if_ae.c revision 1.17 1 /* $NetBSD: if_ae.c,v 1.17 1995/03/01 03:47:08 briggs Exp $ */
2
3 /*
4 * Device driver for National Semiconductor DS8390 based ethernet adapters.
5 *
6 * Based on original ISA bus driver by David Greenman, 29-April-1993
7 *
8 * Copyright (C) 1993, David Greenman. This software may be used, modified,
9 * copied, distributed, and sold, in both source and binary form provided
10 * that the above copyright and these terms are retained. Under no
11 * circumstances is the author responsible for the proper functioning
12 * of this software, nor does the author assume any responsibility
13 * for damages incurred with its use.
14 *
15 * Adapted for MacBSD by Brad Parker <brad (at) fcr.com>
16 *
17 * Currently supports:
18 * Apples NB Ethernet card
19 * Interlan A310 Nubus Ethernet card
20 * Cayman Systems GatorCard
21 * Asante MacCon II/E
22 */
23
24 /*
25 * $Id: if_ae.c,v 1.17 1995/03/01 03:47:08 briggs Exp $
26 */
27
28 #include "ae.h"
29 /* bpfilter included here in case it is needed in future net includes */
30 #include "bpfilter.h"
31
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/errno.h>
35 #include <sys/ioctl.h>
36 #include <sys/mbuf.h>
37 #include <sys/socket.h>
38 #include <sys/syslog.h>
39
40 #include <net/if.h>
41 #include <net/if_dl.h>
42 #include <net/if_types.h>
43 #include <net/netisr.h>
44
45 #ifdef INET
46 #include <netinet/in.h>
47 #include <netinet/in_systm.h>
48 #include <netinet/in_var.h>
49 #include <netinet/ip.h>
50 #include <netinet/if_ether.h>
51 #endif
52
53 #ifdef NS
54 #include <netns/ns.h>
55 #include <netns/ns_if.h>
56 #endif
57
58 #if NBPFILTER > 0
59 #include <net/bpf.h>
60 #include <net/bpfdesc.h>
61 #endif
62
63 #include <sys/device.h>
64 #include "nubus.h"
65 #include "if_aereg.h"
66
67 struct ae_device {
68 struct device ae_dev;
69 /* struct nubusdev ae_nu;
70 struct intrhand ae_ih; */
71 };
72
73 /*
74 * ae_softc: per line info and status
75 */
76 struct ae_softc {
77 struct ae_device *sc_ae;
78
79 struct arpcom arpcom; /* ethernet common */
80
81 char *type_str; /* pointer to type string */
82 u_char vendor; /* interface vendor */
83 u_char type; /* interface type code */
84 u_char regs_rev; /* registers are reversed */
85
86 #define REG_MAP(sc, reg) ((sc)->regs_rev ? (0x0f-(reg))<<2 : (reg)<<2)
87 #define NIC_GET(sc, reg) ((sc)->nic_addr[REG_MAP(sc, reg)])
88 #define NIC_PUT(sc, reg, val) ((sc)->nic_addr[REG_MAP(sc, reg)] = (val))
89 volatile caddr_t nic_addr; /* NIC (DS8390) I/O bus address */
90 caddr_t rom_addr; /* on board prom address */
91 caddr_t smem_start; /* shared memory start address */
92 caddr_t smem_end; /* shared memory end address */
93 u_long smem_size; /* total shared memory size */
94 u_char smem_wr_short; /* card memory requires int16 writes */
95 caddr_t smem_ring; /* start of RX ring-buffer (in smem) */
96
97 caddr_t bpf; /* BPF "magic cookie" */
98
99 u_char xmit_busy; /* transmitter is busy */
100 u_char txb_cnt; /* Number of transmit buffers */
101 u_char txb_next; /* Pointer to next buffer ready to xmit */
102 u_short txb_next_len; /* next xmit buffer length */
103 u_char data_buffered; /* data has been buffered in interface mem */
104 u_char tx_page_start; /* first page of TX buffer area */
105
106 u_char rec_page_start; /* first page of RX ring-buffer */
107 u_char rec_page_stop; /* last page of RX ring-buffer */
108 u_char next_packet; /* pointer to next unread RX packet */
109 } ae_softc[NAE];
110
111 void ae_find(), ae_attach(), aeintr();
112 int ae_init(), ae_ioctl(), ae_probe(),
113 ae_start(), ae_reset(), ae_watchdog();
114
115 struct cfdriver aecd =
116 { NULL, "ae", ae_probe, ae_attach, DV_IFNET, sizeof(struct ae_device), NULL, 0 };
117
118 static void ae_stop();
119 static inline void ae_rint();
120 static inline void ae_xmit();
121 static inline char *ae_ring_copy();
122
123 extern int ether_output();
124
125 #define ETHER_MIN_LEN 64
126 #define ETHER_MAX_LEN 1518
127 #define ETHER_ADDR_LEN 6
128 #define ETHER_HDR_SIZE 14
129
130 char ae_name[] = "8390 Nubus Ethernet card";
131 static char zero = 0;
132 static u_char ones = 0xff;
133
134 struct vendor_S {
135 char *manu;
136 int len;
137 int vendor;
138 } vend[] = {
139 { "Apple", 5, AE_VENDOR_APPLE },
140 { "3Com", 4, AE_VENDOR_APPLE },
141 { "Dayna", 5, AE_VENDOR_DAYNA },
142 { "Inter", 5, AE_VENDOR_INTERLAN },
143 { "Asant", 5, AE_VENDOR_ASANTE },
144 };
145
146 static int numvend = sizeof(vend)/sizeof(vend[0]);
147
148 /*
149 * XXX These two should be moved to locore, and maybe changed to use shorts
150 * instead of bytes. The reason for these is that bcopy and bzero use longs,
151 * which the ethernet cards can't handle.
152 */
153
154 void
155 bszero (u_short *addr, int len)
156 {
157 while (len--) {
158 *addr++ = 0;
159 }
160 }
161
162 void
163 bbcopy (char *src, char *dest, int len)
164 {
165 while (len--) {
166 *dest++ = *src++;
167 }
168 }
169
170 /*
171 short copy; assume destination is always aligned
172 and last byte of odd length copy is not important
173 */
174
175 void
176 bscopy (char *src, char *dest, int len)
177 {
178 u_short *d = (u_short *)dest;
179 u_short *s = (u_short *)src;
180 char b1, b2;
181
182 /* odd case, src addr is unaligned */
183 if ( ((u_long)src) & 1 ) {
184 while (len > 0) {
185 b1 = *src++;
186 b2 = len > 1 ? *src++ : (*d & 0xff);
187 *d++ = (b1 << 8) | b2;
188 len -= 2;
189 }
190 return;
191 }
192
193 /* normal case, aligned src & dst */
194 while (len > 0) {
195 *d++ = *s++;
196 len -= 2;
197 }
198 }
199
200 void
201 ae_id_card(nu, sc)
202 struct nubus_hw *nu;
203 struct ae_softc *sc;
204 {
205 int i;
206
207 /*
208 * Try to determine what type of card this is...
