Home | History | Annotate | Line # | Download | only in obio
esp.c revision 1.49.16.2
      1  1.49.16.1      mjf /*	$NetBSD: esp.c,v 1.49.16.2 2008/06/05 19:14:33 mjf Exp $	*/
      2        1.1   briggs 
      3        1.1   briggs /*
      4       1.10   briggs  * Copyright (c) 1997 Jason R. Thorpe.
      5       1.10   briggs  * All rights reserved.
      6        1.1   briggs  *
      7        1.1   briggs  * Redistribution and use in source and binary forms, with or without
      8        1.1   briggs  * modification, are permitted provided that the following conditions
      9        1.1   briggs  * are met:
     10        1.1   briggs  * 1. Redistributions of source code must retain the above copyright
     11        1.1   briggs  *    notice, this list of conditions and the following disclaimer.
     12        1.1   briggs  * 2. Redistributions in binary form must reproduce the above copyright
     13        1.1   briggs  *    notice, this list of conditions and the following disclaimer in the
     14        1.1   briggs  *    documentation and/or other materials provided with the distribution.
     15        1.1   briggs  * 3. All advertising materials mentioning features or use of this software
     16        1.1   briggs  *    must display the following acknowledgement:
     17       1.10   briggs  *	This product includes software developed for the NetBSD Project
     18       1.10   briggs  *	by Jason R. Thorpe.
     19        1.1   briggs  * 4. The name of the author may not be used to endorse or promote products
     20        1.1   briggs  *    derived from this software without specific prior written permission.
     21        1.1   briggs  *
     22        1.1   briggs  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     23        1.1   briggs  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     24        1.1   briggs  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     25        1.1   briggs  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     26        1.1   briggs  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     27        1.1   briggs  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     28        1.1   briggs  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     29        1.1   briggs  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     30        1.1   briggs  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     31        1.1   briggs  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     32        1.1   briggs  */
     33        1.1   briggs 
     34        1.1   briggs /*
     35        1.1   briggs  * Copyright (c) 1994 Peter Galbavy
     36        1.1   briggs  * All rights reserved.
     37        1.1   briggs  *
     38        1.1   briggs  * Redistribution and use in source and binary forms, with or without
     39        1.1   briggs  * modification, are permitted provided that the following conditions
     40        1.1   briggs  * are met:
     41        1.1   briggs  * 1. Redistributions of source code must retain the above copyright
     42        1.1   briggs  *    notice, this list of conditions and the following disclaimer.
     43        1.1   briggs  * 2. Redistributions in binary form must reproduce the above copyright
     44        1.1   briggs  *    notice, this list of conditions and the following disclaimer in the
     45        1.1   briggs  *    documentation and/or other materials provided with the distribution.
     46        1.1   briggs  * 3. All advertising materials mentioning features or use of this software
     47        1.1   briggs  *    must display the following acknowledgement:
     48        1.1   briggs  *	This product includes software developed by Peter Galbavy
     49        1.1   briggs  * 4. The name of the author may not be used to endorse or promote products
     50        1.1   briggs  *    derived from this software without specific prior written permission.
     51        1.1   briggs  *
     52        1.1   briggs  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     53        1.1   briggs  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     54        1.1   briggs  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     55        1.1   briggs  * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
     56        1.1   briggs  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     57        1.1   briggs  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     58        1.1   briggs  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     59        1.1   briggs  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
     60        1.1   briggs  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
     61        1.1   briggs  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     62        1.1   briggs  * POSSIBILITY OF SUCH DAMAGE.
     63        1.1   briggs  */
     64        1.1   briggs 
     65        1.1   briggs /*
     66        1.1   briggs  * Based on aic6360 by Jarle Greipsland
     67        1.1   briggs  *
     68        1.1   briggs  * Acknowledgements: Many of the algorithms used in this driver are
     69        1.1   briggs  * inspired by the work of Julian Elischer (julian (at) tfs.com) and
     70        1.1   briggs  * Charles Hannum (mycroft (at) duality.gnu.ai.mit.edu).  Thanks a million!
     71       1.10   briggs  */
     72       1.10   briggs 
     73       1.10   briggs /*
     74       1.10   briggs  * Initial m68k mac support from Allen Briggs <briggs (at) macbsd.com>
     75       1.10   briggs  * (basically consisting of the match, a bit of the attach, and the
     76       1.10   briggs  *  "DMA" glue functions).
     77        1.1   briggs  */
     78       1.35    lukem 
     79       1.35    lukem #include <sys/cdefs.h>
     80  1.49.16.1      mjf __KERNEL_RCSID(0, "$NetBSD: esp.c,v 1.49.16.2 2008/06/05 19:14:33 mjf Exp $");
     81        1.1   briggs 
     82        1.1   briggs #include <sys/types.h>
     83        1.1   briggs #include <sys/param.h>
     84        1.1   briggs #include <sys/systm.h>
     85        1.1   briggs #include <sys/kernel.h>
     86        1.1   briggs #include <sys/errno.h>
     87        1.1   briggs #include <sys/ioctl.h>
     88        1.1   briggs #include <sys/device.h>
     89        1.1   briggs #include <sys/buf.h>
     90        1.1   briggs #include <sys/proc.h>
     91        1.1   briggs #include <sys/user.h>
     92        1.1   briggs #include <sys/queue.h>
     93        1.1   briggs 
     94       1.11   bouyer #include <dev/scsipi/scsi_all.h>
     95       1.11   bouyer #include <dev/scsipi/scsipi_all.h>
     96       1.11   bouyer #include <dev/scsipi/scsiconf.h>
     97       1.11   bouyer #include <dev/scsipi/scsi_message.h>
     98        1.1   briggs 
     99        1.1   briggs #include <machine/cpu.h>
    100       1.12   briggs #include <machine/bus.h>
    101        1.1   briggs #include <machine/param.h>
    102        1.1   briggs 
    103        1.7   briggs #include <dev/ic/ncr53c9xreg.h>
    104        1.7   briggs #include <dev/ic/ncr53c9xvar.h>
    105        1.7   briggs 
    106        1.1   briggs #include <machine/viareg.h>
    107        1.1   briggs 
    108       1.15   scottr #include <mac68k/obio/espvar.h>
    109       1.15   scottr #include <mac68k/obio/obiovar.h>
    110        1.3   briggs 
    111  1.49.16.1      mjf int	espmatch(device_t, cfdata_t, void *);
    112  1.49.16.1      mjf void	espattach(device_t, device_t, void *);
    113        1.1   briggs 
    114        1.1   briggs /* Linkup to the rest of the kernel */
    115  1.49.16.1      mjf CFATTACH_DECL_NEW(esp, sizeof(struct esp_softc),
    116       1.34  thorpej     espmatch, espattach, NULL, NULL);
    117        1.1   briggs 
    118        1.7   briggs /*
    119        1.7   briggs  * Functions and the switch for the MI code.
