esp.c revision 1.28 1 /* $NetBSD: esp.c,v 1.28 2001/01/18 03:43:18 briggs Exp $ */
2
3 /*
4 * Copyright (c) 1997 Jason R. Thorpe.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed for the NetBSD Project
18 * by Jason R. Thorpe.
19 * 4. The name of the author may not be used to endorse or promote products
20 * derived from this software without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
27 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
31 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 /*
35 * Copyright (c) 1994 Peter Galbavy
36 * All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 * must display the following acknowledgement:
48 * This product includes software developed by Peter Galbavy
49 * 4. The name of the author may not be used to endorse or promote products
50 * derived from this software without specific prior written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
53 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
54 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
55 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
56 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
57 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
58 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
60 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
61 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
62 * POSSIBILITY OF SUCH DAMAGE.
63 */
64
65 /*
66 * Based on aic6360 by Jarle Greipsland
67 *
68 * Acknowledgements: Many of the algorithms used in this driver are
69 * inspired by the work of Julian Elischer (julian (at) tfs.com) and
70 * Charles Hannum (mycroft (at) duality.gnu.ai.mit.edu). Thanks a million!
71 */
72
73 /*
74 * Initial m68k mac support from Allen Briggs <briggs (at) macbsd.com>
75 * (basically consisting of the match, a bit of the attach, and the
76 * "DMA" glue functions).
77 */
78
79 #include <sys/types.h>
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/kernel.h>
83 #include <sys/errno.h>
84 #include <sys/ioctl.h>
85 #include <sys/device.h>
86 #include <sys/buf.h>
87 #include <sys/proc.h>
88 #include <sys/user.h>
89 #include <sys/queue.h>
90
91 #include <dev/scsipi/scsi_all.h>
92 #include <dev/scsipi/scsipi_all.h>
93 #include <dev/scsipi/scsiconf.h>
94 #include <dev/scsipi/scsi_message.h>
95
96 #include <machine/cpu.h>
97 #include <machine/bus.h>
98 #include <machine/param.h>
99
100 #include <dev/ic/ncr53c9xreg.h>
101 #include <dev/ic/ncr53c9xvar.h>
102
103 #include <machine/viareg.h>
104
105 #include <mac68k/obio/espvar.h>
106 #include <mac68k/obio/obiovar.h>
107
108 void espattach __P((struct device *, struct device *, void *));
109 int espmatch __P((struct device *, struct cfdata *, void *));
110
111 /* Linkup to the rest of the kernel */
112 struct cfattach esp_ca = {
113 sizeof(struct esp_softc), espmatch, espattach
114 };
115
116 /*
117 * Functions and the switch for the MI code.
118 */
119 u_char esp_read_reg __P((struct ncr53c9x_softc *, int));
120 void esp_write_reg __P((struct ncr53c9x_softc *, int, u_char));
121 int esp_dma_isintr __P((struct ncr53c9x_softc *));
122 void esp_dma_reset __P((struct ncr53c9x_softc *));
123 int esp_dma_intr __P((struct ncr53c9x_softc *));
124 int esp_dma_setup __P((struct ncr53c9x_softc *, caddr_t *,
125 size_t *, int, size_t *));
126 void esp_dma_go __P((struct ncr53c9x_softc *));
127 void esp_dma_stop __P((struct ncr53c9x_softc *));
128 int esp_dma_isactive __P((struct ncr53c9x_softc *));
129 void esp_quick_write_reg __P((struct ncr53c9x_softc *, int, u_char));
130 int esp_quick_dma_intr __P((struct ncr53c9x_softc *));
131 int esp_quick_dma_setup __P((struct ncr53c9x_softc *, caddr_t *,
132 size_t *, int, size_t *));
133 void esp_quick_dma_go __P((struct ncr53c9x_softc *));
134
135 void esp_intr __P((void *sc));
136 void esp_dualbus_intr __P((void *sc));
