esp.c revision 1.54 1 1.53 uebayasi /* $NetBSD: esp.c,v 1.54 2011/08/02 05:17:18 uebayasi Exp $ */
2 1.1 briggs
3 1.1 briggs /*
4 1.10 briggs * Copyright (c) 1997 Jason R. Thorpe.
5 1.10 briggs * All rights reserved.
6 1.1 briggs *
7 1.1 briggs * Redistribution and use in source and binary forms, with or without
8 1.1 briggs * modification, are permitted provided that the following conditions
9 1.1 briggs * are met:
10 1.1 briggs * 1. Redistributions of source code must retain the above copyright
11 1.1 briggs * notice, this list of conditions and the following disclaimer.
12 1.1 briggs * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 briggs * notice, this list of conditions and the following disclaimer in the
14 1.1 briggs * documentation and/or other materials provided with the distribution.
15 1.1 briggs * 3. All advertising materials mentioning features or use of this software
16 1.1 briggs * must display the following acknowledgement:
17 1.10 briggs * This product includes software developed for the NetBSD Project
18 1.10 briggs * by Jason R. Thorpe.
19 1.1 briggs * 4. The name of the author may not be used to endorse or promote products
20 1.1 briggs * derived from this software without specific prior written permission.
21 1.1 briggs *
22 1.1 briggs * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23 1.1 briggs * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24 1.1 briggs * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25 1.1 briggs * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26 1.1 briggs * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
27 1.1 briggs * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 1.1 briggs * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 1.1 briggs * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 1.1 briggs * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
31 1.1 briggs * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 1.1 briggs */
33 1.1 briggs
34 1.1 briggs /*
35 1.1 briggs * Copyright (c) 1994 Peter Galbavy
36 1.1 briggs * All rights reserved.
37 1.1 briggs *
38 1.1 briggs * Redistribution and use in source and binary forms, with or without
39 1.1 briggs * modification, are permitted provided that the following conditions
40 1.1 briggs * are met:
41 1.1 briggs * 1. Redistributions of source code must retain the above copyright
42 1.1 briggs * notice, this list of conditions and the following disclaimer.
43 1.1 briggs * 2. Redistributions in binary form must reproduce the above copyright
44 1.1 briggs * notice, this list of conditions and the following disclaimer in the
45 1.1 briggs * documentation and/or other materials provided with the distribution.
46 1.1 briggs * 3. All advertising materials mentioning features or use of this software
47 1.1 briggs * must display the following acknowledgement:
48 1.1 briggs * This product includes software developed by Peter Galbavy
49 1.1 briggs * 4. The name of the author may not be used to endorse or promote products
50 1.1 briggs * derived from this software without specific prior written permission.
51 1.1 briggs *
52 1.1 briggs * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
53 1.1 briggs * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
54 1.1 briggs * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
55 1.1 briggs * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
56 1.1 briggs * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
57 1.1 briggs * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
58 1.1 briggs * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59 1.1 briggs * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
60 1.1 briggs * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
61 1.1 briggs * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
62 1.1 briggs * POSSIBILITY OF SUCH DAMAGE.
63 1.1 briggs */
64 1.1 briggs
65 1.1 briggs /*
66 1.1 briggs * Based on aic6360 by Jarle Greipsland
67 1.1 briggs *
68 1.1 briggs * Acknowledgements: Many of the algorithms used in this driver are
69 1.1 briggs * inspired by the work of Julian Elischer (julian (at) tfs.com) and
70 1.1 briggs * Charles Hannum (mycroft (at) duality.gnu.ai.mit.edu). Thanks a million!
71 1.10 briggs */
72 1.10 briggs
73 1.10 briggs /*
74 1.10 briggs * Initial m68k mac support from Allen Briggs <briggs (at) macbsd.com>
75 1.10 briggs * (basically consisting of the match, a bit of the attach, and the
76 1.10 briggs * "DMA" glue functions).
77 1.1 briggs */
78 1.35 lukem
79 1.35 lukem #include <sys/cdefs.h>
80 1.53 uebayasi __KERNEL_RCSID(0, "$NetBSD: esp.c,v 1.54 2011/08/02 05:17:18 uebayasi Exp $");
81 1.1 briggs
82 1.1 briggs #include <sys/types.h>
83 1.1 briggs #include <sys/param.h>
84 1.1 briggs #include <sys/systm.h>
85 1.1 briggs #include <sys/kernel.h>
86 1.1 briggs #include <sys/errno.h>
87 1.1 briggs #include <sys/ioctl.h>
88 1.1 briggs #include <sys/device.h>
89 1.1 briggs #include <sys/buf.h>
90 1.1 briggs #include <sys/proc.h>
91 1.1 briggs #include <sys/queue.h>
92 1.54 uebayasi #include <sys/mutex.h>
93 1.1 briggs
94 1.11 bouyer #include <dev/scsipi/scsi_all.h>
95 1.11 bouyer #include <dev/scsipi/scsipi_all.h>
96 1.11 bouyer #include <dev/scsipi/scsiconf.h>
97 1.11 bouyer #include <dev/scsipi/scsi_message.h>
98 1.1 briggs
99 1.1 briggs #include <machine/cpu.h>
100 1.12 briggs #include <machine/bus.h>
101 1.1 briggs #include <machine/param.h>
102 1.1 briggs
103 1.7 briggs #include <dev/ic/ncr53c9xreg.h>
104 1.7 briggs #include <dev/ic/ncr53c9xvar.h>
105 1.7 briggs
106 1.1 briggs #include <machine/viareg.h>
107 1.1 briggs
108 1.15 scottr #include <mac68k/obio/espvar.h>
109 1.15 scottr #include <mac68k/obio/obiovar.h>
110 1.3 briggs
111 1.50 tsutsui int espmatch(device_t, cfdata_t, void *);
112 1.50 tsutsui void espattach(device_t, device_t, void *);
113 1.1 briggs
114 1.1 briggs /* Linkup to the rest of the kernel */
115 1.50 tsutsui CFATTACH_DECL_NEW(esp, sizeof(struct esp_softc),
116 1.34 thorpej espmatch, espattach, NULL, NULL);
117 1.1 briggs
118 1.7 briggs /*
119 1.7 briggs * Functions and the switch for the MI code.
