Home | History | Annotate | Line # | Download | only in dev
if_ae.c revision 1.12
      1   1.1   briggs /*
      2   1.1   briggs  * Device driver for National Semiconductor DS8390 based ethernet adapters.
      3   1.1   briggs  *
      4   1.1   briggs  * Based on original ISA bus driver by David Greenman, 29-April-1993
      5   1.1   briggs  *
      6   1.1   briggs  * Copyright (C) 1993, David Greenman. This software may be used, modified,
      7   1.1   briggs  *   copied, distributed, and sold, in both source and binary form provided
      8   1.1   briggs  *   that the above copyright and these terms are retained. Under no
      9   1.1   briggs  *   circumstances is the author responsible for the proper functioning
     10   1.1   briggs  *   of this software, nor does the author assume any responsibility
     11   1.1   briggs  *   for damages incurred with its use.
     12   1.1   briggs  *
     13   1.1   briggs  * Adapted for MacBSD by Brad Parker <brad (at) fcr.com>
     14   1.1   briggs  *
     15   1.1   briggs  * Currently supports:
     16   1.1   briggs  *	Apples NB Ethernet card
     17   1.1   briggs  *	Interlan A310 Nubus Ethernet card
     18   1.1   briggs  *	Cayman Systems GatorCard
     19   1.1   briggs  */
     20   1.1   briggs 
     21   1.1   briggs /*
     22  1.12  lkestel  * $Id: if_ae.c,v 1.12 1994/03/20 03:03:26 lkestel Exp $
     23   1.1   briggs  */
     24   1.1   briggs 
     25   1.1   briggs #include "ae.h"
     26   1.1   briggs /* bpfilter included here in case it is needed in future net includes */
     27   1.1   briggs #include "bpfilter.h"
     28   1.1   briggs 
     29   1.9   briggs #include <sys/param.h>
     30   1.9   briggs #include <sys/systm.h>
     31   1.9   briggs #include <sys/errno.h>
     32   1.9   briggs #include <sys/ioctl.h>
     33   1.9   briggs #include <sys/mbuf.h>
     34   1.9   briggs #include <sys/socket.h>
     35   1.9   briggs #include <sys/syslog.h>
     36   1.1   briggs 
     37   1.5   briggs #include <net/if.h>
     38   1.5   briggs #include <net/if_dl.h>
     39   1.5   briggs #include <net/if_types.h>
     40   1.5   briggs #include <net/netisr.h>
     41   1.1   briggs 
     42   1.1   briggs #ifdef INET
     43   1.5   briggs #include <netinet/in.h>
     44   1.5   briggs #include <netinet/in_systm.h>
     45   1.5   briggs #include <netinet/in_var.h>
     46   1.5   briggs #include <netinet/ip.h>
     47   1.5   briggs #include <netinet/if_ether.h>
     48   1.1   briggs #endif
     49   1.1   briggs 
     50   1.1   briggs #ifdef NS
     51   1.5   briggs #include <netns/ns.h>
     52   1.5   briggs #include <netns/ns_if.h>
     53   1.1   briggs #endif
     54   1.1   briggs 
     55   1.1   briggs #if NBPFILTER > 0
     56   1.5   briggs #include <net/bpf.h>
     57   1.5   briggs #include <net/bpfdesc.h>
     58   1.1   briggs #endif
     59   1.1   briggs 
     60   1.5   briggs #include <sys/device.h>
     61   1.3   briggs #include "nubus.h"
     62   1.1   briggs #include "if_aereg.h"
     63   1.1   briggs 
     64   1.3   briggs struct ae_device {
     65   1.3   briggs 	struct device	ae_dev;
     66   1.3   briggs /*	struct nubusdev	ae_nu;
     67   1.3   briggs 	struct intrhand	ae_ih;	*/
     68   1.3   briggs };
     69   1.3   briggs 
     70   1.1   briggs /*
     71   1.1   briggs  * ae_softc: per line info and status
     72   1.1   briggs  */
     73   1.1   briggs struct	ae_softc {
     74   1.3   briggs 	struct ae_device	*sc_ae;
     75   1.3   briggs 
     76   1.1   briggs 	struct	arpcom arpcom;	/* ethernet common */
     77   1.1   briggs 
     78   1.1   briggs 	char	*type_str;	/* pointer to type string */
     79   1.1   briggs 	u_char	vendor;		/* interface vendor */
     80   1.1   briggs 	u_char	type;		/* interface type code */
     81   1.1   briggs #define	APPLE_CARD(sc)		((sc)->vendor == AE_VENDOR_APPLE)
     82   1.1   briggs #define	REG_MAP(sc, reg)	(APPLE_CARD(sc) ? (0x0f-(reg))<<2 : (reg)<<2)
     83   1.1   briggs #define NIC_GET(sc, reg)	((sc)->nic_addr[REG_MAP(sc, reg)])
     84   1.1   briggs #define NIC_PUT(sc, reg, val)	((sc)->nic_addr[REG_MAP(sc, reg)] = (val))
     85   1.1   briggs 	volatile caddr_t nic_addr; /* NIC (DS8390) I/O bus address */
     86   1.1   briggs 	caddr_t	rom_addr;	/* on board prom address */
     87   1.1   briggs 	caddr_t	smem_start;	/* shared memory start address */
     88   1.1   briggs 	caddr_t	smem_end;	/* shared memory end address */
     89   1.1   briggs 	u_long	smem_size;	/* total shared memory size */
     90   1.1   briggs 	caddr_t	smem_ring;	/* start of RX ring-buffer (in smem) */
     91   1.1   briggs 
     92   1.1   briggs 	caddr_t	bpf;		/* BPF "magic cookie" */
     93   1.1   briggs 
     94   1.1   briggs 	u_char	xmit_busy;	/* transmitter is busy */
     95   1.1   briggs 	u_char	txb_cnt;	/* Number of transmit buffers */
     96   1.1   briggs 	u_char	txb_next;	/* Pointer to next buffer ready to xmit */
     97   1.1   briggs 	u_short	txb_next_len;	/* next xmit buffer length */
     98   1.1   briggs 	u_char	data_buffered;	/* data has been buffered in interface memory */
     99   1.1   briggs 	u_char	tx_page_start;	/* first page of TX buffer area */
    100   1.1   briggs 
    101   1.1   briggs 	u_char	rec_page_start;	/* first page of RX ring-buffer */
    102   1.1   briggs 	u_char	rec_page_stop;	/* last page of RX ring-buffer */
    103   1.1   briggs 	u_char	next_packet;	/* pointer to next unread RX packet */
    104   1.1   briggs } ae_softc[NAE];
    105   1.1   briggs 
    106   1.9   briggs void	ae_find(), ae_attach();
    107   1.9   briggs int	ae_init(), aeintr(), ae_ioctl(), ae_probe(),
    108   1.1   briggs 	ae_start(), ae_reset(), ae_watchdog();
    109   1.1   briggs 
    110   1.3   briggs struct cfdriver aecd =
    111   1.3   briggs { NULL, "ae", ae_probe, ae_attach, DV_IFNET, sizeof(struct ae_device), NULL, 0 };
    112   1.3   briggs 
    113   1.1   briggs static void ae_stop();
    114   1.1   briggs static inline void ae_rint();
    115   1.1   briggs static inline void ae_xmit();
    116   1.1   briggs static inline char *ae_ring_copy();
    117   1.1   briggs 
    118   1.1   briggs extern int ether_output();
    119   1.1   briggs 
    120   1.1   briggs #define	ETHER_MIN_LEN	64
    121   1.1   briggs #define ETHER_MAX_LEN	1518
    122   1.1   briggs #define	ETHER_ADDR_LEN	6
    123   1.1   briggs #define	ETHER_HDR_SIZE	14
    124   1.1   briggs 
    125   1.1   briggs char ae_name[] = "8390 Nubus Ethernet card";
    126   1.1   briggs static char zero = 0;
    127   1.1   briggs static u_char ones = 0xff;
    128   1.1   briggs 
    129   1.8   briggs struct vendor_S {
    130   1.8   briggs 	char	*manu;
    131   1.8   briggs 	int	len;
    132   1.8   briggs 	int	vendor;
    133   1.8   briggs } vend[] = {
    134   1.8   briggs 	{ "Apple", 5, AE_VENDOR_APPLE },
    135   1.8   briggs 	{ "3Com",  4, AE_VENDOR_APPLE },
    136   1.8   briggs 	{ "Dayna", 5, AE_VENDOR_DAYNA },
    137   1.8   briggs 	{ "Inter", 5, AE_VENDOR_INTERLAN },
    138   1.8   briggs };
    139   1.8   briggs 
    140   1.8   briggs static int numvend = sizeof(vend)/sizeof(vend[0]);
    141   1.8   briggs 
    142  1.12  lkestel /*
    143  1.12  lkestel  * XXX These two should be moved to locore, and maybe changed to use shorts
    144  1.12  lkestel  * instead of bytes.  The reason for these is that bcopy and bzero use longs,
    145  1.12  lkestel  * which the ethernet cards can't handle.
    146  1.12  lkestel  */
    147  1.12  lkestel 
    148  1.12  lkestel void
    149  1.12  lkestel bbzero (char *addr, int len)
    150  1.12  lkestel {
    151  1.12  lkestel 	while (len--) {
    152  1.12  lkestel 		*addr++ = 0;
    153  1.12  lkestel 	}
    154  1.12  lkestel }
    155  1.12  lkestel 
    156  1.12  lkestel void
    157  1.12  lkestel bbcopy (char *src, char *dest, int len)
    158  1.12  lkestel {
    159  1.12  lkestel 	while (len--) {
    160  1.12  lkestel 		*dest++ = *src++;
    161  1.12  lkestel 	}
    162  1.12  lkestel }
    163  1.12  lkestel 
    164   1.8   briggs void
    165   1.8   briggs ae_id_card(nu, sc)
    166   1.8   briggs 	struct nubus_hw	*nu;
    167   1.8   briggs 	struct ae_softc	*sc;
    168   1.8   briggs {
    169   1.8   briggs 	int	i;
    170   1.8   briggs 
    171   1.8   briggs 	/*
    172   1.8   briggs 	 * Try to determine what type of card this is...