137 static struct esp_softc *esp0 = NULL, *esp1 = NULL;
138
139 static __inline__ int esp_dafb_have_dreq __P((struct esp_softc *esc));
140 static __inline__ int esp_iosb_have_dreq __P((struct esp_softc *esc));
141 int (*esp_have_dreq) __P((struct esp_softc *esc));
142
143 struct ncr53c9x_glue esp_glue = {
144 esp_read_reg,
145 esp_write_reg,
146 esp_dma_isintr,
147 esp_dma_reset,
148 esp_dma_intr,
149 esp_dma_setup,
150 esp_dma_go,
151 esp_dma_stop,
152 esp_dma_isactive,
153 NULL, /* gl_clear_latched_intr */
154 };
155
156 int
157 espmatch(parent, cf, aux)
158 struct device *parent;
159 struct cfdata *cf;
160 void *aux;
161 {
162 int found = 0;
163
164 if ((cf->cf_unit == 0) && mac68k_machine.scsi96) {
165 found = 1;
166 }
167 if ((cf->cf_unit == 1) && mac68k_machine.scsi96_2) {
168 found = 1;
169 }
170
171 return found;
172 }
173
174 /*
175 * Attach this instance, and then all the sub-devices
176 */
177 void
178 espattach(parent, self, aux)
179 struct device *parent, *self;
180 void *aux;
181 {
182 struct obio_attach_args *oa = (struct obio_attach_args *)aux;
183 extern vaddr_t SCSIBase;
184 struct esp_softc *esc = (void *)self;
185 struct ncr53c9x_softc *sc = &esc->sc_ncr53c9x;
186 int quick = 0;
187 unsigned long reg_offset;
188
189 reg_offset = SCSIBase - IOBase;
190 esc->sc_tag = oa->oa_tag;
191 /*
192 * For Wombat, Primus and Optimus motherboards, DREQ is
193 * visible on bit 0 of the IOSB's emulated VIA2 vIFR (and
194 * the scsi registers are offset 0x1000 bytes from IOBase).
195 *
196 * For the Q700/900/950 it's at f9800024 for bus 0 and
197 * f9800028 for bus 1 (900/950). For these machines, that is also
198 * a (12-bit) configuration register for DAFB's control of the
199 * pseudo-DMA timing. The default value is 0x1d1.
200 */
201 esp_have_dreq = esp_dafb_have_dreq;
202 if (sc->sc_dev.dv_unit == 0) {
203 if (reg_offset == 0x10000) {
204 quick = 1;
205 esp_have_dreq = esp_iosb_have_dreq;
206 } else if (reg_offset == 0x18000) {
207 quick = 0;
208 } else {
209 if (bus_space_map(esc->sc_tag, 0xf9800024,
210 4, 0, &esc->sc_bsh)) {
211 printf("failed to map 4 at 0xf9800024.\n");
212 } else {
213 quick = 1;
214 bus_space_write_4(esc->sc_tag,
215 esc->sc_bsh, 0, 0x1d1);
216 }
217 }
218 } else {
219 if (bus_space_map(esc->sc_tag, 0xf9800028,
220 4, 0, &esc->sc_bsh)) {
221 printf("failed to map 4 at 0xf9800028.\n");
222 } else {
223 quick = 1;
224 bus_space_write_4(esc->sc_tag, esc->sc_bsh, 0, 0x1d1);
225 }
226 }
227 if (quick) {
228 esp_glue.gl_write_reg = esp_quick_write_reg;
229 esp_glue.gl_dma_intr = esp_quick_dma_intr;
230 esp_glue.gl_dma_setup = esp_quick_dma_setup;
231 esp_glue.gl_dma_go = esp_quick_dma_go;
232 }
233
234 /*
235 * Set up the glue for MI code early; we use some of it here.
236 */
237 sc->sc_glue = &esp_glue;
238
239 /*
240 * Save the regs
241 */
242 if (sc->sc_dev.dv_unit == 0) {
243 esp0 = esc;
244
245 esc->sc_reg = (volatile u_char *) SCSIBase;
246 via2_register_irq(VIA2_SCSIIRQ, esp_intr, esc);
247 esc->irq_mask = V2IF_SCSIIRQ;
248 if (reg_offset == 0x10000) {
249 /* From the Q650 developer's note */
250 sc->sc_freq = 16500000;
251 } else {
252 sc->sc_freq = 25000000;
253 }
254
255 if (esp_glue.gl_dma_go == esp_quick_dma_go) {
256 printf(" (quick)");
257 }
258 } else {
259 esp1 = esc;
260
261 esc->sc_reg = (volatile u_char *) SCSIBase + 0x402;
262 via2_register_irq(VIA2_SCSIIRQ, esp_dualbus_intr, NULL);
263 esc->irq_mask = 0;
264 sc->sc_freq = 25000000;
265
266 if (esp_glue.gl_dma_go == esp_quick_dma_go) {
267 printf(" (quick)");
268 }
269 }
270
271 printf(": address %p", esc->sc_reg);
272
273 sc->sc_id = 7;
274
275 /* gimme Mhz */
276 sc->sc_freq /= 1000000;
277
278 /*
279 * It is necessary to try to load the 2nd config register here,
280 * to find out what rev the esp chip is, else the esp_reset
281 * will not set up the defaults correctly.