    120        1.7   briggs  */
    121  1.49.16.1      mjf uint8_t	esp_read_reg(struct ncr53c9x_softc *, int);
    122  1.49.16.1      mjf void	esp_write_reg(struct ncr53c9x_softc *, int, uint8_t);
    123       1.36      chs int	esp_dma_isintr(struct ncr53c9x_softc *);
    124       1.36      chs void	esp_dma_reset(struct ncr53c9x_softc *);
    125       1.36      chs int	esp_dma_intr(struct ncr53c9x_softc *);
    126  1.49.16.1      mjf int	esp_dma_setup(struct ncr53c9x_softc *, uint8_t **, size_t *, int,
    127       1.36      chs 	    size_t *);
    128       1.36      chs void	esp_dma_go(struct ncr53c9x_softc *);
    129       1.36      chs void	esp_dma_stop(struct ncr53c9x_softc *);
    130       1.36      chs int	esp_dma_isactive(struct ncr53c9x_softc *);
    131       1.36      chs void	esp_quick_write_reg(struct ncr53c9x_softc *, int, u_char);
    132       1.36      chs int	esp_quick_dma_intr(struct ncr53c9x_softc *);
    133  1.49.16.1      mjf int	esp_quick_dma_setup(struct ncr53c9x_softc *, uint8_t **, size_t *, int,
    134       1.36      chs 	     size_t *);
    135       1.36      chs void	esp_quick_dma_go(struct ncr53c9x_softc *);
    136       1.36      chs 
    137       1.36      chs void	esp_intr(void *);
    138       1.36      chs void	esp_dualbus_intr(void *);
    139       1.36      chs static struct esp_softc		*esp0, *esp1;
    140       1.36      chs 
    141       1.43    perry static inline int esp_dafb_have_dreq(struct esp_softc *);
    142       1.43    perry static inline int esp_iosb_have_dreq(struct esp_softc *);
    143       1.36      chs int (*esp_have_dreq)(struct esp_softc *);
    144        1.7   briggs 
    145        1.7   briggs struct ncr53c9x_glue esp_glue = {
    146        1.7   briggs 	esp_read_reg,
    147        1.7   briggs 	esp_write_reg,
    148        1.7   briggs 	esp_dma_isintr,
    149        1.7   briggs 	esp_dma_reset,
    150        1.7   briggs 	esp_dma_intr,
    151        1.7   briggs 	esp_dma_setup,
    152        1.7   briggs 	esp_dma_go,
    153        1.7   briggs 	esp_dma_stop,
    154        1.7   briggs 	esp_dma_isactive,
    155        1.7   briggs 	NULL,			/* gl_clear_latched_intr */
    156        1.7   briggs };
    157        1.7   briggs 
    158        1.1   briggs int
    159  1.49.16.1      mjf espmatch(device_t parent, cfdata_t cf, void *aux)
    160        1.1   briggs {
    161  1.49.16.1      mjf 	struct obio_attach_args *oa = aux;
    162       1.12   briggs 
    163       1.38      chs 	if (oa->oa_addr == 0 && mac68k_machine.scsi96) {
    164       1.38      chs 		return 1;
    165       1.12   briggs 	}
    166       1.38      chs 	if (oa->oa_addr == 1 && mac68k_machine.scsi96_2) {
    167       1.38      chs 		return 1;
    168       1.12   briggs 	}
    169       1.38      chs 	return 0;
    170        1.1   briggs }
    171        1.1   briggs 
    172        1.1   briggs /*
    173        1.1   briggs  * Attach this instance, and then all the sub-devices
    174        1.1   briggs  */
    175        1.1   briggs void
    176  1.49.16.1      mjf espattach(device_t parent, device_t self, void *aux)
    177        1.1   briggs {
    178  1.49.16.1      mjf 	struct esp_softc	*esc = device_private(self);
    179       1.12   briggs 	struct ncr53c9x_softc	*sc = &esc->sc_ncr53c9x;
    180  1.49.16.1      mjf 	struct obio_attach_args *oa = aux;
    181       1.12   briggs 	int			quick = 0;
    182       1.12   briggs 	unsigned long		reg_offset;
    183  1.49.16.1      mjf 	extern vaddr_t		SCSIBase;
    184  1.49.16.1      mjf 
    185  1.49.16.1      mjf 	sc->sc_dev = self;
    186       1.12   briggs 
    187       1.12   briggs 	reg_offset = SCSIBase - IOBase;
    188       1.12   briggs 	esc->sc_tag = oa->oa_tag;
    189       1.37      chs 
    190       1.12   briggs 	/*
    191       1.12   briggs 	 * For Wombat, Primus and Optimus motherboards, DREQ is
    192       1.12   briggs 	 * visible on bit 0 of the IOSB's emulated VIA2 vIFR (and
    193       1.12   briggs 	 * the scsi registers are offset 0x1000 bytes from IOBase).
    194       1.12   briggs 	 *
    195       1.12   briggs 	 * For the Q700/900/950 it's at f9800024 for bus 0 and
    196       1.12   briggs 	 * f9800028 for bus 1 (900/950).  For these machines, that is also
    197       1.12   briggs 	 * a (12-bit) configuration register for DAFB's control of the
    198       1.12   briggs 	 * pseudo-DMA timing.  The default value is 0x1d1.
    199       1.12   briggs 	 */
    200       1.12   briggs 	esp_have_dreq = esp_dafb_have_dreq;
    201       1.39      chs 	if (oa->oa_addr == 0) {
    202       1.12   briggs 		if (reg_offset == 0x10000) {
    203       1.12   briggs 			quick = 1;
    204       1.12   briggs 			esp_have_dreq = esp_iosb_have_dreq;
    205       1.12   briggs 		} else if (reg_offset == 0x18000) {
    206       1.12   briggs 			quick = 0;
    207       1.12   briggs 		} else {
    208       1.12   briggs 			if (bus_space_map(esc->sc_tag, 0xf9800024,
    209       1.12   briggs 					  4, 0, &esc->sc_bsh)) {
    210  1.49.16.1      mjf 				aprint_error(": failed to map 4"
    211  1.49.16.1      mjf 				    " at 0xf9800024.\n");
    212       1.12   briggs 			} else {
    213       1.12   briggs 				quick = 1;
    214       1.12   briggs 				bus_space_write_4(esc->sc_tag,
    215       1.12   briggs 						  esc->sc_bsh, 0, 0x1d1);
    216       1.12   briggs 			}
    217       1.12   briggs 		}
    218       1.12   briggs 	} else {
    219       1.12   briggs 		if (bus_space_map(esc->sc_tag, 0xf9800028,
    220       1.12   briggs 				  4, 0, &esc->sc_bsh)) {
    221  1.49.16.1      mjf 			aprint_error(": failed to map 4 at 0xf9800028.\n");
    222       1.12   briggs 		} else {
    223       1.12   briggs 			quick = 1;
    224       1.12   briggs 			bus_space_write_4(esc->sc_tag, esc->sc_bsh, 0, 0x1d1);
    225       1.12   briggs 		}
    226       1.12   briggs 	}
    227       1.12   briggs 	if (quick) {
    228       1.12   briggs 		esp_glue.gl_write_reg = esp_quick_write_reg;
    229       1.12   briggs 		esp_glue.gl_dma_intr = esp_quick_dma_intr;
    230       1.12   briggs 		esp_glue.gl_dma_setup = esp_quick_dma_setup;
    231       1.12   briggs 		esp_glue.gl_dma_go = esp_quick_dma_go;
    232       1.12   briggs 	}
    233        1.1   briggs 
    234        1.1   briggs 	/*
    235        1.7   briggs 	 * Set up the glue for MI code early; we use some of it here.
