esp.c revision 1.42 1 1.42 perry /* $NetBSD: esp.c,v 1.42 2005/12/24 20:07:15 perry Exp $ */
2 1.1 briggs
3 1.1 briggs /*
4 1.10 briggs * Copyright (c) 1997 Jason R. Thorpe.
5 1.10 briggs * All rights reserved.
6 1.1 briggs *
7 1.1 briggs * Redistribution and use in source and binary forms, with or without
8 1.1 briggs * modification, are permitted provided that the following conditions
9 1.1 briggs * are met:
10 1.1 briggs * 1. Redistributions of source code must retain the above copyright
11 1.1 briggs * notice, this list of conditions and the following disclaimer.
12 1.1 briggs * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 briggs * notice, this list of conditions and the following disclaimer in the
14 1.1 briggs * documentation and/or other materials provided with the distribution.
15 1.1 briggs * 3. All advertising materials mentioning features or use of this software
16 1.1 briggs * must display the following acknowledgement:
17 1.10 briggs * This product includes software developed for the NetBSD Project
18 1.10 briggs * by Jason R. Thorpe.
19 1.1 briggs * 4. The name of the author may not be used to endorse or promote products
20 1.1 briggs * derived from this software without specific prior written permission.
21 1.1 briggs *
22 1.1 briggs * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23 1.1 briggs * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24 1.1 briggs * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25 1.1 briggs * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26 1.1 briggs * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
27 1.1 briggs * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 1.1 briggs * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 1.1 briggs * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 1.1 briggs * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
31 1.1 briggs * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 1.1 briggs */
33 1.1 briggs
34 1.1 briggs /*
35 1.1 briggs * Copyright (c) 1994 Peter Galbavy
36 1.1 briggs * All rights reserved.
37 1.1 briggs *
38 1.1 briggs * Redistribution and use in source and binary forms, with or without
39 1.1 briggs * modification, are permitted provided that the following conditions
40 1.1 briggs * are met:
41 1.1 briggs * 1. Redistributions of source code must retain the above copyright
42 1.1 briggs * notice, this list of conditions and the following disclaimer.
43 1.1 briggs * 2. Redistributions in binary form must reproduce the above copyright
44 1.1 briggs * notice, this list of conditions and the following disclaimer in the
45 1.1 briggs * documentation and/or other materials provided with the distribution.
46 1.1 briggs * 3. All advertising materials mentioning features or use of this software
47 1.1 briggs * must display the following acknowledgement:
48 1.1 briggs * This product includes software developed by Peter Galbavy
49 1.1 briggs * 4. The name of the author may not be used to endorse or promote products
50 1.1 briggs * derived from this software without specific prior written permission.
51 1.1 briggs *
52 1.1 briggs * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
53 1.1 briggs * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
54 1.1 briggs * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
55 1.1 briggs * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
56 1.1 briggs * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
57 1.1 briggs * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
58 1.1 briggs * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59 1.1 briggs * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
60 1.1 briggs * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
61 1.1 briggs * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
62 1.1 briggs * POSSIBILITY OF SUCH DAMAGE.
63 1.1 briggs */
64 1.1 briggs
65 1.1 briggs /*
66 1.1 briggs * Based on aic6360 by Jarle Greipsland
67 1.1 briggs *
68 1.1 briggs * Acknowledgements: Many of the algorithms used in this driver are
69 1.1 briggs * inspired by the work of Julian Elischer (julian (at) tfs.com) and
70 1.1 briggs * Charles Hannum (mycroft (at) duality.gnu.ai.mit.edu). Thanks a million!
71 1.10 briggs */
72 1.10 briggs
73 1.10 briggs /*
74 1.10 briggs * Initial m68k mac support from Allen Briggs <briggs (at) macbsd.com>
75 1.10 briggs * (basically consisting of the match, a bit of the attach, and the
76 1.10 briggs * "DMA" glue functions).
77 1.1 briggs */
78 1.35 lukem
79 1.35 lukem #include <sys/cdefs.h>
80 1.42 perry __KERNEL_RCSID(0, "$NetBSD: esp.c,v 1.42 2005/12/24 20:07:15 perry Exp $");
81 1.1 briggs
82 1.1 briggs #include <sys/types.h>
83 1.1 briggs #include <sys/param.h>
84 1.1 briggs #include <sys/systm.h>
85 1.1 briggs #include <sys/kernel.h>
86 1.1 briggs #include <sys/errno.h>
87 1.1 briggs #include <sys/ioctl.h>
88 1.1 briggs #include <sys/device.h>
89 1.1 briggs #include <sys/buf.h>
90 1.1 briggs #include <sys/proc.h>
91 1.1 briggs #include <sys/user.h>
92 1.1 briggs #include <sys/queue.h>
93 1.1 briggs
94 1.11 bouyer #include <dev/scsipi/scsi_all.h>
95 1.11 bouyer #include <dev/scsipi/scsipi_all.h>
96 1.11 bouyer #include <dev/scsipi/scsiconf.h>
97 1.11 bouyer #include <dev/scsipi/scsi_message.h>
98 1.1 briggs
99 1.1 briggs #include <machine/cpu.h>
100 1.12 briggs #include <machine/bus.h>
101 1.1 briggs #include <machine/param.h>
102 1.1 briggs
103 1.7 briggs #include <dev/ic/ncr53c9xreg.h>
104 1.7 briggs #include <dev/ic/ncr53c9xvar.h>
105 1.7 briggs
106 1.1 briggs #include <machine/viareg.h>
107 1.1 briggs
108 1.15 scottr #include <mac68k/obio/espvar.h>
109 1.15 scottr #include <mac68k/obio/obiovar.h>
110 1.3 briggs
111 1.36 chs void espattach(struct device *, struct device *, void *);
112 1.36 chs int espmatch(struct device *, struct cfdata *, void *);
113 1.1 briggs
114 1.1 briggs /* Linkup to the rest of the kernel */
115 1.34 thorpej CFATTACH_DECL(esp, sizeof(struct esp_softc),
116 1.34 thorpej espmatch, espattach, NULL, NULL);
117 1.1 briggs
118 1.7 briggs /*
119 1.7 briggs * Functions and the switch for the MI code.