120 1.7 briggs */
121 1.50 tsutsui uint8_t esp_read_reg(struct ncr53c9x_softc *, int);
122 1.50 tsutsui void esp_write_reg(struct ncr53c9x_softc *, int, uint8_t);
123 1.36 chs int esp_dma_isintr(struct ncr53c9x_softc *);
124 1.36 chs void esp_dma_reset(struct ncr53c9x_softc *);
125 1.36 chs int esp_dma_intr(struct ncr53c9x_softc *);
126 1.50 tsutsui int esp_dma_setup(struct ncr53c9x_softc *, uint8_t **, size_t *, int,
127 1.36 chs size_t *);
128 1.36 chs void esp_dma_go(struct ncr53c9x_softc *);
129 1.36 chs void esp_dma_stop(struct ncr53c9x_softc *);
130 1.36 chs int esp_dma_isactive(struct ncr53c9x_softc *);
131 1.36 chs void esp_quick_write_reg(struct ncr53c9x_softc *, int, u_char);
132 1.36 chs int esp_quick_dma_intr(struct ncr53c9x_softc *);
133 1.50 tsutsui int esp_quick_dma_setup(struct ncr53c9x_softc *, uint8_t **, size_t *, int,
134 1.36 chs size_t *);
135 1.36 chs void esp_quick_dma_go(struct ncr53c9x_softc *);
136 1.36 chs
137 1.36 chs void esp_intr(void *);
138 1.36 chs void esp_dualbus_intr(void *);
139 1.36 chs static struct esp_softc *esp0, *esp1;
140 1.36 chs
141 1.43 perry static inline int esp_dafb_have_dreq(struct esp_softc *);
142 1.43 perry static inline int esp_iosb_have_dreq(struct esp_softc *);
143 1.36 chs int (*esp_have_dreq)(struct esp_softc *);
144 1.7 briggs
145 1.7 briggs struct ncr53c9x_glue esp_glue = {
146 1.7 briggs esp_read_reg,
147 1.7 briggs esp_write_reg,
148 1.7 briggs esp_dma_isintr,
149 1.7 briggs esp_dma_reset,
150 1.7 briggs esp_dma_intr,
151 1.7 briggs esp_dma_setup,
152 1.7 briggs esp_dma_go,
153 1.7 briggs esp_dma_stop,
154 1.7 briggs esp_dma_isactive,
155 1.7 briggs NULL, /* gl_clear_latched_intr */
156 1.7 briggs };
157 1.7 briggs
158 1.1 briggs int
159 1.50 tsutsui espmatch(device_t parent, cfdata_t cf, void *aux)
160 1.1 briggs {
161 1.50 tsutsui struct obio_attach_args *oa = aux;
162 1.12 briggs
163 1.38 chs if (oa->oa_addr == 0 && mac68k_machine.scsi96) {
164 1.38 chs return 1;
165 1.12 briggs }
166 1.38 chs if (oa->oa_addr == 1 && mac68k_machine.scsi96_2) {
167 1.38 chs return 1;
168 1.12 briggs }
169 1.38 chs return 0;
170 1.1 briggs }
171 1.1 briggs
172 1.1 briggs /*
173 1.1 briggs * Attach this instance, and then all the sub-devices
174 1.1 briggs */
175 1.1 briggs void
176 1.50 tsutsui espattach(device_t parent, device_t self, void *aux)
177 1.1 briggs {
178 1.50 tsutsui struct esp_softc *esc = device_private(self);
179 1.12 briggs struct ncr53c9x_softc *sc = &esc->sc_ncr53c9x;
180 1.50 tsutsui struct obio_attach_args *oa = aux;
181 1.12 briggs int quick = 0;
182 1.12 briggs unsigned long reg_offset;
183 1.50 tsutsui extern vaddr_t SCSIBase;
184 1.50 tsutsui
185 1.50 tsutsui sc->sc_dev = self;
186 1.12 briggs
187 1.12 briggs reg_offset = SCSIBase - IOBase;
188 1.12 briggs esc->sc_tag = oa->oa_tag;
189 1.37 chs
190 1.12 briggs /*
191 1.12 briggs * For Wombat, Primus and Optimus motherboards, DREQ is
192 1.12 briggs * visible on bit 0 of the IOSB's emulated VIA2 vIFR (and
193 1.12 briggs * the scsi registers are offset 0x1000 bytes from IOBase).
194 1.12 briggs *
195 1.12 briggs * For the Q700/900/950 it's at f9800024 for bus 0 and
196 1.12 briggs * f9800028 for bus 1 (900/950). For these machines, that is also
197 1.12 briggs * a (12-bit) configuration register for DAFB's control of the
198 1.12 briggs * pseudo-DMA timing. The default value is 0x1d1.
199 1.12 briggs */
200 1.12 briggs esp_have_dreq = esp_dafb_have_dreq;
201 1.39 chs if (oa->oa_addr == 0) {
202 1.12 briggs if (reg_offset == 0x10000) {
203 1.12 briggs quick = 1;
204 1.12 briggs esp_have_dreq = esp_iosb_have_dreq;
205 1.12 briggs } else if (reg_offset == 0x18000) {
206 1.12 briggs quick = 0;
207 1.12 briggs } else {
208 1.12 briggs if (bus_space_map(esc->sc_tag, 0xf9800024,
209 1.12 briggs 4, 0, &esc->sc_bsh)) {
210 1.50 tsutsui aprint_error(": failed to map 4"
211 1.50 tsutsui " at 0xf9800024.\n");
212 1.12 briggs } else {
213 1.12 briggs quick = 1;
214 1.12 briggs bus_space_write_4(esc->sc_tag,
215 1.12 briggs esc->sc_bsh, 0, 0x1d1);
216 1.12 briggs }
217 1.12 briggs }
218 1.12 briggs } else {
219 1.12 briggs if (bus_space_map(esc->sc_tag, 0xf9800028,
220 1.12 briggs 4, 0, &esc->sc_bsh)) {
221 1.50 tsutsui aprint_error(": failed to map 4 at 0xf9800028.\n");
222 1.12 briggs } else {
223 1.12 briggs quick = 1;
224 1.12 briggs bus_space_write_4(esc->sc_tag, esc->sc_bsh, 0, 0x1d1);
225 1.12 briggs }
226 1.12 briggs }
227 1.12 briggs if (quick) {
228 1.12 briggs esp_glue.gl_write_reg = esp_quick_write_reg;
229 1.12 briggs esp_glue.gl_dma_intr = esp_quick_dma_intr;
230 1.12 briggs esp_glue.gl_dma_setup = esp_quick_dma_setup;
231 1.12 briggs esp_glue.gl_dma_go = esp_quick_dma_go;
232 1.12 briggs }
233 1.1 briggs
234 1.1 briggs /*
235 1.7 briggs * Set up the glue for MI code early; we use some of it here.