    236        1.1   briggs 	 */
    237        1.7   briggs 	sc->sc_glue = &esp_glue;
    238        1.1   briggs 
    239        1.1   briggs 	/*
    240        1.7   briggs 	 * Save the regs
    241        1.1   briggs 	 */
    242       1.39      chs 	if (oa->oa_addr == 0) {
    243       1.16   briggs 		esp0 = esc;
    244        1.2   briggs 
    245  1.49.16.1      mjf 		esc->sc_reg = (volatile uint8_t *)SCSIBase;
    246       1.23   briggs 		via2_register_irq(VIA2_SCSIIRQ, esp_intr, esc);
    247        1.7   briggs 		esc->irq_mask = V2IF_SCSIIRQ;
    248        1.2   briggs 		if (reg_offset == 0x10000) {
    249       1.26   briggs 			/* From the Q650 developer's note */
    250        1.2   briggs 			sc->sc_freq = 16500000;
    251        1.2   briggs 		} else {
    252        1.2   briggs 			sc->sc_freq = 25000000;
    253        1.2   briggs 		}
    254       1.12   briggs 
    255       1.12   briggs 		if (esp_glue.gl_dma_go == esp_quick_dma_go) {
    256  1.49.16.1      mjf 			aprint_normal(" (quick)");
    257       1.12   briggs 		}
    258        1.1   briggs 	} else {
    259       1.16   briggs 		esp1 = esc;
    260       1.16   briggs 
    261  1.49.16.1      mjf 		esc->sc_reg = (volatile uint8_t *)SCSIBase + 0x402;
    262       1.23   briggs 		via2_register_irq(VIA2_SCSIIRQ, esp_dualbus_intr, NULL);
    263       1.16   briggs 		esc->irq_mask = 0;
    264        1.2   briggs 		sc->sc_freq = 25000000;
    265       1.12   briggs 
    266       1.12   briggs 		if (esp_glue.gl_dma_go == esp_quick_dma_go) {
    267       1.12   briggs 			printf(" (quick)");
    268       1.12   briggs 		}
    269        1.1   briggs 	}
    270        1.7   briggs 
    271  1.49.16.1      mjf 	aprint_normal(": address %p", esc->sc_reg);
    272        1.1   briggs 
    273        1.1   briggs 	sc->sc_id = 7;
    274        1.1   briggs 
    275       1.44    lukem 	/* gimme MHz */
    276        1.1   briggs 	sc->sc_freq /= 1000000;
    277        1.1   briggs 
    278        1.1   briggs 	/*
    279        1.1   briggs 	 * It is necessary to try to load the 2nd config register here,
    280        1.1   briggs 	 * to find out what rev the esp chip is, else the esp_reset
    281        1.1   briggs 	 * will not set up the defaults correctly.
    282        1.1   briggs 	 */
    283       1.13   briggs 	sc->sc_cfg1 = sc->sc_id; /* | NCRCFG1_PARENB; */
    284        1.7   briggs 	sc->sc_cfg2 = NCRCFG2_SCSI2;
    285        1.3   briggs 	sc->sc_cfg3 = 0;
    286        1.7   briggs 	sc->sc_rev = NCR_VARIANT_NCR53C96;
    287        1.1   briggs 
    288        1.1   briggs 	/*
    289        1.1   briggs 	 * This is the value used to start sync negotiations
    290        1.7   briggs 	 * Note that the NCR register "SYNCTP" is programmed
    291        1.1   briggs 	 * in "clocks per byte", and has a minimum value of 4.
    292        1.1   briggs 	 * The SCSI period used in negotiation is one-fourth
    293        1.1   briggs 	 * of the time (in nanoseconds) needed to transfer one byte.
    294        1.1   briggs 	 * Since the chip's clock is given in MHz, we have the following
    295        1.1   briggs 	 * formula: 4 * period = (1000 / freq) * 4
    296        1.1   briggs 	 */
    297        1.1   briggs 	sc->sc_minsync = 1000 / sc->sc_freq;
    298        1.1   briggs 
    299       1.26   briggs 	/* We need this to fit into the TCR... */
    300       1.26   briggs 	sc->sc_maxxfer = 64 * 1024;
    301       1.26   briggs 
    302       1.48  tsutsui         switch (current_mac_model->machineid) {
    303       1.48  tsutsui         case MACH_MACQ630:
    304       1.48  tsutsui 		/* XXX on LC630 64k xfer causes timeout error */
    305       1.48  tsutsui 		sc->sc_maxxfer = 63 * 1024;
    306       1.48  tsutsui 		break;
    307       1.48  tsutsui 	}
    308       1.48  tsutsui 
    309       1.26   briggs 	if (!quick) {
    310       1.26   briggs 		sc->sc_minsync = 0;	/* No synchronous xfers w/o DMA */
    311       1.26   briggs 		sc->sc_maxxfer = 8 * 1024;
    312       1.26   briggs 	}
    313        1.1   briggs 
    314        1.1   briggs 	/*
    315        1.7   briggs 	 * Configure interrupts.
    316        1.1   briggs 	 */
    317       1.16   briggs 	if (esc->irq_mask) {
    318       1.16   briggs 		via2_reg(vPCR) = 0x22;
    319       1.16   briggs 		via2_reg(vIFR) = esc->irq_mask;
    320       1.16   briggs 		via2_reg(vIER) = 0x80 | esc->irq_mask;
    321       1.16   briggs 	}
    322       1.24  thorpej 
    323       1.24  thorpej 	/*
    324       1.24  thorpej 	 * Now try to attach all the sub-devices
    325       1.24  thorpej 	 */
    326       1.29   bouyer 	sc->sc_adapter.adapt_minphys = minphys;
    327       1.29   bouyer 	sc->sc_adapter.adapt_request = ncr53c9x_scsipi_request;
    328       1.29   bouyer 	ncr53c9x_attach(sc);
    329        1.1   briggs }
    330        1.1   briggs 
    331        1.1   briggs /*
    332        1.7   briggs  * Glue functions.
