if_ae.c revision 1.27 1 1.27 briggs /* $NetBSD: if_ae.c,v 1.27 1995/04/22 12:08:12 briggs Exp $ */
2 1.14 cgd
3 1.1 briggs /*
4 1.21 briggs * Device driver for National Semiconductor DS8390/WD83C690 based ethernet
5 1.21 briggs * adapters.
6 1.1 briggs *
7 1.21 briggs * Copyright (c) 1994, 1995 Charles M. Hannum. All rights reserved.
8 1.1 briggs *
9 1.21 briggs * Copyright (C) 1993, David Greenman. This software may be used, modified,
10 1.21 briggs * copied, distributed, and sold, in both source and binary form provided that
11 1.21 briggs * the above copyright and these terms are retained. Under no circumstances is
12 1.21 briggs * the author responsible for the proper functioning of this software, nor does
13 1.21 briggs * the author assume any responsibility for damages incurred with its use.
14 1.1 briggs *
15 1.21 briggs * Adapted for MacBSD by Brad Parker <brad (at) fcr.com>.
16 1.1 briggs *
17 1.1 briggs * Currently supports:
18 1.1 briggs * Apples NB Ethernet card
19 1.1 briggs * Interlan A310 Nubus Ethernet card
20 1.1 briggs * Cayman Systems GatorCard
21 1.15 briggs * Asante MacCon II/E
22 1.1 briggs */
23 1.1 briggs
24 1.1 briggs #include "bpfilter.h"
25 1.1 briggs
26 1.9 briggs #include <sys/param.h>
27 1.22 briggs #include <sys/types.h>
28 1.9 briggs #include <sys/systm.h>
29 1.9 briggs #include <sys/errno.h>
30 1.9 briggs #include <sys/ioctl.h>
31 1.9 briggs #include <sys/mbuf.h>
32 1.9 briggs #include <sys/socket.h>
33 1.9 briggs #include <sys/syslog.h>
34 1.21 briggs #include <sys/device.h>
35 1.1 briggs
36 1.5 briggs #include <net/if.h>
37 1.5 briggs #include <net/if_dl.h>
38 1.5 briggs #include <net/if_types.h>
39 1.5 briggs #include <net/netisr.h>
40 1.1 briggs
41 1.1 briggs #ifdef INET
42 1.5 briggs #include <netinet/in.h>
43 1.5 briggs #include <netinet/in_systm.h>
44 1.5 briggs #include <netinet/in_var.h>
45 1.5 briggs #include <netinet/ip.h>
46 1.5 briggs #include <netinet/if_ether.h>
47 1.1 briggs #endif
48 1.1 briggs
49 1.1 briggs #ifdef NS
50 1.5 briggs #include <netns/ns.h>
51 1.5 briggs #include <netns/ns_if.h>
52 1.1 briggs #endif
53 1.1 briggs
54 1.1 briggs #if NBPFILTER > 0
55 1.5 briggs #include <net/bpf.h>
56 1.5 briggs #include <net/bpfdesc.h>
57 1.1 briggs #endif
58 1.1 briggs
59 1.18 briggs #include "../mac68k/via.h"
60 1.3 briggs #include "nubus.h"
61 1.22 briggs #include <dev/ic/dp8390.h>
62 1.1 briggs #include "if_aereg.h"
63 1.1 briggs
64 1.1 briggs /*
65 1.1 briggs * ae_softc: per line info and status
66 1.1 briggs */
67 1.25 briggs struct ae_softc {
68 1.25 briggs struct device sc_dev;
69 1.21 briggs /* struct nubusdev sc_nu;
70 1.21 briggs struct intrhand sc_ih; */
71 1.3 briggs
72 1.25 briggs struct arpcom sc_arpcom;/* ethernet common */
73 1.1 briggs
74 1.25 briggs char *type_str; /* pointer to type string */
75 1.25 briggs u_char vendor; /* interface vendor */
76 1.25 briggs u_char type; /* interface type code */
77 1.25 briggs u_char regs_rev; /* registers are reversed */
78 1.15 briggs
79 1.15 briggs #define REG_MAP(sc, reg) ((sc)->regs_rev ? (0x0f-(reg))<<2 : (reg)<<2)
80 1.1 briggs #define NIC_GET(sc, reg) ((sc)->nic_addr[REG_MAP(sc, reg)])
81 1.1 briggs #define NIC_PUT(sc, reg, val) ((sc)->nic_addr[REG_MAP(sc, reg)] = (val))
82 1.25 briggs volatile caddr_t nic_addr; /* NIC (DS8390) I/O bus address */
83 1.25 briggs caddr_t rom_addr; /* on board prom address */
84 1.1 briggs
85 1.25 briggs u_char cr_proto; /* values always set in CR */
86 1.21 briggs
87 1.25 briggs caddr_t mem_start; /* shared memory start address */
88 1.25 briggs caddr_t mem_end; /* shared memory end address */
89 1.25 briggs u_long mem_size; /* total shared memory size */
90 1.25 briggs caddr_t mem_ring; /* start of RX ring-buffer (in smem) */
91 1.25 briggs
92 1.25 briggs u_char mem_wr_short; /* card memory requires int16 writes */
93 1.25 briggs
94 1.25 briggs u_char xmit_busy; /* transmitter is busy */
95 1.25 briggs u_char txb_cnt; /* Number of transmit buffers */
96 1.25 briggs u_char txb_inuse; /* number of TX buffers currently in-use */
97 1.25 briggs
98 1.25 briggs u_char txb_new; /* pointer to where new buffer will be added */
99 1.25 briggs u_char txb_next_tx; /* pointer to next buffer ready to xmit */
100 1.25 briggs u_short txb_len[8]; /* buffered xmit buffer lengths */
101 1.25 briggs u_char tx_page_start; /* first page of TX buffer area */
102 1.25 briggs u_char rec_page_start; /* first page of RX ring-buffer */
103 1.25 briggs u_char rec_page_stop; /* last page of RX ring-buffer */
104 1.25 briggs u_char next_packet; /* pointer to next unread RX packet */
105 1.21 briggs };
106 1.1 briggs
107 1.22 briggs int aeprobe __P((struct device *, void *, void *));
108 1.22 briggs void aeattach __P((struct device *, struct device *, void *));
109 1.22 briggs void aeintr __P((struct ae_softc *));
110 1.21 briggs int ae_ioctl __P((struct ifnet *, u_long, caddr_t));
111 1.21 briggs void ae_start __P((struct ifnet *));
112 1.25 briggs void ae_watchdog __P(( /* short */ ));
113 1.21 briggs void ae_reset __P((struct ae_softc *));
114 1.21 briggs void ae_init __P((struct ae_softc *));
115 1.21 briggs void ae_stop __P((struct ae_softc *));
116 1.27 briggs void ae_getmcaf __P((struct arpcom *, u_char *));
117 1.21 briggs u_short ae_put __P((struct ae_softc *, struct mbuf *, caddr_t));
118 1.21 briggs
119 1.25 briggs #define inline /* XXX for debugging porpoises */
120 1.21 briggs
121 1.25 briggs void ae_get_packet __P(( /* struct ae_softc *, caddr_t, u_short */ ));
122 1.21 briggs static inline void ae_rint __P((struct ae_softc *));
123 1.21 briggs static inline void ae_xmit __P((struct ae_softc *));
124 1.25 briggs static inline caddr_t ae_ring_copy
125 1.25 briggs __P(( /* struct ae_softc *, caddr_t, caddr_t,
126 1.25 briggs u_short */ ));
127 1.25 briggs
128 1.25 briggs struct cfdriver aecd = {
129 1.25 briggs NULL, "ae", aeprobe, aeattach, DV_IFNET, sizeof(struct ae_softc)
130 1.25 briggs };
131 1.1 briggs #define ETHER_MIN_LEN 64
132 1.1 briggs #define ETHER_MAX_LEN 1518
133 1.1 briggs #define ETHER_ADDR_LEN 6
134 1.1 briggs
135 1.25 briggs char ae_name[] = "8390 Nubus Ethernet card";
136 1.25 briggs static char zero = 0;
137 1.25 briggs static u_char ones = 0xff;
138 1.25 briggs
139 1.25 briggs struct vendor_S {
140 1.25 briggs char *manu;
141 1.25 briggs int len;
142 1.25 briggs int vendor;
143 1.25 briggs } vend[] =
144 1.25 briggs {
145 1.25 briggs {
146 1.25 briggs "Apple", 5, AE_VENDOR_APPLE
147 1.25 briggs },
148 1.25 briggs {
149 1.25 briggs "3Com", 4, AE_VENDOR_APPLE
150 1.25 briggs },
151 1.25 briggs {
152 1.25 briggs "Dayna", 5, AE_VENDOR_DAYNA
153 1.25 briggs },
154 1.25 briggs {
155 1.25 briggs "Inter", 5, AE_VENDOR_INTERLAN
156 1.25 briggs },
157 1.25 briggs {
158 1.25 briggs "Asant", 5, AE_VENDOR_ASANTE
159 1.25 briggs },
160 1.8 briggs };
161 1.8 briggs
162 1.25 briggs static int numvend = sizeof(vend) / sizeof(vend[0]);
163 1.8 briggs
164 1.12 lkestel /*
165 1.12 lkestel * XXX These two should be moved to locore, and maybe changed to use shorts
166 1.12 lkestel * instead of bytes. The reason for these is that bcopy and bzero use longs,
167 1.12 lkestel * which the ethernet cards can't handle.