    173   1.8   briggs 	 */
    174   1.8   briggs 	sc->vendor = AE_VENDOR_UNKNOWN;
    175   1.8   briggs 	for (i=0 ; i<numvend ; i++) {
    176   1.8   briggs 		if (!strncmp(nu->Slot.manufacturer, vend[i].manu, vend[i].len)) {
    177   1.8   briggs 			sc->vendor = vend[i].vendor;
    178   1.8   briggs 			break;
    179   1.8   briggs 		}
    180   1.8   briggs 	}
    181   1.9   briggs 	sc->type_str = (char *) (nu->Slot.manufacturer);
    182   1.8   briggs 
    183   1.8   briggs 	/* see if it's an Interlan/GatorCard
    184   1.8   briggs 	sc->rom_addr = nu->addr + GC_ROM_OFFSET;
    185   1.8   briggs 	if (sc->rom_addr[0x18] == 0x0 &&
    186   1.8   briggs 	    sc->rom_addr[0x1c] == 0x55) {
    187   1.8   briggs 		sc->vendor = AE_VENDOR_INTERLAN;
    188   1.8   briggs 	} */
    189   1.8   briggs }
    190   1.8   briggs 
    191   1.1   briggs int
    192   1.3   briggs ae_probe(parent, cf, aux)
    193   1.3   briggs 	struct cfdriver	*parent;
    194   1.3   briggs 	struct cfdata	*cf;
    195   1.3   briggs 	void		*aux;
    196   1.1   briggs {
    197   1.3   briggs 	register struct nubus_hw *nu = (struct nubus_hw *) aux;
    198   1.3   briggs 	struct ae_softc *sc = &ae_softc[cf->cf_unit];
    199   1.1   briggs 	int i, memsize;
    200   1.1   briggs 	int flags = 0;
    201   1.1   briggs 
    202   1.3   briggs 	if (nu->Slot.type != NUBUS_NETWORK)
    203   1.3   briggs 		return 0;
    204   1.3   briggs 
    205   1.8   briggs 	ae_id_card(nu, sc);
    206   1.1   briggs 
    207   1.1   briggs 	switch (sc->vendor) {
    208   1.1   briggs 	      case AE_VENDOR_INTERLAN:
    209   1.1   briggs 		sc->nic_addr = nu->addr + GC_NIC_OFFSET;
    210   1.1   briggs 		sc->rom_addr = nu->addr + GC_ROM_OFFSET;
    211   1.1   briggs 		sc->smem_start = nu->addr + GC_DATA_OFFSET;
    212   1.1   briggs 		memsize = 8192;
    213   1.1   briggs 
    214   1.1   briggs 		/* reset the NIC chip */
    215   1.1   briggs 		*((caddr_t)nu->addr + GC_RESET_OFFSET) = (char)zero;
    216   1.1   briggs 
    217   1.1   briggs 		/* Get station address from on-board ROM */
    218   1.1   briggs 		for (i = 0; i < ETHER_ADDR_LEN; ++i)
    219   1.1   briggs 			sc->arpcom.ac_enaddr[i] = *(sc->rom_addr + i*4);
    220   1.1   briggs 		break;
    221   1.1   briggs 
    222   1.1   briggs 	      case AE_VENDOR_APPLE:
    223   1.1   briggs 		sc->nic_addr = nu->addr + AE_NIC_OFFSET;
    224   1.1   briggs 		sc->rom_addr = nu->addr + AE_ROM_OFFSET;
    225   1.1   briggs 		sc->smem_start = nu->addr + AE_DATA_OFFSET;
    226   1.1   briggs 		memsize = 8192;
    227   1.1   briggs 
    228   1.1   briggs 		/* Get station address from on-board ROM */
    229   1.1   briggs 		for (i = 0; i < ETHER_ADDR_LEN; ++i)
    230   1.1   briggs 			sc->arpcom.ac_enaddr[i] = *(sc->rom_addr + i*2);
    231   1.1   briggs 		break;
    232   1.8   briggs 
    233   1.8   briggs 	      case AE_VENDOR_DAYNA:
    234   1.9   briggs 		printf("We think we are a Dayna card, but ");
    235  1.10   briggs 		sc->nic_addr = nu->addr + DP_NIC_OFFSET;
    236  1.10   briggs 		sc->rom_addr = nu->addr + DP_ROM_OFFSET;
    237  1.10   briggs 		sc->smem_start = nu->addr + DP_DATA_OFFSET;
    238   1.8   briggs 		memsize = 8192;
    239   1.8   briggs 
    240   1.8   briggs 		/* Get station address from on-board ROM */
    241   1.8   briggs 		for (i = 0; i < ETHER_ADDR_LEN; ++i)
    242   1.8   briggs 			sc->arpcom.ac_enaddr[i] = *(sc->rom_addr + i*2);
    243   1.9   briggs 		printf("it is dangerous to continue.\n");
    244   1.8   briggs 		return 0; /* Since we don't work yet... */
    245   1.8   briggs 		break;
    246   1.8   briggs 
    247   1.8   briggs 	      default:
    248   1.8   briggs 		return 0;
    249   1.8   briggs 		break;
    250   1.1   briggs 	}
    251   1.7   briggs 
    252   1.1   briggs 	/*
    253   1.1   briggs 	 * allocate one xmit buffer if < 16k, two buffers otherwise
    254   1.1   briggs 	 */
    255   1.1   briggs 	if ((memsize < 16384) || (flags & AE_FLAGS_NO_DOUBLE_BUFFERING)) {
    256   1.1   briggs 		sc->smem_ring = sc->smem_start + (AE_PAGE_SIZE * AE_TXBUF_SIZE);
    257   1.1   briggs 		sc->txb_cnt = 1;
    258   1.1   briggs 		sc->rec_page_start = AE_TXBUF_SIZE;
    259   1.1   briggs 	} else {
    260   1.1   briggs 		sc->smem_ring = sc->smem_start + (AE_PAGE_SIZE * AE_TXBUF_SIZE * 2);
    261   1.1   briggs 		sc->txb_cnt = 2;
    262   1.1   briggs 		sc->rec_page_start = AE_TXBUF_SIZE * 2;
    263   1.1   briggs 	}
    264   1.1   briggs 
    265   1.1   briggs 	sc->smem_size = memsize;
    266   1.1   briggs 	sc->smem_end = sc->smem_start + memsize;
    267   1.1   briggs 	sc->rec_page_stop = memsize / AE_PAGE_SIZE;
    268   1.1   briggs 	sc->tx_page_start = 0;
    269   1.1   briggs 
    270   1.1   briggs 	/*
    271   1.1   briggs 	 * Now zero memory and verify that it is clear
    272   1.1   briggs 	 */
    273  1.12  lkestel 	bbzero(sc->smem_start, memsize);
    274   1.1   briggs 
    275   1.1   briggs 	for (i = 0; i < memsize; ++i)
    276   1.1   briggs 		if (sc->smem_start[i]) {
    277   1.3   briggs 	        	printf(": failed to clear shared memory at %x\n",
    278   1.3   briggs 			       sc->smem_start + i);
    279   1.1   briggs 
    280   1.1   briggs 			return(0);
    281   1.1   briggs 		}
    282   1.1   briggs 
    283   1.1   briggs #ifdef DEBUG_PRINT
    284   1.1   briggs 	printf("nic_addr %x, rom_addr %x\n",
    285   1.1   briggs 		sc->nic_addr, sc->rom_addr);
    286   1.1   briggs 	printf("smem_size %d\n", sc->smem_size);
    287   1.1   briggs 	printf("smem_start %x, smem_ring %x, smem_end %x\n",
    288   1.1   briggs 		sc->smem_start, sc->smem_ring, sc->smem_end);
    289   1.1   briggs 	printf("phys address %02x:%02x:%02x:%02x:%02x:%02x\n",
    290   1.1   briggs 		sc->arpcom.ac_enaddr[0],
    291   1.1   briggs 		sc->arpcom.ac_enaddr[1],
    292   1.1   briggs 		sc->arpcom.ac_enaddr[2],
    293   1.1   briggs 		sc->arpcom.ac_enaddr[3],
    294   1.1   briggs 		sc->arpcom.ac_enaddr[4],
    295   1.1   briggs 		sc->arpcom.ac_enaddr[5]);
    296   1.1   briggs #endif
    297   1.1   briggs 
    298   1.1   briggs 	return(1);
    299   1.1   briggs }
    300   1.1   briggs 
    301   1.1   briggs /*
    302   1.1   briggs  * Install interface into kernel networking data structures
    303   1.1   briggs  */
    304   1.9   briggs void
    305   1.3   briggs ae_attach(parent, self, aux)
    306   1.3   briggs 	struct cfdriver	*parent, *self;
    307   1.3   briggs 	void		*aux;
    308   1.1   briggs {
    309   1.3   briggs 	struct nubus_hw	*nu = aux;
    310   1.3   briggs 	struct ae_device *ae = (struct ae_device *) self;
    311   1.3   briggs 	struct ae_softc *sc = &ae_softc[ae->ae_dev.dv_unit];
    312   1.3   briggs 	struct cfdata *cf = ae->ae_dev.dv_cfdata;
    313   1.1   briggs 	struct ifnet *ifp = &sc->arpcom.ac_if;
    314   1.1   briggs 	struct ifaddr *ifa;
    315   1.1   briggs 	struct sockaddr_dl *sdl;
    316   1.1   briggs 
    317   1.3   briggs 	sc->sc_ae = ae;
    318   1.3   briggs 
    319   1.1   briggs 	/*
    320   1.1   briggs 	 * Set interface to stopped condition (reset)
    321   1.1   briggs 	 */
    322   1.3   briggs 	ae_stop(sc);
    323   1.1   briggs 
    324   1.1   briggs 	/*
    325   1.1   briggs 	 * Initialize ifnet structure
    326   1.1   briggs 	 */
    327   1.3   briggs 	ifp->if_unit = ae->ae_dev.dv_unit;
    328   1.3   briggs 	ifp->if_name = aecd.cd_name;
    329   1.1   briggs 	ifp->if_mtu = ETHERMTU;
    330   1.3   briggs 	ifp->if_output = ether_output;
    331   1.1   briggs 	ifp->if_start = ae_start;
    332   1.1   briggs 	ifp->if_ioctl = ae_ioctl;
    333   1.1   briggs 	ifp->if_reset = ae_reset;
    334   1.1   briggs 	ifp->if_watchdog = ae_watchdog;
    335   1.1   briggs 	ifp->if_flags = (IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS);
    336   1.1   briggs 
    337   1.3   briggs #if 0
    338   1.3   briggs 	/*
    339   1.3   briggs 	 * Set default state for ALTPHYS flag (used to disable the transceiver
    340   1.3   briggs 	 * for AUI operation), based on compile-time config option.