    333        1.1   briggs  */
    334        1.1   briggs 
    335  1.49.16.1      mjf uint8_t
    336       1.37      chs esp_read_reg(struct ncr53c9x_softc *sc, int reg)
    337        1.1   briggs {
    338        1.7   briggs 	struct esp_softc *esc = (struct esp_softc *)sc;
    339        1.1   briggs 
    340       1.23   briggs 	return esc->sc_reg[reg * 16];
    341        1.1   briggs }
    342        1.1   briggs 
    343        1.1   briggs void
    344  1.49.16.1      mjf esp_write_reg(struct ncr53c9x_softc *sc, int reg, uint8_t val)
    345        1.1   briggs {
    346        1.7   briggs 	struct esp_softc *esc = (struct esp_softc *)sc;
    347  1.49.16.1      mjf 	uint8_t	v = val;
    348        1.1   briggs 
    349        1.7   briggs 	if (reg == NCR_CMD && v == (NCRCMD_TRANS|NCRCMD_DMA)) {
    350        1.7   briggs 		v = NCRCMD_TRANS;
    351        1.1   briggs 	}
    352        1.7   briggs 	esc->sc_reg[reg * 16] = v;
    353        1.1   briggs }
    354        1.1   briggs 
    355       1.12   briggs void
    356       1.37      chs esp_dma_stop(struct ncr53c9x_softc *sc)
    357       1.12   briggs {
    358       1.12   briggs }
    359       1.12   briggs 
    360       1.12   briggs int
    361       1.37      chs esp_dma_isactive(struct ncr53c9x_softc *sc)
    362       1.12   briggs {
    363       1.12   briggs 	struct esp_softc *esc = (struct esp_softc *)sc;
    364       1.12   briggs 
    365       1.12   briggs 	return esc->sc_active;
    366       1.12   briggs }
    367       1.12   briggs 
    368        1.7   briggs int
    369       1.37      chs esp_dma_isintr(struct ncr53c9x_softc *sc)
    370        1.1   briggs {
    371        1.7   briggs 	struct esp_softc *esc = (struct esp_softc *)sc;
    372        1.1   briggs 
    373        1.7   briggs 	return esc->sc_reg[NCR_STAT * 16] & 0x80;
    374        1.1   briggs }
    375        1.1   briggs 
    376        1.1   briggs void
    377       1.37      chs esp_dma_reset(struct ncr53c9x_softc *sc)
    378        1.1   briggs {
    379        1.7   briggs 	struct esp_softc *esc = (struct esp_softc *)sc;
    380        1.1   briggs 
    381        1.7   briggs 	esc->sc_active = 0;
    382        1.7   briggs 	esc->sc_tc = 0;
    383        1.1   briggs }
    384        1.1   briggs 
    385        1.7   briggs int
    386       1.37      chs esp_dma_intr(struct ncr53c9x_softc *sc)
    387        1.1   briggs {
    388       1.22   briggs 	struct esp_softc *esc = (struct esp_softc *)sc;
    389        1.7   briggs 	volatile u_char *cmdreg, *intrreg, *statreg, *fiforeg;
    390  1.49.16.1      mjf 	uint8_t	*p;
    391       1.22   briggs 	u_int	espphase, espstat, espintr;
    392       1.22   briggs 	int	cnt, s;
    393        1.1   briggs 
    394        1.7   briggs 	if (esc->sc_active == 0) {
    395        1.7   briggs 		printf("dma_intr--inactive DMA\n");
    396        1.7   briggs 		return -1;
    397        1.1   briggs 	}
    398        1.1   briggs 
    399        1.7   briggs 	if ((sc->sc_espintr & NCRINTR_BS) == 0) {
    400        1.7   briggs 		esc->sc_active = 0;
    401        1.7   briggs 		return 0;
    402        1.1   briggs 	}
    403        1.1   briggs 
    404       1.30   briggs 	cnt = *esc->sc_dmalen;
    405       1.30   briggs 	if (*esc->sc_dmalen == 0) {
    406        1.7   briggs 		printf("data interrupt, but no count left.");
    407        1.1   briggs 	}
    408        1.1   briggs 
    409        1.7   briggs 	p = *esc->sc_dmaaddr;
    410        1.7   briggs 	espphase = sc->sc_phase;
    411  1.49.16.1      mjf 	espstat = (u_int)sc->sc_espstat;
    412  1.49.16.1      mjf 	espintr = (u_int)sc->sc_espintr;
    413        1.7   briggs 	cmdreg = esc->sc_reg + NCR_CMD * 16;
    414        1.7   briggs 	fiforeg = esc->sc_reg + NCR_FIFO * 16;
    415        1.7   briggs 	statreg = esc->sc_reg + NCR_STAT * 16;
    416        1.7   briggs 	intrreg = esc->sc_reg + NCR_INTR * 16;
    417        1.7   briggs 	do {
    418        1.7   briggs 		if (esc->sc_datain) {
    419        1.7   briggs 			*p++ = *fiforeg;
    420        1.7   briggs 			cnt--;
    421        1.7   briggs 			if (espphase == DATA_IN_PHASE) {
    422        1.7   briggs 				*cmdreg = NCRCMD_TRANS;
    423        1.7   briggs 			} else {
    424        1.7   briggs 				esc->sc_active = 0;
    425        1.7   briggs 			}
    426        1.7   briggs 	 	} else {
    427        1.7   briggs 			if (   (espphase == DATA_OUT_PHASE)
    428        1.7   briggs 			    || (espphase == MESSAGE_OUT_PHASE)) {
    429        1.7   briggs 				*fiforeg = *p++;
    430        1.7   briggs 				cnt--;
    431        1.7   briggs 				*cmdreg = NCRCMD_TRANS;
    432        1.7   briggs 			} else {
    433        1.7   briggs 				esc->sc_active = 0;
    434        1.7   briggs 			}
    435        1.1   briggs 		}
    436        1.1   briggs 
    437        1.7   briggs 		if (esc->sc_active) {
    438        1.7   briggs 			while (!(*statreg & 0x80));
    439       1.22   briggs 			s = splhigh();
    440        1.7   briggs 			espstat = *statreg;
    441        1.7   briggs 			espintr = *intrreg;
    442        1.7   briggs 			espphase = (espintr & NCRINTR_DIS)
    443        1.7   briggs 				    ? /* Disconnected */ BUSFREE_PHASE
    444        1.7   briggs 				    : espstat & PHASE_MASK;
    445       1.22   briggs 			splx(s);
    446        1.1   briggs 		}
    447        1.7   briggs 	} while (esc->sc_active && (espintr & NCRINTR_BS));
    448        1.7   briggs 	sc->sc_phase = espphase;
    449  1.49.16.1      mjf 	sc->sc_espstat = (u_char)espstat;
    450  1.49.16.1      mjf 	sc->sc_espintr = (u_char)espintr;
    451        1.7   briggs 	*esc->sc_dmaaddr = p;
    452       1.30   briggs 	*esc->sc_dmalen = cnt;
    453        1.1   briggs 
    454       1.30   briggs 	if (*esc->sc_dmalen == 0) {
    455        1.7   briggs 		esc->sc_tc = NCRSTAT_TC;
    456        1.1   briggs 	}
    457        1.7   briggs 	sc->sc_espstat |= esc->sc_tc;
    458        1.7   briggs 	return 0;
    459        1.1   briggs }
    460        1.1   briggs 
    461        1.1   briggs int
    462  1.49.16.1      mjf esp_dma_setup(struct ncr53c9x_softc *sc, uint8_t **addr, size_t *len,
    463  1.49.16.1      mjf     int datain, size_t *dmasize)
    464        1.1   briggs {
    465        1.7   briggs 	struct esp_softc *esc = (struct esp_softc *)sc;
    466        1.1   briggs 
    467  1.49.16.1      mjf 	esc->sc_dmaaddr = addr;
    468       1.12   briggs 	esc->sc_dmalen = len;
    469        1.7   briggs 	esc->sc_datain = datain;
    470        1.7   briggs 	esc->sc_dmasize = *dmasize;
