if_ae.c revision 1.28 1 1.28 briggs /* $NetBSD: if_ae.c,v 1.28 1995/04/29 20:23:44 briggs Exp $ */
2 1.14 cgd
3 1.1 briggs /*
4 1.21 briggs * Device driver for National Semiconductor DS8390/WD83C690 based ethernet
5 1.21 briggs * adapters.
6 1.1 briggs *
7 1.21 briggs * Copyright (c) 1994, 1995 Charles M. Hannum. All rights reserved.
8 1.1 briggs *
9 1.21 briggs * Copyright (C) 1993, David Greenman. This software may be used, modified,
10 1.21 briggs * copied, distributed, and sold, in both source and binary form provided that
11 1.21 briggs * the above copyright and these terms are retained. Under no circumstances is
12 1.21 briggs * the author responsible for the proper functioning of this software, nor does
13 1.21 briggs * the author assume any responsibility for damages incurred with its use.
14 1.1 briggs *
15 1.21 briggs * Adapted for MacBSD by Brad Parker <brad (at) fcr.com>.
16 1.1 briggs *
17 1.1 briggs * Currently supports:
18 1.1 briggs * Apples NB Ethernet card
19 1.1 briggs * Interlan A310 Nubus Ethernet card
20 1.1 briggs * Cayman Systems GatorCard
21 1.15 briggs * Asante MacCon II/E
22 1.1 briggs */
23 1.1 briggs
24 1.1 briggs #include "bpfilter.h"
25 1.1 briggs
26 1.9 briggs #include <sys/param.h>
27 1.22 briggs #include <sys/types.h>
28 1.9 briggs #include <sys/systm.h>
29 1.9 briggs #include <sys/errno.h>
30 1.9 briggs #include <sys/ioctl.h>
31 1.9 briggs #include <sys/mbuf.h>
32 1.9 briggs #include <sys/socket.h>
33 1.9 briggs #include <sys/syslog.h>
34 1.21 briggs #include <sys/device.h>
35 1.1 briggs
36 1.5 briggs #include <net/if.h>
37 1.5 briggs #include <net/if_dl.h>
38 1.5 briggs #include <net/if_types.h>
39 1.5 briggs #include <net/netisr.h>
40 1.1 briggs
41 1.1 briggs #ifdef INET
42 1.5 briggs #include <netinet/in.h>
43 1.5 briggs #include <netinet/in_systm.h>
44 1.5 briggs #include <netinet/in_var.h>
45 1.5 briggs #include <netinet/ip.h>
46 1.5 briggs #include <netinet/if_ether.h>
47 1.1 briggs #endif
48 1.1 briggs
49 1.1 briggs #ifdef NS
50 1.5 briggs #include <netns/ns.h>
51 1.5 briggs #include <netns/ns_if.h>
52 1.1 briggs #endif
53 1.1 briggs
54 1.1 briggs #if NBPFILTER > 0
55 1.5 briggs #include <net/bpf.h>
56 1.5 briggs #include <net/bpfdesc.h>
57 1.1 briggs #endif
58 1.1 briggs
59 1.18 briggs #include "../mac68k/via.h"
60 1.3 briggs #include "nubus.h"
61 1.22 briggs #include <dev/ic/dp8390.h>
62 1.1 briggs #include "if_aereg.h"
63 1.1 briggs
64 1.28 briggs #define INTERFACE_NAME_LEN 32
65 1.28 briggs
66 1.1 briggs /*
67 1.1 briggs * ae_softc: per line info and status
68 1.1 briggs */
69 1.25 briggs struct ae_softc {
70 1.28 briggs struct device sc_dev;
71 1.28 briggs nubus_slot sc_slot;
72 1.28 briggs /* struct intrhand sc_ih; */
73 1.3 briggs
74 1.25 briggs struct arpcom sc_arpcom;/* ethernet common */
75 1.1 briggs
76 1.28 briggs char type_str[INTERFACE_NAME_LEN]; /* type string */
77 1.28 briggs u_short type; /* interface type code */
78 1.28 briggs u_char vendor; /* interface vendor */
79 1.28 briggs u_char regs_rev; /* registers are reversed */
80 1.15 briggs
81 1.15 briggs #define REG_MAP(sc, reg) ((sc)->regs_rev ? (0x0f-(reg))<<2 : (reg)<<2)
82 1.1 briggs #define NIC_GET(sc, reg) ((sc)->nic_addr[REG_MAP(sc, reg)])
83 1.1 briggs #define NIC_PUT(sc, reg, val) ((sc)->nic_addr[REG_MAP(sc, reg)] = (val))
84 1.25 briggs volatile caddr_t nic_addr; /* NIC (DS8390) I/O bus address */
85 1.25 briggs caddr_t rom_addr; /* on board prom address */
86 1.1 briggs
87 1.25 briggs u_char cr_proto; /* values always set in CR */
88 1.21 briggs
89 1.25 briggs caddr_t mem_start; /* shared memory start address */
90 1.25 briggs caddr_t mem_end; /* shared memory end address */
91 1.25 briggs u_long mem_size; /* total shared memory size */
92 1.25 briggs caddr_t mem_ring; /* start of RX ring-buffer (in smem) */
93 1.25 briggs
94 1.25 briggs u_char mem_wr_short; /* card memory requires int16 writes */
95 1.25 briggs
96 1.25 briggs u_char xmit_busy; /* transmitter is busy */
97 1.25 briggs u_char txb_cnt; /* Number of transmit buffers */
98 1.25 briggs u_char txb_inuse; /* number of TX buffers currently in-use */
99 1.25 briggs
100 1.25 briggs u_char txb_new; /* pointer to where new buffer will be added */
101 1.25 briggs u_char txb_next_tx; /* pointer to next buffer ready to xmit */
102 1.25 briggs u_short txb_len[8]; /* buffered xmit buffer lengths */
103 1.25 briggs u_char tx_page_start; /* first page of TX buffer area */
104 1.25 briggs u_char rec_page_start; /* first page of RX ring-buffer */
105 1.25 briggs u_char rec_page_stop; /* last page of RX ring-buffer */
106 1.25 briggs u_char next_packet; /* pointer to next unread RX packet */
107 1.21 briggs };
108 1.1 briggs
109 1.22 briggs int aeprobe __P((struct device *, void *, void *));
110 1.22 briggs void aeattach __P((struct device *, struct device *, void *));
111 1.22 briggs void aeintr __P((struct ae_softc *));
112 1.21 briggs int ae_ioctl __P((struct ifnet *, u_long, caddr_t));
113 1.21 briggs void ae_start __P((struct ifnet *));
114 1.25 briggs void ae_watchdog __P(( /* short */ ));
115 1.21 briggs void ae_reset __P((struct ae_softc *));
116 1.21 briggs void ae_init __P((struct ae_softc *));
117 1.21 briggs void ae_stop __P((struct ae_softc *));
118 1.27 briggs void ae_getmcaf __P((struct arpcom *, u_char *));
119 1.21 briggs u_short ae_put __P((struct ae_softc *, struct mbuf *, caddr_t));
120 1.21 briggs
121 1.25 briggs #define inline /* XXX for debugging porpoises */
122 1.21 briggs
123 1.25 briggs void ae_get_packet __P(( /* struct ae_softc *, caddr_t, u_short */ ));
124 1.21 briggs static inline void ae_rint __P((struct ae_softc *));
125 1.21 briggs static inline void ae_xmit __P((struct ae_softc *));
126 1.28 briggs static inline caddr_t ae_ring_copy __P((
127 1.28 briggs /* struct ae_softc *, caddr_t, caddr_t, u_short */ ));
128 1.28 briggs
129 1.28 briggs struct cfdriver aecd = {
130 1.28 briggs NULL, "ae", aeprobe, aeattach, DV_IFNET, sizeof(struct ae_softc)
131 1.28 briggs };
132 1.28 briggs
133 1.1 briggs #define ETHER_MIN_LEN 64
134 1.1 briggs #define ETHER_MAX_LEN 1518
135 1.1 briggs #define ETHER_ADDR_LEN 6
136 1.1 briggs
137 1.28 briggs static char zero = 0;
138 1.28 briggs static u_char ones = 0xff;
139 1.8 briggs
140 1.12 lkestel /*
141 1.12 lkestel * XXX These two should be moved to locore, and maybe changed to use shorts
142 1.12 lkestel * instead of bytes. The reason for these is that bcopy and bzero use longs,
143 1.12 lkestel * which the ethernet cards can't handle.
144 1.12 lkestel */
145 1.12 lkestel
146 1.12 lkestel void
147 1.25 briggs bszero(u_short * addr, int len)
148 1.12 lkestel {
149 1.21 briggs
150 1.21 briggs while (len--)
151 1.12 lkestel *addr++ = 0;
152 1.12 lkestel }
153 1.21 briggs /*
154 1.21 briggs * Memory copy, copies word at time.
155 1.21 briggs */
156 1.21 briggs static inline void
157 1.21 briggs word_copy(a, b, len)
158 1.21 briggs caddr_t a, b;
159 1.25 briggs int len;
160 1.12 lkestel {
161 1.25 briggs u_short *x = (u_short *) a, *y = (u_short *) b;
162 1.12 lkestel
163 1.21 briggs len >>= 1;
164 1.21 briggs while (len--)
165 1.21 briggs *y++ = *x++;
166 1.15 briggs }
167 1.23 briggs /*
168 1.23 briggs * Memory copy, copies bytes at time.
