac_if.if_ierrors;
1008 1.1 briggs log(LOG_WARNING,
1009 1.1 briggs "ae%d: warning - receiver ring buffer overrun\n",
1010 1.1 briggs unit);
1011 1.1 briggs /*
1012 1.1 briggs * Stop/reset/re-init NIC
1013 1.1 briggs */
1014 1.1 briggs ae_reset(unit);
1015 1.1 briggs } else {
1016 1.1 briggs
1017 1.1 briggs /*
1018 1.1 briggs * Receiver Error. One or more of: CRC error, frame
1019 1.1 briggs * alignment error FIFO overrun, or missed packet.
1020 1.1 briggs */
1021 1.1 briggs if (isr & AE_ISR_RXE) {
1022 1.1 briggs ++sc->arpcom.ac_if.if_ierrors;
1023 1.1 briggs #ifdef AE_DEBUG
1024 1.1 briggs printf("ae%d: receive error %x\n", unit,
1025 1.1 briggs NIC_GET(sc, AE_P0_RSR));
1026 1.1 briggs #endif
1027 1.1 briggs }
1028 1.1 briggs
1029 1.1 briggs /*
1030 1.1 briggs * Go get the packet(s)
1031 1.1 briggs * XXX - Doing this on an error is dubious
1032 1.1 briggs * because there shouldn't be any data to
1033 1.1 briggs * get (we've configured the interface to
1034 1.1 briggs * not accept packets with errors).
1035 1.1 briggs */
1036 1.1 briggs ae_rint (unit);
1037 1.1 briggs }
1038 1.1 briggs }
1039 1.1 briggs
1040 1.1 briggs /*
1041 1.1 briggs * If it looks like the transmitter can take more data,
1042 1.1 briggs * attempt to start output on the interface.
1043 1.1 briggs * This is done after handling the receiver to
1044 1.1 briggs * give the receiver priority.
1045 1.1 briggs */
1046 1.1 briggs if ((sc->arpcom.ac_if.if_flags & IFF_OACTIVE) == 0)
1047 1.1 briggs ae_start(&sc->arpcom.ac_if);
1048 1.1 briggs
1049 1.1 briggs /*
1050 1.1 briggs * return NIC CR to standard state: page 0, remote DMA complete,
1051 1.1 briggs * start (toggling the TXP bit off, even if was just set
1052 1.1 briggs * in the transmit routine, is *okay* - it is 'edge'
1053 1.1 briggs * triggered from low to high)
1054 1.1 briggs */
1055 1.1 briggs NIC_PUT(sc, AE_P0_CR, AE_CR_RD2|AE_CR_STA);
1056 1.1 briggs
1057 1.1 briggs /*
1058 1.1 briggs * If the Network Talley Counters overflow, read them to
1059 1.1 briggs * reset them. It appears that old 8390's won't
1060 1.1 briggs * clear the ISR flag otherwise - resulting in an
1061 1.1 briggs * infinite loop.
1062 1.1 briggs */
1063 1.1 briggs if (isr & AE_ISR_CNT) {
1064 1.1 briggs (void) NIC_GET(sc, AE_P0_CNTR0);
1065 1.1 briggs (void) NIC_GET(sc, AE_P0_CNTR1);
1066 1.1 briggs (void) NIC_GET(sc, AE_P0_CNTR2);
1067 1.1 briggs }
1068 1.1 briggs }
1069 1.1 briggs }
1070 1.1 briggs
1071 1.1 briggs /*
1072 1.1 briggs * Process an ioctl request. This code needs some work - it looks
1073 1.1 briggs * pretty ugly.
1074 1.1 briggs */
1075 1.1 briggs int
1076 1.1 briggs ae_ioctl(ifp, command, data)
1077 1.1 briggs register struct ifnet *ifp;
1078 1.1 briggs int command;
1079 1.1 briggs caddr_t data;
1080 1.1 briggs {
1081 1.1 briggs register struct ifaddr *ifa = (struct ifaddr *)data;
1082 1.1 briggs struct ae_softc *sc = &ae_softc[ifp->if_unit];
1083 1.1 briggs struct ifreq *ifr = (struct ifreq *)data;
1084 1.1 briggs int s, error = 0;
1085 1.1 briggs
1086 1.1 briggs s = splnet();
1087 1.1 briggs
1088 1.1 briggs switch (command) {
1089 1.1 briggs
1090 1.1 briggs case SIOCSIFADDR:
1091 1.1 briggs ifp->if_flags |= IFF_UP;
1092 1.1 briggs
1093 1.1 briggs switch (ifa->ifa_addr->sa_family) {
1094 1.1 briggs #ifdef INET
1095 1.1 briggs case AF_INET:
1096 1.11 briggs ae_init(sc); /* before arpwhohas */
1097 1.1 briggs /*
1098 1.1 briggs * See if another station has *our* IP address.