168 1.12 lkestel */
169 1.12 lkestel
170 1.12 lkestel void
171 1.25 briggs bszero(u_short * addr, int len)
172 1.12 lkestel {
173 1.21 briggs
174 1.21 briggs while (len--)
175 1.12 lkestel *addr++ = 0;
176 1.12 lkestel }
177 1.21 briggs /*
178 1.21 briggs * Memory copy, copies word at time.
179 1.21 briggs */
180 1.21 briggs static inline void
181 1.21 briggs word_copy(a, b, len)
182 1.21 briggs caddr_t a, b;
183 1.25 briggs int len;
184 1.12 lkestel {
185 1.25 briggs u_short *x = (u_short *) a, *y = (u_short *) b;
186 1.12 lkestel
187 1.21 briggs len >>= 1;
188 1.21 briggs while (len--)
189 1.21 briggs *y++ = *x++;
190 1.15 briggs }
191 1.23 briggs /*
192 1.23 briggs * Memory copy, copies bytes at time.
193 1.23 briggs */
194 1.23 briggs static inline void
195 1.23 briggs byte_copy(a, b, len)
196 1.23 briggs caddr_t a, b;
197 1.25 briggs int len;
198 1.23 briggs {
199 1.23 briggs while (len--)
200 1.23 briggs *b++ = *a++;
201 1.23 briggs }
202 1.23 briggs
203 1.8 briggs void
204 1.8 briggs ae_id_card(nu, sc)
205 1.25 briggs struct nubus_hw *nu;
206 1.25 briggs struct ae_softc *sc;
207 1.8 briggs {
208 1.25 briggs int i;
209 1.8 briggs
210 1.8 briggs /*
211 1.8 briggs * Try to determine what type of card this is...
212 1.8 briggs */
213 1.8 briggs sc->vendor = AE_VENDOR_UNKNOWN;
214 1.21 briggs for (i = 0; i < numvend; i++) {
215 1.25 briggs if (!strncmp(nu->slot.manufacturer, vend[i].manu, vend[i].len)) {
216 1.8 briggs sc->vendor = vend[i].vendor;
217 1.8 briggs break;
218 1.8 briggs }
219 1.8 briggs }
220 1.25 briggs sc->type_str = (char *) (nu->slot.manufacturer);
221 1.8 briggs
222 1.15 briggs }
223 1.15 briggs
224 1.15 briggs int
225 1.15 briggs ae_size_card_memory(sc)
226 1.25 briggs struct ae_softc *sc;
227 1.15 briggs {
228 1.15 briggs u_short *p;
229 1.15 briggs u_short i1, i2, i3, i4;
230 1.25 briggs int size;
231 1.21 briggs
232 1.25 briggs p = (u_short *) sc->mem_start;
233 1.15 briggs
234 1.15 briggs /*
235 1.15 briggs * very simple size memory, assuming it's installed in 8k
236 1.15 briggs * banks; also assume it will generally mirror in upper banks
237 1.15 briggs * if not installed.
238 1.15 briggs */
239 1.25 briggs i1 = (8192 * 0) / 2;
240 1.25 briggs i2 = (8192 * 1) / 2;
241 1.25 briggs i3 = (8192 * 2) / 2;
242 1.25 briggs i4 = (8192 * 3) / 2;
243 1.21 briggs
244 1.15 briggs p[i1] = 0x1111;
245 1.15 briggs p[i2] = 0x2222;
246 1.15 briggs p[i3] = 0x3333;
247 1.15 briggs p[i4] = 0x4444;
248 1.21 briggs
249 1.15 briggs if (p[i1] == 0x1111 && p[i2] == 0x2222 &&
250 1.15 briggs p[i3] == 0x3333 && p[i4] == 0x4444)
251 1.25 briggs return 8192 * 4;
252 1.21 briggs
253 1.21 briggs if ((p[i1] == 0x1111 && p[i2] == 0x2222) ||
254 1.21 briggs (p[i1] == 0x3333 && p[i2] == 0x4444))
255 1.25 briggs return 8192 * 2;
256 1.15 briggs
257 1.21 briggs if (p[i1] == 0x1111 || p[i1] == 0x4444)
258 1.21 briggs return 8192;
259 1.15 briggs
260 1.21 briggs return 0;
261 1.8 briggs }
262 1.8 briggs
263 1.1 briggs int
264 1.22 briggs aeprobe(parent, match, aux)
265 1.21 briggs struct device *parent;
266 1.25 briggs void *match, *aux;
267 1.1 briggs {
268 1.21 briggs struct ae_softc *sc = match;
269 1.21 briggs register struct nubus_hw *nu = aux;
270 1.25 briggs int i, memsize;
271 1.25 briggs int flags = 0;
272 1.1 briggs
273 1.25 briggs if (nu->slot.type != NUBUS_NETWORK)
274 1.3 briggs return 0;
275 1.3 briggs
276 1.8 briggs ae_id_card(nu, sc);
277 1.1 briggs
278 1.15 briggs sc->regs_rev = 0;
279 1.21 briggs sc->mem_wr_short = 0;
280 1.15 briggs
281 1.1 briggs switch (sc->vendor) {
282 1.25 briggs case AE_VENDOR_INTERLAN:
283 1.1 briggs sc->nic_addr = nu->addr + GC_NIC_OFFSET;
284 1.1 briggs sc->rom_addr = nu->addr + GC_ROM_OFFSET;
285 1.21 briggs sc->mem_start = nu->addr + GC_DATA_OFFSET;
286 1.15 briggs if ((memsize = ae_size_card_memory(sc)) == 0)
287 1.15 briggs return 0;
288 1.1 briggs
289 1.1 briggs /* reset the NIC chip */
290 1.25 briggs *((caddr_t) nu->addr + GC_RESET_OFFSET) = (char) zero;
291 1.21 briggs
292 1.1 briggs /* Get station address from on-board ROM */
293 1.1 briggs for (i = 0; i < ETHER_ADDR_LEN; ++i)
294 1.25 briggs sc->sc_arpcom.ac_enaddr[i] = *(sc->rom_addr + i * 4);
295 1.1 briggs break;
296 1.1 briggs
297 1.25 briggs case AE_VENDOR_ASANTE:
298 1.15 briggs /* memory writes require *(u_short *) */
299 1.21 briggs sc->mem_wr_short = 1;
300 1.15 briggs /* otherwise, pretend to be an apple card (fall through) */
301 1.15 briggs
302 1.25 briggs case AE_VENDOR_APPLE:
303 1.15 briggs sc->regs_rev = 1;
304 1.1 briggs sc->nic_addr = nu->addr + AE_NIC_OFFSET;
305 1.1 briggs sc->rom_addr = nu->addr + AE_ROM_OFFSET;
306 1.21 briggs sc->mem_start = nu->addr + AE_DATA_OFFSET;
307 1.15 briggs if ((memsize = ae_size_card_memory(sc)) == 0)
308 1.21 briggs return (0);
309 1.1 briggs
310 1.1 briggs /* Get station address from on-board ROM */
311 1.1 briggs for (i = 0; i < ETHER_ADDR_LEN; ++i)
312 1.25 briggs sc->sc_arpcom.ac_enaddr[i] = *(sc->rom_addr + i * 2);
313 1.1 briggs break;
314 1.8 briggs
315 1.25 briggs case AE_VENDOR_DAYNA:
316 1.9 briggs printf("We think we are a Dayna card, but ");
317 1.10 briggs sc->nic_addr = nu->addr + DP_NIC_OFFSET;
318 1.10 briggs sc->rom_addr = nu->addr + DP_ROM_OFFSET;
319 1.21 briggs sc->mem_start = nu->addr + DP_DATA_OFFSET;
320 1.8 briggs memsize = 8192;
321 1.8 briggs
322 1.8 briggs /* Get station address from on-board ROM */
323 1.8 briggs for (i = 0; i < ETHER_ADDR_LEN; ++i)
324 1.25 briggs sc->sc_arpcom.ac_enaddr[i] = *(sc->rom_addr + i * 2);
325 1.9 briggs printf("it is dangerous to continue.\n");
326 1.25 briggs return (0); /* Since we don't work yet... */
327 1.8 briggs break;
328 1.8 briggs
329 1.25 briggs default:
330 1.21 briggs return (0);
331 1.8 briggs break;
332 1.1 briggs }
333 1.7 briggs
334 1.22 briggs sc->cr_proto = ED_CR_RD2;
335 1.21 briggs
336 1.21 briggs /* Allocate one xmit buffer if < 16k, two buffers otherwise. */
337 1.21 briggs if ((memsize < 16384) || (flags & AE_FLAGS_NO_DOUBLE_BUFFERING))
338 1.1 briggs sc->txb_cnt = 1;
339 1.21 briggs else
340 1.1 briggs sc->txb_cnt = 2;
341 1.1 briggs
342 1.1 briggs sc->tx_page_start = 0;