169 1.23 briggs */
170 1.23 briggs static inline void
171 1.23 briggs byte_copy(a, b, len)
172 1.23 briggs caddr_t a, b;
173 1.25 briggs int len;
174 1.23 briggs {
175 1.23 briggs while (len--)
176 1.23 briggs *b++ = *a++;
177 1.23 briggs }
178 1.23 briggs
179 1.28 briggs static int
180 1.28 briggs ae_id_card(slot, sc)
181 1.28 briggs nubus_slot *slot;
182 1.25 briggs struct ae_softc *sc;
183 1.8 briggs {
184 1.28 briggs nubus_dir dir;
185 1.28 briggs nubus_dirent dirent;
186 1.28 briggs nubus_type slottype;
187 1.28 briggs
188 1.28 briggs nubus_get_main_dir(slot, &dir);
189 1.28 briggs
190 1.28 briggs if (nubus_find_rsrc(slot, &dir, 0x80, &dirent) <= 0)
191 1.28 briggs return 0;
192 1.28 briggs
193 1.28 briggs nubus_get_dir_from_rsrc(slot, &dirent, &dir);
194 1.28 briggs
195 1.28 briggs if (nubus_find_rsrc(slot, &dir, NUBUS_RSRC_TYPE, &dirent) <= 0)
196 1.28 briggs return 0;
197 1.28 briggs
198 1.28 briggs if (nubus_get_ind_data(slot, &dirent,
199 1.28 briggs (caddr_t) &slottype, sizeof(nubus_type)) <= 0)
200 1.28 briggs return 0;
201 1.28 briggs
202 1.28 briggs if (slottype.category != NUBUS_CATEGORY_NETWORK)
203 1.28 briggs return 0;
204 1.8 briggs
205 1.28 briggs if (slottype.type != NUBUS_TYPE_ETHERNET)
206 1.28 briggs return 0;
207 1.28 briggs
208 1.28 briggs switch (slottype.type) {
209 1.28 briggs case NUBUS_DRSW_3COM:
210 1.28 briggs case NUBUS_DRSW_APPLE:
211 1.28 briggs sc->vendor = AE_VENDOR_APPLE;
212 1.28 briggs break;
213 1.28 briggs case NUBUS_DRSW_ASANTE:
214 1.28 briggs sc->vendor = AE_VENDOR_ASANTE;
215 1.28 briggs break;
216 1.28 briggs case NUBUS_DRSW_DAYNA:
217 1.28 briggs sc->vendor = AE_VENDOR_DAYNA;
218 1.28 briggs break;
219 1.28 briggs case NUBUS_DRSW_INTERLAN:
220 1.28 briggs sc->vendor = AE_VENDOR_INTERLAN;
221 1.28 briggs break;
222 1.28 briggs default:
223 1.28 briggs sc->vendor = AE_VENDOR_UNKNOWN;
224 1.28 briggs return 0;
225 1.8 briggs }
226 1.8 briggs
227 1.28 briggs strncpy(sc->type_str, nubus_get_card_name(slot), INTERFACE_NAME_LEN);
228 1.28 briggs
229 1.28 briggs sc->type_str[INTERFACE_NAME_LEN-1] = '\0';
230 1.28 briggs
231 1.28 briggs return 1;
232 1.15 briggs }
233 1.15 briggs
234 1.15 briggs int
235 1.15 briggs ae_size_card_memory(sc)
236 1.25 briggs struct ae_softc *sc;
237 1.15 briggs {
238 1.15 briggs u_short *p;
239 1.15 briggs u_short i1, i2, i3, i4;
240 1.25 briggs int size;
241 1.21 briggs
242 1.25 briggs p = (u_short *) sc->mem_start;
243 1.15 briggs
244 1.15 briggs /*
245 1.15 briggs * very simple size memory, assuming it's installed in 8k
246 1.15 briggs * banks; also assume it will generally mirror in upper banks
247 1.15 briggs * if not installed.
248 1.15 briggs */
249 1.25 briggs i1 = (8192 * 0) / 2;
250 1.25 briggs i2 = (8192 * 1) / 2;
251 1.25 briggs i3 = (8192 * 2) / 2;
252 1.25 briggs i4 = (8192 * 3) / 2;
253 1.21 briggs
254 1.15 briggs p[i1] = 0x1111;
255 1.15 briggs p[i2] = 0x2222;
256 1.15 briggs p[i3] = 0x3333;
257 1.15 briggs p[i4] = 0x4444;
258 1.21 briggs
259 1.15 briggs if (p[i1] == 0x1111 && p[i2] == 0x2222 &&
260 1.15 briggs p[i3] == 0x3333 && p[i4] == 0x4444)
261 1.25 briggs return 8192 * 4;
262 1.21 briggs
263 1.21 briggs if ((p[i1] == 0x1111 && p[i2] == 0x2222) ||
264 1.21 briggs (p[i1] == 0x3333 && p[i2] == 0x4444))
265 1.25 briggs return 8192 * 2;
266 1.15 briggs
267 1.21 briggs if (p[i1] == 0x1111 || p[i1] == 0x4444)
268 1.21 briggs return 8192;
269 1.15 briggs
270 1.21 briggs return 0;
271 1.8 briggs }
272 1.8 briggs
273 1.1 briggs int
274 1.22 briggs aeprobe(parent, match, aux)
275 1.21 briggs struct device *parent;
276 1.25 briggs void *match, *aux;
277 1.1 briggs {
278 1.21 briggs struct ae_softc *sc = match;
279 1.28 briggs nubus_slot *nu = (nubus_slot *) aux;
280 1.28 briggs caddr_t addr;
281 1.25 briggs int i, memsize;
282 1.25 briggs int flags = 0;
283 1.1 briggs
284 1.28 briggs if (ae_id_card(nu, sc) < 0)
285 1.3 briggs return 0;
286 1.3 briggs
287 1.15 briggs sc->regs_rev = 0;
288 1.21 briggs sc->mem_wr_short = 0;
289 1.15 briggs
290 1.28 briggs addr = (caddr_t) NUBUS_SLOT_TO_BASE(nu->slot);
291 1.28 briggs
292 1.1 briggs switch (sc->vendor) {
293 1.25 briggs case AE_VENDOR_INTERLAN:
294 1.28 briggs sc->nic_addr = addr + GC_NIC_OFFSET;
295 1.28 briggs sc->rom_addr = addr + GC_ROM_OFFSET;
296 1.28 briggs sc->mem_start = addr + GC_DATA_OFFSET;
297 1.15 briggs if ((memsize = ae_size_card_memory(sc)) == 0)
298 1.15 briggs return 0;
299 1.1 briggs
300 1.1 briggs /* reset the NIC chip */
301 1.28 briggs *((caddr_t) addr + GC_RESET_OFFSET) = (char) zero;
302 1.21 briggs
303 1.1 briggs /* Get station address from on-board ROM */
304 1.1 briggs for (i = 0; i < ETHER_ADDR_LEN; ++i)
305 1.25 briggs sc->sc_arpcom.ac_enaddr[i] = *(sc->rom_addr + i * 4);
306 1.1 briggs break;
307 1.1 briggs
308 1.25 briggs case AE_VENDOR_ASANTE:
309 1.15 briggs /* memory writes require *(u_short *) */
310 1.21 briggs sc->mem_wr_short = 1;
311 1.15 briggs /* otherwise, pretend to be an apple card (fall through) */
312 1.15 briggs
313 1.25 briggs case AE_VENDOR_APPLE:
314 1.15 briggs sc->regs_rev = 1;
315 1.28 briggs sc->nic_addr = addr + AE_NIC_OFFSET;
316 1.28 briggs sc->rom_addr = addr + AE_ROM_OFFSET;
317 1.28 briggs sc->mem_start = addr + AE_DATA_OFFSET;
318 1.15 briggs if ((memsize = ae_size_card_memory(sc)) == 0)
319 1.21 briggs return (0);
320 1.1 briggs
321 1.1 briggs /* Get station address from on-board ROM */
322 1.1 briggs for (i = 0; i < ETHER_ADDR_LEN; ++i)
323 1.25 briggs sc->sc_arpcom.ac_enaddr[i] = *(sc->rom_addr + i * 2);
324 1.1 briggs break;
325 1.8 briggs
326 1.25 briggs case AE_VENDOR_DAYNA:
327 1.9 briggs printf("We think we are a Dayna card, but ");
328 1.28 briggs sc->nic_addr = addr + DP_NIC_OFFSET;
329 1.28 briggs sc->rom_addr = addr + DP_ROM_OFFSET;
330 1.28 briggs sc->mem_start = addr + DP_DATA_OFFSET;
331 1.8 briggs memsize = 8192;
332 1.8 briggs
333 1.8 briggs /* Get station address from on-board ROM */
334 1.8 briggs for (i = 0; i < ETHER_ADDR_LEN; ++i)
335 1.25 briggs sc->sc_arpcom.ac_enaddr[i] = *(sc->rom_addr + i * 2);
336 1.9 briggs printf("it is dangerous to continue.\n");
337 1.25 briggs return (0); /* Since we don't work yet... */
338 1.8 briggs break;
339 1.8 briggs
340 1.25 briggs default:
341 1.21 briggs return (0);
342 1.8 briggs break;
343 1.1 briggs }
344 1.7 briggs