1099 1.1 briggs * i.e.: There is an address conflict! If a
1100 1.1 briggs * conflict exists, a message is sent to the
1101 1.1 briggs * console.
1102 1.1 briggs */
1103 1.1 briggs ((struct arpcom *)ifp)->ac_ipaddr =
1104 1.1 briggs IA_SIN(ifa)->sin_addr;
1105 1.1 briggs arpwhohas((struct arpcom *)ifp, &IA_SIN(ifa)->sin_addr);
1106 1.1 briggs break;
1107 1.1 briggs #endif
1108 1.1 briggs #ifdef NS
1109 1.1 briggs /*
1110 1.1 briggs * XXX - This code is probably wrong
1111 1.1 briggs */
1112 1.1 briggs case AF_NS:
1113 1.1 briggs {
1114 1.1 briggs register struct ns_addr *ina = &(IA_SNS(ifa)->sns_addr);
1115 1.1 briggs
1116 1.1 briggs if (ns_nullhost(*ina))
1117 1.1 briggs ina->x_host =
1118 1.1 briggs *(union ns_host *)(sc->arpcom.ac_enaddr);
1119 1.1 briggs else {
1120 1.1 briggs /*
1121 1.1 briggs *
1122 1.1 briggs */
1123 1.12 lkestel bbcopy((caddr_t)ina->x_host.c_host,
1124 1.1 briggs (caddr_t)sc->arpcom.ac_enaddr,
1125 1.1 briggs sizeof(sc->arpcom.ac_enaddr));
1126 1.1 briggs }
1127 1.1 briggs /*
1128 1.1 briggs * Set new address
1129 1.1 briggs */
1130 1.11 briggs ae_init(sc);
1131 1.1 briggs break;
1132 1.1 briggs }
1133 1.1 briggs #endif
1134 1.1 briggs default:
1135 1.11 briggs ae_init(sc);
1136 1.1 briggs break;
1137 1.1 briggs }
1138 1.1 briggs break;
1139 1.1 briggs
1140 1.1 briggs case SIOCSIFFLAGS:
1141 1.1 briggs /*
1142 1.1 briggs * If interface is marked down and it is running, then stop it
1143 1.1 briggs */
1144 1.1 briggs if (((ifp->if_flags & IFF_UP) == 0) &&
1145 1.1 briggs (ifp->if_flags & IFF_RUNNING)) {
1146 1.1 briggs ae_stop(ifp->if_unit);
1147 1.1 briggs ifp->if_flags &= ~IFF_RUNNING;
1148 1.1 briggs } else {
1149 1.1 briggs /*
1150 1.1 briggs * If interface is marked up and it is stopped, then start it
1151 1.1 briggs */
1152 1.1 briggs if ((ifp->if_flags & IFF_UP) &&
1153 1.1 briggs ((ifp->if_flags & IFF_RUNNING) == 0))
1154 1.11 briggs ae_init(sc);
1155 1.1 briggs }
1156 1.1 briggs #if NBPFILTER > 0
1157 1.1 briggs if (ifp->if_flags & IFF_PROMISC) {
1158 1.1 briggs /*
1159 1.1 briggs * Set promiscuous mode on interface.
1160 1.1 briggs * XXX - for multicasts to work, we would need to
1161 1.1 briggs * write 1's in all bits of multicast
1162 1.1 briggs * hashing array. For now we assume that
1163 1.1 briggs * this was done in ae_init().