120 1.7 briggs */
121 1.36 chs u_char esp_read_reg(struct ncr53c9x_softc *, int);
122 1.36 chs void esp_write_reg(struct ncr53c9x_softc *, int, u_char);
123 1.36 chs int esp_dma_isintr(struct ncr53c9x_softc *);
124 1.36 chs void esp_dma_reset(struct ncr53c9x_softc *);
125 1.36 chs int esp_dma_intr(struct ncr53c9x_softc *);
126 1.36 chs int esp_dma_setup(struct ncr53c9x_softc *, caddr_t *, size_t *, int,
127 1.36 chs size_t *);
128 1.36 chs void esp_dma_go(struct ncr53c9x_softc *);
129 1.36 chs void esp_dma_stop(struct ncr53c9x_softc *);
130 1.36 chs int esp_dma_isactive(struct ncr53c9x_softc *);
131 1.36 chs void esp_quick_write_reg(struct ncr53c9x_softc *, int, u_char);
132 1.36 chs int esp_quick_dma_intr(struct ncr53c9x_softc *);
133 1.36 chs int esp_quick_dma_setup(struct ncr53c9x_softc *, caddr_t *, size_t *, int,
134 1.36 chs size_t *);
135 1.36 chs void esp_quick_dma_go(struct ncr53c9x_softc *);
136 1.36 chs
137 1.36 chs void esp_intr(void *);
138 1.36 chs void esp_dualbus_intr(void *);
139 1.36 chs static struct esp_softc *esp0, *esp1;
140 1.36 chs
141 1.36 chs static __inline__ int esp_dafb_have_dreq(struct esp_softc *);
142 1.36 chs static __inline__ int esp_iosb_have_dreq(struct esp_softc *);
143 1.36 chs int (*esp_have_dreq)(struct esp_softc *);
144 1.7 briggs
145 1.7 briggs struct ncr53c9x_glue esp_glue = {
146 1.7 briggs esp_read_reg,
147 1.7 briggs esp_write_reg,
148 1.7 briggs esp_dma_isintr,
149 1.7 briggs esp_dma_reset,
150 1.7 briggs esp_dma_intr,
151 1.7 briggs esp_dma_setup,
152 1.7 briggs esp_dma_go,
153 1.7 briggs esp_dma_stop,
154 1.7 briggs esp_dma_isactive,
155 1.7 briggs NULL, /* gl_clear_latched_intr */
156 1.7 briggs };
157 1.7 briggs
158 1.1 briggs int
159 1.37 chs espmatch(struct device *parent, struct cfdata *cf, void *aux)
160 1.1 briggs {
161 1.38 chs struct obio_attach_args *oa = (struct obio_attach_args *)aux;
162 1.12 briggs
163 1.38 chs if (oa->oa_addr == 0 && mac68k_machine.scsi96) {
164 1.38 chs return 1;
165 1.12 briggs }
166 1.38 chs if (oa->oa_addr == 1 && mac68k_machine.scsi96_2) {
167 1.38 chs return 1;
168 1.12 briggs }
169 1.38 chs return 0;
170 1.1 briggs }
171 1.1 briggs
172 1.1 briggs /*
173 1.1 briggs * Attach this instance, and then all the sub-devices
174 1.1 briggs */
175 1.1 briggs void
176 1.37 chs espattach(struct device *parent, struct device *self, void *aux)
177 1.1 briggs {
178 1.12 briggs struct obio_attach_args *oa = (struct obio_attach_args *)aux;
179 1.20 scottr extern vaddr_t SCSIBase;
180 1.12 briggs struct esp_softc *esc = (void *)self;
181 1.12 briggs struct ncr53c9x_softc *sc = &esc->sc_ncr53c9x;
182 1.12 briggs int quick = 0;
183 1.12 briggs unsigned long reg_offset;
184 1.12 briggs
185 1.12 briggs reg_offset = SCSIBase - IOBase;
186 1.12 briggs esc->sc_tag = oa->oa_tag;
187 1.37 chs
188 1.12 briggs /*
189 1.12 briggs * For Wombat, Primus and Optimus motherboards, DREQ is
190 1.12 briggs * visible on bit 0 of the IOSB's emulated VIA2 vIFR (and
191 1.12 briggs * the scsi registers are offset 0x1000 bytes from IOBase).
192 1.12 briggs *
193 1.12 briggs * For the Q700/900/950 it's at f9800024 for bus 0 and
194 1.12 briggs * f9800028 for bus 1 (900/950). For these machines, that is also
195 1.12 briggs * a (12-bit) configuration register for DAFB's control of the
196 1.12 briggs * pseudo-DMA timing. The default value is 0x1d1.
197 1.12 briggs */
198 1.12 briggs esp_have_dreq = esp_dafb_have_dreq;
199 1.39 chs if (oa->oa_addr == 0) {
200 1.12 briggs if (reg_offset == 0x10000) {
201 1.12 briggs quick = 1;
202 1.12 briggs esp_have_dreq = esp_iosb_have_dreq;
203 1.12 briggs } else if (reg_offset == 0x18000) {
204 1.12 briggs quick = 0;
205 1.12 briggs } else {
206 1.12 briggs if (bus_space_map(esc->sc_tag, 0xf9800024,
207 1.12 briggs 4, 0, &esc->sc_bsh)) {
208 1.12 briggs printf("failed to map 4 at 0xf9800024.\n");
209 1.12 briggs } else {
210 1.12 briggs quick = 1;
211 1.12 briggs bus_space_write_4(esc->sc_tag,
212 1.12 briggs esc->sc_bsh, 0, 0x1d1);
213 1.12 briggs }
214 1.12 briggs }
215 1.12 briggs } else {
216 1.12 briggs if (bus_space_map(esc->sc_tag, 0xf9800028,
217 1.12 briggs 4, 0, &esc->sc_bsh)) {
218 1.12 briggs printf("failed to map 4 at 0xf9800028.\n");
219 1.12 briggs } else {
220 1.12 briggs quick = 1;
221 1.12 briggs bus_space_write_4(esc->sc_tag, esc->sc_bsh, 0, 0x1d1);
222 1.12 briggs }
223 1.12 briggs }
224 1.12 briggs if (quick) {
225 1.12 briggs esp_glue.gl_write_reg = esp_quick_write_reg;
226 1.12 briggs esp_glue.gl_dma_intr = esp_quick_dma_intr;
227 1.12 briggs esp_glue.gl_dma_setup = esp_quick_dma_setup;
228 1.12 briggs esp_glue.gl_dma_go = esp_quick_dma_go;
229 1.12 briggs }
230 1.1 briggs
231 1.1 briggs /*
232 1.7 briggs * Set up the glue for MI code early; we use some of it here.