    341   1.3   briggs 	 */
    342   1.3   briggs 	if (cf->cf_flags & AE_FLAGS_DISABLE_TRANSCEIVER)
    343   1.3   briggs 		ifp->if_flags |= IFF_ALTPHYS;
    344   1.3   briggs #endif
    345   1.3   briggs 
    346   1.1   briggs 	/*
    347   1.1   briggs 	 * Attach the interface
    348   1.1   briggs 	 */
    349   1.1   briggs 	if_attach(ifp);
    350   1.1   briggs 
    351   1.1   briggs 	/*
    352   1.1   briggs 	 * Search down the ifa address list looking for the AF_LINK type entry
    353   1.1   briggs 	 */
    354   1.1   briggs  	ifa = ifp->if_addrlist;
    355   1.1   briggs 	while ((ifa != 0) && (ifa->ifa_addr != 0) &&
    356   1.1   briggs 	    (ifa->ifa_addr->sa_family != AF_LINK))
    357   1.1   briggs 		ifa = ifa->ifa_next;
    358   1.1   briggs 	/*
    359   1.1   briggs 	 * If we find an AF_LINK type entry we fill in the hardware address.
    360   1.1   briggs 	 *	This is useful for netstat(1) to keep track of which interface
    361   1.1   briggs 	 *	is which.
    362   1.1   briggs 	 */
    363   1.1   briggs 	if ((ifa != 0) && (ifa->ifa_addr != 0)) {
    364   1.1   briggs 		/*
    365   1.1   briggs 		 * Fill in the link-level address for this interface
    366   1.1   briggs 		 */
    367   1.1   briggs 		sdl = (struct sockaddr_dl *)ifa->ifa_addr;
    368   1.1   briggs 		sdl->sdl_type = IFT_ETHER;
    369   1.1   briggs 		sdl->sdl_alen = ETHER_ADDR_LEN;
    370   1.1   briggs 		sdl->sdl_slen = 0;
    371  1.12  lkestel 		bbcopy(sc->arpcom.ac_enaddr, LLADDR(sdl), ETHER_ADDR_LEN);
    372   1.1   briggs 	}
    373   1.1   briggs 
    374   1.1   briggs 	/*
    375   1.1   briggs 	 * Print additional info when attached
    376   1.1   briggs 	 */
    377   1.3   briggs 	printf(": address %s, ", ether_sprintf(sc->arpcom.ac_enaddr));
    378   1.1   briggs 
    379   1.1   briggs 	if (sc->type_str && (*sc->type_str != 0))
    380   1.1   briggs 		printf("type %s ", sc->type_str);
    381   1.1   briggs 	else
    382   1.1   briggs 		printf("type unknown (0x%x) ", sc->type);
    383   1.1   briggs 
    384   1.1   briggs 	printf("\n");
    385   1.1   briggs 
    386   1.1   briggs 	/*
    387   1.1   briggs 	 * If BPF is in the kernel, call the attach for it
    388   1.1   briggs 	 */
    389   1.1   briggs #if NBPFILTER > 0
    390   1.1   briggs 	bpfattach(&sc->bpf, ifp, DLT_EN10MB, sizeof(struct ether_header));
    391   1.1   briggs #endif
    392   1.3   briggs }
    393   1.1   briggs 
    394   1.1   briggs /*
    395   1.1   briggs  * Reset interface.
    396   1.1   briggs  */
    397   1.1   briggs int
    398   1.3   briggs ae_reset(sc)
    399   1.3   briggs 	struct ae_softc *sc;
    400   1.1   briggs {
    401   1.1   briggs 	int s;
    402   1.1   briggs 
    403   1.1   briggs 	s = splnet();
    404   1.1   briggs 
    405   1.1   briggs 	/*
    406   1.1   briggs 	 * Stop interface and re-initialize.
    407   1.1   briggs 	 */
    408   1.3   briggs 	ae_stop(sc);
    409   1.3   briggs 	ae_init(sc);
    410   1.1   briggs 
    411   1.1   briggs 	(void) splx(s);
    412   1.1   briggs }
    413   1.1   briggs 
    414   1.1   briggs /*
    415   1.1   briggs  * Take interface offline.
    416   1.1   briggs  */
    417   1.1   briggs void
    418   1.3   briggs ae_stop(sc)
    419   1.3   briggs 	struct ae_softc *sc;
    420   1.1   briggs {
    421   1.1   briggs 	int n = 5000;
    422   1.1   briggs 
    423   1.1   briggs 	/*
    424   1.1   briggs 	 * Stop everything on the interface, and select page 0 registers.
    425   1.1   briggs 	 */
    426   1.1   briggs 	NIC_PUT(sc, AE_P0_CR, AE_CR_RD2|AE_CR_STP);
    427   1.1   briggs 
    428   1.1   briggs 	/*
    429   1.1   briggs 	 * Wait for interface to enter stopped state, but limit # of checks
    430   1.1   briggs 	 *	to 'n' (about 5ms). It shouldn't even take 5us on modern
    431   1.1   briggs 	 *	DS8390's, but just in case it's an old one.
    432   1.1   briggs 	 */
    433   1.1   briggs 	while (((NIC_GET(sc, AE_P0_ISR) & AE_ISR_RST) == 0) && --n);
    434   1.1   briggs }
    435   1.1   briggs 
    436   1.1   briggs /*
    437   1.1   briggs  * Device timeout/watchdog routine. Entered if the device neglects to
    438   1.1   briggs  *	generate an interrupt after a transmit has been started on it.
    439   1.1   briggs  */
    440   1.1   briggs int
    441   1.1   briggs ae_watchdog(unit)
    442   1.3   briggs 	short unit;
    443   1.1   briggs {
    444   1.1   briggs 	log(LOG_ERR, "ae%d: device timeout\n", unit);
    445   1.1   briggs {
    446   1.1   briggs struct ae_softc *sc = &ae_softc[unit];
    447   1.1   briggs printf("cr %x, isr %x\n", NIC_GET(sc, AE_P0_CR), NIC_GET(sc, AE_P0_ISR));
    448   1.3   briggs /* via_dump(); */
    449   1.1   briggs if (NIC_GET(sc, AE_P0_ISR)) {
    450   1.1   briggs 	aeintr(0);
    451   1.1   briggs 	return;
    452   1.1   briggs }
    453   1.1   briggs }
    454   1.1   briggs 	ae_reset(unit);
    455   1.1   briggs }
    456   1.1   briggs 
    457   1.1   briggs /*
    458   1.1   briggs  * Initialize device.
    459   1.1   briggs  */
    460   1.3   briggs ae_init(sc)
    461   1.3   briggs 	struct ae_softc *sc;
    462   1.1   briggs {
    463   1.1   briggs 	struct ifnet *ifp = &sc->arpcom.ac_if;
    464   1.1   briggs 	int i, s;
    465   1.1   briggs 	u_char	command;
    466   1.1   briggs 
    467   1.1   briggs 
    468   1.1   briggs 	/* address not known */
    469   1.1   briggs 	if (ifp->if_addrlist == (struct ifaddr *)0) return;
    470   1.1   briggs 
    471   1.1   briggs 	/*
    472   1.1   briggs 	 * Initialize the NIC in the exact order outlined in the NS manual.
    473   1.1   briggs 	 *	This init procedure is "mandatory"...don't change what or when
    474   1.1   briggs 	 *	things happen.
    475   1.1   briggs 	 */
    476   1.1   briggs 	s = splnet();
    477   1.1   briggs 
    478   1.1   briggs 	/* reset transmitter flags */
    479   1.1   briggs 	sc->data_buffered = 0;
    480   1.1   briggs 	sc->xmit_busy = 0;
    481   1.1   briggs 	sc->arpcom.ac_if.if_timer = 0;
    482   1.1   briggs 
    483   1.1   briggs 	sc->txb_next = 0;
    484   1.1   briggs 
    485   1.1   briggs 	/* This variable is used below - don't move this assignment */
    486   1.1   briggs 	sc->next_packet = sc->rec_page_start + 1;
    487   1.1   briggs 
    488   1.1   briggs #ifdef DEBUG_PRINT
    489   1.1   briggs 	printf("page_start %d, page_stop %d, next %d\n",
    490   1.1   briggs 		sc->rec_page_start, sc->rec_page_stop, sc->next_packet);
    491   1.1   briggs #endif
    492   1.1   briggs 
    493   1.1   briggs 	/*
    494   1.1   briggs 	 * Set interface for page 0, Remote DMA complete, Stopped
    495   1.1   briggs 	 */
    496   1.1   briggs 	NIC_PUT(sc, AE_P0_CR, AE_CR_RD2|AE_CR_STP);
    497   1.1   briggs 
    498   1.1   briggs 	/*
    499   1.1   briggs 	 * Set FIFO threshold to 4, No auto-init Remote DMA, Burst mode,
    500   1.1   briggs 	 *	byte order=80x86, word-wide DMA xfers,
    501   1.1   briggs 	 */
    502   1.1   briggs 	NIC_PUT(sc, AE_P0_DCR, AE_DCR_FT1|AE_DCR_BMS|AE_DCR_WTS);
    503   1.1   briggs 
    504   1.1   briggs 	/*
    505   1.1   briggs 	 * Clear Remote Byte Count Registers
    506   1.1   briggs 	 */
    507   1.1   briggs 	NIC_PUT(sc, AE_P0_RBCR0, zero);
    508   1.1   briggs 	NIC_PUT(sc, AE_P0_RBCR1, zero);
    509   1.1   briggs 
    510   1.1   briggs 	/*
    511   1.1   briggs 	 * Enable reception of broadcast packets
    512   1.1   briggs 	 */
    513   1.1   briggs 	NIC_PUT(sc, AE_P0_RCR, AE_RCR_AB);
    514   1.1   briggs 
    515   1.1   briggs 	/*
    516   1.1   briggs 	 * Place NIC in internal loopback mode
    517   1.1   briggs 	 */
    518   1.1   briggs 	NIC_PUT(sc, AE_P0_TCR, AE_TCR_LB0);
    519   1.1   briggs 
    520   1.1   briggs 	/*
    521   1.1   briggs 	 * Initialize transmit/receive (ring-buffer) Page Start
    522   1.1   briggs 	 */
    523   1.1   briggs 	NIC_PUT(sc, AE_P0_TPSR, sc->tx_page_start);
    524   1.1   briggs 	NIC_PUT(sc, AE_P0_PSTART, sc->rec_page_start);
    525   1.1   briggs 
    526   1.1   briggs 	/*
    527   1.1   briggs 	 * Initialize Receiver (ring-buffer) Page Stop and Boundry
    528   1.1   briggs 	 */
    529   1.1   briggs 	NIC_PUT(sc, AE_P0_PSTOP, sc->rec_page_stop);
    530   1.1   briggs 	NIC_PUT(sc, AE_P0_BNRY, sc->rec_page_start);
    531   1.1   briggs 
    532   1.1   briggs 	/*
    533   1.1   briggs 	 * Clear all interrupts. A '1' in each bit position clears the
    534   1.1   briggs 	 *	corresponding flag.
