if_ae.c revision 1.9 1 1.1 briggs /*
2 1.1 briggs * Device driver for National Semiconductor DS8390 based ethernet adapters.
3 1.1 briggs *
4 1.1 briggs * Based on original ISA bus driver by David Greenman, 29-April-1993
5 1.1 briggs *
6 1.1 briggs * Copyright (C) 1993, David Greenman. This software may be used, modified,
7 1.1 briggs * copied, distributed, and sold, in both source and binary form provided
8 1.1 briggs * that the above copyright and these terms are retained. Under no
9 1.1 briggs * circumstances is the author responsible for the proper functioning
10 1.1 briggs * of this software, nor does the author assume any responsibility
11 1.1 briggs * for damages incurred with its use.
12 1.1 briggs *
13 1.1 briggs * Adapted for MacBSD by Brad Parker <brad (at) fcr.com>
14 1.1 briggs *
15 1.1 briggs * Currently supports:
16 1.1 briggs * Apples NB Ethernet card
17 1.1 briggs * Interlan A310 Nubus Ethernet card
18 1.1 briggs * Cayman Systems GatorCard
19 1.1 briggs */
20 1.1 briggs
21 1.1 briggs /*
22 1.7 briggs * $Id: if_ae.c,v 1.9 1994/02/27 03:40:26 briggs Exp $
23 1.1 briggs */
24 1.1 briggs
25 1.1 briggs #include "ae.h"
26 1.1 briggs /* bpfilter included here in case it is needed in future net includes */
27 1.1 briggs #include "bpfilter.h"
28 1.1 briggs
29 1.9 briggs #include <sys/param.h>
30 1.9 briggs #include <sys/systm.h>
31 1.9 briggs #include <sys/errno.h>
32 1.9 briggs #include <sys/ioctl.h>
33 1.9 briggs #include <sys/mbuf.h>
34 1.9 briggs #include <sys/socket.h>
35 1.9 briggs #include <sys/syslog.h>
36 1.1 briggs
37 1.5 briggs #include <net/if.h>
38 1.5 briggs #include <net/if_dl.h>
39 1.5 briggs #include <net/if_types.h>
40 1.5 briggs #include <net/netisr.h>
41 1.1 briggs
42 1.1 briggs #ifdef INET
43 1.5 briggs #include <netinet/in.h>
44 1.5 briggs #include <netinet/in_systm.h>
45 1.5 briggs #include <netinet/in_var.h>
46 1.5 briggs #include <netinet/ip.h>
47 1.5 briggs #include <netinet/if_ether.h>
48 1.1 briggs #endif
49 1.1 briggs
50 1.1 briggs #ifdef NS
51 1.5 briggs #include <netns/ns.h>
52 1.5 briggs #include <netns/ns_if.h>
53 1.1 briggs #endif
54 1.1 briggs
55 1.1 briggs #if NBPFILTER > 0
56 1.5 briggs #include <net/bpf.h>
57 1.5 briggs #include <net/bpfdesc.h>
58 1.1 briggs #endif
59 1.1 briggs
60 1.5 briggs #include <sys/device.h>
61 1.3 briggs #include "nubus.h"
62 1.1 briggs #include "if_aereg.h"
63 1.1 briggs
64 1.3 briggs struct ae_device {
65 1.3 briggs struct device ae_dev;
66 1.3 briggs /* struct nubusdev ae_nu;
67 1.3 briggs struct intrhand ae_ih; */
68 1.3 briggs };
69 1.3 briggs
70 1.1 briggs /*
71 1.1 briggs * ae_softc: per line info and status
72 1.1 briggs */
73 1.1 briggs struct ae_softc {
74 1.3 briggs struct ae_device *sc_ae;
75 1.3 briggs
76 1.1 briggs struct arpcom arpcom; /* ethernet common */
77 1.1 briggs
78 1.1 briggs char *type_str; /* pointer to type string */
79 1.1 briggs u_char vendor; /* interface vendor */
80 1.1 briggs u_char type; /* interface type code */
81 1.1 briggs #define APPLE_CARD(sc) ((sc)->vendor == AE_VENDOR_APPLE)
82 1.1 briggs #define REG_MAP(sc, reg) (APPLE_CARD(sc) ? (0x0f-(reg))<<2 : (reg)<<2)
83 1.1 briggs #define NIC_GET(sc, reg) ((sc)->nic_addr[REG_MAP(sc, reg)])
84 1.1 briggs #define NIC_PUT(sc, reg, val) ((sc)->nic_addr[REG_MAP(sc, reg)] = (val))
85 1.1 briggs volatile caddr_t nic_addr; /* NIC (DS8390) I/O bus address */
86 1.1 briggs caddr_t rom_addr; /* on board prom address */
87 1.1 briggs caddr_t smem_start; /* shared memory start address */
88 1.1 briggs caddr_t smem_end; /* shared memory end address */
89 1.1 briggs u_long smem_size; /* total shared memory size */
90 1.1 briggs caddr_t smem_ring; /* start of RX ring-buffer (in smem) */
91 1.1 briggs
92 1.1 briggs caddr_t bpf; /* BPF "magic cookie" */
93 1.1 briggs
94 1.1 briggs u_char xmit_busy; /* transmitter is busy */
95 1.1 briggs u_char txb_cnt; /* Number of transmit buffers */
96 1.1 briggs u_char txb_next; /* Pointer to next buffer ready to xmit */
97 1.1 briggs u_short txb_next_len; /* next xmit buffer length */
98 1.1 briggs u_char data_buffered; /* data has been buffered in interface memory */
99 1.1 briggs u_char tx_page_start; /* first page of TX buffer area */
100 1.1 briggs
101 1.1 briggs u_char rec_page_start; /* first page of RX ring-buffer */
102 1.1 briggs u_char rec_page_stop; /* last page of RX ring-buffer */
103 1.1 briggs u_char next_packet; /* pointer to next unread RX packet */
104 1.1 briggs } ae_softc[NAE];
105 1.1 briggs
106 1.9 briggs void ae_find(), ae_attach();
107 1.9 briggs int ae_init(), aeintr(), ae_ioctl(), ae_probe(),
108 1.1 briggs ae_start(), ae_reset(), ae_watchdog();
109 1.1 briggs
110 1.3 briggs struct cfdriver aecd =
111 1.3 briggs { NULL, "ae", ae_probe, ae_attach, DV_IFNET, sizeof(struct ae_device), NULL, 0 };
112 1.3 briggs
113 1.1 briggs static void ae_stop();
114 1.1 briggs static inline void ae_rint();
115 1.1 briggs static inline void ae_xmit();
116 1.1 briggs static inline char *ae_ring_copy();
117 1.1 briggs
118 1.1 briggs extern int ether_output();
119 1.1 briggs
120 1.1 briggs #define ETHER_MIN_LEN 64
121 1.1 briggs #define ETHER_MAX_LEN 1518
122 1.1 briggs #define ETHER_ADDR_LEN 6
123 1.1 briggs #define ETHER_HDR_SIZE 14
124 1.1 briggs
125 1.1 briggs char ae_name[] = "8390 Nubus Ethernet card";
126 1.1 briggs static char zero = 0;
127 1.1 briggs static u_char ones = 0xff;
128 1.1 briggs
129 1.8 briggs struct vendor_S {
130 1.8 briggs char *manu;
131 1.8 briggs int len;
132 1.8 briggs int vendor;
133 1.8 briggs } vend[] = {
134 1.8 briggs { "Apple", 5, AE_VENDOR_APPLE },
135 1.8 briggs { "3Com", 4, AE_VENDOR_APPLE },
136 1.8 briggs { "Dayna", 5, AE_VENDOR_DAYNA },
137 1.8 briggs { "Inter", 5, AE_VENDOR_INTERLAN },
138 1.8 briggs };
139 1.8 briggs
140 1.8 briggs static int numvend = sizeof(vend)/sizeof(vend[0]);
141 1.8 briggs
142 1.8 briggs void
143 1.8 briggs ae_id_card(nu, sc)
144 1.8 briggs struct nubus_hw *nu;
145 1.8 briggs struct ae_softc *sc;
146 1.8 briggs {
147 1.8 briggs int i;
148 1.8 briggs
149 1.8 briggs /*
150 1.8 briggs * Try to determine what type of card this is...