233 1.1 briggs */
234 1.7 briggs sc->sc_glue = &esp_glue;
235 1.1 briggs
236 1.1 briggs /*
237 1.7 briggs * Save the regs
238 1.1 briggs */
239 1.39 chs if (oa->oa_addr == 0) {
240 1.16 briggs esp0 = esc;
241 1.2 briggs
242 1.7 briggs esc->sc_reg = (volatile u_char *) SCSIBase;
243 1.23 briggs via2_register_irq(VIA2_SCSIIRQ, esp_intr, esc);
244 1.7 briggs esc->irq_mask = V2IF_SCSIIRQ;
245 1.2 briggs if (reg_offset == 0x10000) {
246 1.26 briggs /* From the Q650 developer's note */
247 1.2 briggs sc->sc_freq = 16500000;
248 1.2 briggs } else {
249 1.2 briggs sc->sc_freq = 25000000;
250 1.2 briggs }
251 1.12 briggs
252 1.12 briggs if (esp_glue.gl_dma_go == esp_quick_dma_go) {
253 1.12 briggs printf(" (quick)");
254 1.12 briggs }
255 1.1 briggs } else {
256 1.16 briggs esp1 = esc;
257 1.16 briggs
258 1.7 briggs esc->sc_reg = (volatile u_char *) SCSIBase + 0x402;
259 1.23 briggs via2_register_irq(VIA2_SCSIIRQ, esp_dualbus_intr, NULL);
260 1.16 briggs esc->irq_mask = 0;
261 1.2 briggs sc->sc_freq = 25000000;
262 1.12 briggs
263 1.12 briggs if (esp_glue.gl_dma_go == esp_quick_dma_go) {
264 1.12 briggs printf(" (quick)");
265 1.12 briggs }
266 1.1 briggs }
267 1.7 briggs
268 1.7 briggs printf(": address %p", esc->sc_reg);
269 1.1 briggs
270 1.1 briggs sc->sc_id = 7;
271 1.1 briggs
272 1.1 briggs /* gimme Mhz */
273 1.1 briggs sc->sc_freq /= 1000000;
274 1.1 briggs
275 1.1 briggs /*
276 1.1 briggs * It is necessary to try to load the 2nd config register here,
277 1.1 briggs * to find out what rev the esp chip is, else the esp_reset
278 1.1 briggs * will not set up the defaults correctly.
279 1.1 briggs */
280 1.13 briggs sc->sc_cfg1 = sc->sc_id; /* | NCRCFG1_PARENB; */
281 1.7 briggs sc->sc_cfg2 = NCRCFG2_SCSI2;
282 1.3 briggs sc->sc_cfg3 = 0;
283 1.7 briggs sc->sc_rev = NCR_VARIANT_NCR53C96;
284 1.1 briggs
285 1.1 briggs /*
286 1.1 briggs * This is the value used to start sync negotiations
287 1.7 briggs * Note that the NCR register "SYNCTP" is programmed
288 1.1 briggs * in "clocks per byte", and has a minimum value of 4.
289 1.1 briggs * The SCSI period used in negotiation is one-fourth
290 1.1 briggs * of the time (in nanoseconds) needed to transfer one byte.
291 1.1 briggs * Since the chip's clock is given in MHz, we have the following
292 1.1 briggs * formula: 4 * period = (1000 / freq) * 4
293 1.1 briggs */
294 1.1 briggs sc->sc_minsync = 1000 / sc->sc_freq;
295 1.1 briggs
296 1.26 briggs /* We need this to fit into the TCR... */
297 1.26 briggs sc->sc_maxxfer = 64 * 1024;
298 1.26 briggs
299 1.26 briggs if (!quick) {
300 1.26 briggs sc->sc_minsync = 0; /* No synchronous xfers w/o DMA */
301 1.26 briggs sc->sc_maxxfer = 8 * 1024;
302 1.26 briggs }
303 1.1 briggs
304 1.1 briggs /*
305 1.7 briggs * Configure interrupts.
306 1.1 briggs */
307 1.16 briggs if (esc->irq_mask) {
308 1.16 briggs via2_reg(vPCR) = 0x22;
309 1.16 briggs via2_reg(vIFR) = esc->irq_mask;
310 1.16 briggs via2_reg(vIER) = 0x80 | esc->irq_mask;
311 1.16 briggs }
312 1.24 thorpej
313 1.24 thorpej /*
314 1.24 thorpej * Now try to attach all the sub-devices
315 1.24 thorpej */
316 1.29 bouyer sc->sc_adapter.adapt_minphys = minphys;
317 1.29 bouyer sc->sc_adapter.adapt_request = ncr53c9x_scsipi_request;
318 1.29 bouyer ncr53c9x_attach(sc);
319 1.1 briggs }
320 1.1 briggs
321 1.1 briggs /*
322 1.7 briggs * Glue functions.