345 1.22 briggs sc->cr_proto = ED_CR_RD2;
346 1.21 briggs
347 1.21 briggs /* Allocate one xmit buffer if < 16k, two buffers otherwise. */
348 1.21 briggs if ((memsize < 16384) || (flags & AE_FLAGS_NO_DOUBLE_BUFFERING))
349 1.1 briggs sc->txb_cnt = 1;
350 1.21 briggs else
351 1.1 briggs sc->txb_cnt = 2;
352 1.1 briggs
353 1.1 briggs sc->tx_page_start = 0;
354 1.22 briggs sc->rec_page_start = sc->tx_page_start + sc->txb_cnt * ED_TXBUF_SIZE;
355 1.22 briggs sc->rec_page_stop = sc->tx_page_start + (memsize >> ED_PAGE_SHIFT);
356 1.22 briggs sc->mem_ring = sc->mem_start + (sc->rec_page_start << ED_PAGE_SHIFT);
357 1.21 briggs sc->mem_size = memsize;
358 1.21 briggs sc->mem_end = sc->mem_start + memsize;
359 1.1 briggs
360 1.21 briggs /* Now zero memory and verify that it is clear. */
361 1.25 briggs bszero((u_short *) sc->mem_start, memsize / 2);
362 1.1 briggs
363 1.1 briggs for (i = 0; i < memsize; ++i)
364 1.21 briggs if (sc->mem_start[i]) {
365 1.25 briggs printf("%s: failed to clear shared memory at %x - check configuration\n",
366 1.21 briggs sc->sc_dev.dv_xname,
367 1.21 briggs sc->mem_start + i);
368 1.21 briggs return (0);
369 1.1 briggs }
370 1.28 briggs
371 1.28 briggs bcopy(nu, &sc->sc_slot, sizeof(nubus_slot));
372 1.21 briggs return (1);
373 1.21 briggs }
374 1.1 briggs /*
375 1.1 briggs * Install interface into kernel networking data structures
376 1.1 briggs */
377 1.9 briggs void
378 1.22 briggs aeattach(parent, self, aux)
379 1.22 briggs struct device *parent, *self;
380 1.25 briggs void *aux;
381 1.1 briggs {
382 1.25 briggs struct ae_softc *sc = (void *) self;
383 1.25 briggs struct nubus_hw *nu = aux;
384 1.21 briggs struct cfdata *cf = sc->sc_dev.dv_cfdata;
385 1.21 briggs struct ifnet *ifp = &sc->sc_arpcom.ac_if;
386 1.3 briggs
387 1.21 briggs /* Set interface to stopped condition (reset). */
388 1.3 briggs ae_stop(sc);
389 1.1 briggs
390 1.21 briggs /* Initialize ifnet structure. */
391 1.21 briggs ifp->if_unit = sc->sc_dev.dv_unit;
392 1.3 briggs ifp->if_name = aecd.cd_name;
393 1.1 briggs ifp->if_start = ae_start;
394 1.1 briggs ifp->if_ioctl = ae_ioctl;
395 1.1 briggs ifp->if_watchdog = ae_watchdog;
396 1.21 briggs ifp->if_flags =
397 1.21 briggs IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
398 1.3 briggs
399 1.21 briggs /* Attach the interface. */
400 1.1 briggs if_attach(ifp);
401 1.21 briggs ether_ifattach(ifp);
402 1.1 briggs
403 1.21 briggs /* Print additional info when attached. */
404 1.21 briggs printf(": address %s, ", ether_sprintf(sc->sc_arpcom.ac_enaddr));
405 1.1 briggs
406 1.28 briggs printf("type %s, %dk mem.\n", sc->type_str, sc->mem_size / 1024);
407 1.1 briggs
408 1.1 briggs #if NBPFILTER > 0
409 1.21 briggs bpfattach(&ifp->if_bpf, ifp, DLT_EN10MB, sizeof(struct ether_header));
410 1.1 briggs #endif
411 1.21 briggs
412 1.21 briggs /* make sure interrupts are vectored to us */
413 1.28 briggs add_nubus_intr(sc->sc_slot.slot, aeintr, sc);
414 1.26 briggs
415 1.26 briggs /*
416 1.26 briggs * XXX -- enable nubus interrupts here. Should be done elsewhere,
417 1.26 briggs * but that currently breaks with some nubus video cards'
418 1.26 briggs * interrupts. So we only enable nubus interrupts if we
419 1.26 briggs * have an ethernet card... i.e., we do it here.
420 1.26 briggs */
421 1.26 briggs enable_nubus_intr();
422 1.3 briggs }
423 1.1 briggs /*
424 1.1 briggs * Reset interface.
425 1.1 briggs */
426 1.21 briggs void
427 1.3 briggs ae_reset(sc)
428 1.3 briggs struct ae_softc *sc;
429 1.1 briggs {
430 1.25 briggs int s;
431 1.1 briggs
432 1.21 briggs s = splimp();
433 1.3 briggs ae_stop(sc);
434 1.3 briggs ae_init(sc);
435 1.21 briggs splx(s);
436 1.21 briggs }
437 1.1 briggs /*
438 1.1 briggs * Take interface offline.
439 1.1 briggs */
440 1.1 briggs void
441 1.3 briggs ae_stop(sc)
442 1.3 briggs struct ae_softc *sc;
443 1.1 briggs {
444 1.25 briggs int n = 5000;
445 1.1 briggs
446 1.21 briggs /* Stop everything on the interface, and select page 0 registers. */
447 1.22 briggs NIC_PUT(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STP);
448 1.1 briggs
449 1.1 briggs /*
450 1.21 briggs * Wait for interface to enter stopped state, but limit # of checks to
451 1.21 briggs * 'n' (about 5ms). It shouldn't even take 5us on modern DS8390's, but
452 1.21 briggs * just in case it's an old one.
453 1.1 briggs */
454 1.22 briggs while (((NIC_GET(sc, ED_P0_ISR) & ED_ISR_RST) == 0) && --n);
455 1.1 briggs }
456 1.1 briggs /*
457 1.21 briggs * Device timeout/watchdog routine. Entered if the device neglects to generate
458 1.21 briggs * an interrupt after a transmit has been started on it.
459 1.1 briggs */
460 1.25 briggs static int aeintr_ctr = 0;
461 1.20 briggs void
462 1.1 briggs ae_watchdog(unit)
463 1.25 briggs int unit;
464 1.1 briggs {
465 1.21 briggs struct ae_softc *sc = aecd.cd_devs[unit];
466 1.15 briggs
467 1.18 briggs #if 1
468 1.18 briggs /*
469 1.18 briggs * This is a kludge! The via code seems to miss slot interrupts
470 1.18 briggs * sometimes. This kludges around that by calling the handler
471 1.18 briggs * by hand if the watchdog is activated. -- XXX (akb)
472 1.18 briggs */
473 1.25 briggs int i;
474 1.18 briggs
475 1.18 briggs i = aeintr_ctr;
476 1.18 briggs
477 1.25 briggs (*via2itab[1]) (1);
478 1.18 briggs
479 1.19 briggs if (i != aeintr_ctr) {
480 1.19 briggs log(LOG_ERR, "ae%d: device timeout, recovered\n", unit);
481 1.18 briggs return;
482 1.19 briggs }
483 1.18 briggs #endif
484 1.18 briggs
485 1.21 briggs log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
486 1.21 briggs ++sc->sc_arpcom.ac_if.if_oerrors;
487 1.21 briggs
488 1.15 briggs ae_reset(sc);
489 1.1 briggs }
490 1.1 briggs /*
491 1.21 briggs * Initialize device.
492 1.1 briggs */
493 1.21 briggs void
494 1.3 briggs ae_init(sc)
495 1.3 briggs struct ae_softc *sc;
496 1.1 briggs {
497 1.21 briggs struct ifnet *ifp = &sc->sc_arpcom.ac_if;
498 1.25 briggs int i, s;
499 1.25 briggs u_char command;
500 1.27 briggs u_char mcaf[8];
501 1.1 briggs
502 1.21 briggs /* Address not known. */
503 1.21 briggs if (ifp->if_addrlist == 0)
504 1.21 briggs return;
505 1.1 briggs
506 1.1 briggs /*
507 1.1 briggs * Initialize the NIC in the exact order outlined in the NS manual.
508 1.21 briggs * This init procedure is "mandatory"...don't change what or when
509 1.21 briggs * things happen.