236 1.1 briggs */
237 1.7 briggs sc->sc_glue = &esp_glue;
238 1.1 briggs
239 1.1 briggs /*
240 1.7 briggs * Save the regs
241 1.1 briggs */
242 1.39 chs if (oa->oa_addr == 0) {
243 1.16 briggs esp0 = esc;
244 1.2 briggs
245 1.50 tsutsui esc->sc_reg = (volatile uint8_t *)SCSIBase;
246 1.23 briggs via2_register_irq(VIA2_SCSIIRQ, esp_intr, esc);
247 1.7 briggs esc->irq_mask = V2IF_SCSIIRQ;
248 1.2 briggs if (reg_offset == 0x10000) {
249 1.26 briggs /* From the Q650 developer's note */
250 1.2 briggs sc->sc_freq = 16500000;
251 1.2 briggs } else {
252 1.2 briggs sc->sc_freq = 25000000;
253 1.2 briggs }
254 1.12 briggs
255 1.12 briggs if (esp_glue.gl_dma_go == esp_quick_dma_go) {
256 1.50 tsutsui aprint_normal(" (quick)");
257 1.12 briggs }
258 1.1 briggs } else {
259 1.16 briggs esp1 = esc;
260 1.16 briggs
261 1.50 tsutsui esc->sc_reg = (volatile uint8_t *)SCSIBase + 0x402;
262 1.23 briggs via2_register_irq(VIA2_SCSIIRQ, esp_dualbus_intr, NULL);
263 1.16 briggs esc->irq_mask = 0;
264 1.2 briggs sc->sc_freq = 25000000;
265 1.12 briggs
266 1.12 briggs if (esp_glue.gl_dma_go == esp_quick_dma_go) {
267 1.12 briggs printf(" (quick)");
268 1.12 briggs }
269 1.1 briggs }
270 1.7 briggs
271 1.50 tsutsui aprint_normal(": address %p", esc->sc_reg);
272 1.1 briggs
273 1.1 briggs sc->sc_id = 7;
274 1.1 briggs
275 1.44 lukem /* gimme MHz */
276 1.1 briggs sc->sc_freq /= 1000000;
277 1.1 briggs
278 1.1 briggs /*
279 1.1 briggs * It is necessary to try to load the 2nd config register here,
280 1.1 briggs * to find out what rev the esp chip is, else the esp_reset
281 1.1 briggs * will not set up the defaults correctly.
282 1.1 briggs */
283 1.13 briggs sc->sc_cfg1 = sc->sc_id; /* | NCRCFG1_PARENB; */
284 1.7 briggs sc->sc_cfg2 = NCRCFG2_SCSI2;
285 1.3 briggs sc->sc_cfg3 = 0;
286 1.7 briggs sc->sc_rev = NCR_VARIANT_NCR53C96;
287 1.1 briggs
288 1.1 briggs /*
289 1.1 briggs * This is the value used to start sync negotiations
290 1.7 briggs * Note that the NCR register "SYNCTP" is programmed
291 1.1 briggs * in "clocks per byte", and has a minimum value of 4.
292 1.1 briggs * The SCSI period used in negotiation is one-fourth
293 1.1 briggs * of the time (in nanoseconds) needed to transfer one byte.
294 1.1 briggs * Since the chip's clock is given in MHz, we have the following
295 1.1 briggs * formula: 4 * period = (1000 / freq) * 4
296 1.1 briggs */
297 1.1 briggs sc->sc_minsync = 1000 / sc->sc_freq;
298 1.1 briggs
299 1.26 briggs /* We need this to fit into the TCR... */
300 1.26 briggs sc->sc_maxxfer = 64 * 1024;
301 1.26 briggs
302 1.48 tsutsui switch (current_mac_model->machineid) {
303 1.48 tsutsui case MACH_MACQ630:
304 1.48 tsutsui /* XXX on LC630 64k xfer causes timeout error */
305 1.48 tsutsui sc->sc_maxxfer = 63 * 1024;
306 1.48 tsutsui break;
307 1.48 tsutsui }
308 1.48 tsutsui
309 1.26 briggs if (!quick) {
310 1.26 briggs sc->sc_minsync = 0; /* No synchronous xfers w/o DMA */
311 1.26 briggs sc->sc_maxxfer = 8 * 1024;
312 1.26 briggs }
313 1.1 briggs
314 1.1 briggs /*
315 1.7 briggs * Configure interrupts.
316 1.1 briggs */
317 1.16 briggs if (esc->irq_mask) {
318 1.16 briggs via2_reg(vPCR) = 0x22;
319 1.16 briggs via2_reg(vIFR) = esc->irq_mask;
320 1.16 briggs via2_reg(vIER) = 0x80 | esc->irq_mask;
321 1.16 briggs }
322 1.24 thorpej
323 1.24 thorpej /*
324 1.24 thorpej * Now try to attach all the sub-devices
325 1.24 thorpej */
326 1.29 bouyer sc->sc_adapter.adapt_minphys = minphys;
327 1.29 bouyer sc->sc_adapter.adapt_request = ncr53c9x_scsipi_request;
328 1.29 bouyer ncr53c9x_attach(sc);
329 1.1 briggs }
330 1.1 briggs
331 1.1 briggs /*
332 1.7 briggs * Glue functions.