323 1.1 briggs */
324 1.1 briggs
325 1.7 briggs u_char
326 1.37 chs esp_read_reg(struct ncr53c9x_softc *sc, int reg)
327 1.1 briggs {
328 1.7 briggs struct esp_softc *esc = (struct esp_softc *)sc;
329 1.1 briggs
330 1.23 briggs return esc->sc_reg[reg * 16];
331 1.1 briggs }
332 1.1 briggs
333 1.1 briggs void
334 1.37 chs esp_write_reg(struct ncr53c9x_softc *sc, int reg, u_char val)
335 1.1 briggs {
336 1.7 briggs struct esp_softc *esc = (struct esp_softc *)sc;
337 1.21 briggs u_char v = val;
338 1.1 briggs
339 1.7 briggs if (reg == NCR_CMD && v == (NCRCMD_TRANS|NCRCMD_DMA)) {
340 1.7 briggs v = NCRCMD_TRANS;
341 1.1 briggs }
342 1.7 briggs esc->sc_reg[reg * 16] = v;
343 1.1 briggs }
344 1.1 briggs
345 1.12 briggs void
346 1.37 chs esp_dma_stop(struct ncr53c9x_softc *sc)
347 1.12 briggs {
348 1.12 briggs }
349 1.12 briggs
350 1.12 briggs int
351 1.37 chs esp_dma_isactive(struct ncr53c9x_softc *sc)
352 1.12 briggs {
353 1.12 briggs struct esp_softc *esc = (struct esp_softc *)sc;
354 1.12 briggs
355 1.12 briggs return esc->sc_active;
356 1.12 briggs }
357 1.12 briggs
358 1.7 briggs int
359 1.37 chs esp_dma_isintr(struct ncr53c9x_softc *sc)
360 1.1 briggs {
361 1.7 briggs struct esp_softc *esc = (struct esp_softc *)sc;
362 1.1 briggs
363 1.7 briggs return esc->sc_reg[NCR_STAT * 16] & 0x80;
364 1.1 briggs }
365 1.1 briggs
366 1.1 briggs void
367 1.37 chs esp_dma_reset(struct ncr53c9x_softc *sc)
368 1.1 briggs {
369 1.7 briggs struct esp_softc *esc = (struct esp_softc *)sc;
370 1.1 briggs
371 1.7 briggs esc->sc_active = 0;
372 1.7 briggs esc->sc_tc = 0;
373 1.1 briggs }
374 1.1 briggs
375 1.7 briggs int
376 1.37 chs esp_dma_intr(struct ncr53c9x_softc *sc)
377 1.1 briggs {
378 1.22 briggs struct esp_softc *esc = (struct esp_softc *)sc;
379 1.7 briggs volatile u_char *cmdreg, *intrreg, *statreg, *fiforeg;
380 1.22 briggs u_char *p;
381 1.22 briggs u_int espphase, espstat, espintr;
382 1.22 briggs int cnt, s;
383 1.1 briggs
384 1.7 briggs if (esc->sc_active == 0) {
385 1.7 briggs printf("dma_intr--inactive DMA\n");
386 1.7 briggs return -1;
387 1.1 briggs }
388 1.1 briggs
389 1.7 briggs if ((sc->sc_espintr & NCRINTR_BS) == 0) {
390 1.7 briggs esc->sc_active = 0;
391 1.7 briggs return 0;
392 1.1 briggs }
393 1.1 briggs
394 1.30 briggs cnt = *esc->sc_dmalen;
395 1.30 briggs if (*esc->sc_dmalen == 0) {
396 1.7 briggs printf("data interrupt, but no count left.");
397 1.1 briggs }
398 1.1 briggs
399 1.7 briggs p = *esc->sc_dmaaddr;
400 1.7 briggs espphase = sc->sc_phase;
401 1.7 briggs espstat = (u_int) sc->sc_espstat;
402 1.7 briggs espintr = (u_int) sc->sc_espintr;
403 1.7 briggs cmdreg = esc->sc_reg + NCR_CMD * 16;
404 1.7 briggs fiforeg = esc->sc_reg + NCR_FIFO * 16;
405 1.7 briggs statreg = esc->sc_reg + NCR_STAT * 16;
406 1.7 briggs intrreg = esc->sc_reg + NCR_INTR * 16;
407 1.7 briggs do {
408 1.7 briggs if (esc->sc_datain) {
409 1.7 briggs *p++ = *fiforeg;
410 1.7 briggs cnt--;
411 1.7 briggs if (espphase == DATA_IN_PHASE) {
412 1.7 briggs *cmdreg = NCRCMD_TRANS;
413 1.7 briggs } else {
414 1.7 briggs esc->sc_active = 0;
415 1.7 briggs }
416 1.7 briggs } else {
417 1.7 briggs if ( (espphase == DATA_OUT_PHASE)
418 1.7 briggs || (espphase == MESSAGE_OUT_PHASE)) {
419 1.7 briggs *fiforeg = *p++;
420 1.7 briggs cnt--;
421 1.7 briggs *cmdreg = NCRCMD_TRANS;
422 1.7 briggs } else {
423 1.7 briggs esc->sc_active = 0;
424 1.7 briggs }
425 1.1 briggs }
426 1.1 briggs
427 1.7 briggs if (esc->sc_active) {
428 1.7 briggs while (!(*statreg & 0x80));
429 1.22 briggs s = splhigh();
430 1.7 briggs espstat = *statreg;
431 1.7 briggs espintr = *intrreg;
432 1.7 briggs espphase = (espintr & NCRINTR_DIS)
433 1.7 briggs ? /* Disconnected */ BUSFREE_PHASE
434 1.7 briggs : espstat & PHASE_MASK;
435 1.22 briggs splx(s);
436 1.1 briggs }
437 1.7 briggs } while (esc->sc_active && (espintr & NCRINTR_BS));
438 1.7 briggs sc->sc_phase = espphase;
439 1.7 briggs sc->sc_espstat = (u_char) espstat;
440 1.7 briggs sc->sc_espintr = (u_char) espintr;
441 1.7 briggs *esc->sc_dmaaddr = p;
442 1.30 briggs *esc->sc_dmalen = cnt;
443 1.1 briggs
444 1.30 briggs if (*esc->sc_dmalen == 0) {
445 1.7 briggs esc->sc_tc = NCRSTAT_TC;
446 1.1 briggs }
447 1.7 briggs sc->sc_espstat |= esc->sc_tc;
448 1.7 briggs return 0;
449 1.1 briggs }