282 */
283 sc->sc_cfg1 = sc->sc_id; /* | NCRCFG1_PARENB; */
284 sc->sc_cfg2 = NCRCFG2_SCSI2;
285 sc->sc_cfg3 = 0;
286 sc->sc_rev = NCR_VARIANT_NCR53C96;
287
288 /*
289 * This is the value used to start sync negotiations
290 * Note that the NCR register "SYNCTP" is programmed
291 * in "clocks per byte", and has a minimum value of 4.
292 * The SCSI period used in negotiation is one-fourth
293 * of the time (in nanoseconds) needed to transfer one byte.
294 * Since the chip's clock is given in MHz, we have the following
295 * formula: 4 * period = (1000 / freq) * 4
296 */
297 sc->sc_minsync = 1000 / sc->sc_freq;
298
299 /* We need this to fit into the TCR... */
300 sc->sc_maxxfer = 64 * 1024;
301
302 if (!quick) {
303 sc->sc_minsync = 0; /* No synchronous xfers w/o DMA */
304 sc->sc_maxxfer = 8 * 1024;
305 }
306
307 /*
308 * Configure interrupts.
309 */
310 if (esc->irq_mask) {
311 via2_reg(vPCR) = 0x22;
312 via2_reg(vIFR) = esc->irq_mask;
313 via2_reg(vIER) = 0x80 | esc->irq_mask;
314 }
315
316 /*
317 * Now try to attach all the sub-devices
318 */
319 ncr53c9x_attach(sc, NULL, NULL);
320 }
321
322 /*
323 * Glue functions.
324 */
325
326 u_char
327 esp_read_reg(sc, reg)
328 struct ncr53c9x_softc *sc;
329 int reg;
330 {
331 struct esp_softc *esc = (struct esp_softc *)sc;
332
333 return esc->sc_reg[reg * 16];
334 }
335
336 void
337 esp_write_reg(sc, reg, val)
338 struct ncr53c9x_softc *sc;
339 int reg;
340 u_char val;
341 {
342 struct esp_softc *esc = (struct esp_softc *)sc;
343 u_char v = val;
344
345 if (reg == NCR_CMD && v == (NCRCMD_TRANS|NCRCMD_DMA)) {
346 v = NCRCMD_TRANS;
347 }
348 esc->sc_reg[reg * 16] = v;
349 }
350
351 void
352 esp_dma_stop(sc)
353 struct ncr53c9x_softc *sc;
354 {
355 }
356
357 int
358 esp_dma_isactive(sc)
359 struct ncr53c9x_softc *sc;
360 {
361 struct esp_softc *esc = (struct esp_softc *)sc;
362
363 return esc->sc_active;
364 }
365
366 int
367 esp_dma_isintr(sc)
368 struct ncr53c9x_softc *sc;
369 {
370 struct esp_softc *esc = (struct esp_softc *)sc;
371
372 return esc->sc_reg[NCR_STAT * 16] & 0x80;
373 }
374
375 void
376 esp_dma_reset(sc)
377 struct ncr53c9x_softc *sc;
378 {
379 struct esp_softc *esc = (struct esp_softc *)sc;
380
381 esc->sc_active = 0;
382 esc->sc_tc = 0;
383 }
384
385 int
386 esp_dma_intr(sc)
387 struct ncr53c9x_softc *sc;
388 {
389 struct esp_softc *esc = (struct esp_softc *)sc;
390 volatile u_char *cmdreg, *intrreg, *statreg, *fiforeg;
391 u_char *p;
392 u_int espphase, espstat, espintr;
393 int cnt, s;
394
395 if (esc->sc_active == 0) {
396 printf("dma_intr--inactive DMA\n");
397 return -1;
398 }
399
400 if ((sc->sc_espintr & NCRINTR_BS) == 0) {
401 esc->sc_active = 0;
402 return 0;
403 }
404
405 cnt = esc->sc_dmasize;
406 if (esc->sc_dmasize == 0) {
407 printf("data interrupt, but no count left.");
408 }
409
410 p = *esc->sc_dmaaddr;
411 espphase = sc->sc_phase;
412 espstat = (u_int) sc->sc_espstat;
413 espintr = (u_int) sc->sc_espintr;
414 cmdreg = esc->sc_reg + NCR_CMD * 16;
415 fiforeg = esc->sc_reg + NCR_FIFO * 16;
416 statreg = esc->sc_reg + NCR_STAT * 16;
417 intrreg = esc->sc_reg + NCR_INTR * 16;
418 do {
419 if (esc->sc_datain) {
420 *p++ = *fiforeg;
421 cnt--;
422 if (espphase == DATA_IN_PHASE) {
423 *cmdreg = NCRCMD_TRANS;
424 } else {