343 1.22 briggs sc->rec_page_start = sc->tx_page_start + sc->txb_cnt * ED_TXBUF_SIZE;
344 1.22 briggs sc->rec_page_stop = sc->tx_page_start + (memsize >> ED_PAGE_SHIFT);
345 1.22 briggs sc->mem_ring = sc->mem_start + (sc->rec_page_start << ED_PAGE_SHIFT);
346 1.21 briggs sc->mem_size = memsize;
347 1.21 briggs sc->mem_end = sc->mem_start + memsize;
348 1.1 briggs
349 1.21 briggs /* Now zero memory and verify that it is clear. */
350 1.25 briggs bszero((u_short *) sc->mem_start, memsize / 2);
351 1.1 briggs
352 1.1 briggs for (i = 0; i < memsize; ++i)
353 1.21 briggs if (sc->mem_start[i]) {
354 1.25 briggs printf("%s: failed to clear shared memory at %x - check configuration\n",
355 1.21 briggs sc->sc_dev.dv_xname,
356 1.21 briggs sc->mem_start + i);
357 1.21 briggs return (0);
358 1.1 briggs }
359 1.21 briggs return (1);
360 1.21 briggs }
361 1.1 briggs /*
362 1.1 briggs * Install interface into kernel networking data structures
363 1.1 briggs */
364 1.9 briggs void
365 1.22 briggs aeattach(parent, self, aux)
366 1.22 briggs struct device *parent, *self;
367 1.25 briggs void *aux;
368 1.1 briggs {
369 1.25 briggs struct ae_softc *sc = (void *) self;
370 1.25 briggs struct nubus_hw *nu = aux;
371 1.21 briggs struct cfdata *cf = sc->sc_dev.dv_cfdata;
372 1.21 briggs struct ifnet *ifp = &sc->sc_arpcom.ac_if;
373 1.3 briggs
374 1.21 briggs /* Set interface to stopped condition (reset). */
375 1.3 briggs ae_stop(sc);
376 1.1 briggs
377 1.21 briggs /* Initialize ifnet structure. */
378 1.21 briggs ifp->if_unit = sc->sc_dev.dv_unit;
379 1.3 briggs ifp->if_name = aecd.cd_name;
380 1.1 briggs ifp->if_start = ae_start;
381 1.1 briggs ifp->if_ioctl = ae_ioctl;
382 1.1 briggs ifp->if_watchdog = ae_watchdog;
383 1.21 briggs ifp->if_flags =
384 1.21 briggs IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
385 1.3 briggs
386 1.21 briggs /* Attach the interface. */
387 1.1 briggs if_attach(ifp);
388 1.21 briggs ether_ifattach(ifp);
389 1.1 briggs
390 1.21 briggs /* Print additional info when attached. */
391 1.21 briggs printf(": address %s, ", ether_sprintf(sc->sc_arpcom.ac_enaddr));
392 1.1 briggs
393 1.1 briggs if (sc->type_str && (*sc->type_str != 0))
394 1.15 briggs printf("type %s", sc->type_str);
395 1.1 briggs else
396 1.15 briggs printf("type unknown (0x%x)", sc->type);
397 1.15 briggs
398 1.21 briggs printf(", %dk mem.\n", sc->mem_size / 1024);
399 1.1 briggs
400 1.1 briggs #if NBPFILTER > 0
401 1.21 briggs bpfattach(&ifp->if_bpf, ifp, DLT_EN10MB, sizeof(struct ether_header));
402 1.1 briggs #endif
403 1.21 briggs
404 1.21 briggs /* make sure interrupts are vectored to us */
405 1.25 briggs add_nubus_intr((int) sc->rom_addr & 0xFF000000, aeintr, sc);
406 1.26 briggs
407 1.26 briggs /*
408 1.26 briggs * XXX -- enable nubus interrupts here. Should be done elsewhere,
409 1.26 briggs * but that currently breaks with some nubus video cards'
410 1.26 briggs * interrupts. So we only enable nubus interrupts if we
411 1.26 briggs * have an ethernet card... i.e., we do it here.
412 1.26 briggs */
413 1.26 briggs enable_nubus_intr();
414 1.3 briggs }
415 1.1 briggs /*
416 1.1 briggs * Reset interface.
417 1.1 briggs */
418 1.21 briggs void
419 1.3 briggs ae_reset(sc)
420 1.3 briggs struct ae_softc *sc;
421 1.1 briggs {
422 1.25 briggs int s;
423 1.1 briggs
424 1.21 briggs s = splimp();
425 1.3 briggs ae_stop(sc);
426 1.3 briggs ae_init(sc);
427 1.21 briggs splx(s);
428 1.21 briggs }
429 1.1 briggs /*
430 1.1 briggs * Take interface offline.
431 1.1 briggs */
432 1.1 briggs void
433 1.3 briggs ae_stop(sc)
434 1.3 briggs struct ae_softc *sc;
435 1.1 briggs {
436 1.25 briggs int n = 5000;
437 1.1 briggs
438 1.21 briggs /* Stop everything on the interface, and select page 0 registers. */
439 1.22 briggs NIC_PUT(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STP);
440 1.1 briggs
441 1.1 briggs /*
442 1.21 briggs * Wait for interface to enter stopped state, but limit # of checks to
443 1.21 briggs * 'n' (about 5ms). It shouldn't even take 5us on modern DS8390's, but
444 1.21 briggs * just in case it's an old one.
445 1.1 briggs */
446 1.22 briggs while (((NIC_GET(sc, ED_P0_ISR) & ED_ISR_RST) == 0) && --n);
447 1.1 briggs }
448 1.1 briggs /*
449 1.21 briggs * Device timeout/watchdog routine. Entered if the device neglects to generate
450 1.21 briggs * an interrupt after a transmit has been started on it.
451 1.1 briggs */
452 1.25 briggs static int aeintr_ctr = 0;
453 1.20 briggs void
454 1.1 briggs ae_watchdog(unit)
455 1.25 briggs int unit;
456 1.1 briggs {
457 1.21 briggs struct ae_softc *sc = aecd.cd_devs[unit];
458 1.15 briggs
459 1.18 briggs #if 1
460 1.18 briggs /*
461 1.18 briggs * This is a kludge! The via code seems to miss slot interrupts
462 1.18 briggs * sometimes. This kludges around that by calling the handler
463 1.18 briggs * by hand if the watchdog is activated. -- XXX (akb)
464 1.18 briggs */
465 1.25 briggs int i;
466 1.18 briggs
467 1.18 briggs i = aeintr_ctr;
468 1.18 briggs
469 1.25 briggs (*via2itab[1]) (1);
470 1.18 briggs
471 1.19 briggs if (i != aeintr_ctr) {
472 1.19 briggs log(LOG_ERR, "ae%d: device timeout, recovered\n", unit);
473 1.18 briggs return;
474 1.19 briggs }
475 1.18 briggs #endif
476 1.18 briggs
477 1.21 briggs log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
478 1.21 briggs ++sc->sc_arpcom.ac_if.if_oerrors;
479 1.21 briggs
480 1.15 briggs ae_reset(sc);
481 1.1 briggs }
482 1.1 briggs /*
483 1.21 briggs * Initialize device.
484 1.1 briggs */
485 1.21 briggs void
486 1.3 briggs ae_init(sc)
487 1.3 briggs struct ae_softc *sc;
488 1.1 briggs {
489 1.21 briggs struct ifnet *ifp = &sc->sc_arpcom.ac_if;
490 1.25 briggs int i, s;
491 1.25 briggs u_char command;
492 1.27 briggs u_char mcaf[8];
493 1.1 briggs
494 1.21 briggs /* Address not known. */
495 1.21 briggs if (ifp->if_addrlist == 0)
496 1.21 briggs return;
497 1.1 briggs
498 1.1 briggs /*
499 1.1 briggs * Initialize the NIC in the exact order outlined in the NS manual.
500 1.21 briggs * This init procedure is "mandatory"...don't change what or when
501 1.21 briggs * things happen.