    535   1.1   briggs 	 */
    536   1.1   briggs 	NIC_PUT(sc, AE_P0_ISR, ones);
    537   1.1   briggs 
    538   1.1   briggs 	/*
    539   1.1   briggs 	 * Enable the following interrupts: receive/transmit complete,
    540   1.1   briggs 	 *	receive/transmit error, and Receiver OverWrite.
    541   1.1   briggs 	 *
    542   1.1   briggs 	 * Counter overflow and Remote DMA complete are *not* enabled.
    543   1.1   briggs 	 */
    544   1.1   briggs 	NIC_PUT(sc, AE_P0_IMR,
    545   1.1   briggs 		AE_IMR_PRXE|AE_IMR_PTXE|AE_IMR_RXEE|AE_IMR_TXEE|AE_IMR_OVWE);
    546   1.1   briggs 
    547   1.1   briggs 	/*
    548   1.1   briggs 	 * Program Command Register for page 1
    549   1.1   briggs 	 */
    550   1.1   briggs 	NIC_PUT(sc, AE_P0_CR, AE_CR_PAGE_1|AE_CR_RD2|AE_CR_STP);
    551   1.1   briggs 
    552   1.1   briggs 	/*
    553   1.1   briggs 	 * Copy out our station address
    554   1.1   briggs 	 */
    555   1.1   briggs 	for (i = 0; i < ETHER_ADDR_LEN; ++i)
    556   1.1   briggs 		NIC_PUT(sc, AE_P1_PAR0 + i, sc->arpcom.ac_enaddr[i]);
    557   1.1   briggs 
    558   1.1   briggs #if NBPFILTER > 0
    559   1.1   briggs 	/*
    560   1.1   briggs 	 * Initialize multicast address hashing registers to accept
    561   1.1   briggs 	 *	 all multicasts (only used when in promiscuous mode)
    562   1.1   briggs 	 */
    563   1.1   briggs 	for (i = 0; i < 8; ++i)
    564   1.1   briggs 		NIC_PUT(sc, AE_P1_MAR0 + i, 0xff);
    565   1.1   briggs #endif
    566   1.1   briggs 
    567   1.1   briggs 	/*
    568   1.1   briggs 	 * Set Current Page pointer to next_packet (initialized above)
    569   1.1   briggs 	 */
    570   1.1   briggs 	NIC_PUT(sc, AE_P1_CURR, sc->next_packet);
    571   1.1   briggs 
    572   1.1   briggs 	/*
    573   1.1   briggs 	 * Set Command Register for page 0, Remote DMA complete,
    574   1.1   briggs 	 * 	and interface Start.
    575   1.1   briggs 	 */
    576   1.1   briggs 	NIC_PUT(sc, AE_P1_CR, AE_CR_RD2|AE_CR_STA);
    577   1.1   briggs 
    578   1.1   briggs 	/*
    579   1.1   briggs 	 * Take interface out of loopback
    580   1.1   briggs 	 */
    581   1.1   briggs 	NIC_PUT(sc, AE_P0_TCR, zero);
    582   1.1   briggs 
    583   1.1   briggs 	/*
    584   1.1   briggs 	 * Set 'running' flag, and clear output active flag.
    585   1.1   briggs 	 */
    586   1.1   briggs 	ifp->if_flags |= IFF_RUNNING;
    587   1.1   briggs 	ifp->if_flags &= ~IFF_OACTIVE;
    588   1.1   briggs 
    589   1.3   briggs 	/* XXXXXX */
    590  1.12  lkestel 	add_nubus_intr((int)sc->rom_addr & 0xFF000000, aeintr, sc - ae_softc);
    591   1.1   briggs 
    592   1.1   briggs 	/*
    593   1.1   briggs 	 * ...and attempt to start output
    594   1.1   briggs 	 */
    595   1.1   briggs 	ae_start(ifp);
    596   1.1   briggs 
    597   1.1   briggs 	(void) splx(s);
    598   1.1   briggs }
    599   1.1   briggs 
    600   1.1   briggs /*
    601   1.1   briggs  * This routine actually starts the transmission on the interface
    602   1.1   briggs  */
    603   1.1   briggs static inline void ae_xmit(ifp)
    604   1.1   briggs 	struct ifnet *ifp;
    605   1.1   briggs {
    606   1.1   briggs 	struct ae_softc *sc = &ae_softc[ifp->if_unit];
    607   1.1   briggs 	u_short len = sc->txb_next_len;
    608   1.1   briggs 
    609   1.1   briggs 	/*
    610   1.1   briggs 	 * Set NIC for page 0 register access
    611   1.1   briggs 	 */
    612   1.1   briggs 	NIC_PUT(sc, AE_P0_CR, AE_CR_RD2|AE_CR_STA);
    613   1.1   briggs 
    614   1.1   briggs 	/*
    615   1.1   briggs 	 * Set TX buffer start page
    616   1.1   briggs 	 */
    617   1.1   briggs 	NIC_PUT(sc, AE_P0_TPSR, sc->tx_page_start +
    618   1.1   briggs 		sc->txb_next * AE_TXBUF_SIZE);
    619   1.1   briggs 
    620   1.1   briggs 	/*
    621   1.1   briggs 	 * Set TX length
    622   1.1   briggs 	 */
    623   1.1   briggs 	NIC_PUT(sc, AE_P0_TBCR0, len & 0xff);
    624   1.1   briggs 	NIC_PUT(sc, AE_P0_TBCR1, len >> 8);
    625   1.1   briggs 
    626   1.1   briggs 	/*
    627   1.1   briggs 	 * Set page 0, Remote DMA complete, Transmit Packet, and *Start*
    628   1.1   briggs 	 */
    629   1.1   briggs 	NIC_PUT(sc, AE_P0_CR, AE_CR_RD2|AE_CR_TXP|AE_CR_STA);
    630   1.1   briggs 
    631   1.1   briggs 	sc->xmit_busy = 1;
    632   1.1   briggs 	sc->data_buffered = 0;
    633   1.1   briggs 
    634   1.1   briggs 	/*
    635   1.1   briggs 	 * Switch buffers if we are doing double-buffered transmits
    636   1.1   briggs 	 */
    637   1.1   briggs 	if ((sc->txb_next == 0) && (sc->txb_cnt > 1))
    638   1.1   briggs 		sc->txb_next = 1;
    639   1.1   briggs 	else
    640   1.1   briggs 		sc->txb_next = 0;
    641   1.1   briggs 
    642   1.1   briggs 	/*
    643   1.1   briggs 	 * Set a timer just in case we never hear from the board again
    644   1.1   briggs 	 */
    645   1.1   briggs 	ifp->if_timer = 2;
    646   1.1   briggs }
    647   1.1   briggs 
    648   1.1   briggs /*
    649   1.1   briggs  * Start output on interface.
    650   1.1   briggs  * We make two assumptions here:
    651   1.1   briggs  *  1) that the current priority is set to splnet _before_ this code
    652   1.1   briggs  *     is called *and* is returned to the appropriate priority after
    653   1.1   briggs  *     return
    654   1.1   briggs  *  2) that the IFF_OACTIVE flag is checked before this code is called
    655   1.1   briggs  *     (i.e. that the output part of the interface is idle)
    656   1.1   briggs  */
    657   1.1   briggs int
    658   1.1   briggs ae_start(ifp)
    659   1.1   briggs 	struct ifnet *ifp;
    660   1.1   briggs {
    661   1.1   briggs 	struct ae_softc *sc = &ae_softc[ifp->if_unit];
    662   1.1   briggs 	struct mbuf *m0, *m;
    663   1.1   briggs 	caddr_t buffer;
    664   1.1   briggs 	int len;
    665   1.1   briggs 
    666   1.1   briggs outloop:
    667   1.1   briggs 	/*
    668   1.1   briggs 	 * See if there is room to send more data (i.e. one or both of the
    669   1.1   briggs 	 *	buffers is empty).
    670   1.1   briggs 	 */
    671   1.1   briggs 	if (sc->data_buffered)
    672   1.1   briggs 		if (sc->xmit_busy) {
    673   1.1   briggs 			/*
    674   1.1   briggs 			 * No room. Indicate this to the outside world
    675   1.1   briggs 			 *	and exit.
    676   1.1   briggs 			 */
    677   1.1   briggs 			ifp->if_flags |= IFF_OACTIVE;
    678   1.1   briggs 			return;
    679   1.1   briggs 		} else {
    680   1.1   briggs 			/*
    681   1.1   briggs 			 * Data is buffered, but we're not transmitting, so
    682   1.1   briggs 			 *	start the xmit on the buffered data.
    683   1.1   briggs 			 * Note that ae_xmit() resets the data_buffered flag
    684   1.1   briggs 			 *	before returning.
    685   1.1   briggs 			 */
    686   1.1   briggs 			ae_xmit(ifp);
    687   1.1   briggs 		}
    688   1.1   briggs 
    689   1.1   briggs 	IF_DEQUEUE(&sc->arpcom.ac_if.if_snd, m);
    690   1.1   briggs 	if (m == 0) {
    691   1.1   briggs 	/*
    692   1.1   briggs 	 * The following isn't pretty; we are using the !OACTIVE flag to
    693   1.1   briggs 	 * indicate to the outside world that we can accept an additional
    694   1.1   briggs 	 * packet rather than that the transmitter is _actually_
    695   1.1   briggs 	 * active. Indeed, the transmitter may be active, but if we haven't
    696   1.1   briggs 	 * filled the secondary buffer with data then we still want to
    697   1.1   briggs 	 * accept more.
    698   1.1   briggs 	 * Note that it isn't necessary to test the data_buffered flag -
    699   1.1   briggs 	 * we wouldn't have tried to de-queue the packet in the first place
    700   1.1   briggs 	 * if it was set.