510 1.1 briggs */
511 1.21 briggs s = splimp();
512 1.1 briggs
513 1.21 briggs /* Reset transmitter flags. */
514 1.1 briggs sc->xmit_busy = 0;
515 1.21 briggs sc->sc_arpcom.ac_if.if_timer = 0;
516 1.1 briggs
517 1.21 briggs sc->txb_inuse = 0;
518 1.21 briggs sc->txb_new = 0;
519 1.21 briggs sc->txb_next_tx = 0;
520 1.1 briggs
521 1.21 briggs /* Set interface for page 0, remote DMA complete, stopped. */
522 1.22 briggs NIC_PUT(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STP);
523 1.1 briggs
524 1.1 briggs /*
525 1.21 briggs * Set FIFO threshold to 8, No auto-init Remote DMA, byte
526 1.21 briggs * order=80x86, word-wide DMA xfers,
527 1.1 briggs */
528 1.22 briggs NIC_PUT(sc, ED_P0_DCR,
529 1.22 briggs ED_DCR_FT1 | ED_DCR_WTS | ED_DCR_LS);
530 1.1 briggs
531 1.21 briggs /* Clear remote byte count registers. */
532 1.22 briggs NIC_PUT(sc, ED_P0_RBCR0, 0);
533 1.22 briggs NIC_PUT(sc, ED_P0_RBCR1, 0);
534 1.1 briggs
535 1.21 briggs /* Tell RCR to do nothing for now. */
536 1.22 briggs NIC_PUT(sc, ED_P0_RCR, ED_RCR_MON);
537 1.1 briggs
538 1.21 briggs /* Place NIC in internal loopback mode. */
539 1.22 briggs NIC_PUT(sc, ED_P0_TCR, ED_TCR_LB0);
540 1.1 briggs
541 1.21 briggs /* Initialize receive buffer ring. */
542 1.23 briggs NIC_PUT(sc, ED_P0_TPSR, sc->rec_page_start);
543 1.22 briggs NIC_PUT(sc, ED_P0_PSTART, sc->rec_page_start);
544 1.27 briggs
545 1.22 briggs NIC_PUT(sc, ED_P0_PSTOP, sc->rec_page_stop);
546 1.27 briggs NIC_PUT(sc, ED_P0_BNRY, sc->rec_page_start);
547 1.1 briggs
548 1.1 briggs /*
549 1.21 briggs * Clear all interrupts. A '1' in each bit position clears the
550 1.21 briggs * corresponding flag.
551 1.1 briggs */
552 1.22 briggs NIC_PUT(sc, ED_P0_ISR, 0xff);
553 1.15 briggs
554 1.1 briggs /*
555 1.1 briggs * Enable the following interrupts: receive/transmit complete,
556 1.21 briggs * receive/transmit error, and Receiver OverWrite.
557 1.1 briggs *
558 1.1 briggs * Counter overflow and Remote DMA complete are *not* enabled.
559 1.1 briggs */
560 1.22 briggs NIC_PUT(sc, ED_P0_IMR,
561 1.22 briggs ED_IMR_PRXE | ED_IMR_PTXE | ED_IMR_RXEE | ED_IMR_TXEE |
562 1.22 briggs ED_IMR_OVWE);
563 1.1 briggs
564 1.21 briggs /* Program command register for page 1. */
565 1.22 briggs NIC_PUT(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_1 | ED_CR_STP);
566 1.1 briggs
567 1.21 briggs /* Copy out our station address. */
568 1.1 briggs for (i = 0; i < ETHER_ADDR_LEN; ++i)
569 1.22 briggs NIC_PUT(sc, ED_P1_PAR0 + i, sc->sc_arpcom.ac_enaddr[i]);
570 1.1 briggs
571 1.21 briggs /* Set multicast filter on chip. */
572 1.21 briggs ae_getmcaf(&sc->sc_arpcom, mcaf);
573 1.21 briggs for (i = 0; i < 8; i++)
574 1.27 briggs NIC_PUT(sc, ED_P1_MAR0 + i, mcaf[i]);
575 1.1 briggs
576 1.1 briggs /*
577 1.21 briggs * Set current page pointer to one page after the boundary pointer, as
578 1.21 briggs * recommended in the National manual.
579 1.1 briggs */
580 1.21 briggs sc->next_packet = sc->rec_page_start + 1;
581 1.22 briggs NIC_PUT(sc, ED_P1_CURR, sc->next_packet);
582 1.1 briggs
583 1.21 briggs /* Program command register for page 0. */
584 1.22 briggs NIC_PUT(sc, ED_P1_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STP);
585 1.21 briggs
586 1.22 briggs i = ED_RCR_AB | ED_RCR_AM;
587 1.21 briggs if (ifp->if_flags & IFF_PROMISC) {
588 1.21 briggs /*
589 1.21 briggs * Set promiscuous mode. Multicast filter was set earlier so
590 1.21 briggs * that we should receive all multicast packets.
591 1.21 briggs */
592 1.22 briggs i |= ED_RCR_PRO | ED_RCR_AR | ED_RCR_SEP;
593 1.21 briggs }
594 1.22 briggs NIC_PUT(sc, ED_P0_RCR, i);
595 1.21 briggs
596 1.21 briggs /* Take interface out of loopback. */
597 1.22 briggs NIC_PUT(sc, ED_P0_TCR, 0);
598 1.1 briggs
599 1.21 briggs /* Fire up the interface. */
600 1.22 briggs NIC_PUT(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STA);
601 1.1 briggs
602 1.21 briggs /* Set 'running' flag, and clear output active flag. */
603 1.1 briggs ifp->if_flags |= IFF_RUNNING;
604 1.1 briggs ifp->if_flags &= ~IFF_OACTIVE;
605 1.1 briggs
606 1.21 briggs /* ...and attempt to start output. */
607 1.1 briggs ae_start(ifp);
608 1.1 briggs
609 1.21 briggs splx(s);
610 1.1 briggs }
611 1.1 briggs /*
612 1.21 briggs * This routine actually starts the transmission on the interface.
613 1.1 briggs */
614 1.21 briggs static inline void
615 1.21 briggs ae_xmit(sc)
616 1.21 briggs struct ae_softc *sc;
617 1.1 briggs {
618 1.21 briggs struct ifnet *ifp = &sc->sc_arpcom.ac_if;
619 1.21 briggs u_short len;
620 1.21 briggs
621 1.21 briggs len = sc->txb_len[sc->txb_next_tx];
622 1.1 briggs
623 1.21 briggs /* Set NIC for page 0 register access. */
624 1.22 briggs NIC_PUT(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STA);
625 1.1 briggs
626 1.21 briggs /* Set TX buffer start page. */
627 1.22 briggs NIC_PUT(sc, ED_P0_TPSR, sc->tx_page_start +
628 1.22 briggs sc->txb_next_tx * ED_TXBUF_SIZE);
629 1.1 briggs
630 1.21 briggs /* Set TX length. */
631 1.22 briggs NIC_PUT(sc, ED_P0_TBCR0, len);
632 1.22 briggs NIC_PUT(sc, ED_P0_TBCR1, len >> 8);
633 1.1 briggs
634 1.21 briggs /* Set page 0, remote DMA complete, transmit packet, and *start*. */
635 1.22 briggs NIC_PUT(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_TXP | ED_CR_STA);
636 1.21 briggs sc->xmit_busy = 1;
637 1.1 briggs
638 1.21 briggs /* Point to next transmit buffer slot and wrap if necessary. */
639 1.21 briggs sc->txb_next_tx++;
640 1.21 briggs if (sc->txb_next_tx == sc->txb_cnt)
641 1.21 briggs sc->txb_next_tx = 0;
642 1.1 briggs
643 1.21 briggs /* Set a timer just in case we never hear from the board again. */
644 1.18 briggs ifp->if_timer = 2;
645 1.1 briggs }
646 1.1 briggs /*
647 1.1 briggs * Start output on interface.
648 1.1 briggs * We make two assumptions here:
649 1.21 briggs * 1) that the current priority is set to splimp _before_ this code
650 1.1 briggs * is called *and* is returned to the appropriate priority after
651 1.1 briggs * return
652 1.1 briggs * 2) that the IFF_OACTIVE flag is checked before this code is called
653 1.1 briggs * (i.e. that the output part of the interface is idle)
654 1.1 briggs */
655 1.20 briggs void
656 1.1 briggs ae_start(ifp)
657 1.1 briggs struct ifnet *ifp;
658 1.1 briggs {
659 1.21 briggs struct ae_softc *sc = aecd.cd_devs[ifp->if_unit];
660 1.1 briggs struct mbuf *m0, *m;
661 1.1 briggs caddr_t buffer;
662 1.25 briggs int len;
663 1.1 briggs
664 1.1 briggs outloop:
665 1.1 briggs /*
666 1.21 briggs * First, see if there are buffered packets and an idle transmitter -
667 1.21 briggs * should never happen at this point.
668 1.1 briggs */
669 1.21 briggs if (sc->txb_inuse && (sc->xmit_busy == 0)) {
670 1.21 briggs printf("%s: packets buffered, but transmitter idle\n",
671 1.21 briggs sc->sc_dev.dv_xname);
672 1.21 briggs ae_xmit(sc);
673 1.21 briggs }
674 1.21 briggs /* See if there is room to put another packet in the buffer. */
675 1.21 briggs if (sc->txb_inuse == sc->txb_cnt) {
676 1.21 briggs /* No room. Indicate this to the outside world and exit. */
677 1.21 briggs ifp->if_flags |= IFF_OACTIVE;
678 1.21 briggs return;
679 1.21 briggs }
680 1.21 briggs IF_DEQUEUE(&sc->sc_arpcom.ac_if.if_snd, m);
681 1.1 briggs if (m == 0) {
682 1.21 briggs /*
683 1.21 briggs * We are using the !OACTIVE flag to indicate to the outside
684 1.21 briggs * world that we can accept an additional packet rather than
685 1.21 briggs * that the transmitter is _actually_ active. Indeed, the
686 1.21 briggs * transmitter may be active, but if we haven't filled all the
687 1.21 briggs * buffers with data then we still want to accept more.