333 1.1 briggs */
334 1.1 briggs
335 1.50 tsutsui uint8_t
336 1.37 chs esp_read_reg(struct ncr53c9x_softc *sc, int reg)
337 1.1 briggs {
338 1.7 briggs struct esp_softc *esc = (struct esp_softc *)sc;
339 1.1 briggs
340 1.23 briggs return esc->sc_reg[reg * 16];
341 1.1 briggs }
342 1.1 briggs
343 1.1 briggs void
344 1.50 tsutsui esp_write_reg(struct ncr53c9x_softc *sc, int reg, uint8_t val)
345 1.1 briggs {
346 1.7 briggs struct esp_softc *esc = (struct esp_softc *)sc;
347 1.50 tsutsui uint8_t v = val;
348 1.1 briggs
349 1.7 briggs if (reg == NCR_CMD && v == (NCRCMD_TRANS|NCRCMD_DMA)) {
350 1.7 briggs v = NCRCMD_TRANS;
351 1.1 briggs }
352 1.7 briggs esc->sc_reg[reg * 16] = v;
353 1.1 briggs }
354 1.1 briggs
355 1.12 briggs void
356 1.37 chs esp_dma_stop(struct ncr53c9x_softc *sc)
357 1.12 briggs {
358 1.12 briggs }
359 1.12 briggs
360 1.12 briggs int
361 1.37 chs esp_dma_isactive(struct ncr53c9x_softc *sc)
362 1.12 briggs {
363 1.12 briggs struct esp_softc *esc = (struct esp_softc *)sc;
364 1.12 briggs
365 1.12 briggs return esc->sc_active;
366 1.12 briggs }
367 1.12 briggs
368 1.7 briggs int
369 1.37 chs esp_dma_isintr(struct ncr53c9x_softc *sc)
370 1.1 briggs {
371 1.7 briggs struct esp_softc *esc = (struct esp_softc *)sc;
372 1.1 briggs
373 1.7 briggs return esc->sc_reg[NCR_STAT * 16] & 0x80;
374 1.1 briggs }
375 1.1 briggs
376 1.1 briggs void
377 1.37 chs esp_dma_reset(struct ncr53c9x_softc *sc)
378 1.1 briggs {
379 1.7 briggs struct esp_softc *esc = (struct esp_softc *)sc;
380 1.1 briggs
381 1.7 briggs esc->sc_active = 0;
382 1.7 briggs esc->sc_tc = 0;
383 1.1 briggs }
384 1.1 briggs
385 1.7 briggs int
386 1.37 chs esp_dma_intr(struct ncr53c9x_softc *sc)
387 1.1 briggs {
388 1.22 briggs struct esp_softc *esc = (struct esp_softc *)sc;
389 1.7 briggs volatile u_char *cmdreg, *intrreg, *statreg, *fiforeg;
390 1.50 tsutsui uint8_t *p;
391 1.22 briggs u_int espphase, espstat, espintr;
392 1.22 briggs int cnt, s;
393 1.1 briggs
394 1.7 briggs if (esc->sc_active == 0) {
395 1.7 briggs printf("dma_intr--inactive DMA\n");
396 1.7 briggs return -1;
397 1.1 briggs }
398 1.1 briggs
399 1.7 briggs if ((sc->sc_espintr & NCRINTR_BS) == 0) {
400 1.7 briggs esc->sc_active = 0;
401 1.7 briggs return 0;
402 1.1 briggs }
403 1.1 briggs
404 1.30 briggs cnt = *esc->sc_dmalen;
405 1.30 briggs if (*esc->sc_dmalen == 0) {
406 1.7 briggs printf("data interrupt, but no count left.");
407 1.1 briggs }
408 1.1 briggs
409 1.7 briggs p = *esc->sc_dmaaddr;
410 1.7 briggs espphase = sc->sc_phase;
411 1.50 tsutsui espstat = (u_int)sc->sc_espstat;
412 1.50 tsutsui espintr = (u_int)sc->sc_espintr;
413 1.7 briggs cmdreg = esc->sc_reg + NCR_CMD * 16;
414 1.7 briggs fiforeg = esc->sc_reg + NCR_FIFO * 16;
415 1.7 briggs statreg = esc->sc_reg + NCR_STAT * 16;
416 1.7 briggs intrreg = esc->sc_reg + NCR_INTR * 16;
417 1.7 briggs do {
418 1.7 briggs if (esc->sc_datain) {
419 1.7 briggs *p++ = *fiforeg;
420 1.7 briggs cnt--;
421 1.7 briggs if (espphase == DATA_IN_PHASE) {
422 1.7 briggs *cmdreg = NCRCMD_TRANS;
423 1.7 briggs } else {
424 1.7 briggs esc->sc_active = 0;
425 1.7 briggs }
426 1.7 briggs } else {
427 1.7 briggs if ( (espphase == DATA_OUT_PHASE)
428 1.7 briggs || (espphase == MESSAGE_OUT_PHASE)) {
429 1.7 briggs *fiforeg = *p++;
430 1.7 briggs cnt--;
431 1.7 briggs *cmdreg = NCRCMD_TRANS;
432 1.7 briggs } else {
433 1.7 briggs esc->sc_active = 0;
434 1.7 briggs }
435 1.1 briggs }
436 1.1 briggs
437 1.7 briggs if (esc->sc_active) {
438 1.7 briggs while (!(*statreg & 0x80));
439 1.22 briggs s = splhigh();
440 1.7 briggs espstat = *statreg;
441 1.7 briggs espintr = *intrreg;
442 1.7 briggs espphase = (espintr & NCRINTR_DIS)
443 1.7 briggs ? /* Disconnected */ BUSFREE_PHASE
444 1.7 briggs : espstat & PHASE_MASK;
445 1.22 briggs splx(s);
446 1.1 briggs }
447 1.7 briggs } while (esc->sc_active && (espintr & NCRINTR_BS));
448 1.7 briggs sc->sc_phase = espphase;
449 1.50 tsutsui sc->sc_espstat = (u_char)espstat;
450 1.50 tsutsui sc->sc_espintr = (u_char)espintr;
451 1.7 briggs *esc->sc_dmaaddr = p;
452 1.30 briggs *esc->sc_dmalen = cnt;
453 1.1 briggs
454 1.30 briggs if (*esc->sc_dmalen == 0) {
455 1.7 briggs esc->sc_tc = NCRSTAT_TC;
456 1.1 briggs }
457 1.7 briggs sc->sc_espstat |= esc->sc_tc;
458 1.7 briggs return 0;
459 1.1 briggs }
460 1.1 briggs
461 1.1 briggs int
462 1.50 tsutsui esp_dma_setup(struct ncr53c9x_softc *sc, uint8_t **addr, size_t *len,
463 1.50 tsutsui int datain, size_t *dmasize)
464 1.1 briggs {
465 1.7 briggs struct esp_softc *esc = (struct esp_softc *)sc;
466 1.1 briggs
467 1.50 tsutsui esc->sc_dmaaddr = addr;
468 1.12 briggs esc->sc_dmalen = len;
469 1.7 briggs esc->sc_datain = datain;
470 1.7 briggs esc->sc_dmasize = *dmasize;
471 1.7 briggs esc->sc_tc = 0;
472 1.1 briggs