151 1.8 briggs */
152 1.8 briggs sc->vendor = AE_VENDOR_UNKNOWN;
153 1.8 briggs for (i=0 ; i<numvend ; i++) {
154 1.8 briggs if (!strncmp(nu->Slot.manufacturer, vend[i].manu, vend[i].len)) {
155 1.8 briggs sc->vendor = vend[i].vendor;
156 1.8 briggs break;
157 1.8 briggs }
158 1.8 briggs }
159 1.9 briggs sc->type_str = (char *) (nu->Slot.manufacturer);
160 1.8 briggs
161 1.8 briggs /* see if it's an Interlan/GatorCard
162 1.8 briggs sc->rom_addr = nu->addr + GC_ROM_OFFSET;
163 1.8 briggs if (sc->rom_addr[0x18] == 0x0 &&
164 1.8 briggs sc->rom_addr[0x1c] == 0x55) {
165 1.8 briggs sc->vendor = AE_VENDOR_INTERLAN;
166 1.8 briggs } */
167 1.8 briggs }
168 1.8 briggs
169 1.1 briggs int
170 1.3 briggs ae_probe(parent, cf, aux)
171 1.3 briggs struct cfdriver *parent;
172 1.3 briggs struct cfdata *cf;
173 1.3 briggs void *aux;
174 1.1 briggs {
175 1.3 briggs register struct nubus_hw *nu = (struct nubus_hw *) aux;
176 1.3 briggs struct ae_softc *sc = &ae_softc[cf->cf_unit];
177 1.1 briggs int i, memsize;
178 1.1 briggs int flags = 0;
179 1.1 briggs
180 1.3 briggs if (nu->Slot.type != NUBUS_NETWORK)
181 1.3 briggs return 0;
182 1.3 briggs
183 1.8 briggs ae_id_card(nu, sc);
184 1.1 briggs
185 1.1 briggs switch (sc->vendor) {
186 1.1 briggs case AE_VENDOR_INTERLAN:
187 1.1 briggs sc->nic_addr = nu->addr + GC_NIC_OFFSET;
188 1.1 briggs sc->rom_addr = nu->addr + GC_ROM_OFFSET;
189 1.1 briggs sc->smem_start = nu->addr + GC_DATA_OFFSET;
190 1.1 briggs memsize = 8192;
191 1.1 briggs
192 1.1 briggs /* reset the NIC chip */
193 1.1 briggs *((caddr_t)nu->addr + GC_RESET_OFFSET) = (char)zero;
194 1.1 briggs
195 1.1 briggs /* Get station address from on-board ROM */
196 1.1 briggs for (i = 0; i < ETHER_ADDR_LEN; ++i)
197 1.1 briggs sc->arpcom.ac_enaddr[i] = *(sc->rom_addr + i*4);
198 1.1 briggs break;
199 1.1 briggs
200 1.1 briggs case AE_VENDOR_APPLE:
201 1.1 briggs sc->nic_addr = nu->addr + AE_NIC_OFFSET;
202 1.1 briggs sc->rom_addr = nu->addr + AE_ROM_OFFSET;
203 1.1 briggs sc->smem_start = nu->addr + AE_DATA_OFFSET;
204 1.1 briggs memsize = 8192;
205 1.1 briggs
206 1.1 briggs /* Get station address from on-board ROM */
207 1.1 briggs for (i = 0; i < ETHER_ADDR_LEN; ++i)
208 1.1 briggs sc->arpcom.ac_enaddr[i] = *(sc->rom_addr + i*2);
209 1.1 briggs break;
210 1.8 briggs
211 1.8 briggs case AE_VENDOR_DAYNA:
212 1.9 briggs printf("We think we are a Dayna card, but ");
213 1.8 briggs sc->nic_addr = nu->addr + AE_NIC_OFFSET;
214 1.8 briggs sc->rom_addr = nu->addr + AE_ROM_OFFSET;
215 1.8 briggs sc->smem_start = nu->addr + AE_DATA_OFFSET;
216 1.8 briggs memsize = 8192;
217 1.8 briggs
218 1.8 briggs /* Get station address from on-board ROM */
219 1.8 briggs for (i = 0; i < ETHER_ADDR_LEN; ++i)
220 1.8 briggs sc->arpcom.ac_enaddr[i] = *(sc->rom_addr + i*2);
221 1.9 briggs printf("it is dangerous to continue.\n");
222 1.8 briggs return 0; /* Since we don't work yet... */
223 1.8 briggs break;
224 1.8 briggs
225 1.8 briggs default:
226 1.8 briggs return 0;
227 1.8 briggs break;
228 1.1 briggs }
229 1.7 briggs
230 1.1 briggs /*
231 1.1 briggs * allocate one xmit buffer if < 16k, two buffers otherwise
232 1.1 briggs */
233 1.1 briggs if ((memsize < 16384) || (flags & AE_FLAGS_NO_DOUBLE_BUFFERING)) {
234 1.1 briggs sc->smem_ring = sc->smem_start + (AE_PAGE_SIZE * AE_TXBUF_SIZE);
235 1.1 briggs sc->txb_cnt = 1;
236 1.1 briggs sc->rec_page_start = AE_TXBUF_SIZE;
237 1.1 briggs } else {
238 1.1 briggs sc->smem_ring = sc->smem_start + (AE_PAGE_SIZE * AE_TXBUF_SIZE * 2);
239 1.1 briggs sc->txb_cnt = 2;
240 1.1 briggs sc->rec_page_start = AE_TXBUF_SIZE * 2;
241 1.1 briggs }
242 1.1 briggs
243 1.1 briggs sc->smem_size = memsize;
244 1.1 briggs sc->smem_end = sc->smem_start + memsize;
245 1.1 briggs sc->rec_page_stop = memsize / AE_PAGE_SIZE;
246 1.1 briggs sc->tx_page_start = 0;
247 1.1 briggs
248 1.1 briggs /*
249 1.1 briggs * Now zero memory and verify that it is clear
250 1.1 briggs */
251 1.1 briggs bzero(sc->smem_start, memsize);
252 1.1 briggs
253 1.1 briggs for (i = 0; i < memsize; ++i)
254 1.1 briggs if (sc->smem_start[i]) {
255 1.3 briggs printf(": failed to clear shared memory at %x\n",
256 1.3 briggs sc->smem_start + i);
257 1.1 briggs
258 1.1 briggs return(0);
259 1.1 briggs }
260 1.1 briggs
261 1.1 briggs #ifdef DEBUG_PRINT
262 1.1 briggs printf("nic_addr %x, rom_addr %x\n",
263 1.1 briggs sc->nic_addr, sc->rom_addr);
264 1.1 briggs printf("smem_size %d\n", sc->smem_size);
265 1.1 briggs printf("smem_start %x, smem_ring %x, smem_end %x\n",
266 1.1 briggs sc->smem_start, sc->smem_ring, sc->smem_end);
267 1.1 briggs printf("phys address %02x:%02x:%02x:%02x:%02x:%02x\n",
268 1.1 briggs sc->arpcom.ac_enaddr[0],
269 1.1 briggs sc->arpcom.ac_enaddr[1],
270 1.1 briggs sc->arpcom.ac_enaddr[2],
271 1.1 briggs sc->arpcom.ac_enaddr[3],
272 1.1 briggs sc->arpcom.ac_enaddr[4],
273 1.1 briggs sc->arpcom.ac_enaddr[5]);
274 1.1 briggs #endif
275 1.1 briggs
276 1.1 briggs return(1);
277 1.1 briggs }
278 1.1 briggs
279 1.1 briggs /*
280 1.1 briggs * Install interface into kernel networking data structures
281 1.1 briggs */
282 1.9 briggs void
283 1.3 briggs ae_attach(parent, self, aux)
284 1.3 briggs struct cfdriver *parent, *self;
285 1.3 briggs void *aux;
286 1.1 briggs {
287 1.3 briggs struct nubus_hw *nu = aux;
288 1.3 briggs struct ae_device *ae = (struct ae_device *) self;
289 1.3 briggs struct ae_softc *sc = &ae_softc[ae->ae_dev.dv_unit];
290 1.3 briggs struct cfdata *cf = ae->ae_dev.dv_cfdata;
291 1.1 briggs struct ifnet *ifp = &sc->arpcom.ac_if;
292 1.1 briggs struct ifaddr *ifa;
293 1.1 briggs struct sockaddr_dl *sdl;
294 1.1 briggs
295 1.3 briggs sc->sc_ae = ae;
296 1.3 briggs
297 1.1 briggs /*
298 1.1 briggs * Set interface to stopped condition (reset)
299 1.1 briggs */
300 1.3 briggs ae_stop(sc);
301 1.1 briggs
302 1.1 briggs /*
303 1.1 briggs * Initialize ifnet structure
304 1.1 briggs */
305 1.3 briggs ifp->if_unit = ae->ae_dev.dv_unit;
306 1.3 briggs ifp->if_name = aecd.cd_name;
307 1.1 briggs ifp->if_mtu = ETHERMTU;
308 1.3 briggs ifp->if_output = ether_output;
309 1.1 briggs ifp->if_start = ae_start;
310 1.1 briggs ifp->if_ioctl = ae_ioctl;
311 1.1 briggs ifp->if_reset = ae_reset;
312 1.1 briggs ifp->if_watchdog = ae_watchdog;
313 1.1 briggs ifp->if_flags = (IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS);
314 1.1 briggs
315 1.3 briggs #if 0
316 1.3 briggs /*
317 1.3 briggs * Set default state for ALTPHYS flag (used to disable the transceiver
318 1.3 briggs * for AUI operation), based on compile-time config option.