    701   1.1   briggs 	 */
    702   1.1   briggs 		ifp->if_flags &= ~IFF_OACTIVE;
    703   1.1   briggs 		return;
    704   1.1   briggs 	}
    705   1.1   briggs 
    706   1.1   briggs 	/*
    707   1.1   briggs 	 * Copy the mbuf chain into the transmit buffer
    708   1.1   briggs 	 */
    709   1.1   briggs 	buffer = sc->smem_start + (sc->txb_next * AE_TXBUF_SIZE * AE_PAGE_SIZE);
    710   1.1   briggs 	len = 0;
    711   1.1   briggs 	for (m0 = m; m != 0; m = m->m_next) {
    712   1.1   briggs 		/*printf("ae: copy %d bytes @ %x\n", m->m_len, buffer);*/
    713  1.12  lkestel 		bbcopy(mtod(m, caddr_t), buffer, m->m_len);
    714   1.1   briggs 		buffer += m->m_len;
    715   1.1   briggs        		len += m->m_len;
    716   1.1   briggs 	}
    717   1.1   briggs if (len & 1) len++;
    718   1.1   briggs 
    719   1.1   briggs 	sc->txb_next_len = MAX(len, ETHER_MIN_LEN);
    720   1.1   briggs 
    721   1.1   briggs 	if (sc->txb_cnt > 1)
    722   1.1   briggs 		/*
    723   1.1   briggs 		 * only set 'buffered' flag if doing multiple buffers
    724   1.1   briggs 		 */
    725   1.1   briggs 		sc->data_buffered = 1;
    726   1.1   briggs 
    727   1.1   briggs 	if (sc->xmit_busy == 0)
    728   1.1   briggs 		ae_xmit(ifp);
    729   1.1   briggs 	/*
    730   1.1   briggs 	 * If there is BPF support in the configuration, tap off here.
    731   1.1   briggs 	 *   The following has support for converting trailer packets
    732   1.1   briggs 	 *   back to normal.
    733   1.1   briggs 	 */
    734   1.1   briggs #if NBPFILTER > 0
    735   1.1   briggs 	if (sc->bpf) {
    736   1.1   briggs 		u_short etype;
    737   1.1   briggs 		int off, datasize, resid;
    738   1.1   briggs 		struct ether_header *eh;
    739   1.1   briggs 		struct trailer_header {
    740   1.1   briggs 			u_short ether_type;
    741   1.1   briggs 			u_short ether_residual;
    742   1.1   briggs 		} trailer_header;
    743   1.1   briggs 		char ether_packet[ETHER_MAX_LEN];
    744   1.1   briggs 		char *ep;
    745   1.1   briggs 
    746   1.1   briggs 		ep = ether_packet;
    747   1.1   briggs 
    748   1.1   briggs 		/*
    749   1.1   briggs 		 * We handle trailers below:
    750   1.1   briggs 		 * Copy ether header first, then residual data,
    751   1.1   briggs 		 * then data. Put all this in a temporary buffer
    752   1.1   briggs 		 * 'ether_packet' and send off to bpf. Since the
    753   1.1   briggs 		 * system has generated this packet, we assume
    754   1.1   briggs 		 * that all of the offsets in the packet are
    755   1.1   briggs 		 * correct; if they're not, the system will almost
    756   1.1   briggs 		 * certainly crash in m_copydata.
    757   1.1   briggs 		 * We make no assumptions about how the data is
    758   1.1   briggs 		 * arranged in the mbuf chain (i.e. how much
    759   1.1   briggs 		 * data is in each mbuf, if mbuf clusters are
    760   1.1   briggs 		 * used, etc.), which is why we use m_copydata
    761   1.1   briggs 		 * to get the ether header rather than assume
    762   1.1   briggs 		 * that this is located in the first mbuf.
    763   1.1   briggs 		 */
    764   1.1   briggs 		/* copy ether header */
    765   1.1   briggs 		m_copydata(m0, 0, sizeof(struct ether_header), ep);
    766   1.1   briggs 		eh = (struct ether_header *) ep;
    767   1.1   briggs 		ep += sizeof(struct ether_header);
    768   1.1   briggs 		etype = ntohs(eh->ether_type);
    769   1.1   briggs 		if (etype >= ETHERTYPE_TRAIL &&
    770   1.1   briggs 		    etype < ETHERTYPE_TRAIL+ETHERTYPE_NTRAILER) {
    771   1.1   briggs 			datasize = ((etype - ETHERTYPE_TRAIL) << 9);
    772   1.1   briggs 			off = datasize + sizeof(struct ether_header);
    773   1.1   briggs 
    774   1.1   briggs 			/* copy trailer_header into a data structure */
    775   1.1   briggs 			m_copydata(m0, off, sizeof(struct trailer_header),
    776   1.1   briggs 				&trailer_header.ether_type);
    777   1.1   briggs 
    778   1.1   briggs 			/* copy residual data */
    779   1.1   briggs 			m_copydata(m0, off+sizeof(struct trailer_header),
    780   1.1   briggs 				resid = ntohs(trailer_header.ether_residual) -
    781   1.1   briggs 				sizeof(struct trailer_header), ep);
    782   1.1   briggs 			ep += resid;
    783   1.1   briggs 
    784   1.1   briggs 			/* copy data */
    785   1.1   briggs 			m_copydata(m0, sizeof(struct ether_header),
    786   1.1   briggs 				datasize, ep);
    787   1.1   briggs 			ep += datasize;
    788   1.1   briggs 
    789   1.1   briggs 			/* restore original ether packet type */
    790   1.1   briggs 			eh->ether_type = trailer_header.ether_type;
    791   1.1   briggs 
    792   1.1   briggs 			bpf_tap(sc->bpf, ether_packet, ep - ether_packet);
    793   1.1   briggs 		} else
    794   1.1   briggs 			bpf_mtap(sc->bpf, m0);
    795   1.1   briggs 	}
    796   1.1   briggs #endif
    797   1.1   briggs 
    798   1.1   briggs 	m_freem(m0);
    799   1.1   briggs 
    800   1.1   briggs 	/*
    801   1.1   briggs 	 * If we are doing double-buffering, a buffer might be free to
    802   1.1   briggs 	 *	fill with another packet, so loop back to the top.
    803   1.1   briggs 	 */
    804   1.1   briggs 	if (sc->txb_cnt > 1)
    805   1.1   briggs 		goto outloop;
    806   1.1   briggs 	else {
    807   1.1   briggs 		ifp->if_flags |= IFF_OACTIVE;
    808   1.1   briggs 		return;
    809   1.1   briggs 	}
    810   1.1   briggs }
    811   1.1   briggs 
    812   1.1   briggs /*
    813   1.1   briggs  * Ethernet interface receiver interrupt.
    814   1.1   briggs  */
    815   1.1   briggs static inline void
    816   1.1   briggs ae_rint(unit)
    817   1.1   briggs 	int unit;
    818   1.1   briggs {
    819   1.1   briggs 	register struct ae_softc *sc = &ae_softc[unit];
    820   1.1   briggs 	u_char boundry, current;
    821   1.1   briggs 	u_short len;
    822   1.1   briggs 	struct ae_ring *packet_ptr;
    823   1.1   briggs 
    824   1.1   briggs 	/*
    825   1.1   briggs 	 * Set NIC to page 1 registers to get 'current' pointer
    826   1.1   briggs 	 */
    827   1.1   briggs 	NIC_PUT(sc, AE_P0_CR, AE_CR_PAGE_1|AE_CR_RD2|AE_CR_STA);
    828   1.1   briggs 
    829   1.1   briggs 	/*
    830   1.1   briggs 	 * 'sc->next_packet' is the logical beginning of the ring-buffer - i.e.
    831   1.1   briggs 	 *	it points to where new data has been buffered. The 'CURR'
    832   1.1   briggs 	 *	(current) register points to the logical end of the ring-buffer
    833   1.1   briggs 	 *	- i.e. it points to where additional new data will be added.
    834   1.1   briggs 	 *	We loop here until the logical beginning equals the logical
    835   1.1   briggs 	 *	end (or in other words, until the ring-buffer is empty).
    836   1.1   briggs 	 */
    837   1.1   briggs 	while (sc->next_packet != NIC_GET(sc, AE_P1_CURR)) {
    838   1.1   briggs 
    839   1.1   briggs 		/* get pointer to this buffer header structure */
    840   1.1   briggs 		packet_ptr = (struct ae_ring *)(sc->smem_ring +
    841   1.1   briggs 			 (sc->next_packet - sc->rec_page_start) * AE_PAGE_SIZE);
    842   1.1   briggs 
    843   1.1   briggs 		/*
    844   1.1   briggs 		 * The byte count includes the FCS - Frame Check Sequence (a
    845   1.1   briggs 		 *	32 bit CRC).
    846   1.1   briggs 		 */
    847   1.1   briggs 		len = packet_ptr->count[0] | (packet_ptr->count[1] << 8);
    848   1.1   briggs 		if ((len >= ETHER_MIN_LEN) && (len <= ETHER_MAX_LEN)) {
    849   1.1   briggs 			/*
    850   1.1   briggs 			 * Go get packet. len - 4 removes CRC from length.
    851   1.1   briggs 			 * (packet_ptr + 1) points to data just after the packet ring
    852   1.1   briggs 			 *	header (+4 bytes)
    853   1.1   briggs 			 */
    854   1.1   briggs 			ae_get_packet(sc, (caddr_t)(packet_ptr + 1), len - 4);
    855   1.1   briggs 			++sc->arpcom.ac_if.if_ipackets;
    856   1.1   briggs 		} else {
    857   1.1   briggs 			/*
    858   1.1   briggs 			 * Really BAD...probably indicates that the ring pointers
    859   1.1   briggs 			 *	are corrupted. Also seen on early rev chips under
    860   1.1   briggs 			 *	high load - the byte order of the length gets switched.