688 1.21 briggs */
689 1.1 briggs ifp->if_flags &= ~IFF_OACTIVE;
690 1.1 briggs return;
691 1.1 briggs }
692 1.21 briggs /* Copy the mbuf chain into the transmit buffer. */
693 1.21 briggs m0 = m;
694 1.21 briggs
695 1.21 briggs /* txb_new points to next open buffer slot. */
696 1.22 briggs buffer = sc->mem_start + ((sc->txb_new * ED_TXBUF_SIZE) << ED_PAGE_SHIFT);
697 1.21 briggs
698 1.21 briggs len = ae_put(sc, m, buffer);
699 1.1 briggs
700 1.21 briggs sc->txb_len[sc->txb_new] = max(len, ETHER_MIN_LEN);
701 1.21 briggs sc->txb_inuse++;
702 1.1 briggs
703 1.21 briggs /* Point to next buffer slot and wrap if necessary. */
704 1.21 briggs if (++sc->txb_new == sc->txb_cnt)
705 1.21 briggs sc->txb_new = 0;
706 1.1 briggs
707 1.1 briggs if (sc->xmit_busy == 0)
708 1.21 briggs ae_xmit(sc);
709 1.21 briggs
710 1.1 briggs #if NBPFILTER > 0
711 1.21 briggs /* Tap off here if there is a BPF listener. */
712 1.21 briggs if (sc->sc_arpcom.ac_if.if_bpf)
713 1.21 briggs bpf_mtap(sc->sc_arpcom.ac_if.if_bpf, m0);
714 1.1 briggs #endif
715 1.1 briggs
716 1.1 briggs m_freem(m0);
717 1.1 briggs
718 1.21 briggs /* Loop back to the top to possibly buffer more packets. */
719 1.21 briggs goto outloop;
720 1.1 briggs }
721 1.1 briggs /*
722 1.1 briggs * Ethernet interface receiver interrupt.
723 1.1 briggs */
724 1.1 briggs static inline void
725 1.21 briggs ae_rint(sc)
726 1.21 briggs struct ae_softc *sc;
727 1.1 briggs {
728 1.25 briggs u_char boundary, current;
729 1.22 briggs u_short len;
730 1.25 briggs u_char nlen;
731 1.24 briggs struct ae_ring packet_hdr;
732 1.21 briggs caddr_t packet_ptr;
733 1.21 briggs
734 1.21 briggs loop:
735 1.21 briggs /* Set NIC to page 1 registers to get 'current' pointer. */
736 1.22 briggs NIC_PUT(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_1 | ED_CR_STA);
737 1.1 briggs
738 1.1 briggs /*
739 1.1 briggs * 'sc->next_packet' is the logical beginning of the ring-buffer - i.e.
740 1.21 briggs * it points to where new data has been buffered. The 'CURR' (current)
741 1.21 briggs * register points to the logical end of the ring-buffer - i.e. it
742 1.21 briggs * points to where additional new data will be added. We loop here
743 1.21 briggs * until the logical beginning equals the logical end (or in other
744 1.21 briggs * words, until the ring-buffer is empty).
745 1.1 briggs */
746 1.22 briggs current = NIC_GET(sc, ED_P1_CURR);
747 1.21 briggs if (sc->next_packet == current)
748 1.21 briggs return;
749 1.1 briggs
750 1.21 briggs /* Set NIC to page 0 registers to update boundary register. */
751 1.22 briggs NIC_PUT(sc, ED_P1_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STA);
752 1.1 briggs
753 1.21 briggs do {
754 1.21 briggs /* Get pointer to this buffer's header structure. */
755 1.21 briggs packet_ptr = sc->mem_ring +
756 1.22 briggs ((sc->next_packet - sc->rec_page_start) << ED_PAGE_SHIFT);
757 1.1 briggs
758 1.1 briggs /*
759 1.21 briggs * The byte count includes a 4 byte header that was added by
760 1.21 briggs * the NIC.
761 1.1 briggs */
762 1.25 briggs packet_hdr = *(struct ae_ring *) packet_ptr;
763 1.22 briggs packet_hdr.count =
764 1.22 briggs ((packet_hdr.count >> 8) & 0xff) |
765 1.22 briggs ((packet_hdr.count & 0xff) << 8);
766 1.21 briggs len = packet_hdr.count;
767 1.1 briggs
768 1.1 briggs /*
769 1.21 briggs * Try do deal with old, buggy chips that sometimes duplicate
770 1.21 briggs * the low byte of the length into the high byte. We do this
771 1.21 briggs * by simply ignoring the high byte of the length and always
772 1.21 briggs * recalculating it.
773 1.21 briggs *
774 1.21 briggs * NOTE: sc->next_packet is pointing at the current packet.
775 1.1 briggs */
776 1.21 briggs if (packet_hdr.next_packet >= sc->next_packet)
777 1.21 briggs nlen = (packet_hdr.next_packet - sc->next_packet);
778 1.21 briggs else
779 1.21 briggs nlen = ((packet_hdr.next_packet - sc->rec_page_start) +
780 1.25 briggs (sc->rec_page_stop - sc->next_packet));
781 1.21 briggs --nlen;
782 1.22 briggs if ((len & ED_PAGE_MASK) + sizeof(packet_hdr) > ED_PAGE_SIZE)
783 1.21 briggs --nlen;
784 1.22 briggs len = (len & ED_PAGE_MASK) | (nlen << ED_PAGE_SHIFT);
785 1.21 briggs #ifdef DIAGNOSTIC
786 1.22 briggs if (len != packet_hdr.count) {
787 1.21 briggs printf("%s: length does not match next packet pointer\n",
788 1.21 briggs sc->sc_dev.dv_xname);
789 1.21 briggs printf("%s: len %04x nlen %04x start %02x first %02x curr %02x next %02x stop %02x\n",
790 1.21 briggs sc->sc_dev.dv_xname, packet_hdr.count, len,
791 1.21 briggs sc->rec_page_start, sc->next_packet, current,
792 1.21 briggs packet_hdr.next_packet, sc->rec_page_stop);
793 1.21 briggs }
794 1.21 briggs #endif
795 1.1 briggs
796 1.1 briggs /*
797 1.21 briggs * Be fairly liberal about what we allow as a "reasonable"
798 1.21 briggs * length so that a [crufty] packet will make it to BPF (and
799 1.21 briggs * can thus be analyzed). Note that all that is really
800 1.21 briggs * important is that we have a length that will fit into one
801 1.21 briggs * mbuf cluster or less; the upper layer protocols can then
802 1.21 briggs * figure out the length from their own length field(s).
803 1.1 briggs */
804 1.21 briggs if (len <= MCLBYTES &&
805 1.21 briggs packet_hdr.next_packet >= sc->rec_page_start &&
806 1.21 briggs packet_hdr.next_packet < sc->rec_page_stop) {
807 1.21 briggs /* Go get packet. */
808 1.24 briggs ae_get_packet(sc, packet_ptr + sizeof(struct ae_ring),
809 1.24 briggs len - sizeof(struct ae_ring));
810 1.21 briggs ++sc->sc_arpcom.ac_if.if_ipackets;
811 1.21 briggs } else {
812 1.21 briggs /* Really BAD. The ring pointers are corrupted. */
813 1.21 briggs log(LOG_ERR,
814 1.21 briggs "%s: NIC memory corrupt - invalid packet length %d\n",
815 1.21 briggs sc->sc_dev.dv_xname, len);
816 1.21 briggs ++sc->sc_arpcom.ac_if.if_ierrors;
817 1.21 briggs ae_reset(sc);
818 1.21 briggs return;
819 1.21 briggs }
820 1.1 briggs
821 1.21 briggs /* Update next packet pointer. */
822 1.21 briggs sc->next_packet = packet_hdr.next_packet;
823 1.1 briggs
824 1.1 briggs /*
825 1.21 briggs * Update NIC boundary pointer - being careful to keep it one
826 1.21 briggs * buffer behind (as recommended by NS databook).
827 1.1 briggs */
828 1.21 briggs boundary = sc->next_packet - 1;
829 1.21 briggs if (boundary < sc->rec_page_start)
830 1.21 briggs boundary = sc->rec_page_stop - 1;
831 1.22 briggs NIC_PUT(sc, ED_P0_BNRY, boundary);
832 1.21 briggs } while (sc->next_packet != current);
833 1.21 briggs
834 1.21 briggs goto loop;
835 1.1 briggs }
836 1.21 briggs /* Ethernet interface interrupt processor. */
837 1.22 briggs void
838 1.22 briggs aeintr(sc)
839 1.22 briggs struct ae_softc *sc;
840 1.1 briggs {
841 1.25 briggs u_char isr;
842 1.1 briggs
843 1.18 briggs aeintr_ctr++;
844 1.1 briggs
845 1.21 briggs /* Set NIC to page 0 registers. */
846 1.22 briggs NIC_PUT(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STA);
847 1.21 briggs
848 1.22 briggs isr = NIC_GET(sc, ED_P0_ISR);
849 1.21 briggs if (!isr)
850 1.22 briggs return;
851 1.1 briggs
852 1.21 briggs /* Loop until there are no more new interrupts. */
853 1.21 briggs for (;;) {
854 1.1 briggs /*
855 1.21 briggs * Reset all the bits that we are 'acknowledging' by writing a
856 1.21 briggs * '1' to each bit position that was set.