209 */
210 sc->vendor = AE_VENDOR_UNKNOWN;
211 for (i=0 ; i<numvend ; i++) {
212 if (!strncmp(nu->Slot.manufacturer, vend[i].manu, vend[i].len))
213 {
214 sc->vendor = vend[i].vendor;
215 break;
216 }
217 }
218 sc->type_str = (char *) (nu->Slot.manufacturer);
219
220 }
221
222 int
223 ae_size_card_memory(sc)
224 struct ae_softc *sc;
225 {
226 u_short *p;
227 u_short i1, i2, i3, i4;
228 int size;
229
230 p = (u_short *)sc->smem_start;
231
232 /*
233 * very simple size memory, assuming it's installed in 8k
234 * banks; also assume it will generally mirror in upper banks
235 * if not installed.
236 */
237 i1 = (8192*0)/2;
238 i2 = (8192*1)/2;
239 i3 = (8192*2)/2;
240 i4 = (8192*3)/2;
241
242 p[i1] = 0x1111;
243 p[i2] = 0x2222;
244 p[i3] = 0x3333;
245 p[i4] = 0x4444;
246
247 size = 0;
248 if (p[i1] == 0x1111 && p[i2] == 0x2222 &&
249 p[i3] == 0x3333 && p[i4] == 0x4444)
250 size = 8192*4;
251 else
252 if ((p[i1] == 0x1111 && p[i2] == 0x2222) ||
253 (p[i1] == 0x3333 && p[i2] == 0x4444))
254 size = 8192*2;
255 else
256 if (p[i1] == 0x1111 || p[i1] == 0x4444)
257 size = 8192;
258
259 if (size == 0)
260 return 0;
261
262 return size;
263 }
264
265 int
266 ae_probe(parent, cf, aux)
267 struct cfdriver *parent;
268 struct cfdata *cf;
269 void *aux;
270 {
271 register struct nubus_hw *nu = (struct nubus_hw *) aux;
272 struct ae_softc *sc = &ae_softc[cf->cf_unit];
273 int i, memsize;
274 int flags = 0;
275
276 if (nu->Slot.type != NUBUS_NETWORK)
277 return 0;
278
279 ae_id_card(nu, sc);
280
281 sc->regs_rev = 0;
282 sc->smem_wr_short = 0;
283
284 switch (sc->vendor) {
285 case AE_VENDOR_INTERLAN:
286 sc->nic_addr = nu->addr + GC_NIC_OFFSET;
287 sc->rom_addr = nu->addr + GC_ROM_OFFSET;
288 sc->smem_start = nu->addr + GC_DATA_OFFSET;
289 if ((memsize = ae_size_card_memory(sc)) == 0)
290 return 0;
291
292 /* reset the NIC chip */
293 *((caddr_t)nu->addr + GC_RESET_OFFSET) = (char)zero;
294
295 /* Get station address from on-board ROM */
296 for (i = 0; i < ETHER_ADDR_LEN; ++i)
297 sc->arpcom.ac_enaddr[i] = *(sc->rom_addr + i*4);
298 break;
299
300 case AE_VENDOR_ASANTE:
301 /* memory writes require *(u_short *) */
302 sc->smem_wr_short = 1;
303 /* otherwise, pretend to be an apple card (fall through) */
304
305 case AE_VENDOR_APPLE:
306 sc->regs_rev = 1;
307 sc->nic_addr = nu->addr + AE_NIC_OFFSET;
308 sc->rom_addr = nu->addr + AE_ROM_OFFSET;
309 sc->smem_start = nu->addr + AE_DATA_OFFSET;
310 if ((memsize = ae_size_card_memory(sc)) == 0)
311 return 0;
312
313 /* Get station address from on-board ROM */
314 for (i = 0; i < ETHER_ADDR_LEN; ++i)
315 sc->arpcom.ac_enaddr[i] = *(sc->rom_addr + i*2);
316 break;
317
318 case AE_VENDOR_DAYNA:
319 printf("We think we are a Dayna card, but ");
320 sc->nic_addr = nu->addr + DP_NIC_OFFSET;
321 sc->rom_addr = nu->addr + DP_ROM_OFFSET;
322 sc->smem_start = nu->addr + DP_DATA_OFFSET;
323 memsize = 8192;
324
325 /* Get station address from on-board ROM */
326 for (i = 0; i < ETHER_ADDR_LEN; ++i)
327 sc->arpcom.ac_enaddr[i] = *(sc->rom_addr + i*2);
328 printf("it is dangerous to continue.\n");
329 return 0; /* Since we don't work yet... */
330 break;
331
332 default:
333 return 0;
334 break;
335 }
336
337 /*
338 * allocate one xmit buffer if < 16k, two buffers otherwise
339 */
340 if ((memsize < 16384) || (flags & AE_FLAGS_NO_DOUBLE_BUFFERING)) {
341 sc->smem_ring =
342 sc->smem_start + (AE_PAGE_SIZE * AE_TXBUF_SIZE);
343 sc->txb_cnt = 1;
344 sc->rec_page_start = AE_TXBUF_SIZE;
345 } else {
346 sc->smem_ring =
347 sc->smem_start + (AE_PAGE_SIZE * AE_TXBUF_SIZE * 2);
348 sc->txb_cnt = 2;
349 sc->rec_page_start = AE_TXBUF_SIZE * 2;
350 }
351
352 sc->smem_size = memsize;
353 sc->smem_end = sc->smem_start + memsize;
354 sc->rec_page_stop = memsize / AE_PAGE_SIZE;
355 sc->tx_page_start = 0;
356
357 /*
358 * Now zero memory and verify that it is clear
359 */
360 bszero((u_short *)sc->smem_start, memsize / 2);
361
362 for (i = 0; i < memsize; ++i)
363 if (sc->smem_start[i]) {
364 printf("ae: failed to clear shared memory at %x\n",
365 sc->smem_start + i);
366
367 return(0);
368 }
369
370 #ifdef DEBUG_PRINT
371 printf("nic_addr %x, rom_addr %x\n",
372 sc->nic_addr, sc->rom_addr);
373 printf("smem_size %d\n", sc->smem_size);
374 printf("smem_start %x, smem_ring %x, smem_end %x\n",
375 sc->smem_start, sc->smem_ring, sc->smem_end);