473 1.7 briggs return 0;
474 1.1 briggs }
475 1.1 briggs
476 1.1 briggs void
477 1.37 chs esp_dma_go(struct ncr53c9x_softc *sc)
478 1.1 briggs {
479 1.7 briggs struct esp_softc *esc = (struct esp_softc *)sc;
480 1.1 briggs
481 1.7 briggs if (esc->sc_datain == 0) {
482 1.7 briggs esc->sc_reg[NCR_FIFO * 16] = **esc->sc_dmaaddr;
483 1.12 briggs (*esc->sc_dmalen)--;
484 1.7 briggs (*esc->sc_dmaaddr)++;
485 1.1 briggs }
486 1.7 briggs esc->sc_active = 1;
487 1.1 briggs }
488 1.1 briggs
489 1.1 briggs void
490 1.37 chs esp_quick_write_reg(struct ncr53c9x_softc *sc, int reg, u_char val)
491 1.1 briggs {
492 1.12 briggs struct esp_softc *esc = (struct esp_softc *)sc;
493 1.12 briggs
494 1.23 briggs esc->sc_reg[reg * 16] = val;
495 1.1 briggs }
496 1.1 briggs
497 1.26 briggs #if DEBUG
498 1.26 briggs int mac68k_esp_debug=0;
499 1.26 briggs #endif
500 1.26 briggs
501 1.1 briggs int
502 1.37 chs esp_quick_dma_intr(struct ncr53c9x_softc *sc)
503 1.12 briggs {
504 1.12 briggs struct esp_softc *esc = (struct esp_softc *)sc;
505 1.12 briggs int trans=0, resid=0;
506 1.12 briggs
507 1.12 briggs if (esc->sc_active == 0)
508 1.32 provos panic("dma_intr--inactive DMA");
509 1.12 briggs
510 1.12 briggs esc->sc_active = 0;
511 1.12 briggs
512 1.12 briggs if (esc->sc_dmasize == 0) {
513 1.12 briggs int res;
514 1.12 briggs
515 1.26 briggs res = NCR_READ_REG(sc, NCR_TCL);
516 1.26 briggs res += NCR_READ_REG(sc, NCR_TCM) << 8;
517 1.28 briggs /* This can happen in the case of a TRPAD operation */
518 1.28 briggs /* Pretend that it was complete */
519 1.28 briggs sc->sc_espstat |= NCRSTAT_TC;
520 1.28 briggs #if DEBUG
521 1.28 briggs if (mac68k_esp_debug) {
522 1.28 briggs printf("dmaintr: DMA xfer of zero xferred %d\n",
523 1.28 briggs 65536 - res);
524 1.28 briggs }
525 1.28 briggs #endif
526 1.12 briggs return 0;
527 1.12 briggs }
528 1.12 briggs
529 1.12 briggs if ((sc->sc_espstat & NCRSTAT_TC) == 0) {
530 1.28 briggs if (esc->sc_datain == 0) {
531 1.28 briggs resid = NCR_READ_REG(sc, NCR_FFLAG) & 0x1f;
532 1.28 briggs #if DEBUG
533 1.28 briggs if (mac68k_esp_debug) {
534 1.28 briggs printf("Write FIFO residual %d bytes\n", resid);
535 1.28 briggs }
536 1.28 briggs #endif
537 1.28 briggs }
538 1.12 briggs resid += NCR_READ_REG(sc, NCR_TCL);
539 1.12 briggs resid += NCR_READ_REG(sc, NCR_TCM) << 8;
540 1.12 briggs if (resid == 0)
541 1.12 briggs resid = 65536;
542 1.12 briggs }
543 1.12 briggs
544 1.12 briggs trans = esc->sc_dmasize - resid;
545 1.12 briggs if (trans < 0) {
546 1.12 briggs printf("dmaintr: trans < 0????");
547 1.26 briggs trans = *esc->sc_dmalen;
548 1.12 briggs }
549 1.12 briggs
550 1.12 briggs NCR_DMA(("dmaintr: trans %d, resid %d.\n", trans, resid));
551 1.26 briggs #if DEBUG
552 1.26 briggs if (mac68k_esp_debug) {
553 1.26 briggs printf("eqd_intr: trans %d, resid %d.\n", trans, resid);
554 1.26 briggs }
555 1.26 briggs #endif
556 1.12 briggs *esc->sc_dmaaddr += trans;
557 1.12 briggs *esc->sc_dmalen -= trans;
558 1.12 briggs
559 1.12 briggs return 0;
560 1.12 briggs }
561 1.12 briggs
562 1.12 briggs int
563 1.50 tsutsui esp_quick_dma_setup(struct ncr53c9x_softc *sc, uint8_t **addr, size_t *len,
564 1.37 chs int datain, size_t *dmasize)
565 1.12 briggs {
566 1.12 briggs struct esp_softc *esc = (struct esp_softc *)sc;
567 1.12 briggs
568 1.50 tsutsui esc->sc_dmaaddr = addr;
569 1.12 briggs esc->sc_dmalen = len;
570 1.12 briggs
571 1.26 briggs if (*len & 1) {
572 1.13 briggs esc->sc_pad = 1;
573 1.13 briggs } else {
574 1.13 briggs esc->sc_pad = 0;
575 1.13 briggs }
576 1.12 briggs
577 1.12 briggs esc->sc_datain = datain;
578 1.12 briggs esc->sc_dmasize = *dmasize;
579 1.12 briggs
580 1.26 briggs #if DIAGNOSTIC
581 1.26 briggs if (esc->sc_dmasize == 0) {
582 1.28 briggs /* This can happen in the case of a TRPAD operation */
583 1.26 briggs }
584 1.26 briggs #endif
585 1.26 briggs #if DEBUG
586 1.26 briggs if (mac68k_esp_debug) {
587 1.26 briggs printf("eqd_setup: addr %lx, len %lx, in? %d, dmasize %lx\n",
588 1.26 briggs (long) *addr, (long) *len, datain, (long) esc->sc_dmasize);
589 1.26 briggs }
590 1.26 briggs #endif
591 1.26 briggs
592 1.12 briggs return 0;
593 1.12 briggs }
594 1.12 briggs
595 1.43 perry static inline int
596 1.37 chs esp_dafb_have_dreq(struct esp_softc *esc)
597 1.12 briggs {
598 1.50 tsutsui
599 1.50 tsutsui return *(volatile uint32_t *)(esc->sc_bsh.base) & 0x200;
600 1.12 briggs }
601 1.12 briggs
602 1.43 perry static inline int
603 1.37 chs esp_iosb_have_dreq(struct esp_softc *esc)
604 1.12 briggs {
605 1.50 tsutsui
606 1.50 tsutsui return via2_reg(vIFR) & V2IF_SCSIDRQ;
607 1.12 briggs }
608 1.12 briggs
609 1.50 tsutsui static volatile int espspl = -1;
610 1.12 briggs
611 1.26 briggs /*
612 1.26 briggs * Apple "DMA" is weird.