    471        1.7   briggs 	esc->sc_tc = 0;
    472        1.1   briggs 
    473        1.7   briggs 	return 0;
    474        1.1   briggs }
    475        1.1   briggs 
    476        1.1   briggs void
    477       1.37      chs esp_dma_go(struct ncr53c9x_softc *sc)
    478        1.1   briggs {
    479        1.7   briggs 	struct esp_softc *esc = (struct esp_softc *)sc;
    480        1.1   briggs 
    481        1.7   briggs 	if (esc->sc_datain == 0) {
    482        1.7   briggs 		esc->sc_reg[NCR_FIFO * 16] = **esc->sc_dmaaddr;
    483       1.12   briggs 		(*esc->sc_dmalen)--;
    484        1.7   briggs 		(*esc->sc_dmaaddr)++;
    485        1.1   briggs 	}
    486        1.7   briggs 	esc->sc_active = 1;
    487        1.1   briggs }
    488        1.1   briggs 
    489        1.1   briggs void
    490       1.37      chs esp_quick_write_reg(struct ncr53c9x_softc *sc, int reg, u_char val)
    491        1.1   briggs {
    492       1.12   briggs 	struct esp_softc *esc = (struct esp_softc *)sc;
    493       1.12   briggs 
    494       1.23   briggs 	esc->sc_reg[reg * 16] = val;
    495        1.1   briggs }
    496        1.1   briggs 
    497       1.26   briggs #if DEBUG
    498       1.26   briggs int mac68k_esp_debug=0;
    499       1.26   briggs #endif
    500       1.26   briggs 
    501        1.1   briggs int
    502       1.37      chs esp_quick_dma_intr(struct ncr53c9x_softc *sc)
    503       1.12   briggs {
    504       1.12   briggs 	struct esp_softc *esc = (struct esp_softc *)sc;
    505       1.12   briggs 	int trans=0, resid=0;
    506       1.12   briggs 
    507       1.12   briggs 	if (esc->sc_active == 0)
    508       1.32   provos 		panic("dma_intr--inactive DMA");
    509       1.12   briggs 
    510       1.12   briggs 	esc->sc_active = 0;
    511       1.12   briggs 
    512       1.12   briggs 	if (esc->sc_dmasize == 0) {
    513       1.12   briggs 		int	res;
    514       1.12   briggs 
    515       1.26   briggs 		res = NCR_READ_REG(sc, NCR_TCL);
    516       1.26   briggs 		res += NCR_READ_REG(sc, NCR_TCM) << 8;
    517       1.28   briggs 		/* This can happen in the case of a TRPAD operation */
    518       1.28   briggs 		/* Pretend that it was complete */
    519       1.28   briggs 		sc->sc_espstat |= NCRSTAT_TC;
    520       1.28   briggs #if DEBUG
    521       1.28   briggs 		if (mac68k_esp_debug) {
    522       1.28   briggs 			printf("dmaintr: DMA xfer of zero xferred %d\n",
    523       1.28   briggs 			    65536 - res);
    524       1.28   briggs 		}
    525       1.28   briggs #endif
    526       1.12   briggs 		return 0;
    527       1.12   briggs 	}
    528       1.12   briggs 
    529       1.12   briggs 	if ((sc->sc_espstat & NCRSTAT_TC) == 0) {
    530       1.28   briggs 		if (esc->sc_datain == 0) {
    531       1.28   briggs 			resid = NCR_READ_REG(sc, NCR_FFLAG) & 0x1f;
    532       1.28   briggs #if DEBUG
    533       1.28   briggs 			if (mac68k_esp_debug) {
    534       1.28   briggs 				printf("Write FIFO residual %d bytes\n", resid);
    535       1.28   briggs 			}
    536       1.28   briggs #endif
    537       1.28   briggs 		}
    538       1.12   briggs 		resid += NCR_READ_REG(sc, NCR_TCL);
    539       1.12   briggs 		resid += NCR_READ_REG(sc, NCR_TCM) << 8;
    540       1.12   briggs 		if (resid == 0)
    541       1.12   briggs 			resid = 65536;
    542       1.12   briggs 	}
    543       1.12   briggs 
    544       1.12   briggs 	trans = esc->sc_dmasize - resid;
    545       1.12   briggs 	if (trans < 0) {
    546       1.12   briggs 		printf("dmaintr: trans < 0????");
    547       1.26   briggs 		trans = *esc->sc_dmalen;
    548       1.12   briggs 	}
    549       1.12   briggs 
    550       1.12   briggs 	NCR_DMA(("dmaintr: trans %d, resid %d.\n", trans, resid));
    551       1.26   briggs #if DEBUG
    552       1.26   briggs 	if (mac68k_esp_debug) {
    553       1.26   briggs 		printf("eqd_intr: trans %d, resid %d.\n", trans, resid);
    554       1.26   briggs 	}
    555       1.26   briggs #endif
    556       1.12   briggs 	*esc->sc_dmaaddr += trans;
    557       1.12   briggs 	*esc->sc_dmalen -= trans;
    558       1.12   briggs 
    559       1.12   briggs 	return 0;
    560       1.12   briggs }
    561       1.12   briggs 
    562       1.12   briggs int
    563  1.49.16.1      mjf esp_quick_dma_setup(struct ncr53c9x_softc *sc, uint8_t **addr, size_t *len,
    564       1.37      chs     int datain, size_t *dmasize)
    565       1.12   briggs {
    566       1.12   briggs 	struct esp_softc *esc = (struct esp_softc *)sc;
    567       1.12   briggs 
    568  1.49.16.1      mjf 	esc->sc_dmaaddr = addr;
    569       1.12   briggs 	esc->sc_dmalen = len;
    570       1.12   briggs 
    571       1.26   briggs 	if (*len & 1) {
    572       1.13   briggs 		esc->sc_pad = 1;
    573       1.13   briggs 	} else {
    574       1.13   briggs 		esc->sc_pad = 0;
    575       1.13   briggs 	}
    576       1.12   briggs 
    577       1.12   briggs 	esc->sc_datain = datain;
    578       1.12   briggs 	esc->sc_dmasize = *dmasize;
    579       1.12   briggs 
    580       1.26   briggs #if DIAGNOSTIC
    581       1.26   briggs 	if (esc->sc_dmasize == 0) {
    582       1.28   briggs 		/* This can happen in the case of a TRPAD operation */
    583       1.26   briggs 	}
    584       1.26   briggs #endif
    585       1.26   briggs #if DEBUG
    586       1.26   briggs 	if (mac68k_esp_debug) {
    587       1.26   briggs 	printf("eqd_setup: addr %lx, len %lx, in? %d, dmasize %lx\n",
    588       1.26   briggs 	    (long) *addr, (long) *len, datain, (long) esc->sc_dmasize);
    589       1.26   briggs 	}
    590       1.26   briggs #endif
    591       1.26   briggs 
    592       1.12   briggs 	return 0;
    593       1.12   briggs }
    594       1.12   briggs 
    595       1.43    perry static inline int
    596       1.37      chs esp_dafb_have_dreq(struct esp_softc *esc)
    597       1.12   briggs {
    598  1.49.16.1      mjf 
    599  1.49.16.1      mjf 	return *(volatile uint32_t *)(esc->sc_bsh.base) & 0x200;
    600       1.12   briggs }
    601       1.12   briggs 
    602       1.43    perry static inline int
    603       1.37      chs esp_iosb_have_dreq(struct esp_softc *esc)
    604       1.12   briggs {
    605  1.49.16.1      mjf 
    606  1.49.16.1      mjf 	return via2_reg(vIFR) & V2IF_SCSIDRQ;
    607       1.12   briggs }
    608       1.12   briggs 
    609  1.49.16.1      mjf static volatile int espspl = -1;
    610       1.12   briggs 
    611       1.26   briggs /*
    612       1.26   briggs  * Apple "DMA" is weird.