1164 1.1 briggs */
1165 1.1 briggs NIC_PUT(sc, AE_P0_RCR,
1166 1.1 briggs AE_RCR_PRO|AE_RCR_AM|AE_RCR_AB);
1167 1.1 briggs } else {
1168 1.1 briggs /*
1169 1.1 briggs * XXX - for multicasts to work, we would need to
1170 1.1 briggs * rewrite the multicast hashing array with the
1171 1.1 briggs * proper hash (would have been destroyed above).
1172 1.1 briggs */
1173 1.1 briggs NIC_PUT(sc, AE_P0_RCR, AE_RCR_AB);
1174 1.1 briggs }
1175 1.1 briggs #endif
1176 1.1 briggs break;
1177 1.1 briggs
1178 1.1 briggs default:
1179 1.1 briggs error = EINVAL;
1180 1.1 briggs }
1181 1.1 briggs (void) splx(s);
1182 1.1 briggs return (error);
1183 1.1 briggs }
1184 1.1 briggs
1185 1.1 briggs /*
1186 1.1 briggs * Macro to calculate a new address within shared memory when given an offset
1187 1.1 briggs * from an address, taking into account ring-wrap.
1188 1.1 briggs */
1189 1.1 briggs #define ringoffset(sc, start, off, type) \
1190 1.1 briggs ((type)( ((caddr_t)(start)+(off) >= (sc)->smem_end) ? \
1191 1.1 briggs (((caddr_t)(start)+(off))) - (sc)->smem_end \
1192 1.1 briggs + (sc)->smem_ring: \
1193 1.1 briggs ((caddr_t)(start)+(off)) ))
1194 1.1 briggs
1195 1.1 briggs /*
1196 1.1 briggs * Retreive packet from shared memory and send to the next level up via
1197 1.1 briggs * ether_input(). If there is a BPF listener, give a copy to BPF, too.
1198 1.1 briggs */
1199 1.1 briggs ae_get_packet(sc, buf, len)
1200 1.1 briggs struct ae_softc *sc;
1201 1.1 briggs char *buf;
1202 1.1 briggs u_short len;
1203 1.1 briggs {
1204 1.1 briggs struct ether_header *eh;
1205 1.1 briggs struct mbuf *m, *head, *ae_ring_to_mbuf();
1206 1.1 briggs u_short off;
1207 1.1 briggs int resid;
1208 1.1 briggs u_short etype;
1209 1.1 briggs struct trailer_header {
1210 1.1 briggs u_short trail_type;
1211 1.1 briggs u_short trail_residual;
1212 1.1 briggs } trailer_header;
1213 1.1 briggs
1214 1.1 briggs /* Allocate a header mbuf */
1215 1.1 briggs MGETHDR(m, M_DONTWAIT, MT_DATA);
1216 1.1 briggs if (m == 0)
1217 1.1 briggs goto bad;
1218 1.1 briggs m->m_pkthdr.rcvif = &sc->arpcom.ac_if;
1219 1.1 briggs m->m_pkthdr.len = len;
1220 1.1 briggs m->m_len = 0;
1221 1.1 briggs head = m;
1222 1.1 briggs
1223 1.1 briggs eh = (struct ether_header *)buf;
1224 1.1 briggs
1225 1.1 briggs /* The following sillines is to make NFS happy */
1226 1.1 briggs #define EROUND ((sizeof(struct ether_header) + 3) & ~3)
1227 1.1 briggs #define EOFF (EROUND - sizeof(struct ether_header))
1228 1.1 briggs
1229 1.1 briggs /*
1230 1.1 briggs * The following assumes there is room for
1231 1.1 briggs * the ether header in the header mbuf
1232 1.1 briggs */
1233 1.1 briggs head->m_data += EOFF;
1234 1.12 lkestel bbcopy(buf, mtod(head, caddr_t), sizeof(struct ether_header));
1235 1.1 briggs buf += sizeof(struct ether_header);
1236 1.1 briggs head->m_len += sizeof(struct ether_header);
1237 1.1 briggs len -= sizeof(struct ether_header);
1238 1.1 briggs
1239 1.1 briggs etype = ntohs((u_short)eh->ether_type);
1240 1.1 briggs
1241 1.1 briggs /*
1242 1.1 briggs * Deal with trailer protocol:
1243 1.1 briggs * If trailer protocol, calculate the datasize as 'off',
1244 1.1 briggs * which is also the offset to the trailer header.