613 1.26 briggs *
614 1.26 briggs * Basically, the CPU acts like the DMA controller. The DREQ/ off the
615 1.26 briggs * chip goes to a register that we've mapped at attach time (on the
616 1.26 briggs * IOSB or DAFB, depending on the machine). Apple also provides some
617 1.26 briggs * space for which the memory controller handshakes data to/from the
618 1.26 briggs * NCR chip with the DACK/ line. This space appears to be mapped over
619 1.26 briggs * and over, every 4 bytes, but only the lower 16 bits are valid (but
620 1.26 briggs * reading the upper 16 bits will handshake DACK/ just fine, so if you
621 1.26 briggs * read *u_int16_t++ = *u_int16_t++ in a loop, you'll get
622 1.26 briggs * <databyte><databyte>0xff0xff<databyte><databyte>0xff0xff...
623 1.26 briggs *
624 1.26 briggs * When you're attempting to read or write memory to this DACK/ed space,
625 1.26 briggs * and the NCR is not ready for some timeout period, the system will
626 1.26 briggs * generate a bus error. This might be for one of several reasons:
627 1.26 briggs *
628 1.26 briggs * 1) (on write) The FIFO is full and is not draining.
629 1.26 briggs * 2) (on read) The FIFO is empty and is not filling.
630 1.26 briggs * 3) An interrupt condition has occurred.
631 1.26 briggs * 4) Anything else?
632 1.26 briggs *
633 1.26 briggs * So if a bus error occurs, we first turn off the nofault bus error handler,
634 1.26 briggs * then we check for an interrupt (which would render the first two
635 1.26 briggs * possibilities moot). If there's no interrupt, check for a DREQ/. If we
636 1.26 briggs * have that, then attempt to resume stuffing (or unstuffing) the FIFO. If
637 1.26 briggs * neither condition holds, pause briefly and check again.
638 1.26 briggs *
639 1.26 briggs * NOTE!!! In order to make allowances for the hardware structure of
640 1.26 briggs * the mac, spl values in here are hardcoded!!!!!!!!!
641 1.26 briggs * This is done to allow serial interrupts to get in during
642 1.26 briggs * scsi transfers. This is ugly.
643 1.26 briggs */
644 1.12 briggs void
645 1.37 chs esp_quick_dma_go(struct ncr53c9x_softc *sc)
646 1.1 briggs {
647 1.7 briggs struct esp_softc *esc = (struct esp_softc *)sc;
648 1.26 briggs extern long mac68k_a2_fromfault;
649 1.12 briggs extern int *nofault;
650 1.12 briggs label_t faultbuf;
651 1.50 tsutsui uint16_t volatile *pdma;
652 1.50 tsutsui uint16_t *addr;
653 1.26 briggs int len, res;
654 1.50 tsutsui uint16_t cnt32, cnt2;
655 1.50 tsutsui volatile uint8_t *statreg;
656 1.12 briggs
657 1.12 briggs esc->sc_active = 1;
658 1.12 briggs
659 1.26 briggs espspl = splhigh();
660 1.26 briggs
661 1.50 tsutsui addr = (uint16_t *)*esc->sc_dmaaddr;
662 1.26 briggs len = esc->sc_dmasize;
663 1.12 briggs
664 1.12 briggs restart_dmago:
665 1.26 briggs #if DEBUG
666 1.26 briggs if (mac68k_esp_debug) {
667 1.26 briggs printf("eqdg: a %lx, l %lx, in? %d ... ",
668 1.26 briggs (long) addr, (long) len, esc->sc_datain);
669 1.26 briggs }
670 1.26 briggs #endif
671 1.50 tsutsui nofault = (int *)&faultbuf;
672 1.50 tsutsui if (setjmp((label_t *)nofault)) {
673 1.50 tsutsui int i = 0;
674 1.12 briggs
675 1.50 tsutsui nofault = NULL;
676 1.26 briggs #if DEBUG
677 1.26 briggs if (mac68k_esp_debug) {
678 1.26 briggs printf("be\n");
679 1.26 briggs }
680 1.26 briggs #endif
681 1.26 briggs /*
682 1.26 briggs * Bus error...
683 1.26 briggs * So, we first check for an interrupt. If we have
684 1.26 briggs * one, go handle it. Next we check for DREQ/. If
685 1.26 briggs * we have it, then we restart the transfer. If
686 1.26 briggs * neither, then loop until we get one or the other.