    613       1.26   briggs  *
    614       1.26   briggs  * Basically, the CPU acts like the DMA controller.  The DREQ/ off the
    615       1.26   briggs  * chip goes to a register that we've mapped at attach time (on the
    616       1.26   briggs  * IOSB or DAFB, depending on the machine).  Apple also provides some
    617       1.26   briggs  * space for which the memory controller handshakes data to/from the
    618       1.26   briggs  * NCR chip with the DACK/ line.  This space appears to be mapped over
    619       1.26   briggs  * and over, every 4 bytes, but only the lower 16 bits are valid (but
    620       1.26   briggs  * reading the upper 16 bits will handshake DACK/ just fine, so if you
    621       1.26   briggs  * read *u_int16_t++ = *u_int16_t++ in a loop, you'll get
    622       1.26   briggs  * <databyte><databyte>0xff0xff<databyte><databyte>0xff0xff...
    623       1.26   briggs  *
    624       1.26   briggs  * When you're attempting to read or write memory to this DACK/ed space,
    625       1.26   briggs  * and the NCR is not ready for some timeout period, the system will
    626       1.26   briggs  * generate a bus error.  This might be for one of several reasons:
    627       1.26   briggs  *
    628       1.26   briggs  *	1) (on write) The FIFO is full and is not draining.
    629       1.26   briggs  *	2) (on read) The FIFO is empty and is not filling.
    630       1.26   briggs  *	3) An interrupt condition has occurred.
    631       1.26   briggs  *	4) Anything else?
    632       1.26   briggs  *
    633       1.26   briggs  * So if a bus error occurs, we first turn off the nofault bus error handler,
    634       1.26   briggs  * then we check for an interrupt (which would render the first two
    635       1.26   briggs  * possibilities moot).  If there's no interrupt, check for a DREQ/.  If we
    636       1.26   briggs  * have that, then attempt to resume stuffing (or unstuffing) the FIFO.  If
    637       1.26   briggs  * neither condition holds, pause briefly and check again.
    638       1.26   briggs  *
    639       1.26   briggs  * NOTE!!!  In order to make allowances for the hardware structure of
    640       1.26   briggs  *          the mac, spl values in here are hardcoded!!!!!!!!!
    641       1.26   briggs  *          This is done to allow serial interrupts to get in during
    642       1.26   briggs  *          scsi transfers.  This is ugly.
    643       1.26   briggs  */
    644       1.12   briggs void
    645       1.37      chs esp_quick_dma_go(struct ncr53c9x_softc *sc)
    646        1.1   briggs {
    647        1.7   briggs 	struct esp_softc *esc = (struct esp_softc *)sc;
    648       1.26   briggs 	extern long mac68k_a2_fromfault;
    649       1.12   briggs 	extern int *nofault;
    650       1.12   briggs 	label_t faultbuf;
    651  1.49.16.1      mjf 	uint16_t volatile *pdma;
    652  1.49.16.1      mjf 	uint16_t *addr;
    653       1.26   briggs 	int		len, res;
    654  1.49.16.1      mjf 	uint16_t	cnt32, cnt2;
    655  1.49.16.1      mjf 	volatile uint8_t *statreg;
    656       1.12   briggs 
    657       1.12   briggs 	esc->sc_active = 1;
    658       1.12   briggs 
    659       1.26   briggs 	espspl = splhigh();
    660       1.26   briggs 
    661  1.49.16.1      mjf 	addr = (uint16_t *)*esc->sc_dmaaddr;
    662       1.26   briggs 	len  = esc->sc_dmasize;
    663       1.12   briggs 
    664       1.12   briggs restart_dmago:
    665       1.26   briggs #if DEBUG
    666       1.26   briggs 	if (mac68k_esp_debug) {
    667       1.26   briggs 		printf("eqdg: a %lx, l %lx, in? %d ... ",
    668       1.26   briggs 		    (long) addr, (long) len, esc->sc_datain);
    669       1.26   briggs 	}
    670       1.26   briggs #endif
    671  1.49.16.1      mjf 	nofault = (int *)&faultbuf;
    672  1.49.16.1      mjf 	if (setjmp((label_t *)nofault)) {
    673  1.49.16.1      mjf 		int	i = 0;
    674       1.12   briggs 
    675  1.49.16.1      mjf 		nofault = NULL;
    676       1.26   briggs #if DEBUG
    677       1.26   briggs 		if (mac68k_esp_debug) {
    678       1.26   briggs 			printf("be\n");
    679       1.26   briggs 		}
    680       1.26   briggs #endif
    681       1.26   briggs 		/*
    682       1.26   briggs 		 * Bus error...
    683       1.26   briggs 		 * So, we first check for an interrupt.  If we have
    684       1.26   briggs 		 * one, go handle it.  Next we check for DREQ/.  If
    685       1.26   briggs 		 * we have it, then we restart the transfer.  If
    686       1.26   briggs 		 * neither, then loop until we get one or the other.