502 1.1 briggs */
503 1.21 briggs s = splimp();
504 1.1 briggs
505 1.21 briggs /* Reset transmitter flags. */
506 1.1 briggs sc->xmit_busy = 0;
507 1.21 briggs sc->sc_arpcom.ac_if.if_timer = 0;
508 1.1 briggs
509 1.21 briggs sc->txb_inuse = 0;
510 1.21 briggs sc->txb_new = 0;
511 1.21 briggs sc->txb_next_tx = 0;
512 1.1 briggs
513 1.21 briggs /* Set interface for page 0, remote DMA complete, stopped. */
514 1.22 briggs NIC_PUT(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STP);
515 1.1 briggs
516 1.1 briggs /*
517 1.21 briggs * Set FIFO threshold to 8, No auto-init Remote DMA, byte
518 1.21 briggs * order=80x86, word-wide DMA xfers,
519 1.1 briggs */
520 1.22 briggs NIC_PUT(sc, ED_P0_DCR,
521 1.22 briggs ED_DCR_FT1 | ED_DCR_WTS | ED_DCR_LS);
522 1.1 briggs
523 1.21 briggs /* Clear remote byte count registers. */
524 1.22 briggs NIC_PUT(sc, ED_P0_RBCR0, 0);
525 1.22 briggs NIC_PUT(sc, ED_P0_RBCR1, 0);
526 1.1 briggs
527 1.21 briggs /* Tell RCR to do nothing for now. */
528 1.22 briggs NIC_PUT(sc, ED_P0_RCR, ED_RCR_MON);
529 1.1 briggs
530 1.21 briggs /* Place NIC in internal loopback mode. */
531 1.22 briggs NIC_PUT(sc, ED_P0_TCR, ED_TCR_LB0);
532 1.1 briggs
533 1.21 briggs /* Initialize receive buffer ring. */
534 1.23 briggs NIC_PUT(sc, ED_P0_TPSR, sc->rec_page_start);
535 1.22 briggs NIC_PUT(sc, ED_P0_PSTART, sc->rec_page_start);
536 1.27 briggs
537 1.22 briggs NIC_PUT(sc, ED_P0_PSTOP, sc->rec_page_stop);
538 1.27 briggs NIC_PUT(sc, ED_P0_BNRY, sc->rec_page_start);
539 1.1 briggs
540 1.1 briggs /*
541 1.21 briggs * Clear all interrupts. A '1' in each bit position clears the
542 1.21 briggs * corresponding flag.
543 1.1 briggs */
544 1.22 briggs NIC_PUT(sc, ED_P0_ISR, 0xff);
545 1.15 briggs
546 1.1 briggs /*
547 1.1 briggs * Enable the following interrupts: receive/transmit complete,
548 1.21 briggs * receive/transmit error, and Receiver OverWrite.
549 1.1 briggs *
550 1.1 briggs * Counter overflow and Remote DMA complete are *not* enabled.
551 1.1 briggs */
552 1.22 briggs NIC_PUT(sc, ED_P0_IMR,
553 1.22 briggs ED_IMR_PRXE | ED_IMR_PTXE | ED_IMR_RXEE | ED_IMR_TXEE |
554 1.22 briggs ED_IMR_OVWE);
555 1.1 briggs
556 1.21 briggs /* Program command register for page 1. */
557 1.22 briggs NIC_PUT(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_1 | ED_CR_STP);
558 1.1 briggs
559 1.21 briggs /* Copy out our station address. */
560 1.1 briggs for (i = 0; i < ETHER_ADDR_LEN; ++i)
561 1.22 briggs NIC_PUT(sc, ED_P1_PAR0 + i, sc->sc_arpcom.ac_enaddr[i]);
562 1.1 briggs
563 1.21 briggs /* Set multicast filter on chip. */
564 1.21 briggs ae_getmcaf(&sc->sc_arpcom, mcaf);
565 1.21 briggs for (i = 0; i < 8; i++)
566 1.27 briggs NIC_PUT(sc, ED_P1_MAR0 + i, mcaf[i]);
567 1.1 briggs
568 1.1 briggs /*
569 1.21 briggs * Set current page pointer to one page after the boundary pointer, as
570 1.21 briggs * recommended in the National manual.
571 1.1 briggs */
572 1.21 briggs sc->next_packet = sc->rec_page_start + 1;
573 1.22 briggs NIC_PUT(sc, ED_P1_CURR, sc->next_packet);
574 1.1 briggs
575 1.21 briggs /* Program command register for page 0. */
576 1.22 briggs NIC_PUT(sc, ED_P1_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STP);
577 1.21 briggs
578 1.22 briggs i = ED_RCR_AB | ED_RCR_AM;
579 1.21 briggs if (ifp->if_flags & IFF_PROMISC) {
580 1.21 briggs /*
581 1.21 briggs * Set promiscuous mode. Multicast filter was set earlier so
582 1.21 briggs * that we should receive all multicast packets.
583 1.21 briggs */
584 1.22 briggs i |= ED_RCR_PRO | ED_RCR_AR | ED_RCR_SEP;
585 1.21 briggs }
586 1.22 briggs NIC_PUT(sc, ED_P0_RCR, i);
587 1.21 briggs
588 1.21 briggs /* Take interface out of loopback. */
589 1.22 briggs NIC_PUT(sc, ED_P0_TCR, 0);
590 1.1 briggs
591 1.21 briggs /* Fire up the interface. */
592 1.22 briggs NIC_PUT(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STA);
593 1.1 briggs
594 1.21 briggs /* Set 'running' flag, and clear output active flag. */
595 1.1 briggs ifp->if_flags |= IFF_RUNNING;
596 1.1 briggs ifp->if_flags &= ~IFF_OACTIVE;
597 1.1 briggs
598 1.21 briggs /* ...and attempt to start output. */
599 1.1 briggs ae_start(ifp);
600 1.1 briggs
601 1.21 briggs splx(s);
602 1.1 briggs }
603 1.1 briggs /*
604 1.21 briggs * This routine actually starts the transmission on the interface.
605 1.1 briggs */
606 1.21 briggs static inline void
607 1.21 briggs ae_xmit(sc)
608 1.21 briggs struct ae_softc *sc;
609 1.1 briggs {
610 1.21 briggs struct ifnet *ifp = &sc->sc_arpcom.ac_if;
611 1.21 briggs u_short len;
612 1.21 briggs
613 1.21 briggs len = sc->txb_len[sc->txb_next_tx];
614 1.1 briggs
615 1.21 briggs /* Set NIC for page 0 register access. */
616 1.22 briggs NIC_PUT(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STA);
617 1.1 briggs
618 1.21 briggs /* Set TX buffer start page. */
619 1.22 briggs NIC_PUT(sc, ED_P0_TPSR, sc->tx_page_start +
620 1.22 briggs sc->txb_next_tx * ED_TXBUF_SIZE);
621 1.1 briggs
622 1.21 briggs /* Set TX length. */
623 1.22 briggs NIC_PUT(sc, ED_P0_TBCR0, len);
624 1.22 briggs NIC_PUT(sc, ED_P0_TBCR1, len >> 8);
625 1.1 briggs
626 1.21 briggs /* Set page 0, remote DMA complete, transmit packet, and *start*. */
627 1.22 briggs NIC_PUT(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_TXP | ED_CR_STA);
628 1.21 briggs sc->xmit_busy = 1;
629 1.1 briggs
630 1.21 briggs /* Point to next transmit buffer slot and wrap if necessary. */
631 1.21 briggs sc->txb_next_tx++;
632 1.21 briggs if (sc->txb_next_tx == sc->txb_cnt)
633 1.21 briggs sc->txb_next_tx = 0;
634 1.1 briggs
635 1.21 briggs /* Set a timer just in case we never hear from the board again. */
636 1.18 briggs ifp->if_timer = 2;
637 1.1 briggs }
638 1.1 briggs /*
639 1.1 briggs * Start output on interface.
640 1.1 briggs * We make two assumptions here:
641 1.21 briggs * 1) that the current priority is set to splimp _before_ this code
642 1.1 briggs * is called *and* is returned to the appropriate priority after
643 1.1 briggs * return
644 1.1 briggs * 2) that the IFF_OACTIVE flag is checked before this code is called
645 1.1 briggs * (i.e. that the output part of the interface is idle)
646 1.1 briggs */
647 1.20 briggs void
648 1.1 briggs ae_start(ifp)
649 1.1 briggs struct ifnet *ifp;
650 1.1 briggs {
651 1.21 briggs struct ae_softc *sc = aecd.cd_devs[ifp->if_unit];
652 1.1 briggs struct mbuf *m0, *m;
653 1.1 briggs caddr_t buffer;
654 1.25 briggs int len;
655 1.1 briggs
656 1.1 briggs outloop:
657 1.1 briggs /*
658 1.21 briggs * First, see if there are buffered packets and an idle transmitter -
659 1.21 briggs * should never happen at this point.
660 1.1 briggs */
661 1.21 briggs if (sc->txb_inuse && (sc->xmit_busy == 0)) {
662 1.21 briggs printf("%s: packets buffered, but transmitter idle\n",
663 1.21 briggs sc->sc_dev.dv_xname);
664 1.21 briggs ae_xmit(sc);
665 1.21 briggs }
666 1.21 briggs /* See if there is room to put another packet in the buffer. */
667 1.21 briggs if (sc->txb_inuse == sc->txb_cnt) {
668 1.21 briggs /* No room. Indicate this to the outside world and exit. */
669 1.21 briggs ifp->if_flags |= IFF_OACTIVE;
670 1.21 briggs return;
671 1.21 briggs }
672 1.21 briggs IF_DEQUEUE(&sc->sc_arpcom.ac_if.if_snd, m);
673 1.1 briggs if (m == 0) {
674 1.21 briggs /*
675 1.21 briggs * We are using the !OACTIVE flag to indicate to the outside
676 1.21 briggs * world that we can accept an additional packet rather than
677 1.21 briggs * that the transmitter is _actually_ active. Indeed, the
678 1.21 briggs * transmitter may be active, but if we haven't filled all the
679 1.21 briggs * buffers with data then we still want to accept more.