857 1.21 briggs * (Writing a '1' *clears* the bit.)
858 1.1 briggs */
859 1.22 briggs NIC_PUT(sc, ED_P0_ISR, isr);
860 1.1 briggs
861 1.1 briggs /*
862 1.21 briggs * Handle transmitter interrupts. Handle these first because
863 1.21 briggs * the receiver will reset the board under some conditions.
864 1.1 briggs */
865 1.22 briggs if (isr & (ED_ISR_PTX | ED_ISR_TXE)) {
866 1.25 briggs u_char collisions = NIC_GET(sc, ED_P0_NCR) & 0x0f;
867 1.1 briggs
868 1.1 briggs /*
869 1.21 briggs * Check for transmit error. If a TX completed with an
870 1.21 briggs * error, we end up throwing the packet away. Really
871 1.1 briggs * the only error that is possible is excessive
872 1.1 briggs * collisions, and in this case it is best to allow the
873 1.21 briggs * automatic mechanisms of TCP to backoff the flow. Of
874 1.1 briggs * course, with UDP we're screwed, but this is expected
875 1.1 briggs * when a network is heavily loaded.
876 1.1 briggs */
877 1.22 briggs (void) NIC_GET(sc, ED_P0_TSR);
878 1.22 briggs if (isr & ED_ISR_TXE) {
879 1.1 briggs /*
880 1.21 briggs * Excessive collisions (16).
881 1.1 briggs */
882 1.22 briggs if ((NIC_GET(sc, ED_P0_TSR) & ED_TSR_ABT)
883 1.21 briggs && (collisions == 0)) {
884 1.1 briggs /*
885 1.21 briggs * When collisions total 16, the P0_NCR
886 1.21 briggs * will indicate 0, and the TSR_ABT is
887 1.21 briggs * set.
888 1.1 briggs */
889 1.1 briggs collisions = 16;
890 1.1 briggs }
891 1.21 briggs /* Update output errors counter. */
892 1.21 briggs ++sc->sc_arpcom.ac_if.if_oerrors;
893 1.1 briggs } else {
894 1.1 briggs /*
895 1.1 briggs * Update total number of successfully
896 1.21 briggs * transmitted packets.
897 1.1 briggs */
898 1.21 briggs ++sc->sc_arpcom.ac_if.if_opackets;
899 1.1 briggs }
900 1.1 briggs
901 1.21 briggs /* Reset TX busy and output active flags. */
902 1.1 briggs sc->xmit_busy = 0;
903 1.21 briggs sc->sc_arpcom.ac_if.if_flags &= ~IFF_OACTIVE;
904 1.1 briggs
905 1.21 briggs /* Clear watchdog timer. */
906 1.21 briggs sc->sc_arpcom.ac_if.if_timer = 0;
907 1.1 briggs
908 1.1 briggs /*
909 1.1 briggs * Add in total number of collisions on last
910 1.21 briggs * transmission.
911 1.1 briggs */
912 1.21 briggs sc->sc_arpcom.ac_if.if_collisions += collisions;
913 1.1 briggs
914 1.1 briggs /*
915 1.21 briggs * Decrement buffer in-use count if not zero (can only
916 1.21 briggs * be zero if a transmitter interrupt occured while not
917 1.21 briggs * actually transmitting).
918 1.1 briggs * If data is ready to transmit, start it transmitting,
919 1.21 briggs * otherwise defer until after handling receiver.
920 1.1 briggs */
921 1.21 briggs if (sc->txb_inuse && --sc->txb_inuse)
922 1.21 briggs ae_xmit(sc);
923 1.1 briggs }
924 1.21 briggs /* Handle receiver interrupts. */
925 1.22 briggs if (isr & (ED_ISR_PRX | ED_ISR_RXE | ED_ISR_OVW)) {
926 1.21 briggs /*
927 1.21 briggs * Overwrite warning. In order to make sure that a
928 1.21 briggs * lockup of the local DMA hasn't occurred, we reset
929 1.21 briggs * and re-init the NIC. The NSC manual suggests only a
930 1.21 briggs * partial reset/re-init is necessary - but some chips
931 1.21 briggs * seem to want more. The DMA lockup has been seen
932 1.21 briggs * only with early rev chips - Methinks this bug was
933 1.21 briggs * fixed in later revs. -DG
934 1.21 briggs */
935 1.22 briggs if (isr & ED_ISR_OVW) {
936 1.21 briggs ++sc->sc_arpcom.ac_if.if_ierrors;
937 1.21 briggs #ifdef DIAGNOSTIC
938 1.1 briggs log(LOG_WARNING,
939 1.21 briggs "%s: warning - receiver ring buffer overrun\n",
940 1.21 briggs sc->sc_dev.dv_xname);
941 1.21 briggs #endif
942 1.21 briggs /* Stop/reset/re-init NIC. */
943 1.21 briggs ae_reset(sc);
944 1.21 briggs } else {
945 1.1 briggs /*
946 1.21 briggs * Receiver Error. One or more of: CRC error,
947 1.21 briggs * frame alignment error FIFO overrun, or
948 1.21 briggs * missed packet.
949 1.1 briggs */
950 1.22 briggs if (isr & ED_ISR_RXE) {
951 1.21 briggs ++sc->sc_arpcom.ac_if.if_ierrors;
952 1.1 briggs #ifdef AE_DEBUG
953 1.21 briggs printf("%s: receive error %x\n",
954 1.21 briggs sc->sc_dev.dv_xname,
955 1.22 briggs NIC_GET(sc, ED_P0_RSR));
956 1.1 briggs #endif
957 1.1 briggs }
958 1.1 briggs /*
959 1.1 briggs * Go get the packet(s)
960 1.1 briggs * XXX - Doing this on an error is dubious
961 1.21 briggs * because there shouldn't be any data to get
962 1.21 briggs * (we've configured the interface to not
963 1.21 briggs * accept packets with errors).
964 1.1 briggs */
965 1.21 briggs ae_rint(sc);
966 1.1 briggs }
967 1.1 briggs }
968 1.1 briggs /*
969 1.21 briggs * If it looks like the transmitter can take more data, attempt
970 1.21 briggs * to start output on the interface. This is done after
971 1.21 briggs * handling the receiver to give the receiver priority.
972 1.1 briggs */
973 1.21 briggs if ((sc->sc_arpcom.ac_if.if_flags & IFF_OACTIVE) == 0)
974 1.21 briggs ae_start(&sc->sc_arpcom.ac_if);
975 1.1 briggs
976 1.1 briggs /*
977 1.21 briggs * Return NIC CR to standard state: page 0, remote DMA
978 1.21 briggs * complete, start (toggling the TXP bit off, even if was just
979 1.21 briggs * set in the transmit routine, is *okay* - it is 'edge'
980 1.21 briggs * triggered from low to high).
981 1.1 briggs */
982 1.22 briggs NIC_PUT(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STA);
983 1.1 briggs
984 1.1 briggs /*
985 1.21 briggs * If the Network Talley Counters overflow, read them to reset
986 1.21 briggs * them. It appears that old 8390's won't clear the ISR flag
987 1.21 briggs * otherwise - resulting in an infinite loop.
988 1.1 briggs */
989 1.22 briggs if (isr & ED_ISR_CNT) {
990 1.22 briggs (void) NIC_GET(sc, ED_P0_CNTR0);
991 1.22 briggs (void) NIC_GET(sc, ED_P0_CNTR1);
992 1.22 briggs (void) NIC_GET(sc, ED_P0_CNTR2);
993 1.1 briggs }
994 1.22 briggs isr = NIC_GET(sc, ED_P0_ISR);
995 1.21 briggs if (!isr)
996 1.22 briggs return;
997 1.1 briggs }
998 1.1 briggs }
999 1.1 briggs /*
1000 1.21 briggs * Process an ioctl request. This code needs some work - it looks pretty ugly.