    861   1.1   briggs 			 */
    862   1.1   briggs 			log(LOG_ERR,
    863   1.1   briggs 				"ae%d: shared memory corrupt - invalid packet length %d\n",
    864   1.1   briggs 				unit, len);
    865   1.1   briggs 			ae_reset(unit);
    866   1.1   briggs 			return;
    867   1.1   briggs 		}
    868   1.1   briggs 
    869   1.1   briggs 		/*
    870   1.1   briggs 		 * Update next packet pointer
    871   1.1   briggs 		 */
    872   1.1   briggs 		sc->next_packet = packet_ptr->next_packet;
    873   1.1   briggs 
    874   1.1   briggs 		/*
    875   1.1   briggs 		 * Update NIC boundry pointer - being careful to keep it
    876   1.1   briggs 		 *	one buffer behind. (as recommended by NS databook)
    877   1.1   briggs 		 */
    878   1.1   briggs 		boundry = sc->next_packet - 1;
    879   1.1   briggs 		if (boundry < sc->rec_page_start)
    880   1.1   briggs 			boundry = sc->rec_page_stop - 1;
    881   1.1   briggs 
    882   1.1   briggs 		/*
    883   1.1   briggs 		 * Set NIC to page 0 registers to update boundry register
    884   1.1   briggs 		 */
    885   1.1   briggs 		NIC_PUT(sc, AE_P0_CR, AE_CR_RD2|AE_CR_STA);
    886   1.1   briggs 
    887   1.1   briggs 		NIC_PUT(sc, AE_P0_BNRY, boundry);
    888   1.1   briggs 
    889   1.1   briggs 		/*
    890   1.1   briggs 		 * Set NIC to page 1 registers before looping to top (prepare to
    891   1.1   briggs 		 *	get 'CURR' current pointer)
    892   1.1   briggs 		 */
    893   1.1   briggs 		NIC_PUT(sc, AE_P0_CR, AE_CR_PAGE_1|AE_CR_RD2|AE_CR_STA);
    894   1.1   briggs 	}
    895   1.1   briggs }
    896   1.1   briggs 
    897   1.1   briggs /*
    898   1.1   briggs  * Ethernet interface interrupt processor
    899   1.1   briggs  */
    900   1.1   briggs int
    901   1.1   briggs aeintr(unit)
    902   1.1   briggs 	int unit;
    903   1.1   briggs {
    904   1.1   briggs 	struct ae_softc *sc = &ae_softc[unit];
    905   1.1   briggs 	u_char isr;
    906   1.1   briggs 
    907   1.1   briggs 	/*
    908   1.1   briggs 	 * Set NIC to page 0 registers
    909   1.1   briggs 	 */
    910   1.1   briggs 	NIC_PUT(sc, AE_P0_CR, AE_CR_RD2|AE_CR_STA);
    911   1.1   briggs 
    912   1.1   briggs 	/*
    913   1.1   briggs 	 * loop until there are no more new interrupts
    914   1.1   briggs 	 */
    915   1.1   briggs 	while (isr = NIC_GET(sc, AE_P0_ISR)) {
    916   1.1   briggs 
    917   1.1   briggs 		/*
    918   1.1   briggs 		 * reset all the bits that we are 'acknowledging'
    919   1.1   briggs 		 *	by writing a '1' to each bit position that was set
    920   1.1   briggs 		 * (writing a '1' *clears* the bit)
    921   1.1   briggs 		 */
    922   1.1   briggs 		NIC_PUT(sc, AE_P0_ISR, isr);
    923   1.1   briggs 
    924   1.1   briggs 		/*
    925   1.1   briggs 		 * Handle transmitter interrupts. Handle these first
    926   1.1   briggs 		 *	because the receiver will reset the board under
    927   1.1   briggs 		 *	some conditions.
    928   1.1   briggs 		 */
    929   1.1   briggs 		if (isr & (AE_ISR_PTX|AE_ISR_TXE)) {
    930   1.1   briggs 			u_char collisions = NIC_GET(sc, AE_P0_NCR);
    931   1.1   briggs 
    932   1.1   briggs 			/*
    933   1.1   briggs 			 * Check for transmit error. If a TX completed with an
    934   1.1   briggs 			 * error, we end up throwing the packet away. Really
    935   1.1   briggs 			 * the only error that is possible is excessive
    936   1.1   briggs 			 * collisions, and in this case it is best to allow the
    937   1.1   briggs 			 * automatic mechanisms of TCP to backoff the flow. Of
    938   1.1   briggs 			 * course, with UDP we're screwed, but this is expected
    939   1.1   briggs 			 * when a network is heavily loaded.
    940   1.1   briggs 			 */
    941   1.1   briggs 			if (isr & AE_ISR_TXE) {
    942   1.1   briggs 
    943   1.1   briggs 				/*
    944   1.1   briggs 				 * Excessive collisions (16)
    945   1.1   briggs 				 */
    946   1.1   briggs 				if ((NIC_GET(sc, AE_P0_TSR) & AE_TSR_ABT)
    947   1.1   briggs 					&& (collisions == 0)) {
    948   1.1   briggs 					/*
    949   1.1   briggs 					 *    When collisions total 16, the
    950   1.1   briggs 					 * P0_NCR will indicate 0, and the
    951   1.1   briggs 					 * TSR_ABT is set.
    952   1.1   briggs 					 */
    953   1.1   briggs 					collisions = 16;
    954   1.1   briggs 				}
    955   1.1   briggs 
    956   1.1   briggs 				/*
    957   1.1   briggs 				 * update output errors counter
    958   1.1   briggs 				 */
    959   1.1   briggs 				++sc->arpcom.ac_if.if_oerrors;
    960   1.1   briggs 			} else {
    961   1.1   briggs 				/*
    962   1.1   briggs 				 * Update total number of successfully
    963   1.1   briggs 				 * 	transmitted packets.
    964   1.1   briggs 				 */
    965   1.1   briggs 				++sc->arpcom.ac_if.if_opackets;
    966   1.1   briggs 			}
    967   1.1   briggs 
    968   1.1   briggs 			/*
    969   1.1   briggs 			 * reset tx busy and output active flags
    970   1.1   briggs 			 */
    971   1.1   briggs 			sc->xmit_busy = 0;
    972   1.1   briggs 			sc->arpcom.ac_if.if_flags &= ~IFF_OACTIVE;
    973   1.1   briggs 
    974   1.1   briggs 			/*
    975   1.1   briggs 			 * clear watchdog timer
    976   1.1   briggs 			 */
    977   1.1   briggs 			sc->arpcom.ac_if.if_timer = 0;
    978   1.1   briggs 
    979   1.1   briggs 			/*
    980   1.1   briggs 			 * Add in total number of collisions on last
    981   1.1   briggs 			 *	transmission.
    982   1.1   briggs 			 */
    983   1.1   briggs 			sc->arpcom.ac_if.if_collisions += collisions;
    984   1.1   briggs 
    985   1.1   briggs 			/*
    986   1.1   briggs 			 * If data is ready to transmit, start it transmitting,
    987   1.1   briggs 			 *	otherwise defer until after handling receiver
    988   1.1   briggs 			 */
    989   1.1   briggs 			if (sc->data_buffered)
    990   1.1   briggs 				ae_xmit(&sc->arpcom.ac_if);
    991   1.1   briggs 		}
    992   1.1   briggs 
    993   1.1   briggs 		/*
    994   1.1   briggs 		 * Handle receiver interrupts
    995   1.1   briggs 		 */
    996   1.1   briggs 		if (isr & (AE_ISR_PRX|AE_ISR_RXE|AE_ISR_OVW)) {
    997   1.1   briggs 		    /*
    998   1.1   briggs 		     * Overwrite warning. In order to make sure that a lockup
    999   1.1   briggs 		     *	of the local DMA hasn't occurred, we reset and
   1000   1.1   briggs 		     *	re-init the NIC. The NSC manual suggests only a
   1001   1.1   briggs 		     *	partial reset/re-init is necessary - but some
   1002   1.1   briggs 		     *	chips seem to want more. The DMA lockup has been
   1003   1.1   briggs 		     *	seen only with early rev chips - Methinks this
   1004   1.1   briggs 		     *	bug was fixed in later revs. -DG
   1005   1.1   briggs 		     */
   1006   1.1   briggs 			if (isr & AE_ISR_OVW) {
   1007   1.1   briggs 				++sc->arpcom.ac_if.if_ierrors;
   1008   1.1   briggs 				log(LOG_WARNING,
   1009   1.1   briggs 					"ae%d: warning - receiver ring buffer overrun\n",
   1010   1.1   briggs 					unit);
   1011   1.1   briggs 				/*
   1012   1.1   briggs 				 * Stop/reset/re-init NIC
   1013   1.1   briggs 				 */
   1014   1.1   briggs 				ae_reset(unit);
   1015   1.1   briggs 			} else {
   1016   1.1   briggs 
   1017   1.1   briggs 			    /*
   1018   1.1   briggs 			     * Receiver Error. One or more of: CRC error, frame
   1019   1.1   briggs 			     *	alignment error FIFO overrun, or missed packet.
   1020   1.1   briggs 			     */
   1021   1.1   briggs 				if (isr & AE_ISR_RXE) {
   1022   1.1   briggs 					++sc->arpcom.ac_if.if_ierrors;
   1023   1.1   briggs #ifdef AE_DEBUG
   1024   1.1   briggs 					printf("ae%d: receive error %x\n", unit,
   1025   1.1   briggs 						NIC_GET(sc, AE_P0_RSR));
   1026   1.1   briggs #endif
   1027   1.1   briggs 				}
   1028   1.1   briggs 
   1029   1.1   briggs 				/*
   1030   1.1   briggs 				 * Go get the packet(s)
   1031   1.1   briggs 				 * XXX - Doing this on an error is dubious
   1032   1.1   briggs 				 *    because there shouldn't be any data to
   1033   1.1   briggs 				 *    get (we've configured the interface to
   1034   1.1   briggs 				 *    not accept packets with errors).
   1035   1.1   briggs 				 */
   1036   1.1   briggs 				ae_rint (unit);
   1037   1.1   briggs 			}
   1038   1.1   briggs 		}
   1039   1.1   briggs 
   1040   1.1   briggs 		/*
   1041   1.1   briggs 		 * If it looks like the transmitter can take more data,
   1042   1.1   briggs 		 * 	attempt to start output on the interface.
   1043   1.1   briggs 		 *	This is done after handling the receiver to
   1044   1.1   briggs 		 *	give the receiver priority.
   1045   1.1   briggs 		 */
   1046   1.1   briggs 		if ((sc->arpcom.ac_if.if_flags & IFF_OACTIVE) == 0)
   1047   1.1   briggs 			ae_start(&sc->arpcom.ac_if);
   1048   1.1   briggs 
   1049   1.1   briggs 		/*
   1050   1.1   briggs 		 * return NIC CR to standard state: page 0, remote DMA complete,
   1051   1.1   briggs 		 * 	start (toggling the TXP bit off, even if was just set
   1052   1.1   briggs 		 *	in the transmit routine, is *okay* - it is 'edge'
   1053   1.1   briggs 		 *	triggered from low to high)
   1054   1.1   briggs 		 */
   1055   1.1   briggs 		NIC_PUT(sc, AE_P0_CR, AE_CR_RD2|AE_CR_STA);
   1056   1.1   briggs 
   1057   1.1   briggs 		/*
   1058   1.1   briggs 		 * If the Network Talley Counters overflow, read them to
   1059   1.1   briggs 		 *	reset them. It appears that old 8390's won't
   1060   1.1   briggs 		 *	clear the ISR flag otherwise - resulting in an
   1061   1.1   briggs 		 *	infinite loop.