680 1.21 briggs */
681 1.1 briggs ifp->if_flags &= ~IFF_OACTIVE;
682 1.1 briggs return;
683 1.1 briggs }
684 1.21 briggs /* Copy the mbuf chain into the transmit buffer. */
685 1.21 briggs m0 = m;
686 1.21 briggs
687 1.21 briggs /* txb_new points to next open buffer slot. */
688 1.22 briggs buffer = sc->mem_start + ((sc->txb_new * ED_TXBUF_SIZE) << ED_PAGE_SHIFT);
689 1.21 briggs
690 1.21 briggs len = ae_put(sc, m, buffer);
691 1.1 briggs
692 1.21 briggs sc->txb_len[sc->txb_new] = max(len, ETHER_MIN_LEN);
693 1.21 briggs sc->txb_inuse++;
694 1.1 briggs
695 1.21 briggs /* Point to next buffer slot and wrap if necessary. */
696 1.21 briggs if (++sc->txb_new == sc->txb_cnt)
697 1.21 briggs sc->txb_new = 0;
698 1.1 briggs
699 1.1 briggs if (sc->xmit_busy == 0)
700 1.21 briggs ae_xmit(sc);
701 1.21 briggs
702 1.1 briggs #if NBPFILTER > 0
703 1.21 briggs /* Tap off here if there is a BPF listener. */
704 1.21 briggs if (sc->sc_arpcom.ac_if.if_bpf)
705 1.21 briggs bpf_mtap(sc->sc_arpcom.ac_if.if_bpf, m0);
706 1.1 briggs #endif
707 1.1 briggs
708 1.1 briggs m_freem(m0);
709 1.1 briggs
710 1.21 briggs /* Loop back to the top to possibly buffer more packets. */
711 1.21 briggs goto outloop;
712 1.1 briggs }
713 1.1 briggs /*
714 1.1 briggs * Ethernet interface receiver interrupt.
715 1.1 briggs */
716 1.1 briggs static inline void
717 1.21 briggs ae_rint(sc)
718 1.21 briggs struct ae_softc *sc;
719 1.1 briggs {
720 1.25 briggs u_char boundary, current;
721 1.22 briggs u_short len;
722 1.25 briggs u_char nlen;
723 1.24 briggs struct ae_ring packet_hdr;
724 1.21 briggs caddr_t packet_ptr;
725 1.21 briggs
726 1.21 briggs loop:
727 1.21 briggs /* Set NIC to page 1 registers to get 'current' pointer. */
728 1.22 briggs NIC_PUT(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_1 | ED_CR_STA);
729 1.1 briggs
730 1.1 briggs /*
731 1.1 briggs * 'sc->next_packet' is the logical beginning of the ring-buffer - i.e.
732 1.21 briggs * it points to where new data has been buffered. The 'CURR' (current)
733 1.21 briggs * register points to the logical end of the ring-buffer - i.e. it
734 1.21 briggs * points to where additional new data will be added. We loop here
735 1.21 briggs * until the logical beginning equals the logical end (or in other
736 1.21 briggs * words, until the ring-buffer is empty).
737 1.1 briggs */
738 1.22 briggs current = NIC_GET(sc, ED_P1_CURR);
739 1.21 briggs if (sc->next_packet == current)
740 1.21 briggs return;
741 1.1 briggs
742 1.21 briggs /* Set NIC to page 0 registers to update boundary register. */
743 1.22 briggs NIC_PUT(sc, ED_P1_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STA);
744 1.1 briggs
745 1.21 briggs do {
746 1.21 briggs /* Get pointer to this buffer's header structure. */
747 1.21 briggs packet_ptr = sc->mem_ring +
748 1.22 briggs ((sc->next_packet - sc->rec_page_start) << ED_PAGE_SHIFT);
749 1.1 briggs
750 1.1 briggs /*
751 1.21 briggs * The byte count includes a 4 byte header that was added by
752 1.21 briggs * the NIC.
753 1.1 briggs */
754 1.25 briggs packet_hdr = *(struct ae_ring *) packet_ptr;
755 1.22 briggs packet_hdr.count =
756 1.22 briggs ((packet_hdr.count >> 8) & 0xff) |
757 1.22 briggs ((packet_hdr.count & 0xff) << 8);
758 1.21 briggs len = packet_hdr.count;
759 1.1 briggs
760 1.1 briggs /*
761 1.21 briggs * Try do deal with old, buggy chips that sometimes duplicate
762 1.21 briggs * the low byte of the length into the high byte. We do this
763 1.21 briggs * by simply ignoring the high byte of the length and always
764 1.21 briggs * recalculating it.
765 1.21 briggs *
766 1.21 briggs * NOTE: sc->next_packet is pointing at the current packet.
767 1.1 briggs */
768 1.21 briggs if (packet_hdr.next_packet >= sc->next_packet)
769 1.21 briggs nlen = (packet_hdr.next_packet - sc->next_packet);
770 1.21 briggs else
771 1.21 briggs nlen = ((packet_hdr.next_packet - sc->rec_page_start) +
772 1.25 briggs (sc->rec_page_stop - sc->next_packet));
773 1.21 briggs --nlen;
774 1.22 briggs if ((len & ED_PAGE_MASK) + sizeof(packet_hdr) > ED_PAGE_SIZE)
775 1.21 briggs --nlen;
776 1.22 briggs len = (len & ED_PAGE_MASK) | (nlen << ED_PAGE_SHIFT);
777 1.21 briggs #ifdef DIAGNOSTIC
778 1.22 briggs if (len != packet_hdr.count) {
779 1.21 briggs printf("%s: length does not match next packet pointer\n",
780 1.21 briggs sc->sc_dev.dv_xname);
781 1.21 briggs printf("%s: len %04x nlen %04x start %02x first %02x curr %02x next %02x stop %02x\n",
782 1.21 briggs sc->sc_dev.dv_xname, packet_hdr.count, len,
783 1.21 briggs sc->rec_page_start, sc->next_packet, current,
784 1.21 briggs packet_hdr.next_packet, sc->rec_page_stop);
785 1.21 briggs }
786 1.21 briggs #endif
787 1.1 briggs
788 1.1 briggs /*
789 1.21 briggs * Be fairly liberal about what we allow as a "reasonable"
790 1.21 briggs * length so that a [crufty] packet will make it to BPF (and
791 1.21 briggs * can thus be analyzed). Note that all that is really
792 1.21 briggs * important is that we have a length that will fit into one
793 1.21 briggs * mbuf cluster or less; the upper layer protocols can then
794 1.21 briggs * figure out the length from their own length field(s).
795 1.1 briggs */
796 1.21 briggs if (len <= MCLBYTES &&
797 1.21 briggs packet_hdr.next_packet >= sc->rec_page_start &&
798 1.21 briggs packet_hdr.next_packet < sc->rec_page_stop) {
799 1.21 briggs /* Go get packet. */
800 1.24 briggs ae_get_packet(sc, packet_ptr + sizeof(struct ae_ring),
801 1.24 briggs len - sizeof(struct ae_ring));
802 1.21 briggs ++sc->sc_arpcom.ac_if.if_ipackets;
803 1.21 briggs } else {
804 1.21 briggs /* Really BAD. The ring pointers are corrupted. */
805 1.21 briggs log(LOG_ERR,
806 1.21 briggs "%s: NIC memory corrupt - invalid packet length %d\n",
807 1.21 briggs sc->sc_dev.dv_xname, len);
808 1.21 briggs ++sc->sc_arpcom.ac_if.if_ierrors;
809 1.21 briggs ae_reset(sc);
810 1.21 briggs return;
811 1.21 briggs }
812 1.1 briggs
813 1.21 briggs /* Update next packet pointer. */
814 1.21 briggs sc->next_packet = packet_hdr.next_packet;
815 1.1 briggs
816 1.1 briggs /*
817 1.21 briggs * Update NIC boundary pointer - being careful to keep it one
818 1.21 briggs * buffer behind (as recommended by NS databook).
819 1.1 briggs */
820 1.21 briggs boundary = sc->next_packet - 1;
821 1.21 briggs if (boundary < sc->rec_page_start)
822 1.21 briggs boundary = sc->rec_page_stop - 1;
823 1.22 briggs NIC_PUT(sc, ED_P0_BNRY, boundary);
824 1.21 briggs } while (sc->next_packet != current);
825 1.21 briggs
826 1.21 briggs goto loop;
827 1.1 briggs }
828 1.21 briggs /* Ethernet interface interrupt processor. */
829 1.22 briggs void
830 1.22 briggs aeintr(sc)
831 1.22 briggs struct ae_softc *sc;
832 1.1 briggs {
833 1.25 briggs u_char isr;
834 1.1 briggs
835 1.18 briggs aeintr_ctr++;
836 1.1 briggs
837 1.21 briggs /* Set NIC to page 0 registers. */
838 1.22 briggs NIC_PUT(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STA);
839 1.21 briggs
840 1.22 briggs isr = NIC_GET(sc, ED_P0_ISR);
841 1.21 briggs if (!isr)
842 1.22 briggs return;
843 1.1 briggs
844 1.21 briggs /* Loop until there are no more new interrupts. */
845 1.21 briggs for (;;) {
846 1.1 briggs /*
847 1.21 briggs * Reset all the bits that we are 'acknowledging' by writing a
848 1.21 briggs * '1' to each bit position that was set.