687 1.26 briggs */
688 1.12 briggs statreg = esc->sc_reg + NCR_STAT * 16;
689 1.12 briggs for (;;) {
690 1.26 briggs spl2(); /* Give serial a chance... */
691 1.26 briggs splhigh(); /* That's enough... */
692 1.26 briggs
693 1.12 briggs if (*statreg & 0x80) {
694 1.12 briggs goto gotintr;
695 1.12 briggs }
696 1.12 briggs
697 1.12 briggs if (esp_have_dreq(esc)) {
698 1.26 briggs /*
699 1.28 briggs * Get the remaining length from the address
700 1.26 briggs * differential.
701 1.26 briggs */
702 1.50 tsutsui addr = (uint16_t *)mac68k_a2_fromfault;
703 1.26 briggs len = esc->sc_dmasize -
704 1.50 tsutsui ((long)addr - (long)*esc->sc_dmaaddr);
705 1.26 briggs
706 1.26 briggs if (esc->sc_datain == 0) {
707 1.26 briggs /*
708 1.26 briggs * Let the FIFO drain before we read
709 1.26 briggs * the transfer count.
710 1.26 briggs * Do we need to do this?
711 1.26 briggs * Can we do this?
712 1.26 briggs */
713 1.26 briggs while (NCR_READ_REG(sc, NCR_FFLAG)
714 1.26 briggs & 0x1f);
715 1.26 briggs /*
716 1.26 briggs * Get the length from the transfer
717 1.26 briggs * counters.
718 1.26 briggs */
719 1.26 briggs res = NCR_READ_REG(sc, NCR_TCL);
720 1.26 briggs res += NCR_READ_REG(sc, NCR_TCM) << 8;
721 1.26 briggs /*
722 1.26 briggs * If they don't agree,
723 1.26 briggs * adjust accordingly.
724 1.26 briggs */
725 1.26 briggs while (res > len) {
726 1.26 briggs len+=2; addr--;
727 1.26 briggs }
728 1.26 briggs if (res != len) {
729 1.50 tsutsui panic("%s: res %d != len %d",
730 1.50 tsutsui __func__, res, len);
731 1.26 briggs }
732 1.26 briggs }
733 1.12 briggs break;
734 1.12 briggs }
735 1.12 briggs
736 1.12 briggs DELAY(1);
737 1.26 briggs if (i++ > 1000000)
738 1.50 tsutsui panic("%s: Bus error, but no condition! Argh!",
739 1.50 tsutsui __func__);
740 1.12 briggs }
741 1.12 briggs goto restart_dmago;
742 1.12 briggs }
743 1.12 briggs
744 1.26 briggs len &= ~1;
745 1.26 briggs
746 1.12 briggs statreg = esc->sc_reg + NCR_STAT * 16;
747 1.50 tsutsui pdma = (volatile uint16_t *)(esc->sc_reg + 0x100);
748 1.1 briggs
749 1.26 briggs /*
750 1.26 briggs * These loops are unrolled into assembly for two reasons:
751 1.26 briggs * 1) We can make sure that they are as efficient as possible, and
752 1.26 briggs * 2) (more importantly) we need the address that we are reading
753 1.26 briggs * from or writing to to be in a2.
754 1.26 briggs */
755 1.26 briggs cnt32 = len / 32;
756 1.26 briggs cnt2 = (len % 32) / 2;
757 1.12 briggs if (esc->sc_datain == 0) {
758 1.26 briggs /* while (cnt32--) { 16 instances of *pdma = *addr++; } */
759 1.26 briggs /* while (cnt2--) { *pdma = *addr++; } */
760 1.42 perry __asm volatile (
761 1.31 thorpej " movl %1, %%a2 \n"
762 1.31 thorpej " movl %2, %%a3 \n"
763 1.31 thorpej " movw %3, %%d2 \n"
764 1.31 thorpej " cmpw #0, %%d2 \n"
765 1.31 thorpej " beq 2f \n"
766 1.31 thorpej " subql #1, %%d2 \n"
767 1.31 thorpej "1: movw %%a2@+,%%a3@; movw %%a2@+,%%a3@ \n"
768 1.31 thorpej " movw %%a2@+,%%a3@; movw %%a2@+,%%a3@ \n"
769 1.31 thorpej " movw %%a2@+,%%a3@; movw %%a2@+,%%a3@ \n"
770 1.31 thorpej " movw %%a2@+,%%a3@; movw %%a2@+,%%a3@ \n"
771 1.31 thorpej " movw %%a2@+,%%a3@; movw %%a2@+,%%a3@ \n"
772 1.31 thorpej " movw %%a2@+,%%a3@; movw %%a2@+,%%a3@ \n"
773 1.31 thorpej " movw %%a2@+,%%a3@; movw %%a2@+,%%a3@ \n"
774 1.31 thorpej " movw %%a2@+,%%a3@; movw %%a2@+,%%a3@ \n"
775 1.31 thorpej " movw #8704,%%sr \n"
776 1.31 thorpej " movw #9728,%%sr \n"
777 1.31 thorpej " dbra %%d2, 1b \n"
778 1.31 thorpej "2: movw %4, %%d2 \n"
779 1.31 thorpej " cmpw #0, %%d2 \n"
780 1.31 thorpej " beq 4f \n"
781 1.31 thorpej " subql #1, %%d2 \n"
782 1.31 thorpej "3: movw %%a2@+,%%a3@ \n"
783 1.31 thorpej " dbra %%d2, 3b \n"
784 1.31 thorpej "4: movl %%a2, %0"
785 1.26 briggs : "=g" (addr)
786 1.26 briggs : "0" (addr), "g" (pdma), "g" (cnt32), "g" (cnt2)
787 1.26 briggs : "a2", "a3", "d2");
788 1.13 briggs if (esc->sc_pad) {
789 1.50 tsutsui volatile uint8_t *c;
790 1.50 tsutsui c = (volatile uint8_t *) addr;
791 1.26 briggs /* Wait for DREQ */
792 1.26 briggs while (!esp_have_dreq(esc)) {