319 1.3 briggs */
320 1.3 briggs if (cf->cf_flags & AE_FLAGS_DISABLE_TRANSCEIVER)
321 1.3 briggs ifp->if_flags |= IFF_ALTPHYS;
322 1.3 briggs #endif
323 1.3 briggs
324 1.1 briggs /*
325 1.1 briggs * Attach the interface
326 1.1 briggs */
327 1.1 briggs if_attach(ifp);
328 1.1 briggs
329 1.1 briggs /*
330 1.1 briggs * Search down the ifa address list looking for the AF_LINK type entry
331 1.1 briggs */
332 1.1 briggs ifa = ifp->if_addrlist;
333 1.1 briggs while ((ifa != 0) && (ifa->ifa_addr != 0) &&
334 1.1 briggs (ifa->ifa_addr->sa_family != AF_LINK))
335 1.1 briggs ifa = ifa->ifa_next;
336 1.1 briggs /*
337 1.1 briggs * If we find an AF_LINK type entry we fill in the hardware address.
338 1.1 briggs * This is useful for netstat(1) to keep track of which interface
339 1.1 briggs * is which.
340 1.1 briggs */
341 1.1 briggs if ((ifa != 0) && (ifa->ifa_addr != 0)) {
342 1.1 briggs /*
343 1.1 briggs * Fill in the link-level address for this interface
344 1.1 briggs */
345 1.1 briggs sdl = (struct sockaddr_dl *)ifa->ifa_addr;
346 1.1 briggs sdl->sdl_type = IFT_ETHER;
347 1.1 briggs sdl->sdl_alen = ETHER_ADDR_LEN;
348 1.1 briggs sdl->sdl_slen = 0;
349 1.1 briggs bcopy(sc->arpcom.ac_enaddr, LLADDR(sdl), ETHER_ADDR_LEN);
350 1.1 briggs }
351 1.1 briggs
352 1.1 briggs /*
353 1.1 briggs * Print additional info when attached
354 1.1 briggs */
355 1.3 briggs printf(": address %s, ", ether_sprintf(sc->arpcom.ac_enaddr));
356 1.1 briggs
357 1.1 briggs if (sc->type_str && (*sc->type_str != 0))
358 1.1 briggs printf("type %s ", sc->type_str);
359 1.1 briggs else
360 1.1 briggs printf("type unknown (0x%x) ", sc->type);
361 1.1 briggs
362 1.1 briggs printf("\n");
363 1.1 briggs
364 1.1 briggs /*
365 1.1 briggs * If BPF is in the kernel, call the attach for it
366 1.1 briggs */
367 1.1 briggs #if NBPFILTER > 0
368 1.1 briggs bpfattach(&sc->bpf, ifp, DLT_EN10MB, sizeof(struct ether_header));
369 1.1 briggs #endif
370 1.3 briggs }
371 1.1 briggs
372 1.1 briggs /*
373 1.1 briggs * Reset interface.
374 1.1 briggs */
375 1.1 briggs int
376 1.3 briggs ae_reset(sc)
377 1.3 briggs struct ae_softc *sc;
378 1.1 briggs {
379 1.1 briggs int s;
380 1.1 briggs
381 1.1 briggs s = splnet();
382 1.1 briggs
383 1.1 briggs /*
384 1.1 briggs * Stop interface and re-initialize.
385 1.1 briggs */
386 1.3 briggs ae_stop(sc);
387 1.3 briggs ae_init(sc);
388 1.1 briggs
389 1.1 briggs (void) splx(s);
390 1.1 briggs }
391 1.1 briggs
392 1.1 briggs /*
393 1.1 briggs * Take interface offline.
394 1.1 briggs */
395 1.1 briggs void
396 1.3 briggs ae_stop(sc)
397 1.3 briggs struct ae_softc *sc;
398 1.1 briggs {
399 1.1 briggs int n = 5000;
400 1.1 briggs
401 1.1 briggs /*
402 1.1 briggs * Stop everything on the interface, and select page 0 registers.
403 1.1 briggs */
404 1.1 briggs NIC_PUT(sc, AE_P0_CR, AE_CR_RD2|AE_CR_STP);
405 1.1 briggs
406 1.1 briggs /*
407 1.1 briggs * Wait for interface to enter stopped state, but limit # of checks
408 1.1 briggs * to 'n' (about 5ms). It shouldn't even take 5us on modern
409 1.1 briggs * DS8390's, but just in case it's an old one.
410 1.1 briggs */
411 1.1 briggs while (((NIC_GET(sc, AE_P0_ISR) & AE_ISR_RST) == 0) && --n);
412 1.1 briggs }
413 1.1 briggs
414 1.1 briggs /*
415 1.1 briggs * Device timeout/watchdog routine. Entered if the device neglects to
416 1.1 briggs * generate an interrupt after a transmit has been started on it.
417 1.1 briggs */
418 1.1 briggs int
419 1.1 briggs ae_watchdog(unit)
420 1.3 briggs short unit;
421 1.1 briggs {
422 1.1 briggs log(LOG_ERR, "ae%d: device timeout\n", unit);
423 1.1 briggs {
424 1.1 briggs struct ae_softc *sc = &ae_softc[unit];
425 1.1 briggs printf("cr %x, isr %x\n", NIC_GET(sc, AE_P0_CR), NIC_GET(sc, AE_P0_ISR));
426 1.3 briggs /* via_dump(); */
427 1.1 briggs if (NIC_GET(sc, AE_P0_ISR)) {
428 1.1 briggs aeintr(0);
429 1.1 briggs return;
430 1.1 briggs }
431 1.1 briggs }
432 1.1 briggs ae_reset(unit);
433 1.1 briggs }
434 1.1 briggs
435 1.1 briggs /*
436 1.1 briggs * Initialize device.
437 1.1 briggs */
438 1.3 briggs ae_init(sc)
439 1.3 briggs struct ae_softc *sc;
440 1.1 briggs {
441 1.1 briggs struct ifnet *ifp = &sc->arpcom.ac_if;
442 1.1 briggs int i, s;
443 1.1 briggs u_char command;
444 1.1 briggs
445 1.1 briggs
446 1.1 briggs /* address not known */
447 1.1 briggs if (ifp->if_addrlist == (struct ifaddr *)0) return;
448 1.1 briggs
449 1.1 briggs /*
450 1.1 briggs * Initialize the NIC in the exact order outlined in the NS manual.
451 1.1 briggs * This init procedure is "mandatory"...don't change what or when
452 1.1 briggs * things happen.
453 1.1 briggs */
454 1.1 briggs s = splnet();
455 1.1 briggs
456 1.1 briggs /* reset transmitter flags */
457 1.1 briggs sc->data_buffered = 0;
458 1.1 briggs sc->xmit_busy = 0;
459 1.1 briggs sc->arpcom.ac_if.if_timer = 0;
460 1.1 briggs
461 1.1 briggs sc->txb_next = 0;
462 1.1 briggs
463 1.1 briggs /* This variable is used below - don't move this assignment */
464 1.1 briggs sc->next_packet = sc->rec_page_start + 1;
465 1.1 briggs
466 1.1 briggs #ifdef DEBUG_PRINT
467 1.1 briggs printf("page_start %d, page_stop %d, next %d\n",
468 1.1 briggs sc->rec_page_start, sc->rec_page_stop, sc->next_packet);
469 1.1 briggs #endif
470 1.1 briggs
471 1.1 briggs /*
472 1.1 briggs * Set interface for page 0, Remote DMA complete, Stopped
473 1.1 briggs */
474 1.1 briggs NIC_PUT(sc, AE_P0_CR, AE_CR_RD2|AE_CR_STP);
475 1.1 briggs
476 1.1 briggs /*
477 1.1 briggs * Set FIFO threshold to 4, No auto-init Remote DMA, Burst mode,
478 1.1 briggs * byte order=80x86, word-wide DMA xfers,
479 1.1 briggs */
480 1.1 briggs NIC_PUT(sc, AE_P0_DCR, AE_DCR_FT1|AE_DCR_BMS|AE_DCR_WTS);
481 1.1 briggs
482 1.1 briggs /*
483 1.1 briggs * Clear Remote Byte Count Registers
484 1.1 briggs */
485 1.1 briggs NIC_PUT(sc, AE_P0_RBCR0, zero);
486 1.1 briggs NIC_PUT(sc, AE_P0_RBCR1, zero);
487 1.1 briggs
488 1.1 briggs /*
489 1.1 briggs * Enable reception of broadcast packets
490 1.1 briggs */
491 1.1 briggs NIC_PUT(sc, AE_P0_RCR, AE_RCR_AB);
492 1.1 briggs
493 1.1 briggs /*
494 1.1 briggs * Place NIC in internal loopback mode
495 1.1 briggs */
496 1.1 briggs NIC_PUT(sc, AE_P0_TCR, AE_TCR_LB0);
497 1.1 briggs
498 1.1 briggs /*
499 1.1 briggs * Initialize transmit/receive (ring-buffer) Page Start
500 1.1 briggs */
501 1.1 briggs NIC_PUT(sc, AE_P0_TPSR, sc->tx_page_start);
502 1.1 briggs NIC_PUT(sc, AE_P0_PSTART, sc->rec_page_start);
503 1.1 briggs
504 1.1 briggs /*
505 1.1 briggs * Initialize Receiver (ring-buffer) Page Stop and Boundry
506 1.1 briggs */
507 1.1 briggs NIC_PUT(sc, AE_P0_PSTOP, sc->rec_page_stop);
508 1.1 briggs NIC_PUT(sc, AE_P0_BNRY, sc->rec_page_start);
509 1.1 briggs
510 1.1 briggs /*
511 1.1 briggs * Clear all interrupts. A '1' in each bit position clears the
512 1.1 briggs * corresponding flag.