425 esc->sc_active = 0;
426 }
427 } else {
428 if ( (espphase == DATA_OUT_PHASE)
429 || (espphase == MESSAGE_OUT_PHASE)) {
430 *fiforeg = *p++;
431 cnt--;
432 *cmdreg = NCRCMD_TRANS;
433 } else {
434 esc->sc_active = 0;
435 }
436 }
437
438 if (esc->sc_active) {
439 while (!(*statreg & 0x80));
440 s = splhigh();
441 espstat = *statreg;
442 espintr = *intrreg;
443 espphase = (espintr & NCRINTR_DIS)
444 ? /* Disconnected */ BUSFREE_PHASE
445 : espstat & PHASE_MASK;
446 splx(s);
447 }
448 } while (esc->sc_active && (espintr & NCRINTR_BS));
449 sc->sc_phase = espphase;
450 sc->sc_espstat = (u_char) espstat;
451 sc->sc_espintr = (u_char) espintr;
452 *esc->sc_dmaaddr = p;
453 esc->sc_dmasize = cnt;
454
455 if (esc->sc_dmasize == 0) {
456 esc->sc_tc = NCRSTAT_TC;
457 }
458 sc->sc_espstat |= esc->sc_tc;
459 return 0;
460 }
461
462 int
463 esp_dma_setup(sc, addr, len, datain, dmasize)
464 struct ncr53c9x_softc *sc;
465 caddr_t *addr;
466 size_t *len;
467 int datain;
468 size_t *dmasize;
469 {
470 struct esp_softc *esc = (struct esp_softc *)sc;
471
472 esc->sc_dmaaddr = addr;
473 esc->sc_dmalen = len;
474 esc->sc_datain = datain;
475 esc->sc_dmasize = *dmasize;
476 esc->sc_tc = 0;
477
478 return 0;
479 }
480
481 void
482 esp_dma_go(sc)
483 struct ncr53c9x_softc *sc;
484 {
485 struct esp_softc *esc = (struct esp_softc *)sc;
486
487 if (esc->sc_datain == 0) {
488 esc->sc_reg[NCR_FIFO * 16] = **esc->sc_dmaaddr;
489 (*esc->sc_dmalen)--;
490 (*esc->sc_dmaaddr)++;
491 }
492 esc->sc_active = 1;
493 }
494
495 void
496 esp_quick_write_reg(sc, reg, val)
497 struct ncr53c9x_softc *sc;
498 int reg;
499 u_char val;
500 {
501 struct esp_softc *esc = (struct esp_softc *)sc;
502
503 esc->sc_reg[reg * 16] = val;
504 }
505
506 #if DEBUG
507 int mac68k_esp_debug=0;
508 #endif
509
510 int
511 esp_quick_dma_intr(sc)
512 struct ncr53c9x_softc *sc;
513 {
514 struct esp_softc *esc = (struct esp_softc *)sc;
515 int trans=0, resid=0;
516
517 if (esc->sc_active == 0)
518 panic("dma_intr--inactive DMA\n");
519
520 esc->sc_active = 0;
521
522 if (esc->sc_dmasize == 0) {
523 int res;
524
525 res = NCR_READ_REG(sc, NCR_TCL);
526 res += NCR_READ_REG(sc, NCR_TCM) << 8;
527 /* This can happen in the case of a TRPAD operation */
528 /* Pretend that it was complete */
529 sc->sc_espstat |= NCRSTAT_TC;
530 #if DEBUG
531 if (mac68k_esp_debug) {
532 printf("dmaintr: DMA xfer of zero xferred %d\n",
533 65536 - res);
534 }
535 #endif
536 return 0;
537 }
538
539 if ((sc->sc_espstat & NCRSTAT_TC) == 0) {
540 if (esc->sc_datain == 0) {
541 resid = NCR_READ_REG(sc, NCR_FFLAG) & 0x1f;
542 #if DEBUG
543 if (mac68k_esp_debug) {
544 printf("Write FIFO residual %d bytes\n", resid);
545 }
546 #endif
547 }
548 resid += NCR_READ_REG(sc, NCR_TCL);
549 resid += NCR_READ_REG(sc, NCR_TCM) << 8;
550 if (resid == 0)
551 resid = 65536;
552 }
553
554 trans = esc->sc_dmasize - resid;
555 if (trans < 0) {
556 printf("dmaintr: trans < 0????");
557 trans = *esc->sc_dmalen;
558 }
559
560 NCR_DMA(("dmaintr: trans %d, resid %d.\n", trans, resid));
561 #if DEBUG
562 if (mac68k_esp_debug) {
563 printf("eqd_intr: trans %d, resid %d.\n", trans, resid);
564 }
565 #endif
566 *esc->sc_dmaaddr += trans;
567 *esc->sc_dmalen -= trans;
568
569 return 0;
570 }
571
572 int