1001 1.1 briggs */
1002 1.1 briggs int
1003 1.1 briggs ae_ioctl(ifp, command, data)
1004 1.1 briggs register struct ifnet *ifp;
1005 1.25 briggs u_long command;
1006 1.1 briggs caddr_t data;
1007 1.1 briggs {
1008 1.21 briggs struct ae_softc *sc = aecd.cd_devs[ifp->if_unit];
1009 1.25 briggs register struct ifaddr *ifa = (struct ifaddr *) data;
1010 1.25 briggs struct ifreq *ifr = (struct ifreq *) data;
1011 1.25 briggs int s, error = 0;
1012 1.1 briggs
1013 1.21 briggs s = splimp();
1014 1.1 briggs
1015 1.1 briggs switch (command) {
1016 1.1 briggs
1017 1.1 briggs case SIOCSIFADDR:
1018 1.1 briggs ifp->if_flags |= IFF_UP;
1019 1.1 briggs
1020 1.1 briggs switch (ifa->ifa_addr->sa_family) {
1021 1.1 briggs #ifdef INET
1022 1.1 briggs case AF_INET:
1023 1.21 briggs ae_init(sc);
1024 1.21 briggs arp_ifinit(&sc->sc_arpcom, ifa);
1025 1.1 briggs break;
1026 1.1 briggs #endif
1027 1.1 briggs #ifdef NS
1028 1.25 briggs /* XXX - This code is probably wrong. */
1029 1.1 briggs case AF_NS:
1030 1.25 briggs {
1031 1.25 briggs register struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
1032 1.1 briggs
1033 1.25 briggs if (ns_nullhost(*ina))
1034 1.25 briggs ina->x_host =
1035 1.25 briggs *(union ns_host *) (sc->sc_arpcom.ac_enaddr);
1036 1.25 briggs else
1037 1.25 briggs bcopy(ina->x_host.c_host,
1038 1.25 briggs sc->sc_arpcom.ac_enaddr,
1039 1.25 briggs sizeof(sc->sc_arpcom.ac_enaddr));
1040 1.25 briggs /* Set new address. */
1041 1.25 briggs ae_init(sc);
1042 1.25 briggs break;
1043 1.25 briggs }
1044 1.1 briggs #endif
1045 1.1 briggs default:
1046 1.11 briggs ae_init(sc);
1047 1.1 briggs break;
1048 1.1 briggs }
1049 1.1 briggs break;
1050 1.1 briggs
1051 1.1 briggs case SIOCSIFFLAGS:
1052 1.21 briggs if ((ifp->if_flags & IFF_UP) == 0 &&
1053 1.21 briggs (ifp->if_flags & IFF_RUNNING) != 0) {
1054 1.21 briggs /*
1055 1.21 briggs * If interface is marked down and it is running, then
1056 1.21 briggs * stop it.
1057 1.21 briggs */
1058 1.15 briggs ae_stop(sc);
1059 1.1 briggs ifp->if_flags &= ~IFF_RUNNING;
1060 1.25 briggs } else
1061 1.25 briggs if ((ifp->if_flags & IFF_UP) != 0 &&
1062 1.25 briggs (ifp->if_flags & IFF_RUNNING) == 0) {
1063 1.25 briggs /*
1064 1.25 briggs * If interface is marked up and it is stopped, then
1065 1.25 briggs * start it.
1066 1.25 briggs */
1067 1.25 briggs ae_init(sc);
1068 1.25 briggs } else {
1069 1.25 briggs /*
1070 1.25 briggs * Reset the interface to pick up changes in any other
1071 1.25 briggs * flags that affect hardware registers.
1072 1.25 briggs */
1073 1.25 briggs ae_stop(sc);
1074 1.25 briggs ae_init(sc);
1075 1.25 briggs }
1076 1.21 briggs break;
1077 1.21 briggs
1078 1.21 briggs case SIOCADDMULTI:
1079 1.21 briggs case SIOCDELMULTI:
1080 1.21 briggs /* Update our multicast list. */
1081 1.21 briggs error = (command == SIOCADDMULTI) ?
1082 1.21 briggs ether_addmulti(ifr, &sc->sc_arpcom) :
1083 1.21 briggs ether_delmulti(ifr, &sc->sc_arpcom);
1084 1.21 briggs
1085 1.21 briggs if (error == ENETRESET) {
1086 1.1 briggs /*
1087 1.21 briggs * Multicast list has changed; set the hardware filter
1088 1.21 briggs * accordingly.
1089 1.1 briggs */
1090 1.25 briggs ae_stop(sc); /* XXX for ds_setmcaf? */
1091 1.21 briggs ae_init(sc);
1092 1.21 briggs error = 0;
1093 1.1 briggs }
1094 1.1 briggs break;
1095 1.1 briggs
1096 1.1 briggs default:
1097 1.1 briggs error = EINVAL;
1098 1.1 briggs }
1099 1.21 briggs
1100 1.21 briggs splx(s);
1101 1.1 briggs return (error);
1102 1.1 briggs }
1103 1.1 briggs /*
1104 1.1 briggs * Retreive packet from shared memory and send to the next level up via
1105 1.21 briggs * ether_input(). If there is a BPF listener, give a copy to BPF, too.
1106 1.1 briggs */
1107 1.21 briggs void
1108 1.1 briggs ae_get_packet(sc, buf, len)
1109 1.1 briggs struct ae_softc *sc;
1110 1.21 briggs caddr_t buf;
1111 1.1 briggs u_short len;
1112 1.1 briggs {
1113 1.1 briggs struct ether_header *eh;
1114 1.25 briggs struct mbuf *m, *ae_ring_to_mbuf();
1115 1.1 briggs
1116 1.21 briggs /* Allocate a header mbuf. */
1117 1.1 briggs MGETHDR(m, M_DONTWAIT, MT_DATA);
1118 1.1 briggs if (m == 0)
1119 1.21 briggs return;
1120 1.21 briggs m->m_pkthdr.rcvif = &sc->sc_arpcom.ac_if;
1121 1.1 briggs m->m_pkthdr.len = len;
1122 1.1 briggs m->m_len = 0;
1123 1.1 briggs
1124 1.21 briggs /* The following silliness is to make NFS happy. */
1125 1.1 briggs #define EROUND ((sizeof(struct ether_header) + 3) & ~3)
1126 1.1 briggs #define EOFF (EROUND - sizeof(struct ether_header))
1127 1.1 briggs
1128 1.1 briggs /*
1129 1.21 briggs * The following assumes there is room for the ether header in the
1130 1.21 briggs * header mbuf.
1131 1.1 briggs */
1132 1.21 briggs m->m_data += EOFF;
1133 1.21 briggs eh = mtod(m, struct ether_header *);
1134 1.21 briggs
1135 1.21 briggs word_copy(buf, mtod(m, caddr_t), sizeof(struct ether_header));
1136 1.1 briggs buf += sizeof(struct ether_header);
1137 1.21 briggs m->m_len += sizeof(struct ether_header);
1138 1.1 briggs len -= sizeof(struct ether_header);
1139 1.1 briggs
1140 1.21 briggs /* Pull packet off interface. */
1141 1.21 briggs if (ae_ring_to_mbuf(sc, buf, m, len) == 0) {
1142 1.21 briggs m_freem(m);
1143 1.21 briggs return;
1144 1.1 briggs }
1145 1.1 briggs #if NBPFILTER > 0
1146 1.1 briggs /*
1147 1.21 briggs * Check if there's a BPF listener on this interface. If so, hand off
1148 1.21 briggs * the raw packet to bpf.
1149 1.1 briggs */
1150 1.21 briggs if (sc->sc_arpcom.ac_if.if_bpf) {
1151 1.21 briggs bpf_mtap(sc->sc_arpcom.ac_if.if_bpf, m);
1152 1.1 briggs
1153 1.1 briggs /*
1154 1.1 briggs * Note that the interface cannot be in promiscuous mode if
1155 1.1 briggs * there are no BPF listeners. And if we are in promiscuous
1156 1.1 briggs * mode, we have to check if this packet is really ours.
1157 1.1 briggs */
1158 1.21 briggs if ((sc->sc_arpcom.ac_if.if_flags & IFF_PROMISC) &&
1159 1.25 briggs (eh->ether_dhost[0] & 1) == 0 && /* !mcast and !bcast */
1160 1.21 briggs bcmp(eh->ether_dhost, sc->sc_arpcom.ac_enaddr,
1161 1.25 briggs sizeof(eh->ether_dhost)) != 0) {
1162 1.21 briggs m_freem(m);
1163 1.1 briggs return;
1164 1.1 briggs }
1165 1.1 briggs }
1166 1.1 briggs #endif
1167 1.1 briggs
1168 1.21 briggs /* Fix up data start offset in mbuf to point past ether header. */
1169 1.21 briggs m_adj(m, sizeof(struct ether_header));
1170 1.21 briggs ether_input(&sc->sc_arpcom.ac_if, eh, m);
1171 1.1 briggs }
1172 1.1 briggs /*
1173 1.21 briggs * Supporting routines.
1174 1.1 briggs */
1175 1.1 briggs
1176 1.1 briggs /*
1177 1.21 briggs * Given a source and destination address, copy 'amount' of a packet from the
1178 1.21 briggs * ring buffer into a linear destination buffer. Takes into account ring-wrap.
1179 1.1 briggs */
1180 1.21 briggs static inline caddr_t
1181 1.21 briggs ae_ring_copy(sc, src, dst, amount)
1182 1.1 briggs struct ae_softc *sc;
1183 1.21 briggs caddr_t src, dst;
1184 1.25 briggs u_short amount;
1185 1.1 briggs {
1186 1.25 briggs u_short tmp_amount;
1187 1.1 briggs
1188 1.21 briggs /* Does copy wrap to lower addr in ring buffer? */
1189 1.21 briggs if (src + amount > sc->mem_end) {
1190 1.21 briggs tmp_amount = sc->mem_end - src;
1191 1.21 briggs
1192 1.21 briggs /* Copy amount up to end of NIC memory. */
1193 1.23 briggs byte_copy(src, dst, tmp_amount);
1194 1.21 briggs
1195 1.1 briggs amount -= tmp_amount;
1196 1.21 briggs src = sc->mem_ring;
1197 1.1 briggs dst += tmp_amount;
1198 1.1 briggs }
1199 1.23 briggs byte_copy(src, dst, amount);
1200 1.1 briggs
1201 1.21 briggs return (src + amount);
1202 1.1 briggs }
1203 1.1 briggs /*
1204 1.21 briggs * Copy data from receive buffer to end of mbuf chain allocate additional mbufs
1205 1.21 briggs * as needed. Return pointer to last mbuf in chain.