513 1.1 briggs */
514 1.1 briggs NIC_PUT(sc, AE_P0_ISR, ones);
515 1.1 briggs
516 1.1 briggs /*
517 1.1 briggs * Enable the following interrupts: receive/transmit complete,
518 1.1 briggs * receive/transmit error, and Receiver OverWrite.
519 1.1 briggs *
520 1.1 briggs * Counter overflow and Remote DMA complete are *not* enabled.
521 1.1 briggs */
522 1.1 briggs NIC_PUT(sc, AE_P0_IMR,
523 1.1 briggs AE_IMR_PRXE|AE_IMR_PTXE|AE_IMR_RXEE|AE_IMR_TXEE|AE_IMR_OVWE);
524 1.1 briggs
525 1.1 briggs /*
526 1.1 briggs * Program Command Register for page 1
527 1.1 briggs */
528 1.1 briggs NIC_PUT(sc, AE_P0_CR, AE_CR_PAGE_1|AE_CR_RD2|AE_CR_STP);
529 1.1 briggs
530 1.1 briggs /*
531 1.1 briggs * Copy out our station address
532 1.1 briggs */
533 1.1 briggs for (i = 0; i < ETHER_ADDR_LEN; ++i)
534 1.1 briggs NIC_PUT(sc, AE_P1_PAR0 + i, sc->arpcom.ac_enaddr[i]);
535 1.1 briggs
536 1.1 briggs #if NBPFILTER > 0
537 1.1 briggs /*
538 1.1 briggs * Initialize multicast address hashing registers to accept
539 1.1 briggs * all multicasts (only used when in promiscuous mode)
540 1.1 briggs */
541 1.1 briggs for (i = 0; i < 8; ++i)
542 1.1 briggs NIC_PUT(sc, AE_P1_MAR0 + i, 0xff);
543 1.1 briggs #endif
544 1.1 briggs
545 1.1 briggs /*
546 1.1 briggs * Set Current Page pointer to next_packet (initialized above)
547 1.1 briggs */
548 1.1 briggs NIC_PUT(sc, AE_P1_CURR, sc->next_packet);
549 1.1 briggs
550 1.1 briggs /*
551 1.1 briggs * Set Command Register for page 0, Remote DMA complete,
552 1.1 briggs * and interface Start.
553 1.1 briggs */
554 1.1 briggs NIC_PUT(sc, AE_P1_CR, AE_CR_RD2|AE_CR_STA);
555 1.1 briggs
556 1.1 briggs /*
557 1.1 briggs * Take interface out of loopback
558 1.1 briggs */
559 1.1 briggs NIC_PUT(sc, AE_P0_TCR, zero);
560 1.1 briggs
561 1.1 briggs /*
562 1.1 briggs * Set 'running' flag, and clear output active flag.
563 1.1 briggs */
564 1.1 briggs ifp->if_flags |= IFF_RUNNING;
565 1.1 briggs ifp->if_flags &= ~IFF_OACTIVE;
566 1.1 briggs
567 1.3 briggs /* XXXXXX */
568 1.3 briggs add_nubus_intr(sc->rom_addr - GC_ROM_OFFSET, aeintr, sc - ae_softc);
569 1.1 briggs
570 1.1 briggs /*
571 1.1 briggs * ...and attempt to start output
572 1.1 briggs */
573 1.1 briggs ae_start(ifp);
574 1.1 briggs
575 1.1 briggs (void) splx(s);
576 1.1 briggs }
577 1.1 briggs
578 1.1 briggs /*
579 1.1 briggs * This routine actually starts the transmission on the interface
580 1.1 briggs */
581 1.1 briggs static inline void ae_xmit(ifp)
582 1.1 briggs struct ifnet *ifp;
583 1.1 briggs {
584 1.1 briggs struct ae_softc *sc = &ae_softc[ifp->if_unit];
585 1.1 briggs u_short len = sc->txb_next_len;
586 1.1 briggs
587 1.1 briggs /*
588 1.1 briggs * Set NIC for page 0 register access
589 1.1 briggs */
590 1.1 briggs NIC_PUT(sc, AE_P0_CR, AE_CR_RD2|AE_CR_STA);
591 1.1 briggs
592 1.1 briggs /*
593 1.1 briggs * Set TX buffer start page
594 1.1 briggs */
595 1.1 briggs NIC_PUT(sc, AE_P0_TPSR, sc->tx_page_start +
596 1.1 briggs sc->txb_next * AE_TXBUF_SIZE);
597 1.1 briggs
598 1.1 briggs /*
599 1.1 briggs * Set TX length
600 1.1 briggs */
601 1.1 briggs NIC_PUT(sc, AE_P0_TBCR0, len & 0xff);
602 1.1 briggs NIC_PUT(sc, AE_P0_TBCR1, len >> 8);
603 1.1 briggs
604 1.1 briggs /*
605 1.1 briggs * Set page 0, Remote DMA complete, Transmit Packet, and *Start*
606 1.1 briggs */
607 1.1 briggs NIC_PUT(sc, AE_P0_CR, AE_CR_RD2|AE_CR_TXP|AE_CR_STA);
608 1.1 briggs
609 1.1 briggs sc->xmit_busy = 1;
610 1.1 briggs sc->data_buffered = 0;
611 1.1 briggs
612 1.1 briggs /*
613 1.1 briggs * Switch buffers if we are doing double-buffered transmits
614 1.1 briggs */
615 1.1 briggs if ((sc->txb_next == 0) && (sc->txb_cnt > 1))
616 1.1 briggs sc->txb_next = 1;
617 1.1 briggs else
618 1.1 briggs sc->txb_next = 0;
619 1.1 briggs
620 1.1 briggs /*
621 1.1 briggs * Set a timer just in case we never hear from the board again
622 1.1 briggs */
623 1.1 briggs ifp->if_timer = 2;
624 1.1 briggs }
625 1.1 briggs
626 1.1 briggs /*
627 1.1 briggs * Start output on interface.
628 1.1 briggs * We make two assumptions here:
629 1.1 briggs * 1) that the current priority is set to splnet _before_ this code
630 1.1 briggs * is called *and* is returned to the appropriate priority after
631 1.1 briggs * return
632 1.1 briggs * 2) that the IFF_OACTIVE flag is checked before this code is called
633 1.1 briggs * (i.e. that the output part of the interface is idle)
634 1.1 briggs */
635 1.1 briggs int
636 1.1 briggs ae_start(ifp)
637 1.1 briggs struct ifnet *ifp;
638 1.1 briggs {
639 1.1 briggs struct ae_softc *sc = &ae_softc[ifp->if_unit];
640 1.1 briggs struct mbuf *m0, *m;
641 1.1 briggs caddr_t buffer;
642 1.1 briggs int len;
643 1.1 briggs
644 1.1 briggs outloop:
645 1.1 briggs /*
646 1.1 briggs * See if there is room to send more data (i.e. one or both of the
647 1.1 briggs * buffers is empty).
648 1.1 briggs */
649 1.1 briggs if (sc->data_buffered)
650 1.1 briggs if (sc->xmit_busy) {
651 1.1 briggs /*
652 1.1 briggs * No room. Indicate this to the outside world
653 1.1 briggs * and exit.
654 1.1 briggs */
655 1.1 briggs ifp->if_flags |= IFF_OACTIVE;
656 1.1 briggs return;
657 1.1 briggs } else {
658 1.1 briggs /*
659 1.1 briggs * Data is buffered, but we're not transmitting, so
660 1.1 briggs * start the xmit on the buffered data.
661 1.1 briggs * Note that ae_xmit() resets the data_buffered flag
662 1.1 briggs * before returning.
663 1.1 briggs */
664 1.1 briggs ae_xmit(ifp);
665 1.1 briggs }
666 1.1 briggs
667 1.1 briggs IF_DEQUEUE(&sc->arpcom.ac_if.if_snd, m);
668 1.1 briggs if (m == 0) {
669 1.1 briggs /*
670 1.1 briggs * The following isn't pretty; we are using the !OACTIVE flag to
671 1.1 briggs * indicate to the outside world that we can accept an additional
672 1.1 briggs * packet rather than that the transmitter is _actually_
673 1.1 briggs * active. Indeed, the transmitter may be active, but if we haven't
674 1.1 briggs * filled the secondary buffer with data then we still want to
675 1.1 briggs * accept more.
676 1.1 briggs * Note that it isn't necessary to test the data_buffered flag -
677 1.1 briggs * we wouldn't have tried to de-queue the packet in the first place
678 1.1 briggs * if it was set.