450 1.1 briggs
451 1.1 briggs int
452 1.37 chs esp_dma_setup(struct ncr53c9x_softc *sc, caddr_t *addr, size_t *len, int datain,
453 1.37 chs size_t *dmasize)
454 1.1 briggs {
455 1.7 briggs struct esp_softc *esc = (struct esp_softc *)sc;
456 1.1 briggs
457 1.7 briggs esc->sc_dmaaddr = addr;
458 1.12 briggs esc->sc_dmalen = len;
459 1.7 briggs esc->sc_datain = datain;
460 1.7 briggs esc->sc_dmasize = *dmasize;
461 1.7 briggs esc->sc_tc = 0;
462 1.1 briggs
463 1.7 briggs return 0;
464 1.1 briggs }
465 1.1 briggs
466 1.1 briggs void
467 1.37 chs esp_dma_go(struct ncr53c9x_softc *sc)
468 1.1 briggs {
469 1.7 briggs struct esp_softc *esc = (struct esp_softc *)sc;
470 1.1 briggs
471 1.7 briggs if (esc->sc_datain == 0) {
472 1.7 briggs esc->sc_reg[NCR_FIFO * 16] = **esc->sc_dmaaddr;
473 1.12 briggs (*esc->sc_dmalen)--;
474 1.7 briggs (*esc->sc_dmaaddr)++;
475 1.1 briggs }
476 1.7 briggs esc->sc_active = 1;
477 1.1 briggs }
478 1.1 briggs
479 1.1 briggs void
480 1.37 chs esp_quick_write_reg(struct ncr53c9x_softc *sc, int reg, u_char val)
481 1.1 briggs {
482 1.12 briggs struct esp_softc *esc = (struct esp_softc *)sc;
483 1.12 briggs
484 1.23 briggs esc->sc_reg[reg * 16] = val;
485 1.1 briggs }
486 1.1 briggs
487 1.26 briggs #if DEBUG
488 1.26 briggs int mac68k_esp_debug=0;
489 1.26 briggs #endif
490 1.26 briggs
491 1.1 briggs int
492 1.37 chs esp_quick_dma_intr(struct ncr53c9x_softc *sc)
493 1.12 briggs {
494 1.12 briggs struct esp_softc *esc = (struct esp_softc *)sc;
495 1.12 briggs int trans=0, resid=0;
496 1.12 briggs
497 1.12 briggs if (esc->sc_active == 0)
498 1.32 provos panic("dma_intr--inactive DMA");
499 1.12 briggs
500 1.12 briggs esc->sc_active = 0;
501 1.12 briggs
502 1.12 briggs if (esc->sc_dmasize == 0) {
503 1.12 briggs int res;
504 1.12 briggs
505 1.26 briggs res = NCR_READ_REG(sc, NCR_TCL);
506 1.26 briggs res += NCR_READ_REG(sc, NCR_TCM) << 8;
507 1.28 briggs /* This can happen in the case of a TRPAD operation */
508 1.28 briggs /* Pretend that it was complete */
509 1.28 briggs sc->sc_espstat |= NCRSTAT_TC;
510 1.28 briggs #if DEBUG
511 1.28 briggs if (mac68k_esp_debug) {
512 1.28 briggs printf("dmaintr: DMA xfer of zero xferred %d\n",
513 1.28 briggs 65536 - res);
514 1.28 briggs }
515 1.28 briggs #endif
516 1.12 briggs return 0;
517 1.12 briggs }
518 1.12 briggs
519 1.12 briggs if ((sc->sc_espstat & NCRSTAT_TC) == 0) {
520 1.28 briggs if (esc->sc_datain == 0) {
521 1.28 briggs resid = NCR_READ_REG(sc, NCR_FFLAG) & 0x1f;
522 1.28 briggs #if DEBUG
523 1.28 briggs if (mac68k_esp_debug) {
524 1.28 briggs printf("Write FIFO residual %d bytes\n", resid);
525 1.28 briggs }
526 1.28 briggs #endif
527 1.28 briggs }
528 1.12 briggs resid += NCR_READ_REG(sc, NCR_TCL);
529 1.12 briggs resid += NCR_READ_REG(sc, NCR_TCM) << 8;
530 1.12 briggs if (resid == 0)
531 1.12 briggs resid = 65536;
532 1.12 briggs }
533 1.12 briggs
534 1.12 briggs trans = esc->sc_dmasize - resid;
535 1.12 briggs if (trans < 0) {
536 1.12 briggs printf("dmaintr: trans < 0????");
537 1.26 briggs trans = *esc->sc_dmalen;
538 1.12 briggs }
539 1.12 briggs
540 1.12 briggs NCR_DMA(("dmaintr: trans %d, resid %d.\n", trans, resid));
541 1.26 briggs #if DEBUG
542 1.26 briggs if (mac68k_esp_debug) {
543 1.26 briggs printf("eqd_intr: trans %d, resid %d.\n", trans, resid);
544 1.26 briggs }
545 1.26 briggs #endif
546 1.12 briggs *esc->sc_dmaaddr += trans;
547 1.12 briggs *esc->sc_dmalen -= trans;
548 1.12 briggs
549 1.12 briggs return 0;
550 1.12 briggs }
551 1.12 briggs
552 1.12 briggs int
553 1.37 chs esp_quick_dma_setup(struct ncr53c9x_softc *sc, caddr_t *addr, size_t *len,
554 1.37 chs int datain, size_t *dmasize)
555 1.12 briggs {
556 1.12 briggs struct esp_softc *esc = (struct esp_softc *)sc;
557 1.12 briggs
558 1.12 briggs esc->sc_dmaaddr = addr;
559 1.12 briggs esc->sc_dmalen = len;
560 1.12 briggs
561 1.26 briggs if (*len & 1) {
562 1.13 briggs esc->sc_pad = 1;
563 1.13 briggs } else {
564 1.13 briggs esc->sc_pad = 0;
565 1.13 briggs }
566 1.12 briggs
567 1.12 briggs esc->sc_datain = datain;
568 1.12 briggs esc->sc_dmasize = *dmasize;
569 1.12 briggs
570 1.26 briggs #if DIAGNOSTIC
571 1.26 briggs if (esc->sc_dmasize == 0) {
572 1.28 briggs /* This can happen in the case of a TRPAD operation */
573 1.26 briggs }