376 printf("phys address %02x:%02x:%02x:%02x:%02x:%02x\n",
377 sc->arpcom.ac_enaddr[0],
378 sc->arpcom.ac_enaddr[1],
379 sc->arpcom.ac_enaddr[2],
380 sc->arpcom.ac_enaddr[3],
381 sc->arpcom.ac_enaddr[4],
382 sc->arpcom.ac_enaddr[5]);
383 #endif
384
385 return(1);
386 }
387
388 /*
389 * Install interface into kernel networking data structures
390 */
391 void
392 ae_attach(parent, self, aux)
393 struct cfdriver *parent, *self;
394 void *aux;
395 {
396 struct nubus_hw *nu = aux;
397 struct ae_device *ae = (struct ae_device *) self;
398 struct ae_softc *sc = &ae_softc[ae->ae_dev.dv_unit];
399 struct cfdata *cf = ae->ae_dev.dv_cfdata;
400 struct ifnet *ifp = &sc->arpcom.ac_if;
401 struct ifaddr *ifa;
402 struct sockaddr_dl *sdl;
403
404 sc->sc_ae = ae;
405
406 /*
407 * Set interface to stopped condition (reset)
408 */
409 ae_stop(sc);
410
411 /*
412 * Initialize ifnet structure
413 */
414 ifp->if_unit = ae->ae_dev.dv_unit;
415 ifp->if_name = aecd.cd_name;
416 ifp->if_mtu = ETHERMTU;
417 ifp->if_output = ether_output;
418 ifp->if_start = ae_start;
419 ifp->if_ioctl = ae_ioctl;
420 ifp->if_reset = ae_reset;
421 ifp->if_watchdog = ae_watchdog;
422 ifp->if_flags = (IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS);
423
424 #if 0
425 /*
426 * Set default state for ALTPHYS flag (used to disable the transceiver
427 * for AUI operation), based on compile-time config option.
428 */
429 if (cf->cf_flags & AE_FLAGS_DISABLE_TRANSCEIVER)
430 ifp->if_flags |= IFF_ALTPHYS;
431 #endif
432
433 /*
434 * Attach the interface
435 */
436 if_attach(ifp);
437
438 /*
439 * Search down the ifa address list looking for the AF_LINK type entry
440 */
441 ifa = ifp->if_addrlist;
442 while ((ifa != 0) && (ifa->ifa_addr != 0) &&
443 (ifa->ifa_addr->sa_family != AF_LINK))
444 ifa = ifa->ifa_next;
445 /*
446 * If we find an AF_LINK type entry we fill in the hardware address.
447 * This is useful for netstat(1) to keep track of which interface
448 * is which.
449 */
450 if ((ifa != 0) && (ifa->ifa_addr != 0)) {
451 /*
452 * Fill in the link-level address for this interface
453 */
454 sdl = (struct sockaddr_dl *)ifa->ifa_addr;
455 sdl->sdl_type = IFT_ETHER;
456 sdl->sdl_alen = ETHER_ADDR_LEN;
457 sdl->sdl_slen = 0;
458 bbcopy(sc->arpcom.ac_enaddr, LLADDR(sdl), ETHER_ADDR_LEN);
459 }
460
461 /*
462 * Print additional info when attached
463 */
464 printf(": address %s, ", ether_sprintf(sc->arpcom.ac_enaddr));
465
466 if (sc->type_str && (*sc->type_str != 0))
467 printf("type %s", sc->type_str);
468 else
469 printf("type unknown (0x%x)", sc->type);
470
471 printf(", %dk mem", sc->smem_size / 1024);
472
473 printf("\n");
474
475 /*
476 * If BPF is in the kernel, call the attach for it
477 */
478 #if NBPFILTER > 0
479 bpfattach(&sc->bpf, ifp, DLT_EN10MB, sizeof(struct ether_header));
480 #endif
481 }
482
483 /*
484 * Reset interface.
485 */
486 int
487 ae_reset(sc)
488 struct ae_softc *sc;
489 {
490 int s;
491
492 s = splnet();
493
494 /*
495 * Stop interface and re-initialize.
496 */
497 ae_stop(sc);
498 ae_init(sc);
499
500 (void) splx(s);
501 }
502
503 /*
504 * Take interface offline.
505 */
506 void
507 ae_stop(sc)
508 struct ae_softc *sc;
509 {
510 int n = 5000;
511
512 /*
513 * Stop everything on the interface, and select page 0 registers.
514 */
515 NIC_PUT(sc, AE_P0_CR, AE_CR_RD2|AE_CR_STP);
516
517 /*
518 * Wait for interface to enter stopped state, but limit # of checks
519 * to 'n' (about 5ms). It shouldn't even take 5us on modern
520 * DS8390's, but just in case it's an old one.
521 */
522 while (((NIC_GET(sc, AE_P0_ISR) & AE_ISR_RST) == 0) && --n);
523 }
524
525 /*
526 * Device timeout/watchdog routine. Entered if the device neglects to
527 * generate an interrupt after a transmit has been started on it.
528 */
529 int
530 ae_watchdog(unit)
531 short unit;
532 {
533 struct ae_softc *sc = &ae_softc[unit];
534
535 log(LOG_ERR, "ae%d: device timeout\n", unit);
536 ae_reset(sc);
537 }
538
539 /*
540 * Initialize device.
541 */
542 ae_init(sc)
543 struct ae_softc *sc;
544 {
545 struct ifnet *ifp = &sc->arpcom.ac_if;
546 int i, s;
547 u_char command;
548
549 /* address not known */
550 if (ifp->if_addrlist == (struct ifaddr *)0) return;
551
552 /*
553 * Initialize the NIC in the exact order outlined in the NS manual.
554 * This init procedure is "mandatory"...don't change what or when
555 * things happen.