679 1.1 briggs */
680 1.1 briggs ifp->if_flags &= ~IFF_OACTIVE;
681 1.1 briggs return;
682 1.1 briggs }
683 1.1 briggs
684 1.1 briggs /*
685 1.1 briggs * Copy the mbuf chain into the transmit buffer
686 1.1 briggs */
687 1.1 briggs buffer = sc->smem_start + (sc->txb_next * AE_TXBUF_SIZE * AE_PAGE_SIZE);
688 1.1 briggs len = 0;
689 1.1 briggs for (m0 = m; m != 0; m = m->m_next) {
690 1.1 briggs /*printf("ae: copy %d bytes @ %x\n", m->m_len, buffer);*/
691 1.1 briggs bcopy(mtod(m, caddr_t), buffer, m->m_len);
692 1.1 briggs buffer += m->m_len;
693 1.1 briggs len += m->m_len;
694 1.1 briggs }
695 1.1 briggs if (len & 1) len++;
696 1.1 briggs
697 1.1 briggs sc->txb_next_len = MAX(len, ETHER_MIN_LEN);
698 1.1 briggs
699 1.1 briggs if (sc->txb_cnt > 1)
700 1.1 briggs /*
701 1.1 briggs * only set 'buffered' flag if doing multiple buffers
702 1.1 briggs */
703 1.1 briggs sc->data_buffered = 1;
704 1.1 briggs
705 1.1 briggs if (sc->xmit_busy == 0)
706 1.1 briggs ae_xmit(ifp);
707 1.1 briggs /*
708 1.1 briggs * If there is BPF support in the configuration, tap off here.
709 1.1 briggs * The following has support for converting trailer packets
710 1.1 briggs * back to normal.
711 1.1 briggs */
712 1.1 briggs #if NBPFILTER > 0
713 1.1 briggs if (sc->bpf) {
714 1.1 briggs u_short etype;
715 1.1 briggs int off, datasize, resid;
716 1.1 briggs struct ether_header *eh;
717 1.1 briggs struct trailer_header {
718 1.1 briggs u_short ether_type;
719 1.1 briggs u_short ether_residual;
720 1.1 briggs } trailer_header;
721 1.1 briggs char ether_packet[ETHER_MAX_LEN];
722 1.1 briggs char *ep;
723 1.1 briggs
724 1.1 briggs ep = ether_packet;
725 1.1 briggs
726 1.1 briggs /*
727 1.1 briggs * We handle trailers below:
728 1.1 briggs * Copy ether header first, then residual data,
729 1.1 briggs * then data. Put all this in a temporary buffer
730 1.1 briggs * 'ether_packet' and send off to bpf. Since the
731 1.1 briggs * system has generated this packet, we assume
732 1.1 briggs * that all of the offsets in the packet are
733 1.1 briggs * correct; if they're not, the system will almost
734 1.1 briggs * certainly crash in m_copydata.
735 1.1 briggs * We make no assumptions about how the data is
736 1.1 briggs * arranged in the mbuf chain (i.e. how much
737 1.1 briggs * data is in each mbuf, if mbuf clusters are
738 1.1 briggs * used, etc.), which is why we use m_copydata
739 1.1 briggs * to get the ether header rather than assume
740 1.1 briggs * that this is located in the first mbuf.
741 1.1 briggs */
742 1.1 briggs /* copy ether header */
743 1.1 briggs m_copydata(m0, 0, sizeof(struct ether_header), ep);
744 1.1 briggs eh = (struct ether_header *) ep;
745 1.1 briggs ep += sizeof(struct ether_header);
746 1.1 briggs etype = ntohs(eh->ether_type);
747 1.1 briggs if (etype >= ETHERTYPE_TRAIL &&
748 1.1 briggs etype < ETHERTYPE_TRAIL+ETHERTYPE_NTRAILER) {
749 1.1 briggs datasize = ((etype - ETHERTYPE_TRAIL) << 9);
750 1.1 briggs off = datasize + sizeof(struct ether_header);
751 1.1 briggs
752 1.1 briggs /* copy trailer_header into a data structure */
753 1.1 briggs m_copydata(m0, off, sizeof(struct trailer_header),
754 1.1 briggs &trailer_header.ether_type);
755 1.1 briggs
756 1.1 briggs /* copy residual data */
757 1.1 briggs m_copydata(m0, off+sizeof(struct trailer_header),
758 1.1 briggs resid = ntohs(trailer_header.ether_residual) -
759 1.1 briggs sizeof(struct trailer_header), ep);
760 1.1 briggs ep += resid;
761 1.1 briggs
762 1.1 briggs /* copy data */
763 1.1 briggs m_copydata(m0, sizeof(struct ether_header),
764 1.1 briggs datasize, ep);
765 1.1 briggs ep += datasize;
766 1.1 briggs
767 1.1 briggs /* restore original ether packet type */
768 1.1 briggs eh->ether_type = trailer_header.ether_type;
769 1.1 briggs
770 1.1 briggs bpf_tap(sc->bpf, ether_packet, ep - ether_packet);
771 1.1 briggs } else
772 1.1 briggs bpf_mtap(sc->bpf, m0);
773 1.1 briggs }
774 1.1 briggs #endif
775 1.1 briggs
776 1.1 briggs m_freem(m0);
777 1.1 briggs
778 1.1 briggs /*
779 1.1 briggs * If we are doing double-buffering, a buffer might be free to
780 1.1 briggs * fill with another packet, so loop back to the top.
781 1.1 briggs */
782 1.1 briggs if (sc->txb_cnt > 1)
783 1.1 briggs goto outloop;
784 1.1 briggs else {
785 1.1 briggs ifp->if_flags |= IFF_OACTIVE;
786 1.1 briggs return;
787 1.1 briggs }
788 1.1 briggs }
789 1.1 briggs
790 1.1 briggs /*
791 1.1 briggs * Ethernet interface receiver interrupt.
792 1.1 briggs */
793 1.1 briggs static inline void
794 1.1 briggs ae_rint(unit)
795 1.1 briggs int unit;
796 1.1 briggs {
797 1.1 briggs register struct ae_softc *sc = &ae_softc[unit];
798 1.1 briggs u_char boundry, current;
799 1.1 briggs u_short len;
800 1.1 briggs struct ae_ring *packet_ptr;
801 1.1 briggs
802 1.1 briggs /*
803 1.1 briggs * Set NIC to page 1 registers to get 'current' pointer
804 1.1 briggs */
805 1.1 briggs NIC_PUT(sc, AE_P0_CR, AE_CR_PAGE_1|AE_CR_RD2|AE_CR_STA);
806 1.1 briggs
807 1.1 briggs /*
808 1.1 briggs * 'sc->next_packet' is the logical beginning of the ring-buffer - i.e.
809 1.1 briggs * it points to where new data has been buffered. The 'CURR'
810 1.1 briggs * (current) register points to the logical end of the ring-buffer
811 1.1 briggs * - i.e. it points to where additional new data will be added.
812 1.1 briggs * We loop here until the logical beginning equals the logical
813 1.1 briggs * end (or in other words, until the ring-buffer is empty).
814 1.1 briggs */
815 1.1 briggs while (sc->next_packet != NIC_GET(sc, AE_P1_CURR)) {
816 1.1 briggs
817 1.1 briggs /* get pointer to this buffer header structure */
818 1.1 briggs packet_ptr = (struct ae_ring *)(sc->smem_ring +
819 1.1 briggs (sc->next_packet - sc->rec_page_start) * AE_PAGE_SIZE);
820 1.1 briggs
821 1.1 briggs /*
822 1.1 briggs * The byte count includes the FCS - Frame Check Sequence (a
823 1.1 briggs * 32 bit CRC).
824 1.1 briggs */
825 1.1 briggs len = packet_ptr->count[0] | (packet_ptr->count[1] << 8);
826 1.1 briggs if ((len >= ETHER_MIN_LEN) && (len <= ETHER_MAX_LEN)) {
827 1.1 briggs /*
828 1.1 briggs * Go get packet. len - 4 removes CRC from length.
829 1.1 briggs * (packet_ptr + 1) points to data just after the packet ring
830 1.1 briggs * header (+4 bytes)
831 1.1 briggs */
832 1.1 briggs ae_get_packet(sc, (caddr_t)(packet_ptr + 1), len - 4);
833 1.1 briggs ++sc->arpcom.ac_if.if_ipackets;
834 1.1 briggs } else {
835 1.1 briggs /*
836 1.1 briggs * Really BAD...probably indicates that the ring pointers
837 1.1 briggs * are corrupted. Also seen on early rev chips under
838 1.1 briggs * high load - the byte order of the length gets switched.