849 1.21 briggs * (Writing a '1' *clears* the bit.)
850 1.1 briggs */
851 1.22 briggs NIC_PUT(sc, ED_P0_ISR, isr);
852 1.1 briggs
853 1.1 briggs /*
854 1.21 briggs * Handle transmitter interrupts. Handle these first because
855 1.21 briggs * the receiver will reset the board under some conditions.
856 1.1 briggs */
857 1.22 briggs if (isr & (ED_ISR_PTX | ED_ISR_TXE)) {
858 1.25 briggs u_char collisions = NIC_GET(sc, ED_P0_NCR) & 0x0f;
859 1.1 briggs
860 1.1 briggs /*
861 1.21 briggs * Check for transmit error. If a TX completed with an
862 1.21 briggs * error, we end up throwing the packet away. Really
863 1.1 briggs * the only error that is possible is excessive
864 1.1 briggs * collisions, and in this case it is best to allow the
865 1.21 briggs * automatic mechanisms of TCP to backoff the flow. Of
866 1.1 briggs * course, with UDP we're screwed, but this is expected
867 1.1 briggs * when a network is heavily loaded.
868 1.1 briggs */
869 1.22 briggs (void) NIC_GET(sc, ED_P0_TSR);
870 1.22 briggs if (isr & ED_ISR_TXE) {
871 1.1 briggs /*
872 1.21 briggs * Excessive collisions (16).
873 1.1 briggs */
874 1.22 briggs if ((NIC_GET(sc, ED_P0_TSR) & ED_TSR_ABT)
875 1.21 briggs && (collisions == 0)) {
876 1.1 briggs /*
877 1.21 briggs * When collisions total 16, the P0_NCR
878 1.21 briggs * will indicate 0, and the TSR_ABT is
879 1.21 briggs * set.
880 1.1 briggs */
881 1.1 briggs collisions = 16;
882 1.1 briggs }
883 1.21 briggs /* Update output errors counter. */
884 1.21 briggs ++sc->sc_arpcom.ac_if.if_oerrors;
885 1.1 briggs } else {
886 1.1 briggs /*
887 1.1 briggs * Update total number of successfully
888 1.21 briggs * transmitted packets.
889 1.1 briggs */
890 1.21 briggs ++sc->sc_arpcom.ac_if.if_opackets;
891 1.1 briggs }
892 1.1 briggs
893 1.21 briggs /* Reset TX busy and output active flags. */
894 1.1 briggs sc->xmit_busy = 0;
895 1.21 briggs sc->sc_arpcom.ac_if.if_flags &= ~IFF_OACTIVE;
896 1.1 briggs
897 1.21 briggs /* Clear watchdog timer. */
898 1.21 briggs sc->sc_arpcom.ac_if.if_timer = 0;
899 1.1 briggs
900 1.1 briggs /*
901 1.1 briggs * Add in total number of collisions on last
902 1.21 briggs * transmission.
903 1.1 briggs */
904 1.21 briggs sc->sc_arpcom.ac_if.if_collisions += collisions;
905 1.1 briggs
906 1.1 briggs /*
907 1.21 briggs * Decrement buffer in-use count if not zero (can only
908 1.21 briggs * be zero if a transmitter interrupt occured while not
909 1.21 briggs * actually transmitting).
910 1.1 briggs * If data is ready to transmit, start it transmitting,
911 1.21 briggs * otherwise defer until after handling receiver.
912 1.1 briggs */
913 1.21 briggs if (sc->txb_inuse && --sc->txb_inuse)
914 1.21 briggs ae_xmit(sc);
915 1.1 briggs }
916 1.21 briggs /* Handle receiver interrupts. */
917 1.22 briggs if (isr & (ED_ISR_PRX | ED_ISR_RXE | ED_ISR_OVW)) {
918 1.21 briggs /*
919 1.21 briggs * Overwrite warning. In order to make sure that a
920 1.21 briggs * lockup of the local DMA hasn't occurred, we reset
921 1.21 briggs * and re-init the NIC. The NSC manual suggests only a
922 1.21 briggs * partial reset/re-init is necessary - but some chips
923 1.21 briggs * seem to want more. The DMA lockup has been seen
924 1.21 briggs * only with early rev chips - Methinks this bug was
925 1.21 briggs * fixed in later revs. -DG
926 1.21 briggs */
927 1.22 briggs if (isr & ED_ISR_OVW) {
928 1.21 briggs ++sc->sc_arpcom.ac_if.if_ierrors;
929 1.21 briggs #ifdef DIAGNOSTIC
930 1.1 briggs log(LOG_WARNING,
931 1.21 briggs "%s: warning - receiver ring buffer overrun\n",
932 1.21 briggs sc->sc_dev.dv_xname);
933 1.21 briggs #endif
934 1.21 briggs /* Stop/reset/re-init NIC. */
935 1.21 briggs ae_reset(sc);
936 1.21 briggs } else {
937 1.1 briggs /*
938 1.21 briggs * Receiver Error. One or more of: CRC error,
939 1.21 briggs * frame alignment error FIFO overrun, or
940 1.21 briggs * missed packet.
941 1.1 briggs */
942 1.22 briggs if (isr & ED_ISR_RXE) {
943 1.21 briggs ++sc->sc_arpcom.ac_if.if_ierrors;
944 1.1 briggs #ifdef AE_DEBUG
945 1.21 briggs printf("%s: receive error %x\n",
946 1.21 briggs sc->sc_dev.dv_xname,
947 1.22 briggs NIC_GET(sc, ED_P0_RSR));
948 1.1 briggs #endif
949 1.1 briggs }
950 1.1 briggs /*
951 1.1 briggs * Go get the packet(s)
952 1.1 briggs * XXX - Doing this on an error is dubious
953 1.21 briggs * because there shouldn't be any data to get
954 1.21 briggs * (we've configured the interface to not
955 1.21 briggs * accept packets with errors).
956 1.1 briggs */
957 1.21 briggs ae_rint(sc);
958 1.1 briggs }
959 1.1 briggs }
960 1.1 briggs /*
961 1.21 briggs * If it looks like the transmitter can take more data, attempt
962 1.21 briggs * to start output on the interface. This is done after
963 1.21 briggs * handling the receiver to give the receiver priority.
964 1.1 briggs */
965 1.21 briggs if ((sc->sc_arpcom.ac_if.if_flags & IFF_OACTIVE) == 0)
966 1.21 briggs ae_start(&sc->sc_arpcom.ac_if);
967 1.1 briggs
968 1.1 briggs /*
969 1.21 briggs * Return NIC CR to standard state: page 0, remote DMA
970 1.21 briggs * complete, start (toggling the TXP bit off, even if was just
971 1.21 briggs * set in the transmit routine, is *okay* - it is 'edge'
972 1.21 briggs * triggered from low to high).
973 1.1 briggs */
974 1.22 briggs NIC_PUT(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STA);
975 1.1 briggs
976 1.1 briggs /*
977 1.21 briggs * If the Network Talley Counters overflow, read them to reset
978 1.21 briggs * them. It appears that old 8390's won't clear the ISR flag
979 1.21 briggs * otherwise - resulting in an infinite loop.
980 1.1 briggs */
981 1.22 briggs if (isr & ED_ISR_CNT) {
982 1.22 briggs (void) NIC_GET(sc, ED_P0_CNTR0);
983 1.22 briggs (void) NIC_GET(sc, ED_P0_CNTR1);
984 1.22 briggs (void) NIC_GET(sc, ED_P0_CNTR2);
985 1.1 briggs }
986 1.22 briggs isr = NIC_GET(sc, ED_P0_ISR);
987 1.21 briggs if (!isr)
988 1.22 briggs return;
989 1.1 briggs }
990 1.1 briggs }
991 1.1 briggs /*
992 1.21 briggs * Process an ioctl request. This code needs some work - it looks pretty ugly.