556 */
557 s = splnet();
558
559 /* reset transmitter flags */
560 sc->data_buffered = 0;
561 sc->xmit_busy = 0;
562 sc->arpcom.ac_if.if_timer = 0;
563
564 sc->txb_next = 0;
565
566 /* This variable is used below - don't move this assignment */
567 sc->next_packet = sc->rec_page_start + 1;
568
569 #ifdef DEBUG_PRINT
570 printf("page_start %d, page_stop %d, next %d\n",
571 sc->rec_page_start, sc->rec_page_stop, sc->next_packet);
572 #endif
573
574 /*
575 * Set interface for page 0, Remote DMA complete, Stopped
576 */
577 NIC_PUT(sc, AE_P0_CR, AE_CR_RD2|AE_CR_STP);
578
579 /*
580 * Set FIFO threshold to 4, No auto-init Remote DMA, Burst mode,
581 * byte order=80x86, word-wide DMA xfers,
582 */
583 NIC_PUT(sc, AE_P0_DCR, AE_DCR_FT1|AE_DCR_BMS|AE_DCR_WTS);
584
585 /*
586 * Clear Remote Byte Count Registers
587 */
588 NIC_PUT(sc, AE_P0_RBCR0, zero);
589 NIC_PUT(sc, AE_P0_RBCR1, zero);
590
591 /*
592 * Enable reception of broadcast packets
593 */
594 NIC_PUT(sc, AE_P0_RCR, AE_RCR_AB);
595
596 /*
597 * Place NIC in internal loopback mode
598 */
599 NIC_PUT(sc, AE_P0_TCR, AE_TCR_LB0);
600
601 /*
602 * Initialize transmit/receive (ring-buffer) Page Start
603 */
604 NIC_PUT(sc, AE_P0_TPSR, sc->tx_page_start);
605 NIC_PUT(sc, AE_P0_PSTART, sc->rec_page_start);
606
607 /*
608 * Initialize Receiver (ring-buffer) Page Stop and Boundry
609 */
610 NIC_PUT(sc, AE_P0_PSTOP, sc->rec_page_stop);
611 NIC_PUT(sc, AE_P0_BNRY, sc->rec_page_start);
612
613 /*
614 * Clear all interrupts. A '1' in each bit position clears the
615 * corresponding flag.
616 */
617 NIC_PUT(sc, AE_P0_ISR, ones);
618
619 /* make sure interrupts are vectored to us */
620 add_nubus_intr((int)sc->rom_addr & 0xFF000000, aeintr, sc - ae_softc);
621
622 /*
623 * Enable the following interrupts: receive/transmit complete,
624 * receive/transmit error, and Receiver OverWrite.
625 *
626 * Counter overflow and Remote DMA complete are *not* enabled.
627 */
628 NIC_PUT(sc, AE_P0_IMR,
629 AE_IMR_PRXE|AE_IMR_PTXE|AE_IMR_RXEE|AE_IMR_TXEE|AE_IMR_OVWE);
630
631 /*
632 * Program Command Register for page 1
633 */
634 NIC_PUT(sc, AE_P0_CR, AE_CR_PAGE_1|AE_CR_RD2|AE_CR_STP);
635
636 /*
637 * Copy out our station address
638 */
639 for (i = 0; i < ETHER_ADDR_LEN; ++i)
640 NIC_PUT(sc, AE_P1_PAR0 + i, sc->arpcom.ac_enaddr[i]);
641
642 #if NBPFILTER > 0
643 /*
644 * Initialize multicast address hashing registers to accept
645 * all multicasts (only used when in promiscuous mode)
646 */
647 for (i = 0; i < 8; ++i)
648 NIC_PUT(sc, AE_P1_MAR0 + i, 0xff);
649 #endif
650
651 /*
652 * Set Current Page pointer to next_packet (initialized above)
653 */
654 NIC_PUT(sc, AE_P1_CURR, sc->next_packet);
655
656 /*
657 * Set Command Register for page 0, Remote DMA complete,
658 * and interface Start.
659 */
660 NIC_PUT(sc, AE_P1_CR, AE_CR_RD2|AE_CR_STA);
661
662 /*
663 * Take interface out of loopback
664 */
665 NIC_PUT(sc, AE_P0_TCR, zero);
666
667 /*
668 * Set 'running' flag, and clear output active flag.
669 */
670 ifp->if_flags |= IFF_RUNNING;
671 ifp->if_flags &= ~IFF_OACTIVE;
672
673 /*
674 * ...and attempt to start output
675 */
676 ae_start(ifp);
677
678 (void) splx(s);
679 }
680
681 /*
682 * This routine actually starts the transmission on the interface
683 */
684 static inline void ae_xmit(ifp)
685 struct ifnet *ifp;
686 {
687 struct ae_softc *sc = &ae_softc[ifp->if_unit];
688 u_short len = sc->txb_next_len;
689
690 /*
691 * Set NIC for page 0 register access
692 */
693 NIC_PUT(sc, AE_P0_CR, AE_CR_RD2|AE_CR_STA);
694
695 /*
696 * Set TX buffer start page
697 */
698 NIC_PUT(sc, AE_P0_TPSR, sc->tx_page_start +
699 sc->txb_next * AE_TXBUF_SIZE);
700
701 /*
702 * Set TX length
703 */
704 NIC_PUT(sc, AE_P0_TBCR0, len & 0xff);
705 NIC_PUT(sc, AE_P0_TBCR1, len >> 8);
706
707 /*
708 * Set page 0, Remote DMA complete, Transmit Packet, and *Start*
709 */
710 NIC_PUT(sc, AE_P0_CR, AE_CR_RD2|AE_CR_TXP|AE_CR_STA);
711
712 sc->xmit_busy = 1;
713 sc->data_buffered = 0;
714
715 /*
716 * Switch buffers if we are doing double-buffered transmits
717 */
718 if ((sc->txb_next == 0) && (sc->txb_cnt > 1))
719 sc->txb_next = 1;
720 else
721 sc->txb_next = 0;
722
723 /*
724 * Set a timer just in case we never hear from the board again
725 */
726 ifp->if_timer = 4;
727 }
728
729 /*
730 * Start output on interface.
731 * We make two assumptions here:
732 * 1) that the current priority is set to splnet _before_ this code
733 * is called *and* is returned to the appropriate priority after
734 * return
735 * 2) that the IFF_OACTIVE flag is checked before this code is called
736 * (i.e. that the output part of the interface is idle)
737 */
738 int
739 ae_start(ifp)
740 struct ifnet *ifp;
741 {
742 struct ae_softc *sc = &ae_softc[ifp->if_unit];
743 struct mbuf *m0, *m;
744 caddr_t buffer;
745 int len;
746
747 outloop:
748 /*
749 * See if there is room to send more data (i.e. one or both of the
750 * buffers is empty).