839 1.1 briggs */
840 1.1 briggs log(LOG_ERR,
841 1.1 briggs "ae%d: shared memory corrupt - invalid packet length %d\n",
842 1.1 briggs unit, len);
843 1.1 briggs ae_reset(unit);
844 1.1 briggs return;
845 1.1 briggs }
846 1.1 briggs
847 1.1 briggs /*
848 1.1 briggs * Update next packet pointer
849 1.1 briggs */
850 1.1 briggs sc->next_packet = packet_ptr->next_packet;
851 1.1 briggs
852 1.1 briggs /*
853 1.1 briggs * Update NIC boundry pointer - being careful to keep it
854 1.1 briggs * one buffer behind. (as recommended by NS databook)
855 1.1 briggs */
856 1.1 briggs boundry = sc->next_packet - 1;
857 1.1 briggs if (boundry < sc->rec_page_start)
858 1.1 briggs boundry = sc->rec_page_stop - 1;
859 1.1 briggs
860 1.1 briggs /*
861 1.1 briggs * Set NIC to page 0 registers to update boundry register
862 1.1 briggs */
863 1.1 briggs NIC_PUT(sc, AE_P0_CR, AE_CR_RD2|AE_CR_STA);
864 1.1 briggs
865 1.1 briggs NIC_PUT(sc, AE_P0_BNRY, boundry);
866 1.1 briggs
867 1.1 briggs /*
868 1.1 briggs * Set NIC to page 1 registers before looping to top (prepare to
869 1.1 briggs * get 'CURR' current pointer)
870 1.1 briggs */
871 1.1 briggs NIC_PUT(sc, AE_P0_CR, AE_CR_PAGE_1|AE_CR_RD2|AE_CR_STA);
872 1.1 briggs }
873 1.1 briggs }
874 1.1 briggs
875 1.1 briggs /*
876 1.1 briggs * Ethernet interface interrupt processor
877 1.1 briggs */
878 1.1 briggs int
879 1.1 briggs aeintr(unit)
880 1.1 briggs int unit;
881 1.1 briggs {
882 1.1 briggs struct ae_softc *sc = &ae_softc[unit];
883 1.1 briggs u_char isr;
884 1.1 briggs
885 1.1 briggs /*
886 1.1 briggs * Set NIC to page 0 registers
887 1.1 briggs */
888 1.1 briggs NIC_PUT(sc, AE_P0_CR, AE_CR_RD2|AE_CR_STA);
889 1.1 briggs
890 1.1 briggs /*
891 1.1 briggs * loop until there are no more new interrupts
892 1.1 briggs */
893 1.1 briggs while (isr = NIC_GET(sc, AE_P0_ISR)) {
894 1.1 briggs
895 1.1 briggs /*
896 1.1 briggs * reset all the bits that we are 'acknowledging'
897 1.1 briggs * by writing a '1' to each bit position that was set
898 1.1 briggs * (writing a '1' *clears* the bit)
899 1.1 briggs */
900 1.1 briggs NIC_PUT(sc, AE_P0_ISR, isr);
901 1.1 briggs
902 1.1 briggs /*
903 1.1 briggs * Handle transmitter interrupts. Handle these first
904 1.1 briggs * because the receiver will reset the board under
905 1.1 briggs * some conditions.
906 1.1 briggs */
907 1.1 briggs if (isr & (AE_ISR_PTX|AE_ISR_TXE)) {
908 1.1 briggs u_char collisions = NIC_GET(sc, AE_P0_NCR);
909 1.1 briggs
910 1.1 briggs /*
911 1.1 briggs * Check for transmit error. If a TX completed with an
912 1.1 briggs * error, we end up throwing the packet away. Really
913 1.1 briggs * the only error that is possible is excessive
914 1.1 briggs * collisions, and in this case it is best to allow the
915 1.1 briggs * automatic mechanisms of TCP to backoff the flow. Of
916 1.1 briggs * course, with UDP we're screwed, but this is expected
917 1.1 briggs * when a network is heavily loaded.
918 1.1 briggs */
919 1.1 briggs if (isr & AE_ISR_TXE) {
920 1.1 briggs
921 1.1 briggs /*
922 1.1 briggs * Excessive collisions (16)
923 1.1 briggs */
924 1.1 briggs if ((NIC_GET(sc, AE_P0_TSR) & AE_TSR_ABT)
925 1.1 briggs && (collisions == 0)) {
926 1.1 briggs /*
927 1.1 briggs * When collisions total 16, the
928 1.1 briggs * P0_NCR will indicate 0, and the
929 1.1 briggs * TSR_ABT is set.
930 1.1 briggs */
931 1.1 briggs collisions = 16;
932 1.1 briggs }
933 1.1 briggs
934 1.1 briggs /*
935 1.1 briggs * update output errors counter
936 1.1 briggs */
937 1.1 briggs ++sc->arpcom.ac_if.if_oerrors;
938 1.1 briggs } else {
939 1.1 briggs /*
940 1.1 briggs * Update total number of successfully
941 1.1 briggs * transmitted packets.
942 1.1 briggs */
943 1.1 briggs ++sc->arpcom.ac_if.if_opackets;
944 1.1 briggs }
945 1.1 briggs
946 1.1 briggs /*
947 1.1 briggs * reset tx busy and output active flags
948 1.1 briggs */
949 1.1 briggs sc->xmit_busy = 0;
950 1.1 briggs sc->arpcom.ac_if.if_flags &= ~IFF_OACTIVE;
951 1.1 briggs
952 1.1 briggs /*
953 1.1 briggs * clear watchdog timer
954 1.1 briggs */
955 1.1 briggs sc->arpcom.ac_if.if_timer = 0;
956 1.1 briggs
957 1.1 briggs /*
958 1.1 briggs * Add in total number of collisions on last
959 1.1 briggs * transmission.
960 1.1 briggs */
961 1.1 briggs sc->arpcom.ac_if.if_collisions += collisions;
962 1.1 briggs
963 1.1 briggs /*
964 1.1 briggs * If data is ready to transmit, start it transmitting,
965 1.1 briggs * otherwise defer until after handling receiver
966 1.1 briggs */
967 1.1 briggs if (sc->data_buffered)
968 1.1 briggs ae_xmit(&sc->arpcom.ac_if);
969 1.1 briggs }
970 1.1 briggs
971 1.1 briggs /*
972 1.1 briggs * Handle receiver interrupts
973 1.1 briggs */
974 1.1 briggs if (isr & (AE_ISR_PRX|AE_ISR_RXE|AE_ISR_OVW)) {
975 1.1 briggs /*
976 1.1 briggs * Overwrite warning. In order to make sure that a lockup
977 1.1 briggs * of the local DMA hasn't occurred, we reset and
978 1.1 briggs * re-init the NIC. The NSC manual suggests only a
979 1.1 briggs * partial reset/re-init is necessary - but some
980 1.1 briggs * chips seem to want more. The DMA lockup has been
981 1.1 briggs * seen only with early rev chips - Methinks this
982 1.1 briggs * bug was fixed in later revs. -DG
983 1.1 briggs */
984 1.1 briggs if (isr & AE_ISR_OVW) {
985 1.1 briggs ++sc->arpcom.ac_if.if_ierrors;
986 1.1 briggs log(LOG_WARNING,
987 1.1 briggs "ae%d: warning - receiver ring buffer overrun\n",
988 1.1 briggs unit);
989 1.1 briggs /*
990 1.1 briggs * Stop/reset/re-init NIC
991 1.1 briggs */
992 1.1 briggs ae_reset(unit);
993 1.1 briggs } else {
994 1.1 briggs
995 1.1 briggs /*
996 1.1 briggs * Receiver Error. One or more of: CRC error, frame
997 1.1 briggs * alignment error FIFO overrun, or missed packet.
998 1.1 briggs */
999 1.1 briggs if (isr & AE_ISR_RXE) {
1000 1.1 briggs ++sc->arpcom.ac_if.if_ierrors;
1001 1.1 briggs #ifdef AE_DEBUG
1002 1.1 briggs printf("ae%d: receive error %x\n", unit,
1003 1.1 briggs NIC_GET(sc, AE_P0_RSR));
1004 1.1 briggs #endif
1005 1.1 briggs }
1006 1.1 briggs
1007 1.1 briggs /*
1008 1.1 briggs * Go get the packet(s)
1009 1.1 briggs * XXX - Doing this on an error is dubious
1010 1.1 briggs * because there shouldn't be any data to
1011 1.1 briggs * get (we've configured the interface to
1012 1.1 briggs * not accept packets with errors).
1013 1.1 briggs */
1014 1.1 briggs ae_rint (unit);
1015 1.1 briggs }
1016 1.1 briggs }
1017 1.1 briggs
1018 1.1 briggs /*
1019 1.1 briggs * If it looks like the transmitter can take more data,
1020 1.1 briggs * attempt to start output on the interface.
1021 1.1 briggs * This is done after handling the receiver to
1022 1.1 briggs * give the receiver priority.
1023 1.1 briggs */
1024 1.1 briggs if ((sc->arpcom.ac_if.if_flags & IFF_OACTIVE) == 0)
1025 1.1 briggs ae_start(&sc->arpcom.ac_if);
1026 1.1 briggs
1027 1.1 briggs /*
1028 1.1 briggs * return NIC CR to standard state: page 0, remote DMA complete,
1029 1.1 briggs * start (toggling the TXP bit off, even if was just set
1030 1.1 briggs * in the transmit routine, is *okay* - it is 'edge'
1031 1.1 briggs * triggered from low to high)
1032 1.1 briggs */
1033 1.1 briggs NIC_PUT(sc, AE_P0_CR, AE_CR_RD2|AE_CR_STA);
1034 1.1 briggs
1035 1.1 briggs /*
1036 1.1 briggs * If the Network Talley Counters overflow, read them to
1037 1.1 briggs * reset them. It appears that old 8390's won't
1038 1.1 briggs * clear the ISR flag otherwise - resulting in an
1039 1.1 briggs * infinite loop.