993 1.1 briggs */
994 1.1 briggs int
995 1.1 briggs ae_ioctl(ifp, command, data)
996 1.1 briggs register struct ifnet *ifp;
997 1.25 briggs u_long command;
998 1.1 briggs caddr_t data;
999 1.1 briggs {
1000 1.21 briggs struct ae_softc *sc = aecd.cd_devs[ifp->if_unit];
1001 1.25 briggs register struct ifaddr *ifa = (struct ifaddr *) data;
1002 1.25 briggs struct ifreq *ifr = (struct ifreq *) data;
1003 1.25 briggs int s, error = 0;
1004 1.1 briggs
1005 1.21 briggs s = splimp();
1006 1.1 briggs
1007 1.1 briggs switch (command) {
1008 1.1 briggs
1009 1.1 briggs case SIOCSIFADDR:
1010 1.1 briggs ifp->if_flags |= IFF_UP;
1011 1.1 briggs
1012 1.1 briggs switch (ifa->ifa_addr->sa_family) {
1013 1.1 briggs #ifdef INET
1014 1.1 briggs case AF_INET:
1015 1.21 briggs ae_init(sc);
1016 1.21 briggs arp_ifinit(&sc->sc_arpcom, ifa);
1017 1.1 briggs break;
1018 1.1 briggs #endif
1019 1.1 briggs #ifdef NS
1020 1.25 briggs /* XXX - This code is probably wrong. */
1021 1.1 briggs case AF_NS:
1022 1.25 briggs {
1023 1.25 briggs register struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
1024 1.1 briggs
1025 1.25 briggs if (ns_nullhost(*ina))
1026 1.25 briggs ina->x_host =
1027 1.25 briggs *(union ns_host *) (sc->sc_arpcom.ac_enaddr);
1028 1.25 briggs else
1029 1.25 briggs bcopy(ina->x_host.c_host,
1030 1.25 briggs sc->sc_arpcom.ac_enaddr,
1031 1.25 briggs sizeof(sc->sc_arpcom.ac_enaddr));
1032 1.25 briggs /* Set new address. */
1033 1.25 briggs ae_init(sc);
1034 1.25 briggs break;
1035 1.25 briggs }
1036 1.1 briggs #endif
1037 1.1 briggs default:
1038 1.11 briggs ae_init(sc);
1039 1.1 briggs break;
1040 1.1 briggs }
1041 1.1 briggs break;
1042 1.1 briggs
1043 1.1 briggs case SIOCSIFFLAGS:
1044 1.21 briggs if ((ifp->if_flags & IFF_UP) == 0 &&
1045 1.21 briggs (ifp->if_flags & IFF_RUNNING) != 0) {
1046 1.21 briggs /*
1047 1.21 briggs * If interface is marked down and it is running, then
1048 1.21 briggs * stop it.
1049 1.21 briggs */
1050 1.15 briggs ae_stop(sc);
1051 1.1 briggs ifp->if_flags &= ~IFF_RUNNING;
1052 1.25 briggs } else
1053 1.25 briggs if ((ifp->if_flags & IFF_UP) != 0 &&
1054 1.25 briggs (ifp->if_flags & IFF_RUNNING) == 0) {
1055 1.25 briggs /*
1056 1.25 briggs * If interface is marked up and it is stopped, then
1057 1.25 briggs * start it.
1058 1.25 briggs */
1059 1.25 briggs ae_init(sc);
1060 1.25 briggs } else {
1061 1.25 briggs /*
1062 1.25 briggs * Reset the interface to pick up changes in any other
1063 1.25 briggs * flags that affect hardware registers.
1064 1.25 briggs */
1065 1.25 briggs ae_stop(sc);
1066 1.25 briggs ae_init(sc);
1067 1.25 briggs }
1068 1.21 briggs break;
1069 1.21 briggs
1070 1.21 briggs case SIOCADDMULTI:
1071 1.21 briggs case SIOCDELMULTI:
1072 1.21 briggs /* Update our multicast list. */
1073 1.21 briggs error = (command == SIOCADDMULTI) ?
1074 1.21 briggs ether_addmulti(ifr, &sc->sc_arpcom) :
1075 1.21 briggs ether_delmulti(ifr, &sc->sc_arpcom);
1076 1.21 briggs
1077 1.21 briggs if (error == ENETRESET) {
1078 1.1 briggs /*
1079 1.21 briggs * Multicast list has changed; set the hardware filter
1080 1.21 briggs * accordingly.
1081 1.1 briggs */
1082 1.25 briggs ae_stop(sc); /* XXX for ds_setmcaf? */
1083 1.21 briggs ae_init(sc);
1084 1.21 briggs error = 0;
1085 1.1 briggs }
1086 1.1 briggs break;
1087 1.1 briggs
1088 1.1 briggs default:
1089 1.1 briggs error = EINVAL;
1090 1.1 briggs }
1091 1.21 briggs
1092 1.21 briggs splx(s);
1093 1.1 briggs return (error);
1094 1.1 briggs }
1095 1.1 briggs /*
1096 1.1 briggs * Retreive packet from shared memory and send to the next level up via
1097 1.21 briggs * ether_input(). If there is a BPF listener, give a copy to BPF, too.
1098 1.1 briggs */
1099 1.21 briggs void
1100 1.1 briggs ae_get_packet(sc, buf, len)
1101 1.1 briggs struct ae_softc *sc;
1102 1.21 briggs caddr_t buf;
1103 1.1 briggs u_short len;
1104 1.1 briggs {
1105 1.1 briggs struct ether_header *eh;
1106 1.25 briggs struct mbuf *m, *ae_ring_to_mbuf();
1107 1.1 briggs
1108 1.21 briggs /* Allocate a header mbuf. */
1109 1.1 briggs MGETHDR(m, M_DONTWAIT, MT_DATA);
1110 1.1 briggs if (m == 0)
1111 1.21 briggs return;
1112 1.21 briggs m->m_pkthdr.rcvif = &sc->sc_arpcom.ac_if;
1113 1.1 briggs m->m_pkthdr.len = len;
1114 1.1 briggs m->m_len = 0;
1115 1.1 briggs
1116 1.21 briggs /* The following silliness is to make NFS happy. */
1117 1.1 briggs #define EROUND ((sizeof(struct ether_header) + 3) & ~3)
1118 1.1 briggs #define EOFF (EROUND - sizeof(struct ether_header))
1119 1.1 briggs
1120 1.1 briggs /*
1121 1.21 briggs * The following assumes there is room for the ether header in the
1122 1.21 briggs * header mbuf.
1123 1.1 briggs */
1124 1.21 briggs m->m_data += EOFF;
1125 1.21 briggs eh = mtod(m, struct ether_header *);
1126 1.21 briggs
1127 1.21 briggs word_copy(buf, mtod(m, caddr_t), sizeof(struct ether_header));
1128 1.1 briggs buf += sizeof(struct ether_header);
1129 1.21 briggs m->m_len += sizeof(struct ether_header);
1130 1.1 briggs len -= sizeof(struct ether_header);
1131 1.1 briggs
1132 1.21 briggs /* Pull packet off interface. */
1133 1.21 briggs if (ae_ring_to_mbuf(sc, buf, m, len) == 0) {
1134 1.21 briggs m_freem(m);
1135 1.21 briggs return;
1136 1.1 briggs }
1137 1.1 briggs #if NBPFILTER > 0
1138 1.1 briggs /*
1139 1.21 briggs * Check if there's a BPF listener on this interface. If so, hand off
1140 1.21 briggs * the raw packet to bpf.
1141 1.1 briggs */
1142 1.21 briggs if (sc->sc_arpcom.ac_if.if_bpf) {
1143 1.21 briggs bpf_mtap(sc->sc_arpcom.ac_if.if_bpf, m);
1144 1.1 briggs
1145 1.1 briggs /*
1146 1.1 briggs * Note that the interface cannot be in promiscuous mode if
1147 1.1 briggs * there are no BPF listeners. And if we are in promiscuous
1148 1.1 briggs * mode, we have to check if this packet is really ours.
1149 1.1 briggs */
1150 1.21 briggs if ((sc->sc_arpcom.ac_if.if_flags & IFF_PROMISC) &&
1151 1.25 briggs (eh->ether_dhost[0] & 1) == 0 && /* !mcast and !bcast */
1152 1.21 briggs bcmp(eh->ether_dhost, sc->sc_arpcom.ac_enaddr,
1153 1.25 briggs sizeof(eh->ether_dhost)) != 0) {
1154 1.21 briggs m_freem(m);
1155 1.1 briggs return;
1156 1.1 briggs }
1157 1.1 briggs }
1158 1.1 briggs #endif
1159 1.1 briggs
1160 1.21 briggs /* Fix up data start offset in mbuf to point past ether header. */
1161 1.21 briggs m_adj(m, sizeof(struct ether_header));
1162 1.21 briggs ether_input(&sc->sc_arpcom.ac_if, eh, m);
1163 1.1 briggs }
1164 1.1 briggs /*
1165 1.21 briggs * Supporting routines.
1166 1.1 briggs */
1167 1.1 briggs
1168 1.1 briggs /*
1169 1.21 briggs * Given a source and destination address, copy 'amount' of a packet from the
1170 1.21 briggs * ring buffer into a linear destination buffer. Takes into account ring-wrap.
1171 1.1 briggs */
1172 1.21 briggs static inline caddr_t
1173 1.21 briggs ae_ring_copy(sc, src, dst, amount)
1174 1.1 briggs struct ae_softc *sc;
1175 1.21 briggs caddr_t src, dst;
1176 1.25 briggs u_short amount;
1177 1.1 briggs {
1178 1.25 briggs u_short tmp_amount;
1179 1.1 briggs
1180 1.21 briggs /* Does copy wrap to lower addr in ring buffer? */
1181 1.21 briggs if (src + amount > sc->mem_end) {
1182 1.21 briggs tmp_amount = sc->mem_end - src;
1183 1.21 briggs
1184 1.21 briggs /* Copy amount up to end of NIC memory. */
1185 1.23 briggs byte_copy(src, dst, tmp_amount);
1186 1.21 briggs
1187 1.1 briggs amount -= tmp_amount;
1188 1.21 briggs src = sc->mem_ring;
1189 1.1 briggs dst += tmp_amount;
1190 1.1 briggs }
1191 1.23 briggs byte_copy(src, dst, amount);
1192 1.1 briggs
1193 1.21 briggs return (src + amount);
1194 1.1 briggs }
1195 1.1 briggs /*
1196 1.21 briggs * Copy data from receive buffer to end of mbuf chain allocate additional mbufs
1197 1.21 briggs * as needed. Return pointer to last mbuf in chain.