751 */
752 if (sc->data_buffered)
753 if (sc->xmit_busy) {
754 /*
755 * No room. Indicate this to the outside world
756 * and exit.
757 */
758 ifp->if_flags |= IFF_OACTIVE;
759 return;
760 } else {
761 /*
762 * Data is buffered, but we're not transmitting, so
763 * start the xmit on the buffered data.
764 * Note that ae_xmit() resets the data_buffered flag
765 * before returning.
766 */
767 ae_xmit(ifp);
768 }
769
770 IF_DEQUEUE(&sc->arpcom.ac_if.if_snd, m);
771 if (m == 0) {
772 /*
773 * The following isn't pretty; we are using the !OACTIVE flag to
774 * indicate to the outside world that we can accept an additional
775 * packet rather than that the transmitter is _actually_
776 * active. Indeed, the transmitter may be active, but if we haven't
777 * filled the secondary buffer with data then we still want to
778 * accept more.
779 * Note that it isn't necessary to test the data_buffered flag -
780 * we wouldn't have tried to de-queue the packet in the first place
781 * if it was set.
782 */
783 ifp->if_flags &= ~IFF_OACTIVE;
784 return;
785 }
786
787 /*
788 * Copy the mbuf chain into the transmit buffer
789 */
790 buffer = sc->smem_start + (sc->txb_next * AE_TXBUF_SIZE * AE_PAGE_SIZE);
791 len = 0;
792 for (m0 = m; m != 0; m = m->m_next) {
793 /*printf("ae: copy %d bytes @ %x\n", m->m_len, buffer);*/
794 bscopy(mtod(m, caddr_t), buffer, m->m_len);
795 buffer += m->m_len;
796 len += m->m_len;
797 }
798 if (len & 1) len++;
799
800 sc->txb_next_len = max(len, ETHER_MIN_LEN);
801
802 if (sc->txb_cnt > 1)
803 /*
804 * only set 'buffered' flag if doing multiple buffers
805 */
806 sc->data_buffered = 1;
807
808 if (sc->xmit_busy == 0)
809 ae_xmit(ifp);
810 /*
811 * If there is BPF support in the configuration, tap off here.
812 * The following has support for converting trailer packets
813 * back to normal.
814 */
815 #if NBPFILTER > 0
816 if (sc->bpf) {
817 u_short etype;
818 int off, datasize, resid;
819 struct ether_header *eh;
820 struct trailer_header {
821 u_short ether_type;
822 u_short ether_residual;
823 } trailer_header;
824 char ether_packet[ETHER_MAX_LEN];
825 char *ep;
826
827 ep = ether_packet;
828
829 /*
830 * We handle trailers below:
831 * Copy ether header first, then residual data,
832 * then data. Put all this in a temporary buffer
833 * 'ether_packet' and send off to bpf. Since the
834 * system has generated this packet, we assume
835 * that all of the offsets in the packet are
836 * correct; if they're not, the system will almost
837 * certainly crash in m_copydata.
838 * We make no assumptions about how the data is
839 * arranged in the mbuf chain (i.e. how much
840 * data is in each mbuf, if mbuf clusters are
841 * used, etc.), which is why we use m_copydata
842 * to get the ether header rather than assume
843 * that this is located in the first mbuf.
844 */
845 /* copy ether header */
846 m_copydata(m0, 0, sizeof(struct ether_header), ep);
847 eh = (struct ether_header *) ep;
848 ep += sizeof(struct ether_header);
849 etype = ntohs(eh->ether_type);
850 if (etype >= ETHERTYPE_TRAIL &&
851 etype < ETHERTYPE_TRAIL+ETHERTYPE_NTRAILER) {
852 datasize = ((etype - ETHERTYPE_TRAIL) << 9);
853 off = datasize + sizeof(struct ether_header);
854
855 /* copy trailer_header into a data structure */
856 m_copydata(m0, off, sizeof(struct trailer_header),
857 &trailer_header.ether_type);
858
859 /* copy residual data */
860 m_copydata(m0, off+sizeof(struct trailer_header),
861 resid = ntohs(trailer_header.ether_residual) -
862 sizeof(struct trailer_header), ep);
863 ep += resid;
864
865 /* copy data */
866 m_copydata(m0, sizeof(struct ether_header),
867 datasize, ep);
868 ep += datasize;
869
870 /* restore original ether packet type */
871 eh->ether_type = trailer_header.ether_type;
872
873 bpf_tap(sc->bpf, ether_packet, ep - ether_packet);
874 } else
875 bpf_mtap(sc->bpf, m0);
876 }
877 #endif
878
879 m_freem(m0);
880
881 /*
882 * If we are doing double-buffering, a buffer might be free to
883 * fill with another packet, so loop back to the top.
884 */
885 if (sc->txb_cnt > 1)
886 goto outloop;
887 else {
888 ifp->if_flags |= IFF_OACTIVE;
889 return;
890 }
891 }
892
893 /*
894 * Ethernet interface receiver interrupt.
895 */
896 static inline void
897 ae_rint(unit)
898 int unit;
899 {
900 register struct ae_softc *sc = &ae_softc[unit];
901 u_char boundry, current;
902 u_short len;
903 struct ae_ring *packet_ptr;
904
905 /*
906 * Set NIC to page 1 registers to get 'current' pointer
907 */
908 NIC_PUT(sc, AE_P0_CR, AE_CR_PAGE_1|AE_CR_RD2|AE_CR_STA);
909
910 /*
911 * 'sc->next_packet' is the logical beginning of the ring-buffer - i.e.
912 * it points to where new data has been buffered. The 'CURR'
913 * (current) register points to the logical end of the ring-buffer
914 * - i.e. it points to where additional new data will be added.
915 * We loop here until the logical beginning equals the logical
916 * end (or in other words, until the ring-buffer is empty).
917 */
918 while (sc->next_packet != NIC_GET(sc, AE_P1_CURR)) {
919
920 /* get pointer to this buffer header structure */
921 packet_ptr = (struct ae_ring *)(sc->smem_ring +
922 (sc->next_packet - sc->rec_page_start) * AE_PAGE_SIZE);
923
924 /*
925 * The byte count includes the FCS - Frame Check Sequence (a
926 * 32 bit CRC).
927 */
928 len = packet_ptr->count[0] | (packet_ptr->count[1] << 8);
929 if ((len >= ETHER_MIN_LEN) && (len <= ETHER_MAX_LEN)) {
930 /*
931 * Go get packet. len - 4 removes CRC from length.