   1062   1.1   briggs 		 */
   1063   1.1   briggs 		if (isr & AE_ISR_CNT) {
   1064   1.1   briggs 			(void) NIC_GET(sc, AE_P0_CNTR0);
   1065   1.1   briggs 			(void) NIC_GET(sc, AE_P0_CNTR1);
   1066   1.1   briggs 			(void) NIC_GET(sc, AE_P0_CNTR2);
   1067   1.1   briggs 		}
   1068   1.1   briggs 	}
   1069   1.1   briggs }
   1070   1.1   briggs 
   1071   1.1   briggs /*
   1072   1.1   briggs  * Process an ioctl request. This code needs some work - it looks
   1073   1.1   briggs  *	pretty ugly.
   1074   1.1   briggs  */
   1075   1.1   briggs int
   1076   1.1   briggs ae_ioctl(ifp, command, data)
   1077   1.1   briggs 	register struct ifnet *ifp;
   1078   1.1   briggs 	int command;
   1079   1.1   briggs 	caddr_t data;
   1080   1.1   briggs {
   1081   1.1   briggs 	register struct ifaddr *ifa = (struct ifaddr *)data;
   1082   1.1   briggs 	struct ae_softc *sc = &ae_softc[ifp->if_unit];
   1083   1.1   briggs 	struct ifreq *ifr = (struct ifreq *)data;
   1084   1.1   briggs 	int s, error = 0;
   1085   1.1   briggs 
   1086   1.1   briggs 	s = splnet();
   1087   1.1   briggs 
   1088   1.1   briggs 	switch (command) {
   1089   1.1   briggs 
   1090   1.1   briggs 	case SIOCSIFADDR:
   1091   1.1   briggs 		ifp->if_flags |= IFF_UP;
   1092   1.1   briggs 
   1093   1.1   briggs 		switch (ifa->ifa_addr->sa_family) {
   1094   1.1   briggs #ifdef INET
   1095   1.1   briggs 		case AF_INET:
   1096  1.11   briggs 			ae_init(sc);	/* before arpwhohas */
   1097   1.1   briggs 			/*
   1098   1.1   briggs 			 * See if another station has *our* IP address.
   1099   1.1   briggs 			 * i.e.: There is an address conflict! If a
   1100   1.1   briggs 			 * conflict exists, a message is sent to the
   1101   1.1   briggs 			 * console.
   1102   1.1   briggs 			 */
   1103   1.1   briggs 			((struct arpcom *)ifp)->ac_ipaddr =
   1104   1.1   briggs 				IA_SIN(ifa)->sin_addr;
   1105   1.1   briggs 			arpwhohas((struct arpcom *)ifp, &IA_SIN(ifa)->sin_addr);
   1106   1.1   briggs 			break;
   1107   1.1   briggs #endif
   1108   1.1   briggs #ifdef NS
   1109   1.1   briggs 		/*
   1110   1.1   briggs 		 * XXX - This code is probably wrong
   1111   1.1   briggs 		 */
   1112   1.1   briggs 		case AF_NS:
   1113   1.1   briggs 		    {
   1114   1.1   briggs 			register struct ns_addr *ina = &(IA_SNS(ifa)->sns_addr);
   1115   1.1   briggs 
   1116   1.1   briggs 			if (ns_nullhost(*ina))
   1117   1.1   briggs 				ina->x_host =
   1118   1.1   briggs 					*(union ns_host *)(sc->arpcom.ac_enaddr);
   1119   1.1   briggs 			else {
   1120   1.1   briggs 				/*
   1121   1.1   briggs 				 *
   1122   1.1   briggs 				 */
   1123  1.12  lkestel 				bbcopy((caddr_t)ina->x_host.c_host,
   1124   1.1   briggs 				    (caddr_t)sc->arpcom.ac_enaddr,
   1125   1.1   briggs 					sizeof(sc->arpcom.ac_enaddr));
   1126   1.1   briggs 			}
   1127   1.1   briggs 			/*
   1128   1.1   briggs 			 * Set new address
   1129   1.1   briggs 			 */
   1130  1.11   briggs 			ae_init(sc);
   1131   1.1   briggs 			break;
   1132   1.1   briggs 		    }
   1133   1.1   briggs #endif
   1134   1.1   briggs 		default:
   1135  1.11   briggs 			ae_init(sc);
   1136   1.1   briggs 			break;
   1137   1.1   briggs 		}
   1138   1.1   briggs 		break;
   1139   1.1   briggs 
   1140   1.1   briggs 	case SIOCSIFFLAGS:
   1141   1.1   briggs 		/*
   1142   1.1   briggs 		 * If interface is marked down and it is running, then stop it
   1143   1.1   briggs 		 */
   1144   1.1   briggs 		if (((ifp->if_flags & IFF_UP) == 0) &&
   1145   1.1   briggs 		    (ifp->if_flags & IFF_RUNNING)) {
   1146   1.1   briggs 			ae_stop(ifp->if_unit);
   1147   1.1   briggs 			ifp->if_flags &= ~IFF_RUNNING;
   1148   1.1   briggs 		} else {
   1149   1.1   briggs 		/*
   1150   1.1   briggs 		 * If interface is marked up and it is stopped, then start it
   1151   1.1   briggs 		 */
   1152   1.1   briggs 			if ((ifp->if_flags & IFF_UP) &&
   1153   1.1   briggs 		    	    ((ifp->if_flags & IFF_RUNNING) == 0))
   1154  1.11   briggs 				ae_init(sc);
   1155   1.1   briggs 		}
   1156   1.1   briggs #if NBPFILTER > 0
   1157   1.1   briggs 		if (ifp->if_flags & IFF_PROMISC) {
   1158   1.1   briggs 			/*
   1159   1.1   briggs 			 * Set promiscuous mode on interface.
   1160   1.1   briggs 			 *	XXX - for multicasts to work, we would need to
   1161   1.1   briggs 			 *		write 1's in all bits of multicast
   1162   1.1   briggs 			 *		hashing array. For now we assume that
   1163   1.1   briggs 			 *		this was done in ae_init().
   1164   1.1   briggs 			 */
   1165   1.1   briggs 			NIC_PUT(sc, AE_P0_RCR,
   1166   1.1   briggs 				AE_RCR_PRO|AE_RCR_AM|AE_RCR_AB);
   1167   1.1   briggs 		} else {
   1168   1.1   briggs 			/*
   1169   1.1   briggs 			 * XXX - for multicasts to work, we would need to
   1170   1.1   briggs 			 *	rewrite the multicast hashing array with the
   1171   1.1   briggs 			 *	proper hash (would have been destroyed above).
   1172   1.1   briggs 			 */
   1173   1.1   briggs 			NIC_PUT(sc, AE_P0_RCR, AE_RCR_AB);
   1174   1.1   briggs 		}
   1175   1.1   briggs #endif
   1176   1.1   briggs 		break;
   1177   1.1   briggs 
   1178   1.1   briggs 	default:
   1179   1.1   briggs 		error = EINVAL;
   1180   1.1   briggs 	}
   1181   1.1   briggs 	(void) splx(s);
   1182   1.1   briggs 	return (error);
   1183   1.1   briggs }
   1184   1.1   briggs 
   1185   1.1   briggs /*
   1186   1.1   briggs  * Macro to calculate a new address within shared memory when given an offset
   1187   1.1   briggs  *	from an address, taking into account ring-wrap.
   1188   1.1   briggs  */
   1189   1.1   briggs #define	ringoffset(sc, start, off, type) \
   1190   1.1   briggs 	((type)( ((caddr_t)(start)+(off) >= (sc)->smem_end) ? \
   1191   1.1   briggs 		(((caddr_t)(start)+(off))) - (sc)->smem_end \
   1192   1.1   briggs 		+ (sc)->smem_ring: \
   1193   1.1   briggs 		((caddr_t)(start)+(off)) ))
   1194   1.1   briggs 
   1195   1.1   briggs /*
   1196   1.1   briggs  * Retreive packet from shared memory and send to the next level up via
   1197   1.1   briggs  *	ether_input(). If there is a BPF listener, give a copy to BPF, too.
   1198   1.1   briggs  */
   1199   1.1   briggs ae_get_packet(sc, buf, len)
   1200   1.1   briggs 	struct ae_softc *sc;
   1201   1.1   briggs 	char *buf;
   1202   1.1   briggs 	u_short len;
   1203   1.1   briggs {
   1204   1.1   briggs 	struct ether_header *eh;
   1205   1.1   briggs     	struct mbuf *m, *head, *ae_ring_to_mbuf();
   1206   1.1   briggs 	u_short off;
   1207   1.1   briggs 	int resid;
   1208   1.1   briggs 	u_short etype;
   1209   1.1   briggs 	struct trailer_header {
   1210   1.1   briggs 		u_short	trail_type;
   1211   1.1   briggs 		u_short trail_residual;
   1212   1.1   briggs 	} trailer_header;
   1213   1.1   briggs 
   1214   1.1   briggs 	/* Allocate a header mbuf */
   1215   1.1   briggs 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1216   1.1   briggs 	if (m == 0)
   1217   1.1   briggs 		goto bad;
   1218   1.1   briggs 	m->m_pkthdr.rcvif = &sc->arpcom.ac_if;
   1219   1.1   briggs 	m->m_pkthdr.len = len;
   1220   1.1   briggs 	m->m_len = 0;
   1221   1.1   briggs 	head = m;
   1222   1.1   briggs 
   1223   1.1   briggs 	eh = (struct ether_header *)buf;
   1224   1.1   briggs 
   1225   1.1   briggs 	/* The following sillines is to make NFS happy */
   1226   1.1   briggs #define EROUND	((sizeof(struct ether_header) + 3) & ~3)
   1227   1.1   briggs #define EOFF	(EROUND - sizeof(struct ether_header))
   1228   1.1   briggs 
   1229   1.1   briggs 	/*
   1230   1.1   briggs 	 * The following assumes there is room for
   1231   1.1   briggs 	 * the ether header in the header mbuf
   1232   1.1   briggs 	 */
   1233   1.1   briggs 	head->m_data += EOFF;
   1234  1.12  lkestel 	bbcopy(buf, mtod(head, caddr_t), sizeof(struct ether_header));
   1235   1.1   briggs 	buf += sizeof(struct ether_header);
   1236   1.1   briggs 	head->m_len += sizeof(struct ether_header);
   1237   1.1   briggs 	len -= sizeof(struct ether_header);
   1238   1.1   briggs 
   1239   1.1   briggs 	etype = ntohs((u_short)eh->ether_type);
   1240   1.1   briggs 
   1241   1.1   briggs 	/*
   1242   1.1   briggs 	 * Deal with trailer protocol:
   1243   1.1   briggs 	 * If trailer protocol, calculate the datasize as 'off',
   1244   1.1   briggs 	 * which is also the offset to the trailer header.