574 1.26 briggs #endif
575 1.26 briggs #if DEBUG
576 1.26 briggs if (mac68k_esp_debug) {
577 1.26 briggs printf("eqd_setup: addr %lx, len %lx, in? %d, dmasize %lx\n",
578 1.26 briggs (long) *addr, (long) *len, datain, (long) esc->sc_dmasize);
579 1.26 briggs }
580 1.26 briggs #endif
581 1.26 briggs
582 1.12 briggs return 0;
583 1.12 briggs }
584 1.12 briggs
585 1.12 briggs static __inline__ int
586 1.37 chs esp_dafb_have_dreq(struct esp_softc *esc)
587 1.12 briggs {
588 1.26 briggs return (*(volatile u_int32_t *)(esc->sc_bsh.base) & 0x200);
589 1.12 briggs }
590 1.12 briggs
591 1.12 briggs static __inline__ int
592 1.37 chs esp_iosb_have_dreq(struct esp_softc *esc)
593 1.12 briggs {
594 1.12 briggs return (via2_reg(vIFR) & V2IF_SCSIDRQ);
595 1.12 briggs }
596 1.12 briggs
597 1.26 briggs static volatile int espspl=-1;
598 1.12 briggs
599 1.26 briggs /*
600 1.26 briggs * Apple "DMA" is weird.
601 1.26 briggs *
602 1.26 briggs * Basically, the CPU acts like the DMA controller. The DREQ/ off the
603 1.26 briggs * chip goes to a register that we've mapped at attach time (on the
604 1.26 briggs * IOSB or DAFB, depending on the machine). Apple also provides some
605 1.26 briggs * space for which the memory controller handshakes data to/from the
606 1.26 briggs * NCR chip with the DACK/ line. This space appears to be mapped over
607 1.26 briggs * and over, every 4 bytes, but only the lower 16 bits are valid (but
608 1.26 briggs * reading the upper 16 bits will handshake DACK/ just fine, so if you
609 1.26 briggs * read *u_int16_t++ = *u_int16_t++ in a loop, you'll get
610 1.26 briggs * <databyte><databyte>0xff0xff<databyte><databyte>0xff0xff...
611 1.26 briggs *
612 1.26 briggs * When you're attempting to read or write memory to this DACK/ed space,
613 1.26 briggs * and the NCR is not ready for some timeout period, the system will
614 1.26 briggs * generate a bus error. This might be for one of several reasons:
615 1.26 briggs *
616 1.26 briggs * 1) (on write) The FIFO is full and is not draining.
617 1.26 briggs * 2) (on read) The FIFO is empty and is not filling.
618 1.26 briggs * 3) An interrupt condition has occurred.
619 1.26 briggs * 4) Anything else?
620 1.26 briggs *
621 1.26 briggs * So if a bus error occurs, we first turn off the nofault bus error handler,
622 1.26 briggs * then we check for an interrupt (which would render the first two
623 1.26 briggs * possibilities moot). If there's no interrupt, check for a DREQ/. If we
624 1.26 briggs * have that, then attempt to resume stuffing (or unstuffing) the FIFO. If
625 1.26 briggs * neither condition holds, pause briefly and check again.
626 1.26 briggs *
627 1.26 briggs * NOTE!!! In order to make allowances for the hardware structure of
628 1.26 briggs * the mac, spl values in here are hardcoded!!!!!!!!!
629 1.26 briggs * This is done to allow serial interrupts to get in during
630 1.26 briggs * scsi transfers. This is ugly.
631 1.26 briggs */
632 1.12 briggs void
633 1.37 chs esp_quick_dma_go(struct ncr53c9x_softc *sc)
634 1.1 briggs {
635 1.7 briggs struct esp_softc *esc = (struct esp_softc *)sc;
636 1.26 briggs extern long mac68k_a2_fromfault;
637 1.12 briggs extern int *nofault;
638 1.12 briggs label_t faultbuf;
639 1.12 briggs u_int16_t volatile *pdma;
640 1.26 briggs u_int16_t *addr;
641 1.26 briggs int len, res;
642 1.26 briggs u_short cnt32, cnt2;
643 1.12 briggs u_char volatile *statreg;
644 1.12 briggs
645 1.12 briggs esc->sc_active = 1;
646 1.12 briggs
647 1.26 briggs espspl = splhigh();
648 1.26 briggs
649 1.26 briggs addr = (u_int16_t *) *esc->sc_dmaaddr;
650 1.26 briggs len = esc->sc_dmasize;
651 1.12 briggs
652 1.12 briggs restart_dmago:
653 1.26 briggs #if DEBUG
654 1.26 briggs if (mac68k_esp_debug) {
655 1.26 briggs printf("eqdg: a %lx, l %lx, in? %d ... ",
656 1.26 briggs (long) addr, (long) len, esc->sc_datain);
657 1.26 briggs }
658 1.26 briggs #endif
659 1.12 briggs nofault = (int *) &faultbuf;
660 1.12 briggs if (setjmp((label_t *) nofault)) {
661 1.12 briggs int i=0;
662 1.12 briggs
663 1.12 briggs nofault = (int *) 0;
664 1.26 briggs #if DEBUG
665 1.26 briggs if (mac68k_esp_debug) {
666 1.26 briggs printf("be\n");
667 1.26 briggs }
668 1.26 briggs #endif
669 1.26 briggs /*
670 1.26 briggs * Bus error...