932 * (packet_ptr + 1) points to data just after the
933 * packet ring header (+4 bytes)
934 */
935 ae_get_packet(sc, (caddr_t)(packet_ptr + 1), len - 4);
936 ++sc->arpcom.ac_if.if_ipackets;
937 } else {
938 /*
939 * Really BAD...probably indicates that the ring
940 * pointers are corrupted. Also seen on early rev
941 * chips under high load - the byte order of the
942 * length gets switched.
943 */
944 log(LOG_ERR,
945 "ae%d: shared memory corrupt - invalid packet length %d\n",
946 unit, len);
947 ae_reset(sc);
948 return;
949 }
950
951 /*
952 * Update next packet pointer
953 */
954 sc->next_packet = packet_ptr->next_packet;
955
956 /*
957 * Update NIC boundry pointer - being careful to keep it
958 * one buffer behind. (as recommended by NS databook)
959 */
960 boundry = sc->next_packet - 1;
961 if (boundry < sc->rec_page_start)
962 boundry = sc->rec_page_stop - 1;
963
964 /*
965 * Set NIC to page 0 registers to update boundry register
966 */
967 NIC_PUT(sc, AE_P0_CR, AE_CR_RD2|AE_CR_STA);
968
969 NIC_PUT(sc, AE_P0_BNRY, boundry);
970
971 /*
972 * Set NIC to page 1 registers before looping to top
973 * (prepare to get 'CURR' current pointer)
974 */
975 NIC_PUT(sc, AE_P0_CR, AE_CR_PAGE_1|AE_CR_RD2|AE_CR_STA);
976 }
977 }
978
979 /*
980 * Ethernet interface interrupt processor
981 */
982 void
983 aeintr(unit)
984 int unit;
985 {
986 struct ae_softc *sc = &ae_softc[unit];
987 u_char isr;
988
989 /*
990 * Set NIC to page 0 registers
991 */
992 NIC_PUT(sc, AE_P0_CR, AE_CR_RD2|AE_CR_STA);
993
994 /*
995 * loop until there are no more new interrupts
996 */
997 while (isr = NIC_GET(sc, AE_P0_ISR)) {
998
999 /*
1000 * reset all the bits that we are 'acknowledging'
1001 * by writing a '1' to each bit position that was set
1002 * (writing a '1' *clears* the bit)
1003 */
1004 NIC_PUT(sc, AE_P0_ISR, isr);
1005
1006 /*
1007 * Handle transmitter interrupts. Handle these first
1008 * because the receiver will reset the board under
1009 * some conditions.
1010 */
1011 if (isr & (AE_ISR_PTX|AE_ISR_TXE)) {
1012 u_char collisions = NIC_GET(sc, AE_P0_NCR);
1013
1014 /*
1015 * Check for transmit error. If a TX completed with an
1016 * error, we end up throwing the packet away. Really
1017 * the only error that is possible is excessive
1018 * collisions, and in this case it is best to allow the
1019 * automatic mechanisms of TCP to backoff the flow. Of
1020 * course, with UDP we're screwed, but this is expected
1021 * when a network is heavily loaded.
1022 */
1023 if (isr & AE_ISR_TXE) {
1024
1025 /*
1026 * Excessive collisions (16)
1027 */
1028 if ((NIC_GET(sc, AE_P0_TSR) & AE_TSR_ABT)
1029 && (collisions == 0)) {
1030 /*
1031 * When collisions total 16, the
1032 * P0_NCR will indicate 0, and the
1033 * TSR_ABT is set.
1034 */
1035 collisions = 16;
1036 }
1037
1038 /*
1039 * update output errors counter
1040 */
1041 ++sc->arpcom.ac_if.if_oerrors;
1042 } else {
1043 /*
1044 * Update total number of successfully
1045 * transmitted packets.
1046 */
1047 ++sc->arpcom.ac_if.if_opackets;
1048 }
1049
1050 /*
1051 * reset tx busy and output active flags
1052 */
1053 sc->xmit_busy = 0;
1054 sc->arpcom.ac_if.if_flags &= ~IFF_OACTIVE;
1055
1056 /*
1057 * clear watchdog timer
1058 */
1059 sc->arpcom.ac_if.if_timer = 0;
1060
1061 /*
1062 * Add in total number of collisions on last
1063 * transmission.
1064 */
1065 sc->arpcom.ac_if.if_collisions += collisions;
1066
1067 /*
1068 * If data is ready to transmit, start it transmitting,
1069 * otherwise defer until after handling receiver
1070 */
1071 if (sc->data_buffered)
1072 ae_xmit(&sc->arpcom.ac_if);
1073 }
1074
1075 /*
1076 * Handle receiver interrupts
1077 */
1078 if (isr & (AE_ISR_PRX|AE_ISR_RXE|AE_ISR_OVW)) {
1079 /*
1080 * Overwrite warning. In order to make sure that a lockup
1081 * of the local DMA hasn't occurred, we reset and
1082 * re-init the NIC. The NSC manual suggests only a
1083 * partial reset/re-init is necessary - but some
1084 * chips seem to want more. The DMA lockup has been
1085 * seen only with early rev chips - Methinks this
1086 * bug was fixed in later revs. -DG
1087 */
1088 if (isr & AE_ISR_OVW) {
1089 ++sc->arpcom.ac_if.if_ierrors;
1090 log(LOG_WARNING,
1091 "ae%d: warning - receiver ring buffer overrun\n",
1092 unit);
1093 /*
1094 * Stop/reset/re-init NIC
1095 */
1096 ae_reset(sc);
1097 } else {
1098
1099 /*
1100 * Receiver Error. One or more of: CRC error, frame
1101 * alignment error FIFO overrun, or missed packet.
1102 */
1103 if (isr & AE_ISR_RXE) {
1104 ++sc->arpcom.ac_if.if_ierrors;
1105 #ifdef AE_DEBUG
1106 printf("ae%d: receive error %x\n", unit,
1107 NIC_GET(sc, AE_P0_RSR));
1108 #endif
1109 }
1110
1111 /*
1112 * Go get the packet(s)
1113 * XXX - Doing this on an error is dubious
1114 * because there shouldn't be any data to
1115 * get (we've configured the interface to
1116 * not accept packets with errors).
1117 */
1118 ae_rint (unit);
1119 }
1120 }
1121
1122 /*
1123 * If it looks like the transmitter can take more data,
1124 * attempt to start output on the interface.