1040 1.1 briggs */
1041 1.1 briggs if (isr & AE_ISR_CNT) {
1042 1.1 briggs (void) NIC_GET(sc, AE_P0_CNTR0);
1043 1.1 briggs (void) NIC_GET(sc, AE_P0_CNTR1);
1044 1.1 briggs (void) NIC_GET(sc, AE_P0_CNTR2);
1045 1.1 briggs }
1046 1.1 briggs }
1047 1.1 briggs }
1048 1.1 briggs
1049 1.1 briggs /*
1050 1.1 briggs * Process an ioctl request. This code needs some work - it looks
1051 1.1 briggs * pretty ugly.
1052 1.1 briggs */
1053 1.1 briggs int
1054 1.1 briggs ae_ioctl(ifp, command, data)
1055 1.1 briggs register struct ifnet *ifp;
1056 1.1 briggs int command;
1057 1.1 briggs caddr_t data;
1058 1.1 briggs {
1059 1.1 briggs register struct ifaddr *ifa = (struct ifaddr *)data;
1060 1.1 briggs struct ae_softc *sc = &ae_softc[ifp->if_unit];
1061 1.1 briggs struct ifreq *ifr = (struct ifreq *)data;
1062 1.1 briggs int s, error = 0;
1063 1.1 briggs
1064 1.1 briggs s = splnet();
1065 1.1 briggs
1066 1.1 briggs switch (command) {
1067 1.1 briggs
1068 1.1 briggs case SIOCSIFADDR:
1069 1.1 briggs ifp->if_flags |= IFF_UP;
1070 1.1 briggs
1071 1.1 briggs switch (ifa->ifa_addr->sa_family) {
1072 1.1 briggs #ifdef INET
1073 1.1 briggs case AF_INET:
1074 1.1 briggs ae_init(ifp->if_unit); /* before arpwhohas */
1075 1.1 briggs /*
1076 1.1 briggs * See if another station has *our* IP address.
1077 1.1 briggs * i.e.: There is an address conflict! If a
1078 1.1 briggs * conflict exists, a message is sent to the
1079 1.1 briggs * console.
1080 1.1 briggs */
1081 1.1 briggs ((struct arpcom *)ifp)->ac_ipaddr =
1082 1.1 briggs IA_SIN(ifa)->sin_addr;
1083 1.1 briggs arpwhohas((struct arpcom *)ifp, &IA_SIN(ifa)->sin_addr);
1084 1.1 briggs break;
1085 1.1 briggs #endif
1086 1.1 briggs #ifdef NS
1087 1.1 briggs /*
1088 1.1 briggs * XXX - This code is probably wrong
1089 1.1 briggs */
1090 1.1 briggs case AF_NS:
1091 1.1 briggs {
1092 1.1 briggs register struct ns_addr *ina = &(IA_SNS(ifa)->sns_addr);
1093 1.1 briggs
1094 1.1 briggs if (ns_nullhost(*ina))
1095 1.1 briggs ina->x_host =
1096 1.1 briggs *(union ns_host *)(sc->arpcom.ac_enaddr);
1097 1.1 briggs else {
1098 1.1 briggs /*
1099 1.1 briggs *
1100 1.1 briggs */
1101 1.1 briggs bcopy((caddr_t)ina->x_host.c_host,
1102 1.1 briggs (caddr_t)sc->arpcom.ac_enaddr,
1103 1.1 briggs sizeof(sc->arpcom.ac_enaddr));
1104 1.1 briggs }
1105 1.1 briggs /*
1106 1.1 briggs * Set new address
1107 1.1 briggs */
1108 1.1 briggs ae_init(ifp->if_unit);
1109 1.1 briggs break;
1110 1.1 briggs }
1111 1.1 briggs #endif
1112 1.1 briggs default:
1113 1.1 briggs ae_init(ifp->if_unit);
1114 1.1 briggs break;
1115 1.1 briggs }
1116 1.1 briggs break;
1117 1.1 briggs
1118 1.1 briggs case SIOCSIFFLAGS:
1119 1.1 briggs /*
1120 1.1 briggs * If interface is marked down and it is running, then stop it
1121 1.1 briggs */
1122 1.1 briggs if (((ifp->if_flags & IFF_UP) == 0) &&
1123 1.1 briggs (ifp->if_flags & IFF_RUNNING)) {
1124 1.1 briggs ae_stop(ifp->if_unit);
1125 1.1 briggs ifp->if_flags &= ~IFF_RUNNING;
1126 1.1 briggs } else {
1127 1.1 briggs /*
1128 1.1 briggs * If interface is marked up and it is stopped, then start it
1129 1.1 briggs */
1130 1.1 briggs if ((ifp->if_flags & IFF_UP) &&
1131 1.1 briggs ((ifp->if_flags & IFF_RUNNING) == 0))
1132 1.1 briggs ae_init(ifp->if_unit);
1133 1.1 briggs }
1134 1.1 briggs #if NBPFILTER > 0
1135 1.1 briggs if (ifp->if_flags & IFF_PROMISC) {
1136 1.1 briggs /*
1137 1.1 briggs * Set promiscuous mode on interface.
1138 1.1 briggs * XXX - for multicasts to work, we would need to
1139 1.1 briggs * write 1's in all bits of multicast
1140 1.1 briggs * hashing array. For now we assume that
1141 1.1 briggs * this was done in ae_init().
1142 1.1 briggs */
1143 1.1 briggs NIC_PUT(sc, AE_P0_RCR,
1144 1.1 briggs AE_RCR_PRO|AE_RCR_AM|AE_RCR_AB);
1145 1.1 briggs } else {
1146 1.1 briggs /*
1147 1.1 briggs * XXX - for multicasts to work, we would need to
1148 1.1 briggs * rewrite the multicast hashing array with the
1149 1.1 briggs * proper hash (would have been destroyed above).
1150 1.1 briggs */
1151 1.1 briggs NIC_PUT(sc, AE_P0_RCR, AE_RCR_AB);
1152 1.1 briggs }
1153 1.1 briggs #endif
1154 1.1 briggs break;
1155 1.1 briggs
1156 1.1 briggs default:
1157 1.1 briggs error = EINVAL;
1158 1.1 briggs }
1159 1.1 briggs (void) splx(s);
1160 1.1 briggs return (error);
1161 1.1 briggs }
1162 1.1 briggs
1163 1.1 briggs /*
1164 1.1 briggs * Macro to calculate a new address within shared memory when given an offset
1165 1.1 briggs * from an address, taking into account ring-wrap.
1166 1.1 briggs */
1167 1.1 briggs #define ringoffset(sc, start, off, type) \
1168 1.1 briggs ((type)( ((caddr_t)(start)+(off) >= (sc)->smem_end) ? \
1169 1.1 briggs (((caddr_t)(start)+(off))) - (sc)->smem_end \
1170 1.1 briggs + (sc)->smem_ring: \
1171 1.1 briggs ((caddr_t)(start)+(off)) ))
1172 1.1 briggs
1173 1.1 briggs /*
1174 1.1 briggs * Retreive packet from shared memory and send to the next level up via
1175 1.1 briggs * ether_input(). If there is a BPF listener, give a copy to BPF, too.
1176 1.1 briggs */
1177 1.1 briggs ae_get_packet(sc, buf, len)
1178 1.1 briggs struct ae_softc *sc;
1179 1.1 briggs char *buf;
1180 1.1 briggs u_short len;
1181 1.1 briggs {
1182 1.1 briggs struct ether_header *eh;
1183 1.1 briggs struct mbuf *m, *head, *ae_ring_to_mbuf();
1184 1.1 briggs u_short off;
1185 1.1 briggs int resid;
1186 1.1 briggs u_short etype;
1187 1.1 briggs struct trailer_header {
1188 1.1 briggs u_short trail_type;
1189 1.1 briggs u_short trail_residual;
1190 1.1 briggs } trailer_header;
1191 1.1 briggs
1192 1.1 briggs /* Allocate a header mbuf */
1193 1.1 briggs MGETHDR(m, M_DONTWAIT, MT_DATA);
1194 1.1 briggs if (m == 0)
1195 1.1 briggs goto bad;
1196 1.1 briggs m->m_pkthdr.rcvif = &sc->arpcom.ac_if;
1197 1.1 briggs m->m_pkthdr.len = len;
1198 1.1 briggs m->m_len = 0;
1199 1.1 briggs head = m;
1200 1.1 briggs
1201 1.1 briggs eh = (struct ether_header *)buf;
1202 1.1 briggs
1203 1.1 briggs /* The following sillines is to make NFS happy */
1204 1.1 briggs #define EROUND ((sizeof(struct ether_header) + 3) & ~3)
1205 1.1 briggs #define EOFF (EROUND - sizeof(struct ether_header))
1206 1.1 briggs
1207 1.1 briggs /*
1208 1.1 briggs * The following assumes there is room for
1209 1.1 briggs * the ether header in the header mbuf
1210 1.1 briggs */
1211 1.1 briggs head->m_data += EOFF;
1212 1.1 briggs bcopy(buf, mtod(head, caddr_t), sizeof(struct ether_header));
1213 1.1 briggs buf += sizeof(struct ether_header);
1214 1.1 briggs head->m_len += sizeof(struct ether_header);
1215 1.1 briggs len -= sizeof(struct ether_header);
1216 1.1 briggs
1217 1.1 briggs etype = ntohs((u_short)eh->ether_type);
1218 1.1 briggs
1219 1.1 briggs /*
1220 1.1 briggs * Deal with trailer protocol:
1221 1.1 briggs * If trailer protocol, calculate the datasize as 'off',
1222 1.1 briggs * which is also the offset to the trailer header.