793 1.26 briggs if (*statreg & 0x80) {
794 1.50 tsutsui nofault = NULL;
795 1.26 briggs goto gotintr;
796 1.26 briggs }
797 1.26 briggs }
798 1.50 tsutsui *(volatile int8_t *)pdma = *c;
799 1.13 briggs }
800 1.12 briggs } else {
801 1.26 briggs /* while (cnt32--) { 16 instances of *addr++ = *pdma; } */
802 1.26 briggs /* while (cnt2--) { *addr++ = *pdma; } */
803 1.42 perry __asm volatile (
804 1.31 thorpej " movl %1, %%a2 \n"
805 1.31 thorpej " movl %2, %%a3 \n"
806 1.31 thorpej " movw %3, %%d2 \n"
807 1.31 thorpej " cmpw #0, %%d2 \n"
808 1.31 thorpej " beq 6f \n"
809 1.31 thorpej " subql #1, %%d2 \n"
810 1.31 thorpej "5: movw %%a3@,%%a2@+; movw %%a3@,%%a2@+ \n"
811 1.31 thorpej " movw %%a3@,%%a2@+; movw %%a3@,%%a2@+ \n"
812 1.31 thorpej " movw %%a3@,%%a2@+; movw %%a3@,%%a2@+ \n"
813 1.31 thorpej " movw %%a3@,%%a2@+; movw %%a3@,%%a2@+ \n"
814 1.31 thorpej " movw %%a3@,%%a2@+; movw %%a3@,%%a2@+ \n"
815 1.31 thorpej " movw %%a3@,%%a2@+; movw %%a3@,%%a2@+ \n"
816 1.31 thorpej " movw %%a3@,%%a2@+; movw %%a3@,%%a2@+ \n"
817 1.31 thorpej " movw %%a3@,%%a2@+; movw %%a3@,%%a2@+ \n"
818 1.31 thorpej " movw #8704,%%sr \n"
819 1.31 thorpej " movw #9728,%%sr \n"
820 1.31 thorpej " dbra %%d2, 5b \n"
821 1.31 thorpej "6: movw %4, %%d2 \n"
822 1.31 thorpej " cmpw #0, %%d2 \n"
823 1.31 thorpej " beq 8f \n"
824 1.31 thorpej " subql #1, %%d2 \n"
825 1.31 thorpej "7: movw %%a3@,%%a2@+ \n"
826 1.31 thorpej " dbra %%d2, 7b \n"
827 1.31 thorpej "8: movl %%a2, %0"
828 1.26 briggs : "=g" (addr)
829 1.26 briggs : "0" (addr), "g" (pdma), "g" (cnt32), "g" (cnt2)
830 1.26 briggs : "a2", "a3", "d2");
831 1.13 briggs if (esc->sc_pad) {
832 1.50 tsutsui volatile uint8_t *c;
833 1.50 tsutsui c = (volatile int8_t *)addr;
834 1.26 briggs /* Wait for DREQ */
835 1.26 briggs while (!esp_have_dreq(esc)) {
836 1.26 briggs if (*statreg & 0x80) {
837 1.50 tsutsui nofault = NULL;
838 1.26 briggs goto gotintr;
839 1.26 briggs }
840 1.26 briggs }
841 1.50 tsutsui *c = *(volatile uint8_t *)pdma;
842 1.12 briggs }
843 1.12 briggs }
844 1.12 briggs
845 1.50 tsutsui nofault = NULL;
846 1.12 briggs
847 1.26 briggs /*
848 1.26 briggs * If we have not received an interrupt yet, we should shortly,
849 1.26 briggs * and we can't prevent it, so return and wait for it.
850 1.26 briggs */
851 1.12 briggs if ((*statreg & 0x80) == 0) {
852 1.26 briggs #if DEBUG
853 1.26 briggs if (mac68k_esp_debug) {
854 1.26 briggs printf("g.\n");
855 1.26 briggs }
856 1.26 briggs #endif
857 1.50 tsutsui if (espspl != -1)
858 1.50 tsutsui splx(espspl);
859 1.50 tsutsui espspl = -1;
860 1.12 briggs return;
861 1.12 briggs }
862 1.12 briggs
863 1.12 briggs gotintr:
864 1.26 briggs #if DEBUG
865 1.26 briggs if (mac68k_esp_debug) {
866 1.26 briggs printf("g!\n");
867 1.26 briggs }
868 1.26 briggs #endif
869 1.51 hauke /*
870 1.51 hauke * We have been called from the MI ncr53c9x_intr() handler,
871 1.51 hauke * which protects itself against multiple invocation with a
872 1.51 hauke * simple_lock. Follow the example of ncr53c9x_poll().
873 1.51 hauke */
874 1.54 uebayasi mutex_exit(&sc->sc_lock);
875 1.12 briggs ncr53c9x_intr(sc);
876 1.54 uebayasi mutex_enter(&sc->sc_lock);
877 1.50 tsutsui if (espspl != -1)
878 1.50 tsutsui splx(espspl);
879 1.50 tsutsui espspl = -1;
880 1.16 briggs }
881 1.16 briggs
882 1.23 briggs void
883 1.37 chs esp_intr(void *sc)
884 1.23 briggs {
885 1.23 briggs struct esp_softc *esc = (struct esp_softc *)sc;
886 1.23 briggs
887 1.26 briggs if (esc->sc_reg[NCR_STAT * 16] & 0x80) {
888 1.50 tsutsui ncr53c9x_intr((struct ncr53c9x_softc *)esp0);
889 1.26 briggs }
890 1.23 briggs }
891 1.23 briggs
892 1.23 briggs void
893 1.37 chs esp_dualbus_intr(void *sc)
894 1.16 briggs {
895 1.26 briggs if (esp0 && (esp0->sc_reg[NCR_STAT * 16] & 0x80)) {
896 1.50 tsutsui ncr53c9x_intr((struct ncr53c9x_softc *)esp0);
897 1.26 briggs }
898 1.22 briggs
899 1.26 briggs if (esp1 && (esp1->sc_reg[NCR_STAT * 16] & 0x80)) {
900 1.50 tsutsui ncr53c9x_intr((struct ncr53c9x_softc *)esp1);
901 1.26 briggs }
902 1.1 briggs }
903