    687       1.26   briggs 		 */
    688       1.12   briggs 		statreg = esc->sc_reg + NCR_STAT * 16;
    689       1.12   briggs 		for (;;) {
    690       1.26   briggs 			spl2();		/* Give serial a chance... */
    691       1.26   briggs 			splhigh();	/* That's enough... */
    692       1.26   briggs 
    693       1.12   briggs 			if (*statreg & 0x80) {
    694       1.12   briggs 				goto gotintr;
    695       1.12   briggs 			}
    696       1.12   briggs 
    697       1.12   briggs 			if (esp_have_dreq(esc)) {
    698       1.26   briggs 				/*
    699       1.28   briggs 				 * Get the remaining length from the address
    700       1.26   briggs 				 * differential.
    701       1.26   briggs 				 */
    702  1.49.16.1      mjf 				addr = (uint16_t *)mac68k_a2_fromfault;
    703       1.26   briggs 				len = esc->sc_dmasize -
    704  1.49.16.1      mjf 				    ((long)addr - (long)*esc->sc_dmaaddr);
    705       1.26   briggs 
    706       1.26   briggs 				if (esc->sc_datain == 0) {
    707       1.26   briggs 					/*
    708       1.26   briggs 					 * Let the FIFO drain before we read
    709       1.26   briggs 					 * the transfer count.
    710       1.26   briggs 					 * Do we need to do this?
    711       1.26   briggs 					 * Can we do this?
    712       1.26   briggs 					 */
    713       1.26   briggs 					while (NCR_READ_REG(sc, NCR_FFLAG)
    714       1.26   briggs 					    & 0x1f);
    715       1.26   briggs 					/*
    716       1.26   briggs 					 * Get the length from the transfer
    717       1.26   briggs 					 * counters.
    718       1.26   briggs 					 */
    719       1.26   briggs 					res = NCR_READ_REG(sc, NCR_TCL);
    720       1.26   briggs 					res += NCR_READ_REG(sc, NCR_TCM) << 8;
    721       1.26   briggs 					/*
    722       1.26   briggs 					 * If they don't agree,
    723       1.26   briggs 					 * adjust accordingly.
    724       1.26   briggs 					 */
    725       1.26   briggs 					while (res > len) {
    726       1.26   briggs 						len+=2; addr--;
    727       1.26   briggs 					}
    728       1.26   briggs 					if (res != len) {
    729  1.49.16.1      mjf 						panic("%s: res %d != len %d",
    730  1.49.16.1      mjf 						    __func__, res, len);
    731       1.26   briggs 					}
    732       1.26   briggs 				}
    733       1.12   briggs 				break;
    734       1.12   briggs 			}
    735       1.12   briggs 
    736       1.12   briggs 			DELAY(1);
    737       1.26   briggs 			if (i++ > 1000000)
    738  1.49.16.1      mjf 				panic("%s: Bus error, but no condition!  Argh!",
    739  1.49.16.1      mjf 				    __func__);
    740       1.12   briggs 		}
    741       1.12   briggs 		goto restart_dmago;
    742       1.12   briggs 	}
    743       1.12   briggs 
    744       1.26   briggs 	len &= ~1;
    745       1.26   briggs 
    746       1.12   briggs 	statreg = esc->sc_reg + NCR_STAT * 16;
    747  1.49.16.1      mjf 	pdma = (volatile uint16_t *)(esc->sc_reg + 0x100);
    748        1.1   briggs 
    749       1.26   briggs 	/*
    750       1.26   briggs 	 * These loops are unrolled into assembly for two reasons:
    751       1.26   briggs 	 * 1) We can make sure that they are as efficient as possible, and
    752       1.26   briggs 	 * 2) (more importantly) we need the address that we are reading
    753       1.26   briggs 	 *    from or writing to to be in a2.
    754       1.26   briggs 	 */
    755       1.26   briggs 	cnt32 = len / 32;
    756       1.26   briggs 	cnt2 = (len % 32) / 2;
    757       1.12   briggs 	if (esc->sc_datain == 0) {
    758       1.26   briggs 		/* while (cnt32--) { 16 instances of *pdma = *addr++; } */
    759       1.26   briggs 		/* while (cnt2--) { *pdma = *addr++; } */
    760       1.42    perry 		__asm volatile (
    761       1.31  thorpej 			"	movl %1, %%a2	\n"
    762       1.31  thorpej 			"	movl %2, %%a3	\n"
    763       1.31  thorpej 			"	movw %3, %%d2	\n"
    764       1.31  thorpej 			"	cmpw #0, %%d2	\n"
    765       1.31  thorpej 			"	beq  2f		\n"
    766       1.31  thorpej 			"	subql #1, %%d2	\n"
    767       1.31  thorpej 			"1:	movw %%a2@+,%%a3@; movw %%a2@+,%%a3@	\n"
    768       1.31  thorpej 			"	movw %%a2@+,%%a3@; movw %%a2@+,%%a3@	\n"
    769       1.31  thorpej 			"	movw %%a2@+,%%a3@; movw %%a2@+,%%a3@	\n"
    770       1.31  thorpej 			"	movw %%a2@+,%%a3@; movw %%a2@+,%%a3@	\n"
    771       1.31  thorpej 			"	movw %%a2@+,%%a3@; movw %%a2@+,%%a3@	\n"
    772       1.31  thorpej 			"	movw %%a2@+,%%a3@; movw %%a2@+,%%a3@	\n"
    773       1.31  thorpej 			"	movw %%a2@+,%%a3@; movw %%a2@+,%%a3@	\n"
    774       1.31  thorpej 			"	movw %%a2@+,%%a3@; movw %%a2@+,%%a3@	\n"
    775       1.31  thorpej 			"	movw #8704,%%sr	\n"
    776       1.31  thorpej 			"	movw #9728,%%sr	\n"
    777       1.31  thorpej 			"	dbra %%d2, 1b	\n"
    778       1.31  thorpej 			"2:	movw %4, %%d2	\n"
    779       1.31  thorpej 			"	cmpw #0, %%d2	\n"
    780       1.31  thorpej 			"	beq  4f		\n"
    781       1.31  thorpej 			"	subql #1, %%d2	\n"
    782       1.31  thorpej 			"3:	movw %%a2@+,%%a3@ \n"
    783       1.31  thorpej 			"	dbra %%d2, 3b	\n"
    784       1.31  thorpej 			"4:	movl %%a2, %0"
    785       1.26   briggs 			: "=g" (addr)
    786       1.26   briggs 			: "0" (addr), "g" (pdma), "g" (cnt32), "g" (cnt2)
    787       1.26   briggs 			: "a2", "a3", "d2");
    788       1.13   briggs 		if (esc->sc_pad) {
    789  1.49.16.1      mjf 			volatile uint8_t *c;
    790  1.49.16.1      mjf 			c = (volatile uint8_t *) addr;
    791       1.26   briggs 			/* Wait for DREQ */