1223 1.1 briggs * Set resid to the amount of packet data following the
1224 1.1 briggs * trailer header.
1225 1.1 briggs * Finally, copy residual data into mbuf chain.
1226 1.1 briggs */
1227 1.1 briggs if (etype >= ETHERTYPE_TRAIL &&
1228 1.1 briggs etype < ETHERTYPE_TRAIL+ETHERTYPE_NTRAILER) {
1229 1.1 briggs
1230 1.1 briggs off = (etype - ETHERTYPE_TRAIL) << 9;
1231 1.1 briggs if ((off + sizeof(struct trailer_header)) > len)
1232 1.1 briggs goto bad; /* insanity */
1233 1.1 briggs
1234 1.1 briggs eh->ether_type = *ringoffset(sc, buf, off, u_short *);
1235 1.1 briggs resid = ntohs(*ringoffset(sc, buf, off+2, u_short *));
1236 1.1 briggs
1237 1.1 briggs if ((off + resid) > len) goto bad; /* insanity */
1238 1.1 briggs
1239 1.1 briggs resid -= sizeof(struct trailer_header);
1240 1.1 briggs if (resid < 0) goto bad; /* insanity */
1241 1.1 briggs
1242 1.1 briggs m = ae_ring_to_mbuf(sc, ringoffset(sc, buf, off+4, char *), head, resid);
1243 1.1 briggs if (m == 0) goto bad;
1244 1.1 briggs
1245 1.1 briggs len = off;
1246 1.1 briggs head->m_pkthdr.len -= 4; /* subtract trailer header */
1247 1.1 briggs }
1248 1.1 briggs
1249 1.1 briggs /*
1250 1.1 briggs * Pull packet off interface. Or if this was a trailer packet,
1251 1.1 briggs * the data portion is appended.
1252 1.1 briggs */
1253 1.1 briggs m = ae_ring_to_mbuf(sc, buf, m, len);
1254 1.1 briggs if (m == 0) goto bad;
1255 1.1 briggs
1256 1.1 briggs #if NBPFILTER > 0
1257 1.1 briggs /*
1258 1.1 briggs * Check if there's a BPF listener on this interface.
1259 1.1 briggs * If so, hand off the raw packet to bpf.
1260 1.1 briggs */
1261 1.1 briggs if (sc->bpf) {
1262 1.1 briggs bpf_mtap(sc->bpf, head);
1263 1.1 briggs
1264 1.1 briggs /*
1265 1.1 briggs * Note that the interface cannot be in promiscuous mode if
1266 1.1 briggs * there are no BPF listeners. And if we are in promiscuous
1267 1.1 briggs * mode, we have to check if this packet is really ours.
1268 1.1 briggs *
1269 1.1 briggs * XXX This test does not support multicasts.
1270 1.1 briggs */
1271 1.1 briggs if ((sc->arpcom.ac_if.if_flags & IFF_PROMISC) &&
1272 1.1 briggs bcmp(eh->ether_dhost, sc->arpcom.ac_enaddr,
1273 1.1 briggs sizeof(eh->ether_dhost)) != 0 &&
1274 1.1 briggs bcmp(eh->ether_dhost, etherbroadcastaddr,
1275 1.1 briggs sizeof(eh->ether_dhost)) != 0) {
1276 1.1 briggs
1277 1.1 briggs m_freem(head);
1278 1.1 briggs return;
1279 1.1 briggs }
1280 1.1 briggs }
1281 1.1 briggs #endif
1282 1.1 briggs
1283 1.1 briggs /*
1284 1.1 briggs * Fix up data start offset in mbuf to point past ether header
1285 1.1 briggs */
1286 1.1 briggs m_adj(head, sizeof(struct ether_header));
1287 1.1 briggs
1288 1.1 briggs ether_input(&sc->arpcom.ac_if, eh, head);
1289 1.1 briggs return;
1290 1.1 briggs
1291 1.1 briggs bad: if (head)
1292 1.1 briggs m_freem(head);
1293 1.1 briggs return;
1294 1.1 briggs }
1295 1.1 briggs
1296 1.1 briggs /*
1297 1.1 briggs * Supporting routines
1298 1.1 briggs */
1299 1.1 briggs
1300 1.1 briggs /*
1301 1.1 briggs * Given a source and destination address, copy 'amount' of a packet from
1302 1.1 briggs * the ring buffer into a linear destination buffer. Takes into account
1303 1.1 briggs * ring-wrap.
1304 1.1 briggs */
1305 1.1 briggs static inline char *
1306 1.1 briggs ae_ring_copy(sc,src,dst,amount)
1307 1.1 briggs struct ae_softc *sc;
1308 1.1 briggs char *src;
1309 1.1 briggs char *dst;
1310 1.1 briggs u_short amount;
1311 1.1 briggs {
1312 1.1 briggs u_short tmp_amount;
1313 1.1 briggs
1314 1.1 briggs /* does copy wrap to lower addr in ring buffer? */
1315 1.1 briggs if (src + amount > sc->smem_end) {
1316 1.1 briggs tmp_amount = sc->smem_end - src;
1317 1.1 briggs bcopy(src, dst, tmp_amount); /* copy amount up to end of smem */
1318 1.1 briggs amount -= tmp_amount;
1319 1.1 briggs src = sc->smem_ring;
1320 1.1 briggs dst += tmp_amount;
1321 1.1 briggs }
1322 1.1 briggs
1323 1.1 briggs bcopy(src, dst, amount);
1324 1.1 briggs
1325 1.1 briggs return(src + amount);
1326 1.1 briggs }
1327 1.1 briggs
1328 1.1 briggs /*
1329 1.1 briggs * Copy data from receive buffer to end of mbuf chain
1330 1.1 briggs * allocate additional mbufs as needed. return pointer
1331 1.1 briggs * to last mbuf in chain.
1332 1.1 briggs * sc = ed info (softc)
1333 1.1 briggs * src = pointer in ed ring buffer
1334 1.1 briggs * dst = pointer to last mbuf in mbuf chain to copy to
1335 1.1 briggs * amount = amount of data to copy
1336 1.1 briggs */
1337 1.1 briggs struct mbuf *
1338 1.1 briggs ae_ring_to_mbuf(sc,src,dst,total_len)
1339 1.1 briggs struct ae_softc *sc;
1340 1.1 briggs char *src;
1341 1.1 briggs struct mbuf *dst;
1342 1.1 briggs u_short total_len;
1343 1.1 briggs {
1344 1.1 briggs register struct mbuf *m = dst;
1345 1.1 briggs
1346 1.1 briggs while (total_len) {
1347 1.1 briggs register u_short amount = min(total_len, M_TRAILINGSPACE(m));
1348 1.1 briggs
1349 1.1 briggs if (amount == 0) { /* no more data in this mbuf, alloc another */
1350 1.1 briggs /*
1351 1.1 briggs * If there is enough data for an mbuf cluster, attempt
1352 1.1 briggs * to allocate one of those, otherwise, a regular
1353 1.1 briggs * mbuf will do.
1354 1.1 briggs * Note that a regular mbuf is always required, even if
1355 1.1 briggs * we get a cluster - getting a cluster does not
1356 1.1 briggs * allocate any mbufs, and one is needed to assign
1357 1.1 briggs * the cluster to. The mbuf that has a cluster
1358 1.1 briggs * extension can not be used to contain data - only
1359 1.1 briggs * the cluster can contain data.
1360 1.1 briggs */
1361 1.1 briggs dst = m;
1362 1.1 briggs MGET(m, M_DONTWAIT, MT_DATA);
1363 1.1 briggs if (m == 0)
1364 1.1 briggs return (0);
1365 1.1 briggs
1366 1.1 briggs if (total_len >= MINCLSIZE)
1367 1.1 briggs MCLGET(m, M_DONTWAIT);
1368 1.1 briggs
1369 1.1 briggs m->m_len = 0;
1370 1.1 briggs dst->m_next = m;
1371 1.1 briggs amount = min(total_len, M_TRAILINGSPACE(m));
1372 1.1 briggs }
1373 1.1 briggs
1374 1.1 briggs src = ae_ring_copy(sc, src, mtod(m, caddr_t) + m->m_len, amount);
1375 1.1 briggs
1376 1.1 briggs m->m_len += amount;
1377 1.1 briggs total_len -= amount;
1378 1.1 briggs
1379 1.1 briggs }
1380 1.1 briggs return (m);
1381 1.1 briggs }
1382