671 1.26 briggs * So, we first check for an interrupt. If we have
672 1.26 briggs * one, go handle it. Next we check for DREQ/. If
673 1.26 briggs * we have it, then we restart the transfer. If
674 1.26 briggs * neither, then loop until we get one or the other.
675 1.26 briggs */
676 1.12 briggs statreg = esc->sc_reg + NCR_STAT * 16;
677 1.12 briggs for (;;) {
678 1.26 briggs spl2(); /* Give serial a chance... */
679 1.26 briggs splhigh(); /* That's enough... */
680 1.26 briggs
681 1.12 briggs if (*statreg & 0x80) {
682 1.12 briggs goto gotintr;
683 1.12 briggs }
684 1.12 briggs
685 1.12 briggs if (esp_have_dreq(esc)) {
686 1.26 briggs /*
687 1.28 briggs * Get the remaining length from the address
688 1.26 briggs * differential.
689 1.26 briggs */
690 1.26 briggs addr = (u_int16_t *) mac68k_a2_fromfault;
691 1.26 briggs len = esc->sc_dmasize -
692 1.26 briggs ((long) addr - (long) *esc->sc_dmaaddr);
693 1.26 briggs
694 1.26 briggs if (esc->sc_datain == 0) {
695 1.26 briggs /*
696 1.26 briggs * Let the FIFO drain before we read
697 1.26 briggs * the transfer count.
698 1.26 briggs * Do we need to do this?
699 1.26 briggs * Can we do this?
700 1.26 briggs */
701 1.26 briggs while (NCR_READ_REG(sc, NCR_FFLAG)
702 1.26 briggs & 0x1f);
703 1.26 briggs /*
704 1.26 briggs * Get the length from the transfer
705 1.26 briggs * counters.
706 1.26 briggs */
707 1.26 briggs res = NCR_READ_REG(sc, NCR_TCL);
708 1.26 briggs res += NCR_READ_REG(sc, NCR_TCM) << 8;
709 1.26 briggs /*
710 1.26 briggs * If they don't agree,
711 1.26 briggs * adjust accordingly.
712 1.26 briggs */
713 1.26 briggs while (res > len) {
714 1.26 briggs len+=2; addr--;
715 1.26 briggs }
716 1.26 briggs if (res != len) {
717 1.32 provos panic("esp_quick_dma_go: res %d != len %d",
718 1.26 briggs res, len);
719 1.26 briggs }
720 1.26 briggs }
721 1.12 briggs break;
722 1.12 briggs }
723 1.12 briggs
724 1.12 briggs DELAY(1);
725 1.26 briggs if (i++ > 1000000)
726 1.26 briggs panic("esp_dma_go: Bus error, but no condition! Argh!");
727 1.12 briggs }
728 1.12 briggs goto restart_dmago;
729 1.12 briggs }
730 1.12 briggs
731 1.26 briggs len &= ~1;
732 1.26 briggs
733 1.12 briggs statreg = esc->sc_reg + NCR_STAT * 16;
734 1.40 jmc pdma = (volatile u_int16_t *) (esc->sc_reg + 0x100);
735 1.1 briggs
736 1.26 briggs /*
737 1.26 briggs * These loops are unrolled into assembly for two reasons:
738 1.26 briggs * 1) We can make sure that they are as efficient as possible, and
739 1.26 briggs * 2) (more importantly) we need the address that we are reading
740 1.26 briggs * from or writing to to be in a2.
741 1.26 briggs */
742 1.26 briggs cnt32 = len / 32;
743 1.26 briggs cnt2 = (len % 32) / 2;
744 1.12 briggs if (esc->sc_datain == 0) {
745 1.26 briggs /* while (cnt32--) { 16 instances of *pdma = *addr++; } */
746 1.26 briggs /* while (cnt2--) { *pdma = *addr++; } */
747 1.42 perry __asm volatile (
748 1.31 thorpej " movl %1, %%a2 \n"
749 1.31 thorpej " movl %2, %%a3 \n"
750 1.31 thorpej " movw %3, %%d2 \n"
751 1.31 thorpej " cmpw #0, %%d2 \n"
752 1.31 thorpej " beq 2f \n"
753 1.31 thorpej " subql #1, %%d2 \n"
754 1.31 thorpej "1: movw %%a2@+,%%a3@; movw %%a2@+,%%a3@ \n"
755 1.31 thorpej " movw %%a2@+,%%a3@; movw %%a2@+,%%a3@ \n"
756 1.31 thorpej " movw %%a2@+,%%a3@; movw %%a2@+,%%a3@ \n"
757 1.31 thorpej " movw %%a2@+,%%a3@; movw %%a2@+,%%a3@ \n"
758 1.31 thorpej " movw %%a2@+,%%a3@; movw %%a2@+,%%a3@ \n"
759 1.31 thorpej " movw %%a2@+,%%a3@; movw %%a2@+,%%a3@ \n"
760 1.31 thorpej " movw %%a2@+,%%a3@; movw %%a2@+,%%a3@ \n"
761 1.31 thorpej " movw %%a2@+,%%a3@; movw %%a2@+,%%a3@ \n"
762 1.31 thorpej " movw #8704,%%sr \n"
763 1.31 thorpej " movw #9728,%%sr \n"
764 1.31 thorpej " dbra %%d2, 1b \n"
765 1.31 thorpej "2: movw %4, %%d2 \n"
766 1.31 thorpej " cmpw #0, %%d2 \n"
767 1.31 thorpej " beq 4f \n"
768 1.31 thorpej " subql #1, %%d2 \n"
769 1.31 thorpej "3: movw %%a2@+,%%a3@ \n"
770 1.31 thorpej " dbra %%d2, 3b \n"
771 1.31 thorpej "4: movl %%a2, %0"