    792       1.26   briggs 			while (!esp_have_dreq(esc)) {
    793       1.26   briggs 				if (*statreg & 0x80) {
    794  1.49.16.1      mjf 					nofault = NULL;
    795       1.26   briggs 					goto gotintr;
    796       1.26   briggs 				}
    797       1.26   briggs 			}
    798  1.49.16.1      mjf 			*(volatile int8_t *)pdma = *c;
    799       1.13   briggs 		}
    800       1.12   briggs 	} else {
    801       1.26   briggs 		/* while (cnt32--) { 16 instances of *addr++ = *pdma; } */
    802       1.26   briggs 		/* while (cnt2--) { *addr++ = *pdma; } */
    803       1.42    perry 		__asm volatile (
    804       1.31  thorpej 			"	movl %1, %%a2	\n"
    805       1.31  thorpej 			"	movl %2, %%a3	\n"
    806       1.31  thorpej 			"	movw %3, %%d2	\n"
    807       1.31  thorpej 			"	cmpw #0, %%d2	\n"
    808       1.31  thorpej 			"	beq  6f		\n"
    809       1.31  thorpej 			"	subql #1, %%d2	\n"
    810       1.31  thorpej 			"5:	movw %%a3@,%%a2@+; movw %%a3@,%%a2@+	\n"
    811       1.31  thorpej 			"	movw %%a3@,%%a2@+; movw %%a3@,%%a2@+	\n"
    812       1.31  thorpej 			"	movw %%a3@,%%a2@+; movw %%a3@,%%a2@+	\n"
    813       1.31  thorpej 			"	movw %%a3@,%%a2@+; movw %%a3@,%%a2@+	\n"
    814       1.31  thorpej 			"	movw %%a3@,%%a2@+; movw %%a3@,%%a2@+	\n"
    815       1.31  thorpej 			"	movw %%a3@,%%a2@+; movw %%a3@,%%a2@+	\n"
    816       1.31  thorpej 			"	movw %%a3@,%%a2@+; movw %%a3@,%%a2@+	\n"
    817       1.31  thorpej 			"	movw %%a3@,%%a2@+; movw %%a3@,%%a2@+	\n"
    818       1.31  thorpej 			"	movw #8704,%%sr	\n"
    819       1.31  thorpej 			"	movw #9728,%%sr	\n"
    820       1.31  thorpej 			"	dbra %%d2, 5b	\n"
    821       1.31  thorpej 			"6:	movw %4, %%d2	\n"
    822       1.31  thorpej 			"	cmpw #0, %%d2	\n"
    823       1.31  thorpej 			"	beq  8f		\n"
    824       1.31  thorpej 			"	subql #1, %%d2	\n"
    825       1.31  thorpej 			"7:	movw %%a3@,%%a2@+ \n"
    826       1.31  thorpej 			"	dbra %%d2, 7b	\n"
    827       1.31  thorpej 			"8:	movl %%a2, %0"
    828       1.26   briggs 			: "=g" (addr)
    829       1.26   briggs 			: "0" (addr), "g" (pdma), "g" (cnt32), "g" (cnt2)
    830       1.26   briggs 			: "a2", "a3", "d2");
    831       1.13   briggs 		if (esc->sc_pad) {
    832  1.49.16.1      mjf 			volatile uint8_t *c;
    833  1.49.16.1      mjf 			c = (volatile int8_t *)addr;
    834       1.26   briggs 			/* Wait for DREQ */
    835       1.26   briggs 			while (!esp_have_dreq(esc)) {
    836       1.26   briggs 				if (*statreg & 0x80) {
    837  1.49.16.1      mjf 					nofault = NULL;
    838       1.26   briggs 					goto gotintr;
    839       1.26   briggs 				}
    840       1.26   briggs 			}
    841  1.49.16.1      mjf 			*c = *(volatile uint8_t *)pdma;
    842       1.12   briggs 		}
    843       1.12   briggs 	}
    844       1.12   briggs 
    845  1.49.16.1      mjf 	nofault = NULL;
    846       1.12   briggs 
    847       1.26   briggs 	/*
    848       1.26   briggs 	 * If we have not received an interrupt yet, we should shortly,
    849       1.26   briggs 	 * and we can't prevent it, so return and wait for it.
    850       1.26   briggs 	 */
    851       1.12   briggs 	if ((*statreg & 0x80) == 0) {
    852       1.26   briggs #if DEBUG
    853       1.26   briggs 		if (mac68k_esp_debug) {
    854       1.26   briggs 			printf("g.\n");
    855       1.26   briggs 		}
    856       1.26   briggs #endif
    857  1.49.16.1      mjf 		if (espspl != -1)
    858  1.49.16.1      mjf 			splx(espspl);
    859  1.49.16.1      mjf 		espspl = -1;
    860       1.12   briggs 		return;
    861       1.12   briggs 	}
    862       1.12   briggs 
    863       1.12   briggs gotintr:
    864       1.26   briggs #if DEBUG
    865       1.26   briggs 	if (mac68k_esp_debug) {
    866       1.26   briggs 		printf("g!\n");
    867       1.26   briggs 	}
    868       1.26   briggs #endif
    869  1.49.16.2      mjf 	/*
    870  1.49.16.2      mjf 	 * We have been called from the MI ncr53c9x_intr() handler,
    871  1.49.16.2      mjf 	 * which protects itself against multiple invocation with a
    872  1.49.16.2      mjf 	 * simple_lock. Follow the example of ncr53c9x_poll().
    873  1.49.16.2      mjf 	 */
    874  1.49.16.2      mjf 	simple_unlock(&sc->sc_lock);
    875       1.12   briggs 	ncr53c9x_intr(sc);
    876  1.49.16.2      mjf 	simple_lock(&sc->sc_lock);
    877  1.49.16.1      mjf 	if (espspl != -1)
    878  1.49.16.1      mjf 		splx(espspl);
    879  1.49.16.1      mjf 	espspl = -1;
    880       1.16   briggs }
    881       1.16   briggs 
    882       1.23   briggs void
    883       1.37      chs esp_intr(void *sc)
    884       1.23   briggs {
    885       1.23   briggs 	struct esp_softc *esc = (struct esp_softc *)sc;
    886       1.23   briggs 
    887       1.26   briggs 	if (esc->sc_reg[NCR_STAT * 16] & 0x80) {
    888  1.49.16.1      mjf 		ncr53c9x_intr((struct ncr53c9x_softc *)esp0);
    889       1.26   briggs 	}
    890       1.23   briggs }
    891       1.23   briggs 
    892       1.23   briggs void
    893       1.37      chs esp_dualbus_intr(void *sc)
    894       1.16   briggs {
    895       1.26   briggs 	if (esp0 && (esp0->sc_reg[NCR_STAT * 16] & 0x80)) {
    896  1.49.16.1      mjf 		ncr53c9x_intr((struct ncr53c9x_softc *)esp0);
    897       1.26   briggs 	}
    898       1.22   briggs 
    899       1.26   briggs 	if (esp1 && (esp1->sc_reg[NCR_STAT * 16] & 0x80)) {
    900  1.49.16.1      mjf 		ncr53c9x_intr((struct ncr53c9x_softc *)esp1);
    901       1.26   briggs 	}
    902        1.1   briggs }
    903