1125 * This is done after handling the receiver to
1126 * give the receiver priority.
1127 */
1128 if ((sc->arpcom.ac_if.if_flags & IFF_OACTIVE) == 0)
1129 ae_start(&sc->arpcom.ac_if);
1130
1131 /*
1132 * return NIC CR to standard state: page 0, remote DMA complete,
1133 * start (toggling the TXP bit off, even if was just set
1134 * in the transmit routine, is *okay* - it is 'edge'
1135 * triggered from low to high)
1136 */
1137 NIC_PUT(sc, AE_P0_CR, AE_CR_RD2|AE_CR_STA);
1138
1139 /*
1140 * If the Network Talley Counters overflow, read them to
1141 * reset them. It appears that old 8390's won't
1142 * clear the ISR flag otherwise - resulting in an
1143 * infinite loop.
1144 */
1145 if (isr & AE_ISR_CNT) {
1146 (void) NIC_GET(sc, AE_P0_CNTR0);
1147 (void) NIC_GET(sc, AE_P0_CNTR1);
1148 (void) NIC_GET(sc, AE_P0_CNTR2);
1149 }
1150 }
1151 }
1152
1153 /*
1154 * Process an ioctl request. This code needs some work - it looks
1155 * pretty ugly.
1156 */
1157 int
1158 ae_ioctl(ifp, command, data)
1159 register struct ifnet *ifp;
1160 int command;
1161 caddr_t data;
1162 {
1163 register struct ifaddr *ifa = (struct ifaddr *)data;
1164 struct ae_softc *sc = &ae_softc[ifp->if_unit];
1165 struct ifreq *ifr = (struct ifreq *)data;
1166 int s, error = 0;
1167
1168 s = splnet();
1169
1170 switch (command) {
1171
1172 case SIOCSIFADDR:
1173 ifp->if_flags |= IFF_UP;
1174
1175 switch (ifa->ifa_addr->sa_family) {
1176 #ifdef INET
1177 case AF_INET:
1178 ae_init(sc); /* before arpwhohas */
1179 /*
1180 * See if another station has *our* IP address.
1181 * i.e.: There is an address conflict! If a
1182 * conflict exists, a message is sent to the
1183 * console.
1184 */
1185 ((struct arpcom *)ifp)->ac_ipaddr =
1186 IA_SIN(ifa)->sin_addr;
1187 arpwhohas((struct arpcom *)ifp, &IA_SIN(ifa)->sin_addr);
1188 break;
1189 #endif
1190 #ifdef NS
1191 /*
1192 * XXX - This code is probably wrong
1193 */
1194 case AF_NS:
1195 {
1196 register struct ns_addr *ina = &(IA_SNS(ifa)->sns_addr);
1197
1198 if (ns_nullhost(*ina))
1199 ina->x_host =
1200 *(union ns_host *)(sc->arpcom.ac_enaddr);
1201 else {
1202 /*
1203 *
1204 */
1205 bbcopy((caddr_t)ina->x_host.c_host,
1206 (caddr_t)sc->arpcom.ac_enaddr,
1207 sizeof(sc->arpcom.ac_enaddr));
1208 }
1209 /*
1210 * Set new address
1211 */
1212 ae_init(sc);
1213 break;
1214 }
1215 #endif
1216 default:
1217 ae_init(sc);
1218 break;
1219 }
1220 break;
1221
1222 case SIOCSIFFLAGS:
1223 /*
1224 * If interface is marked down and it is running, then stop it
1225 */
1226 if (((ifp->if_flags & IFF_UP) == 0) &&
1227 (ifp->if_flags & IFF_RUNNING)) {
1228 ae_stop(sc);
1229 ifp->if_flags &= ~IFF_RUNNING;
1230 } else {
1231 /*
1232 * If interface is marked up and it is stopped, then start it
1233 */
1234 if ((ifp->if_flags & IFF_UP) &&
1235 ((ifp->if_flags & IFF_RUNNING) == 0))
1236 ae_init(sc);
1237 }
1238 #if NBPFILTER > 0
1239 if (ifp->if_flags & IFF_PROMISC) {
1240 /*
1241 * Set promiscuous mode on interface.
1242 * XXX - for multicasts to work, we would need to
1243 * write 1's in all bits of multicast
1244 * hashing array. For now we assume that
1245 * this was done in ae_init().
1246 */
1247 NIC_PUT(sc, AE_P0_RCR,
1248 AE_RCR_PRO|AE_RCR_AM|AE_RCR_AB);
1249 } else {
1250 /*
1251 * XXX - for multicasts to work, we would need to
1252 * rewrite the multicast hashing array with the
1253 * proper hash (would have been destroyed above).
1254 */
1255 NIC_PUT(sc, AE_P0_RCR, AE_RCR_AB);
1256 }
1257 #endif
1258 break;
1259
1260 default:
1261 error = EINVAL;
1262 }
1263 (void) splx(s);
1264 return (error);
1265 }
1266
1267 /*
1268 * Macro to calculate a new address within shared memory when given an offset
1269 * from an address, taking into account ring-wrap.
1270 */
1271 #define ringoffset(sc, start, off, type) \
1272 ((type)( ((caddr_t)(start)+(off) >= (sc)->smem_end) ? \
1273 (((caddr_t)(start)+(off))) - (sc)->smem_end \
1274 + (sc)->smem_ring: \
1275 ((caddr_t)(start)+(off)) ))
1276
1277 /*
1278 * Retreive packet from shared memory and send to the next level up via
1279 * ether_input(). If there is a BPF listener, give a copy to BPF, too.
1280 */
1281 ae_get_packet(sc, buf, len)
1282 struct ae_softc *sc;
1283 char *buf;
1284 u_short len;
1285 {
1286 struct ether_header *eh;
1287 struct mbuf *m, *head, *ae_ring_to_mbuf();
1288 u_short off;
1289 int resid;
1290 u_short etype;
1291 struct trailer_header {
1292 u_short trail_type;
1293 u_short trail_residual;
1294 } trailer_header;
1295
1296 /* Allocate a header mbuf */
1297 MGETHDR(m, M_DONTWAIT, MT_DATA);
1298 if (m == 0)
1299 goto bad;
1300 m->m_pkthdr.rcvif = &sc->arpcom.ac_if;
1301 m->m_pkthdr.len = len;
1302 m->m_len = 0;
1303 head = m;
1304
1305 eh = (struct ether_header *)buf;
1306
1307 /* The following sillines is to make NFS happy */
1308 #define EROUND ((sizeof(struct ether_header) + 3) & ~3)
1309 #define EOFF (EROUND - sizeof(struct ether_header))
1310
1311 /*
1312 * The following assumes there is room for
1313 * the ether header in the header mbuf
1314 */
1315 head->m_data += EOFF;
1316 bbcopy(buf, mtod(head, caddr_t), sizeof(struct ether_header));
1317 buf += sizeof(struct ether_header);
1318 head->m_len += sizeof(struct ether_header);
1319 len -= sizeof(struct ether_header);
1320
1321 etype = ntohs((u_short)eh->ether_type);
1322
1323 /*
1324 * Deal with trailer protocol:
1325 * If trailer protocol, calculate the datasize as 'off',
1326 * which is also the offset to the trailer header.