   1245   1.1   briggs 	 * Set resid to the amount of packet data following the
   1246   1.1   briggs 	 * trailer header.
   1247   1.1   briggs 	 * Finally, copy residual data into mbuf chain.
   1248   1.1   briggs 	 */
   1249   1.1   briggs 	if (etype >= ETHERTYPE_TRAIL &&
   1250   1.1   briggs 	    etype < ETHERTYPE_TRAIL+ETHERTYPE_NTRAILER) {
   1251   1.1   briggs 
   1252   1.1   briggs 		off = (etype - ETHERTYPE_TRAIL) << 9;
   1253   1.1   briggs 		if ((off + sizeof(struct trailer_header)) > len)
   1254   1.1   briggs 			goto bad;	/* insanity */
   1255   1.1   briggs 
   1256   1.1   briggs 		eh->ether_type = *ringoffset(sc, buf, off, u_short *);
   1257   1.1   briggs 		resid = ntohs(*ringoffset(sc, buf, off+2, u_short *));
   1258   1.1   briggs 
   1259   1.1   briggs 		if ((off + resid) > len) goto bad;	/* insanity */
   1260   1.1   briggs 
   1261   1.1   briggs 		resid -= sizeof(struct trailer_header);
   1262   1.1   briggs 		if (resid < 0) goto bad;	/* insanity */
   1263   1.1   briggs 
   1264   1.1   briggs 		m = ae_ring_to_mbuf(sc, ringoffset(sc, buf, off+4, char *), head, resid);
   1265   1.1   briggs 		if (m == 0) goto bad;
   1266   1.1   briggs 
   1267   1.1   briggs 		len = off;
   1268   1.1   briggs 		head->m_pkthdr.len -= 4; /* subtract trailer header */
   1269   1.1   briggs 	}
   1270   1.1   briggs 
   1271   1.1   briggs 	/*
   1272   1.1   briggs 	 * Pull packet off interface. Or if this was a trailer packet,
   1273   1.1   briggs 	 * the data portion is appended.
   1274   1.1   briggs 	 */
   1275   1.1   briggs 	m = ae_ring_to_mbuf(sc, buf, m, len);
   1276   1.1   briggs 	if (m == 0) goto bad;
   1277   1.1   briggs 
   1278   1.1   briggs #if NBPFILTER > 0
   1279   1.1   briggs 	/*
   1280   1.1   briggs 	 * Check if there's a BPF listener on this interface.
   1281   1.1   briggs 	 * If so, hand off the raw packet to bpf.
   1282   1.1   briggs 	 */
   1283   1.1   briggs 	if (sc->bpf) {
   1284   1.1   briggs 		bpf_mtap(sc->bpf, head);
   1285   1.1   briggs 
   1286   1.1   briggs 		/*
   1287   1.1   briggs 		 * Note that the interface cannot be in promiscuous mode if
   1288   1.1   briggs 		 * there are no BPF listeners.  And if we are in promiscuous
   1289   1.1   briggs 		 * mode, we have to check if this packet is really ours.
   1290   1.1   briggs 		 *
   1291   1.1   briggs 		 * XXX This test does not support multicasts.
   1292   1.1   briggs 		 */
   1293   1.1   briggs 		if ((sc->arpcom.ac_if.if_flags & IFF_PROMISC) &&
   1294   1.1   briggs 			bcmp(eh->ether_dhost, sc->arpcom.ac_enaddr,
   1295   1.1   briggs 				sizeof(eh->ether_dhost)) != 0 &&
   1296   1.1   briggs 			bcmp(eh->ether_dhost, etherbroadcastaddr,
   1297   1.1   briggs 				sizeof(eh->ether_dhost)) != 0) {
   1298   1.1   briggs 
   1299   1.1   briggs 			m_freem(head);
   1300   1.1   briggs 			return;
   1301   1.1   briggs 		}
   1302   1.1   briggs 	}
   1303   1.1   briggs #endif
   1304   1.1   briggs 
   1305   1.1   briggs 	/*
   1306   1.1   briggs 	 * Fix up data start offset in mbuf to point past ether header
   1307   1.1   briggs 	 */
   1308   1.1   briggs 	m_adj(head, sizeof(struct ether_header));
   1309   1.1   briggs 
   1310   1.1   briggs 	ether_input(&sc->arpcom.ac_if, eh, head);
   1311   1.1   briggs 	return;
   1312   1.1   briggs 
   1313   1.1   briggs bad:	if (head)
   1314   1.1   briggs 		m_freem(head);
   1315   1.1   briggs 	return;
   1316   1.1   briggs }
   1317   1.1   briggs 
   1318   1.1   briggs /*
   1319   1.1   briggs  * Supporting routines
   1320   1.1   briggs  */
   1321   1.1   briggs 
   1322   1.1   briggs /*
   1323   1.1   briggs  * Given a source and destination address, copy 'amount' of a packet from
   1324   1.1   briggs  *	the ring buffer into a linear destination buffer. Takes into account
   1325   1.1   briggs  *	ring-wrap.
   1326   1.1   briggs  */
   1327   1.1   briggs static inline char *
   1328   1.1   briggs ae_ring_copy(sc,src,dst,amount)
   1329   1.1   briggs 	struct ae_softc *sc;
   1330   1.1   briggs 	char	*src;
   1331   1.1   briggs 	char	*dst;
   1332   1.1   briggs 	u_short	amount;
   1333   1.1   briggs {
   1334   1.1   briggs 	u_short	tmp_amount;
   1335   1.1   briggs 
   1336   1.1   briggs 	/* does copy wrap to lower addr in ring buffer? */
   1337   1.1   briggs 	if (src + amount > sc->smem_end) {
   1338   1.1   briggs 		tmp_amount = sc->smem_end - src;
   1339  1.12  lkestel 		bbcopy(src, dst, tmp_amount);/* copy amount up to end of smem */
   1340   1.1   briggs 		amount -= tmp_amount;
   1341   1.1   briggs 		src = sc->smem_ring;
   1342   1.1   briggs 		dst += tmp_amount;
   1343   1.1   briggs 	}
   1344   1.1   briggs 
   1345  1.12  lkestel 	bbcopy(src, dst, amount);
   1346   1.1   briggs 
   1347   1.1   briggs 	return(src + amount);
   1348   1.1   briggs }
   1349   1.1   briggs 
   1350   1.1   briggs /*
   1351   1.1   briggs  * Copy data from receive buffer to end of mbuf chain
   1352   1.1   briggs  * allocate additional mbufs as needed. return pointer
   1353   1.1   briggs  * to last mbuf in chain.
   1354   1.1   briggs  * sc = ed info (softc)
   1355   1.1   briggs  * src = pointer in ed ring buffer
   1356   1.1   briggs  * dst = pointer to last mbuf in mbuf chain to copy to
   1357   1.1   briggs  * amount = amount of data to copy
   1358   1.1   briggs  */
   1359   1.1   briggs struct mbuf *
   1360   1.1   briggs ae_ring_to_mbuf(sc,src,dst,total_len)
   1361   1.1   briggs 	struct ae_softc *sc;
   1362   1.1   briggs 	char *src;
   1363   1.1   briggs 	struct mbuf *dst;
   1364   1.1   briggs 	u_short total_len;
   1365   1.1   briggs {
   1366   1.1   briggs 	register struct mbuf *m = dst;
   1367   1.1   briggs 
   1368   1.1   briggs 	while (total_len) {
   1369   1.1   briggs 		register u_short amount = min(total_len, M_TRAILINGSPACE(m));
   1370   1.1   briggs 
   1371   1.1   briggs 		if (amount == 0) { /* no more data in this mbuf, alloc another */
   1372   1.1   briggs 			/*
   1373   1.1   briggs 			 * If there is enough data for an mbuf cluster, attempt
   1374   1.1   briggs 			 * 	to allocate one of those, otherwise, a regular
   1375   1.1   briggs 			 *	mbuf will do.
   1376   1.1   briggs 			 * Note that a regular mbuf is always required, even if
   1377   1.1   briggs 			 *	we get a cluster - getting a cluster does not
   1378   1.1   briggs 			 *	allocate any mbufs, and one is needed to assign
   1379   1.1   briggs 			 *	the cluster to. The mbuf that has a cluster
   1380   1.1   briggs 			 *	extension can not be used to contain data - only
   1381   1.1   briggs 			 *	the cluster can contain data.
   1382   1.1   briggs 			 */
   1383   1.1   briggs 			dst = m;
   1384   1.1   briggs 			MGET(m, M_DONTWAIT, MT_DATA);
   1385   1.1   briggs 			if (m == 0)
   1386   1.1   briggs 				return (0);
   1387   1.1   briggs 
   1388   1.1   briggs 			if (total_len >= MINCLSIZE)
   1389   1.1   briggs 				MCLGET(m, M_DONTWAIT);
   1390   1.1   briggs 
   1391   1.1   briggs 			m->m_len = 0;
   1392   1.1   briggs 			dst->m_next = m;
   1393   1.1   briggs 			amount = min(total_len, M_TRAILINGSPACE(m));
   1394   1.1   briggs 		}
   1395   1.1   briggs 
   1396   1.1   briggs 		src = ae_ring_copy(sc, src, mtod(m, caddr_t) + m->m_len, amount);
   1397   1.1   briggs 
   1398   1.1   briggs 		m->m_len += amount;
   1399   1.1   briggs 		total_len -= amount;
   1400   1.1   briggs 
   1401   1.1   briggs 	}
   1402   1.1   briggs 	return (m);
   1403   1.1   briggs }
   1404