1206 1.21 briggs * sc = ae info (softc)
1207 1.21 briggs * src = pointer in ae ring buffer
1208 1.1 briggs * dst = pointer to last mbuf in mbuf chain to copy to
1209 1.1 briggs * amount = amount of data to copy
1210 1.1 briggs */
1211 1.1 briggs struct mbuf *
1212 1.21 briggs ae_ring_to_mbuf(sc, src, dst, total_len)
1213 1.1 briggs struct ae_softc *sc;
1214 1.21 briggs caddr_t src;
1215 1.1 briggs struct mbuf *dst;
1216 1.1 briggs u_short total_len;
1217 1.1 briggs {
1218 1.1 briggs register struct mbuf *m = dst;
1219 1.1 briggs
1220 1.1 briggs while (total_len) {
1221 1.1 briggs register u_short amount = min(total_len, M_TRAILINGSPACE(m));
1222 1.1 briggs
1223 1.15 briggs if (amount == 0) {
1224 1.1 briggs /*
1225 1.21 briggs * No more data in this mbuf; alloc another.
1226 1.21 briggs *
1227 1.1 briggs * If there is enough data for an mbuf cluster, attempt
1228 1.21 briggs * to allocate one of those, otherwise, a regular mbuf
1229 1.21 briggs * will do.
1230 1.1 briggs * Note that a regular mbuf is always required, even if
1231 1.21 briggs * we get a cluster - getting a cluster does not
1232 1.21 briggs * allocate any mbufs, and one is needed to assign the
1233 1.21 briggs * cluster to. The mbuf that has a cluster extension
1234 1.21 briggs * can not be used to contain data - only the cluster
1235 1.21 briggs * can contain data.
1236 1.21 briggs */
1237 1.1 briggs dst = m;
1238 1.1 briggs MGET(m, M_DONTWAIT, MT_DATA);
1239 1.1 briggs if (m == 0)
1240 1.1 briggs return (0);
1241 1.1 briggs
1242 1.1 briggs if (total_len >= MINCLSIZE)
1243 1.1 briggs MCLGET(m, M_DONTWAIT);
1244 1.1 briggs
1245 1.1 briggs m->m_len = 0;
1246 1.1 briggs dst->m_next = m;
1247 1.1 briggs amount = min(total_len, M_TRAILINGSPACE(m));
1248 1.1 briggs }
1249 1.15 briggs src = ae_ring_copy(sc, src, mtod(m, caddr_t) + m->m_len,
1250 1.21 briggs amount);
1251 1.1 briggs
1252 1.1 briggs m->m_len += amount;
1253 1.1 briggs total_len -= amount;
1254 1.21 briggs }
1255 1.21 briggs return (m);
1256 1.21 briggs }
1257 1.21 briggs /*
1258 1.21 briggs * Compute the multicast address filter from the list of multicast addresses we
1259 1.21 briggs * need to listen to.
1260 1.21 briggs */
1261 1.21 briggs void
1262 1.21 briggs ae_getmcaf(ac, af)
1263 1.21 briggs struct arpcom *ac;
1264 1.27 briggs u_char *af;
1265 1.21 briggs {
1266 1.21 briggs struct ifnet *ifp = &ac->ac_if;
1267 1.21 briggs struct ether_multi *enm;
1268 1.21 briggs register u_char *cp, c;
1269 1.21 briggs register u_long crc;
1270 1.21 briggs register int i, len;
1271 1.21 briggs struct ether_multistep step;
1272 1.21 briggs
1273 1.21 briggs /*
1274 1.21 briggs * Set up multicast address filter by passing all multicast addresses
1275 1.21 briggs * through a crc generator, and then using the high order 6 bits as an
1276 1.21 briggs * index into the 64 bit logical address filter. The high order bit
1277 1.21 briggs * selects the word, while the rest of the bits select the bit within
1278 1.21 briggs * the word.
1279 1.21 briggs */
1280 1.21 briggs
1281 1.21 briggs if (ifp->if_flags & IFF_PROMISC) {
1282 1.21 briggs ifp->if_flags |= IFF_ALLMULTI;
1283 1.27 briggs for (i = 0; i < 8; i++)
1284 1.27 briggs af[i] = 0xff;
1285 1.21 briggs return;
1286 1.21 briggs }
1287 1.27 briggs for (i = 0; i < 8; i++)
1288 1.27 briggs af[i] = 0;
1289 1.21 briggs ETHER_FIRST_MULTI(step, ac, enm);
1290 1.21 briggs while (enm != NULL) {
1291 1.21 briggs if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
1292 1.25 briggs sizeof(enm->enm_addrlo)) != 0) {
1293 1.21 briggs /*
1294 1.21 briggs * We must listen to a range of multicast addresses.
1295 1.21 briggs * For now, just accept all multicasts, rather than
1296 1.21 briggs * trying to set only those filter bits needed to match
1297 1.21 briggs * the range. (At this time, the only use of address
1298 1.21 briggs * ranges is for IP multicast routing, for which the
1299 1.21 briggs * range is big enough to require all bits set.)
1300 1.21 briggs */
1301 1.21 briggs ifp->if_flags |= IFF_ALLMULTI;
1302 1.27 briggs for (i = 0; i < 8; i++)
1303 1.27 briggs af[i] = 0xff;
1304 1.21 briggs return;
1305 1.21 briggs }
1306 1.21 briggs cp = enm->enm_addrlo;
1307 1.21 briggs crc = 0xffffffff;
1308 1.21 briggs for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
1309 1.21 briggs c = *cp++;
1310 1.21 briggs for (i = 8; --i >= 0;) {
1311 1.21 briggs if (((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01)) {
1312 1.21 briggs crc <<= 1;
1313 1.21 briggs crc ^= 0x04c11db6 | 1;
1314 1.21 briggs } else
1315 1.21 briggs crc <<= 1;
1316 1.21 briggs c >>= 1;
1317 1.21 briggs }
1318 1.21 briggs }
1319 1.21 briggs /* Just want the 6 most significant bits. */
1320 1.21 briggs crc >>= 26;
1321 1.21 briggs
1322 1.21 briggs /* Turn on the corresponding bit in the filter. */
1323 1.27 briggs af[crc >> 3] |= 1 << (crc & 0x7);
1324 1.21 briggs
1325 1.21 briggs ETHER_NEXT_MULTI(step, enm);
1326 1.1 briggs }
1327 1.21 briggs ifp->if_flags &= ~IFF_ALLMULTI;
1328 1.21 briggs }
1329 1.21 briggs /*
1330 1.21 briggs * Copy packet from mbuf to the board memory
1331 1.21 briggs *
1332 1.21 briggs * Currently uses an extra buffer/extra memory copy,
1333 1.21 briggs * unless the whole packet fits in one mbuf.
1334 1.21 briggs *
1335 1.21 briggs */
1336 1.21 briggs u_short
1337 1.21 briggs ae_put(sc, m, buf)
1338 1.21 briggs struct ae_softc *sc;
1339 1.21 briggs struct mbuf *m;
1340 1.21 briggs caddr_t buf;
1341 1.21 briggs {
1342 1.21 briggs u_char *data, savebyte[2];
1343 1.25 briggs int len, wantbyte;
1344 1.25 briggs u_short totlen = 0;
1345 1.21 briggs
1346 1.21 briggs wantbyte = 0;
1347 1.21 briggs
1348 1.21 briggs for (; m != 0; m = m->m_next) {
1349 1.21 briggs data = mtod(m, u_char *);
1350 1.21 briggs len = m->m_len;
1351 1.21 briggs totlen += len;
1352 1.21 briggs if (len > 0) {
1353 1.21 briggs /* Finish the last word. */
1354 1.21 briggs if (wantbyte) {
1355 1.21 briggs savebyte[1] = *data;
1356 1.21 briggs word_copy(savebyte, buf, 2);
1357 1.21 briggs buf += 2;
1358 1.21 briggs data++;
1359 1.21 briggs len--;
1360 1.21 briggs wantbyte = 0;
1361 1.21 briggs }
1362 1.21 briggs /* Output contiguous words. */
1363 1.21 briggs if (len > 1) {
1364 1.21 briggs word_copy(data, buf, len);
1365 1.21 briggs buf += len & ~1;
1366 1.21 briggs data += len & ~1;
1367 1.21 briggs len &= 1;
1368 1.21 briggs }
1369 1.21 briggs /* Save last byte, if necessary. */
1370 1.21 briggs if (len == 1) {
1371 1.21 briggs savebyte[0] = *data;
1372 1.21 briggs wantbyte = 1;
1373 1.21 briggs }
1374 1.21 briggs }
1375 1.21 briggs }
1376 1.21 briggs
1377 1.21 briggs if (wantbyte) {
1378 1.21 briggs savebyte[1] = 0;
1379 1.21 briggs word_copy(savebyte, buf, 2);
1380 1.21 briggs }
1381 1.21 briggs return (totlen);
1382 1.1 briggs }
1383