1327 * Set resid to the amount of packet data following the
1328 * trailer header.
1329 * Finally, copy residual data into mbuf chain.
1330 */
1331 if (etype >= ETHERTYPE_TRAIL &&
1332 etype < ETHERTYPE_TRAIL+ETHERTYPE_NTRAILER) {
1333
1334 off = (etype - ETHERTYPE_TRAIL) << 9;
1335 if ((off + sizeof(struct trailer_header)) > len)
1336 goto bad; /* insanity */
1337
1338 eh->ether_type = *ringoffset(sc, buf, off, u_short *);
1339 resid = ntohs(*ringoffset(sc, buf, off+2, u_short *));
1340
1341 if ((off + resid) > len) goto bad; /* insanity */
1342
1343 resid -= sizeof(struct trailer_header);
1344 if (resid < 0) goto bad; /* insanity */
1345
1346 m = ae_ring_to_mbuf(sc, ringoffset(sc, buf, off+4, char *),
1347 head, resid);
1348 if (m == 0) goto bad;
1349
1350 len = off;
1351 head->m_pkthdr.len -= 4; /* subtract trailer header */
1352 }
1353
1354 /*
1355 * Pull packet off interface. Or if this was a trailer packet,
1356 * the data portion is appended.
1357 */
1358 m = ae_ring_to_mbuf(sc, buf, m, len);
1359 if (m == 0) goto bad;
1360
1361 #if NBPFILTER > 0
1362 /*
1363 * Check if there's a BPF listener on this interface.
1364 * If so, hand off the raw packet to bpf.
1365 */
1366 if (sc->bpf) {
1367 bpf_mtap(sc->bpf, head);
1368
1369 /*
1370 * Note that the interface cannot be in promiscuous mode if
1371 * there are no BPF listeners. And if we are in promiscuous
1372 * mode, we have to check if this packet is really ours.
1373 *
1374 * XXX This test does not support multicasts.
1375 */
1376 if ((sc->arpcom.ac_if.if_flags & IFF_PROMISC) &&
1377 bcmp(eh->ether_dhost, sc->arpcom.ac_enaddr,
1378 sizeof(eh->ether_dhost)) != 0 &&
1379 bcmp(eh->ether_dhost, etherbroadcastaddr,
1380 sizeof(eh->ether_dhost)) != 0) {
1381
1382 m_freem(head);
1383 return;
1384 }
1385 }
1386 #endif
1387
1388 /*
1389 * Fix up data start offset in mbuf to point past ether header
1390 */
1391 m_adj(head, sizeof(struct ether_header));
1392
1393 ether_input(&sc->arpcom.ac_if, eh, head);
1394 return;
1395
1396 bad: if (head)
1397 m_freem(head);
1398 return;
1399 }
1400
1401 /*
1402 * Supporting routines
1403 */
1404
1405 /*
1406 * Given a source and destination address, copy 'amount' of a packet from
1407 * the ring buffer into a linear destination buffer. Takes into account
1408 * ring-wrap.
1409 */
1410 static inline char *
1411 ae_ring_copy(sc,src,dst,amount)
1412 struct ae_softc *sc;
1413 char *src;
1414 char *dst;
1415 u_short amount;
1416 {
1417 u_short tmp_amount;
1418
1419 /* does copy wrap to lower addr in ring buffer? */
1420 if (src + amount > sc->smem_end) {
1421 tmp_amount = sc->smem_end - src;
1422 /* copy amount up to end of smem */
1423 bbcopy(src, dst, tmp_amount);
1424 amount -= tmp_amount;
1425 src = sc->smem_ring;
1426 dst += tmp_amount;
1427 }
1428
1429 bbcopy(src, dst, amount);
1430
1431 return(src + amount);
1432 }
1433
1434 /*
1435 * Copy data from receive buffer to end of mbuf chain
1436 * allocate additional mbufs as needed. return pointer
1437 * to last mbuf in chain.
1438 * sc = ed info (softc)
1439 * src = pointer in ed ring buffer
1440 * dst = pointer to last mbuf in mbuf chain to copy to
1441 * amount = amount of data to copy
1442 */
1443 struct mbuf *
1444 ae_ring_to_mbuf(sc,src,dst,total_len)
1445 struct ae_softc *sc;
1446 char *src;
1447 struct mbuf *dst;
1448 u_short total_len;
1449 {
1450 register struct mbuf *m = dst;
1451
1452 while (total_len) {
1453 register u_short amount = min(total_len, M_TRAILINGSPACE(m));
1454
1455 if (amount == 0) {
1456 /* no more data in this mbuf, alloc another */
1457 /*
1458 * If there is enough data for an mbuf cluster, attempt
1459 * to allocate one of those, otherwise, a regular
1460 * mbuf will do.
1461 * Note that a regular mbuf is always required, even if
1462 * we get a cluster - getting a cluster does not
1463 * allocate any mbufs, and one is needed to assign
1464 * the cluster to. The mbuf that has a cluster
1465 * extension can not be used to contain data -
1466 * only the cluster can contain data.
1467 */
1468 dst = m;
1469 MGET(m, M_DONTWAIT, MT_DATA);
1470 if (m == 0)
1471 return (0);
1472
1473 if (total_len >= MINCLSIZE)
1474 MCLGET(m, M_DONTWAIT);
1475
1476 m->m_len = 0;
1477 dst->m_next = m;
1478 amount = min(total_len, M_TRAILINGSPACE(m));
1479 }
1480
1481 src = ae_ring_copy(sc, src, mtod(m, caddr_t) + m->m_len,
1482 amount);
1483
1484 m->m_len += amount;
1485 total_len -= amount;
1486
1487 }
1488 return (m);
1489 }
1490