772 1.26 briggs : "=g" (addr)
773 1.26 briggs : "0" (addr), "g" (pdma), "g" (cnt32), "g" (cnt2)
774 1.26 briggs : "a2", "a3", "d2");
775 1.13 briggs if (esc->sc_pad) {
776 1.40 jmc volatile unsigned char *c;
777 1.40 jmc c = (volatile unsigned char *) addr;
778 1.26 briggs /* Wait for DREQ */
779 1.26 briggs while (!esp_have_dreq(esc)) {
780 1.26 briggs if (*statreg & 0x80) {
781 1.26 briggs nofault = (int *) 0;
782 1.26 briggs goto gotintr;
783 1.26 briggs }
784 1.26 briggs }
785 1.40 jmc *(volatile unsigned char *)pdma = *c;
786 1.13 briggs }
787 1.12 briggs } else {
788 1.26 briggs /* while (cnt32--) { 16 instances of *addr++ = *pdma; } */
789 1.26 briggs /* while (cnt2--) { *addr++ = *pdma; } */
790 1.42 perry __asm volatile (
791 1.31 thorpej " movl %1, %%a2 \n"
792 1.31 thorpej " movl %2, %%a3 \n"
793 1.31 thorpej " movw %3, %%d2 \n"
794 1.31 thorpej " cmpw #0, %%d2 \n"
795 1.31 thorpej " beq 6f \n"
796 1.31 thorpej " subql #1, %%d2 \n"
797 1.31 thorpej "5: movw %%a3@,%%a2@+; movw %%a3@,%%a2@+ \n"
798 1.31 thorpej " movw %%a3@,%%a2@+; movw %%a3@,%%a2@+ \n"
799 1.31 thorpej " movw %%a3@,%%a2@+; movw %%a3@,%%a2@+ \n"
800 1.31 thorpej " movw %%a3@,%%a2@+; movw %%a3@,%%a2@+ \n"
801 1.31 thorpej " movw %%a3@,%%a2@+; movw %%a3@,%%a2@+ \n"
802 1.31 thorpej " movw %%a3@,%%a2@+; movw %%a3@,%%a2@+ \n"
803 1.31 thorpej " movw %%a3@,%%a2@+; movw %%a3@,%%a2@+ \n"
804 1.31 thorpej " movw %%a3@,%%a2@+; movw %%a3@,%%a2@+ \n"
805 1.31 thorpej " movw #8704,%%sr \n"
806 1.31 thorpej " movw #9728,%%sr \n"
807 1.31 thorpej " dbra %%d2, 5b \n"
808 1.31 thorpej "6: movw %4, %%d2 \n"
809 1.31 thorpej " cmpw #0, %%d2 \n"
810 1.31 thorpej " beq 8f \n"
811 1.31 thorpej " subql #1, %%d2 \n"
812 1.31 thorpej "7: movw %%a3@,%%a2@+ \n"
813 1.31 thorpej " dbra %%d2, 7b \n"
814 1.31 thorpej "8: movl %%a2, %0"
815 1.26 briggs : "=g" (addr)
816 1.26 briggs : "0" (addr), "g" (pdma), "g" (cnt32), "g" (cnt2)
817 1.26 briggs : "a2", "a3", "d2");
818 1.13 briggs if (esc->sc_pad) {
819 1.40 jmc volatile unsigned char *c;
820 1.40 jmc c = (volatile unsigned char *) addr;
821 1.26 briggs /* Wait for DREQ */
822 1.26 briggs while (!esp_have_dreq(esc)) {
823 1.26 briggs if (*statreg & 0x80) {
824 1.26 briggs nofault = (int *) 0;
825 1.26 briggs goto gotintr;
826 1.26 briggs }
827 1.26 briggs }
828 1.40 jmc *c = *(volatile unsigned char *)pdma;
829 1.12 briggs }
830 1.12 briggs }
831 1.12 briggs
832 1.12 briggs nofault = (int *) 0;
833 1.12 briggs
834 1.26 briggs /*
835 1.26 briggs * If we have not received an interrupt yet, we should shortly,
836 1.26 briggs * and we can't prevent it, so return and wait for it.
837 1.26 briggs */
838 1.12 briggs if ((*statreg & 0x80) == 0) {
839 1.26 briggs #if DEBUG
840 1.26 briggs if (mac68k_esp_debug) {
841 1.26 briggs printf("g.\n");
842 1.26 briggs }
843 1.26 briggs #endif
844 1.12 briggs if (espspl != -1) splx(espspl); espspl = -1;
845 1.12 briggs return;
846 1.12 briggs }
847 1.12 briggs
848 1.12 briggs gotintr:
849 1.26 briggs #if DEBUG
850 1.26 briggs if (mac68k_esp_debug) {
851 1.26 briggs printf("g!\n");
852 1.26 briggs }
853 1.26 briggs #endif
854 1.12 briggs ncr53c9x_intr(sc);
855 1.12 briggs if (espspl != -1) splx(espspl); espspl = -1;
856 1.16 briggs }
857 1.16 briggs
858 1.23 briggs void
859 1.37 chs esp_intr(void *sc)
860 1.23 briggs {
861 1.23 briggs struct esp_softc *esc = (struct esp_softc *)sc;
862 1.23 briggs
863 1.26 briggs if (esc->sc_reg[NCR_STAT * 16] & 0x80) {
864 1.26 briggs ncr53c9x_intr((struct ncr53c9x_softc *) esp0);
865 1.26 briggs }
866 1.23 briggs }
867 1.23 briggs
868 1.23 briggs void
869 1.37 chs esp_dualbus_intr(void *sc)
870 1.16 briggs {
871 1.26 briggs if (esp0 && (esp0->sc_reg[NCR_STAT * 16] & 0x80)) {
872 1.26 briggs ncr53c9x_intr((struct ncr53c9x_softc *) esp0);
873 1.26 briggs }
874 1.22 briggs
875 1.26 briggs if (esp1 && (esp1->sc_reg[NCR_STAT * 16] & 0x80)) {
876 1.26 briggs ncr53c9x_intr((struct ncr53c9x_softc *) esp1);
877 1.26 briggs }
878 1.1 briggs }
879