1245 1.1 briggs * Set resid to the amount of packet data following the
1246 1.1 briggs * trailer header.
1247 1.1 briggs * Finally, copy residual data into mbuf chain.
1248 1.1 briggs */
1249 1.1 briggs if (etype >= ETHERTYPE_TRAIL &&
1250 1.1 briggs etype < ETHERTYPE_TRAIL+ETHERTYPE_NTRAILER) {
1251 1.1 briggs
1252 1.1 briggs off = (etype - ETHERTYPE_TRAIL) << 9;
1253 1.1 briggs if ((off + sizeof(struct trailer_header)) > len)
1254 1.1 briggs goto bad; /* insanity */
1255 1.1 briggs
1256 1.1 briggs eh->ether_type = *ringoffset(sc, buf, off, u_short *);
1257 1.1 briggs resid = ntohs(*ringoffset(sc, buf, off+2, u_short *));
1258 1.1 briggs
1259 1.1 briggs if ((off + resid) > len) goto bad; /* insanity */
1260 1.1 briggs
1261 1.1 briggs resid -= sizeof(struct trailer_header);
1262 1.1 briggs if (resid < 0) goto bad; /* insanity */
1263 1.1 briggs
1264 1.1 briggs m = ae_ring_to_mbuf(sc, ringoffset(sc, buf, off+4, char *), head, resid);
1265 1.1 briggs if (m == 0) goto bad;
1266 1.1 briggs
1267 1.1 briggs len = off;
1268 1.1 briggs head->m_pkthdr.len -= 4; /* subtract trailer header */
1269 1.1 briggs }
1270 1.1 briggs
1271 1.1 briggs /*
1272 1.1 briggs * Pull packet off interface. Or if this was a trailer packet,
1273 1.1 briggs * the data portion is appended.
1274 1.1 briggs */
1275 1.1 briggs m = ae_ring_to_mbuf(sc, buf, m, len);
1276 1.1 briggs if (m == 0) goto bad;
1277 1.1 briggs
1278 1.1 briggs #if NBPFILTER > 0
1279 1.1 briggs /*
1280 1.1 briggs * Check if there's a BPF listener on this interface.
1281 1.1 briggs * If so, hand off the raw packet to bpf.
1282 1.1 briggs */
1283 1.1 briggs if (sc->bpf) {
1284 1.1 briggs bpf_mtap(sc->bpf, head);
1285 1.1 briggs
1286 1.1 briggs /*
1287 1.1 briggs * Note that the interface cannot be in promiscuous mode if
1288 1.1 briggs * there are no BPF listeners. And if we are in promiscuous
1289 1.1 briggs * mode, we have to check if this packet is really ours.
1290 1.1 briggs *
1291 1.1 briggs * XXX This test does not support multicasts.
1292 1.1 briggs */
1293 1.1 briggs if ((sc->arpcom.ac_if.if_flags & IFF_PROMISC) &&
1294 1.1 briggs bcmp(eh->ether_dhost, sc->arpcom.ac_enaddr,
1295 1.1 briggs sizeof(eh->ether_dhost)) != 0 &&
1296 1.1 briggs bcmp(eh->ether_dhost, etherbroadcastaddr,
1297 1.1 briggs sizeof(eh->ether_dhost)) != 0) {
1298 1.1 briggs
1299 1.1 briggs m_freem(head);
1300 1.1 briggs return;
1301 1.1 briggs }
1302 1.1 briggs }
1303 1.1 briggs #endif
1304 1.1 briggs
1305 1.1 briggs /*
1306 1.1 briggs * Fix up data start offset in mbuf to point past ether header
1307 1.1 briggs */
1308 1.1 briggs m_adj(head, sizeof(struct ether_header));
1309 1.1 briggs
1310 1.1 briggs ether_input(&sc->arpcom.ac_if, eh, head);
1311 1.1 briggs return;
1312 1.1 briggs
1313 1.1 briggs bad: if (head)
1314 1.1 briggs m_freem(head);
1315 1.1 briggs return;
1316 1.1 briggs }
1317 1.1 briggs
1318 1.1 briggs /*
1319 1.1 briggs * Supporting routines
1320 1.1 briggs */
1321 1.1 briggs
1322 1.1 briggs /*
1323 1.1 briggs * Given a source and destination address, copy 'amount' of a packet from
1324 1.1 briggs * the ring buffer into a linear destination buffer. Takes into account
1325 1.1 briggs * ring-wrap.