1198 1.21 briggs * sc = ae info (softc)
1199 1.21 briggs * src = pointer in ae ring buffer
1200 1.1 briggs * dst = pointer to last mbuf in mbuf chain to copy to
1201 1.1 briggs * amount = amount of data to copy
1202 1.1 briggs */
1203 1.1 briggs struct mbuf *
1204 1.21 briggs ae_ring_to_mbuf(sc, src, dst, total_len)
1205 1.1 briggs struct ae_softc *sc;
1206 1.21 briggs caddr_t src;
1207 1.1 briggs struct mbuf *dst;
1208 1.1 briggs u_short total_len;
1209 1.1 briggs {
1210 1.1 briggs register struct mbuf *m = dst;
1211 1.1 briggs
1212 1.1 briggs while (total_len) {
1213 1.1 briggs register u_short amount = min(total_len, M_TRAILINGSPACE(m));
1214 1.1 briggs
1215 1.15 briggs if (amount == 0) {
1216 1.1 briggs /*
1217 1.21 briggs * No more data in this mbuf; alloc another.
1218 1.21 briggs *
1219 1.1 briggs * If there is enough data for an mbuf cluster, attempt
1220 1.21 briggs * to allocate one of those, otherwise, a regular mbuf
1221 1.21 briggs * will do.
1222 1.1 briggs * Note that a regular mbuf is always required, even if
1223 1.21 briggs * we get a cluster - getting a cluster does not
1224 1.21 briggs * allocate any mbufs, and one is needed to assign the
1225 1.21 briggs * cluster to. The mbuf that has a cluster extension
1226 1.21 briggs * can not be used to contain data - only the cluster
1227 1.21 briggs * can contain data.
1228 1.21 briggs */
1229 1.1 briggs dst = m;
1230 1.1 briggs MGET(m, M_DONTWAIT, MT_DATA);
1231 1.1 briggs if (m == 0)
1232 1.1 briggs return (0);
1233 1.1 briggs
1234 1.1 briggs if (total_len >= MINCLSIZE)
1235 1.1 briggs MCLGET(m, M_DONTWAIT);
1236 1.1 briggs
1237 1.1 briggs m->m_len = 0;
1238 1.1 briggs dst->m_next = m;
1239 1.1 briggs amount = min(total_len, M_TRAILINGSPACE(m));
1240 1.1 briggs }
1241 1.15 briggs src = ae_ring_copy(sc, src, mtod(m, caddr_t) + m->m_len,
1242 1.21 briggs amount);
1243 1.1 briggs
1244 1.1 briggs m->m_len += amount;
1245 1.1 briggs total_len -= amount;
1246 1.21 briggs }
1247 1.21 briggs return (m);
1248 1.21 briggs }
1249 1.21 briggs /*
1250 1.21 briggs * Compute the multicast address filter from the list of multicast addresses we
1251 1.21 briggs * need to listen to.
1252 1.21 briggs */
1253 1.21 briggs void
1254 1.21 briggs ae_getmcaf(ac, af)
1255 1.21 briggs struct arpcom *ac;
1256 1.27 briggs u_char *af;
1257 1.21 briggs {
1258 1.21 briggs struct ifnet *ifp = &ac->ac_if;
1259 1.21 briggs struct ether_multi *enm;
1260 1.21 briggs register u_char *cp, c;
1261 1.21 briggs register u_long crc;
1262 1.21 briggs register int i, len;
1263 1.21 briggs struct ether_multistep step;
1264 1.21 briggs
1265 1.21 briggs /*
1266 1.21 briggs * Set up multicast address filter by passing all multicast addresses
1267 1.21 briggs * through a crc generator, and then using the high order 6 bits as an
1268 1.21 briggs * index into the 64 bit logical address filter. The high order bit
1269 1.21 briggs * selects the word, while the rest of the bits select the bit within
1270 1.21 briggs * the word.
1271 1.21 briggs */
1272 1.21 briggs
1273 1.21 briggs if (ifp->if_flags & IFF_PROMISC) {
1274 1.21 briggs ifp->if_flags |= IFF_ALLMULTI;
1275 1.27 briggs for (i = 0; i < 8; i++)
1276 1.27 briggs af[i] = 0xff;
1277 1.21 briggs return;
1278 1.21 briggs }
1279 1.27 briggs for (i = 0; i < 8; i++)
1280 1.27 briggs af[i] = 0;
1281 1.21 briggs ETHER_FIRST_MULTI(step, ac, enm);
1282 1.21 briggs while (enm != NULL) {
1283 1.21 briggs if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
1284 1.25 briggs sizeof(enm->enm_addrlo)) != 0) {
1285 1.21 briggs /*
1286 1.21 briggs * We must listen to a range of multicast addresses.
1287 1.21 briggs * For now, just accept all multicasts, rather than
1288 1.21 briggs * trying to set only those filter bits needed to match
1289 1.21 briggs * the range. (At this time, the only use of address
1290 1.21 briggs * ranges is for IP multicast routing, for which the
1291 1.21 briggs * range is big enough to require all bits set.)
1292 1.21 briggs */
1293 1.21 briggs ifp->if_flags |= IFF_ALLMULTI;
1294 1.27 briggs for (i = 0; i < 8; i++)
1295 1.27 briggs af[i] = 0xff;
1296 1.21 briggs return;
1297 1.21 briggs }
1298 1.21 briggs cp = enm->enm_addrlo;
1299 1.21 briggs crc = 0xffffffff;
1300 1.21 briggs for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
1301 1.21 briggs c = *cp++;
1302 1.21 briggs for (i = 8; --i >= 0;) {
1303 1.21 briggs if (((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01)) {
1304 1.21 briggs crc <<= 1;
1305 1.21 briggs crc ^= 0x04c11db6 | 1;
1306 1.21 briggs } else
1307 1.21 briggs crc <<= 1;
1308 1.21 briggs c >>= 1;
1309 1.21 briggs }
1310 1.21 briggs }
1311 1.21 briggs /* Just want the 6 most significant bits. */
1312 1.21 briggs crc >>= 26;
1313 1.21 briggs
1314 1.21 briggs /* Turn on the corresponding bit in the filter. */
1315 1.27 briggs af[crc >> 3] |= 1 << (crc & 0x7);
1316 1.21 briggs
1317 1.21 briggs ETHER_NEXT_MULTI(step, enm);
1318 1.1 briggs }
1319 1.21 briggs ifp->if_flags &= ~IFF_ALLMULTI;
1320 1.21 briggs }
1321 1.21 briggs /*
1322 1.21 briggs * Copy packet from mbuf to the board memory
1323 1.21 briggs *
1324 1.21 briggs * Currently uses an extra buffer/extra memory copy,
1325 1.21 briggs * unless the whole packet fits in one mbuf.
1326 1.21 briggs *
1327 1.21 briggs */
1328 1.21 briggs u_short
1329 1.21 briggs ae_put(sc, m, buf)
1330 1.21 briggs struct ae_softc *sc;
1331 1.21 briggs struct mbuf *m;
1332 1.21 briggs caddr_t buf;
1333 1.21 briggs {
1334 1.21 briggs u_char *data, savebyte[2];
1335 1.25 briggs int len, wantbyte;
1336 1.25 briggs u_short totlen = 0;
1337 1.21 briggs
1338 1.21 briggs wantbyte = 0;
1339 1.21 briggs
1340 1.21 briggs for (; m != 0; m = m->m_next) {
1341 1.21 briggs data = mtod(m, u_char *);
1342 1.21 briggs len = m->m_len;
1343 1.21 briggs totlen += len;
1344 1.21 briggs if (len > 0) {
1345 1.21 briggs /* Finish the last word. */
1346 1.21 briggs if (wantbyte) {
1347 1.21 briggs savebyte[1] = *data;
1348 1.21 briggs word_copy(savebyte, buf, 2);
1349 1.21 briggs buf += 2;
1350 1.21 briggs data++;
1351 1.21 briggs len--;
1352 1.21 briggs wantbyte = 0;
1353 1.21 briggs }
1354 1.21 briggs /* Output contiguous words. */
1355 1.21 briggs if (len > 1) {
1356 1.21 briggs word_copy(data, buf, len);
1357 1.21 briggs buf += len & ~1;
1358 1.21 briggs data += len & ~1;
1359 1.21 briggs len &= 1;
1360 1.21 briggs }
1361 1.21 briggs /* Save last byte, if necessary. */
1362 1.21 briggs if (len == 1) {
1363 1.21 briggs savebyte[0] = *data;
1364 1.21 briggs wantbyte = 1;
1365 1.21 briggs }
1366 1.21 briggs }
1367 1.21 briggs }
1368 1.21 briggs
1369 1.21 briggs if (wantbyte) {
1370 1.21 briggs savebyte[1] = 0;
1371 1.21 briggs word_copy(savebyte, buf, 2);
1372 1.21 briggs }
1373 1.21 briggs return (totlen);
1374 1.1 briggs }
1375