1326 1.1 briggs */
1327 1.1 briggs static inline char *
1328 1.1 briggs ae_ring_copy(sc,src,dst,amount)
1329 1.1 briggs struct ae_softc *sc;
1330 1.1 briggs char *src;
1331 1.1 briggs char *dst;
1332 1.1 briggs u_short amount;
1333 1.1 briggs {
1334 1.1 briggs u_short tmp_amount;
1335 1.1 briggs
1336 1.1 briggs /* does copy wrap to lower addr in ring buffer? */
1337 1.1 briggs if (src + amount > sc->smem_end) {
1338 1.1 briggs tmp_amount = sc->smem_end - src;
1339 1.12 lkestel bbcopy(src, dst, tmp_amount);/* copy amount up to end of smem */
1340 1.1 briggs amount -= tmp_amount;
1341 1.1 briggs src = sc->smem_ring;
1342 1.1 briggs dst += tmp_amount;
1343 1.1 briggs }
1344 1.1 briggs
1345 1.12 lkestel bbcopy(src, dst, amount);
1346 1.1 briggs
1347 1.1 briggs return(src + amount);
1348 1.1 briggs }
1349 1.1 briggs
1350 1.1 briggs /*
1351 1.1 briggs * Copy data from receive buffer to end of mbuf chain
1352 1.1 briggs * allocate additional mbufs as needed. return pointer
1353 1.1 briggs * to last mbuf in chain.
1354 1.1 briggs * sc = ed info (softc)
1355 1.1 briggs * src = pointer in ed ring buffer
1356 1.1 briggs * dst = pointer to last mbuf in mbuf chain to copy to
1357 1.1 briggs * amount = amount of data to copy
1358 1.1 briggs */
1359 1.1 briggs struct mbuf *
1360 1.1 briggs ae_ring_to_mbuf(sc,src,dst,total_len)
1361 1.1 briggs struct ae_softc *sc;
1362 1.1 briggs char *src;
1363 1.1 briggs struct mbuf *dst;
1364 1.1 briggs u_short total_len;
1365 1.1 briggs {
1366 1.1 briggs register struct mbuf *m = dst;
1367 1.1 briggs
1368 1.1 briggs while (total_len) {
1369 1.1 briggs register u_short amount = min(total_len, M_TRAILINGSPACE(m));
1370 1.1 briggs
1371 1.1 briggs if (amount == 0) { /* no more data in this mbuf, alloc another */
1372 1.1 briggs /*
1373 1.1 briggs * If there is enough data for an mbuf cluster, attempt
1374 1.1 briggs * to allocate one of those, otherwise, a regular
1375 1.1 briggs * mbuf will do.
1376 1.1 briggs * Note that a regular mbuf is always required, even if
1377 1.1 briggs * we get a cluster - getting a cluster does not
1378 1.1 briggs * allocate any mbufs, and one is needed to assign
1379 1.1 briggs * the cluster to. The mbuf that has a cluster
1380 1.1 briggs * extension can not be used to contain data - only
1381 1.1 briggs * the cluster can contain data.
1382 1.1 briggs */
1383 1.1 briggs dst = m;
1384 1.1 briggs MGET(m, M_DONTWAIT, MT_DATA);
1385 1.1 briggs if (m == 0)
1386 1.1 briggs return (0);
1387 1.1 briggs
1388 1.1 briggs if (total_len >= MINCLSIZE)
1389 1.1 briggs MCLGET(m, M_DONTWAIT);
1390 1.1 briggs
1391 1.1 briggs m->m_len = 0;
1392 1.1 briggs dst->m_next = m;
1393 1.1 briggs amount = min(total_len, M_TRAILINGSPACE(m));
1394 1.1 briggs }
1395 1.1 briggs
1396 1.1 briggs src = ae_ring_copy(sc, src, mtod(m, caddr_t) + m->m_len, amount);
1397 1.1 briggs
1398 1.1 briggs m->m_len += amount;
1399 1.1 briggs total_len -= amount;
1400 1.1 briggs
1401 1.1 briggs }
1402 1.1 briggs return (m);
1403 1.1 briggs }
1404