573 esp_quick_dma_setup(sc, addr, len, datain, dmasize)
574 struct ncr53c9x_softc *sc;
575 caddr_t *addr;
576 size_t *len;
577 int datain;
578 size_t *dmasize;
579 {
580 struct esp_softc *esc = (struct esp_softc *)sc;
581
582 esc->sc_dmaaddr = addr;
583 esc->sc_dmalen = len;
584
585 if (*len & 1) {
586 esc->sc_pad = 1;
587 } else {
588 esc->sc_pad = 0;
589 }
590
591 esc->sc_datain = datain;
592 esc->sc_dmasize = *dmasize;
593
594 #if DIAGNOSTIC
595 if (esc->sc_dmasize == 0) {
596 /* This can happen in the case of a TRPAD operation */
597 }
598 #endif
599 #if DEBUG
600 if (mac68k_esp_debug) {
601 printf("eqd_setup: addr %lx, len %lx, in? %d, dmasize %lx\n",
602 (long) *addr, (long) *len, datain, (long) esc->sc_dmasize);
603 }
604 #endif
605
606 return 0;
607 }
608
609 static __inline__ int
610 esp_dafb_have_dreq(esc)
611 struct esp_softc *esc;
612 {
613 return (*(volatile u_int32_t *)(esc->sc_bsh.base) & 0x200);
614 }
615
616 static __inline__ int
617 esp_iosb_have_dreq(esc)
618 struct esp_softc *esc;
619 {
620 return (via2_reg(vIFR) & V2IF_SCSIDRQ);
621 }
622
623 static volatile int espspl=-1;
624
625 /*
626 * Apple "DMA" is weird.
627 *
628 * Basically, the CPU acts like the DMA controller. The DREQ/ off the
629 * chip goes to a register that we've mapped at attach time (on the
630 * IOSB or DAFB, depending on the machine). Apple also provides some
631 * space for which the memory controller handshakes data to/from the
632 * NCR chip with the DACK/ line. This space appears to be mapped over
633 * and over, every 4 bytes, but only the lower 16 bits are valid (but
634 * reading the upper 16 bits will handshake DACK/ just fine, so if you
635 * read *u_int16_t++ = *u_int16_t++ in a loop, you'll get
636 * <databyte><databyte>0xff0xff<databyte><databyte>0xff0xff...
637 *
638 * When you're attempting to read or write memory to this DACK/ed space,
639 * and the NCR is not ready for some timeout period, the system will
640 * generate a bus error. This might be for one of several reasons:
641 *
642 * 1) (on write) The FIFO is full and is not draining.
643 * 2) (on read) The FIFO is empty and is not filling.
644 * 3) An interrupt condition has occurred.
645 * 4) Anything else?
646 *
647 * So if a bus error occurs, we first turn off the nofault bus error handler,
648 * then we check for an interrupt (which would render the first two
649 * possibilities moot). If there's no interrupt, check for a DREQ/. If we
650 * have that, then attempt to resume stuffing (or unstuffing) the FIFO. If
651 * neither condition holds, pause briefly and check again.
652 *
653 * NOTE!!! In order to make allowances for the hardware structure of
654 * the mac, spl values in here are hardcoded!!!!!!!!!
655 * This is done to allow serial interrupts to get in during
656 * scsi transfers. This is ugly.
657 */
658 void
659 esp_quick_dma_go(sc)
660 struct ncr53c9x_softc *sc;
661 {
662 struct esp_softc *esc = (struct esp_softc *)sc;
663 extern long mac68k_a2_fromfault;
664 extern int *nofault;
665 label_t faultbuf;
666 u_int16_t volatile *pdma;
667 u_int16_t *addr;
668 int len, res;
669 u_short cnt32, cnt2;
670 u_char volatile *statreg;
671
672 esc->sc_active = 1;
673
674 espspl = splhigh();
675
676 addr = (u_int16_t *) *esc->sc_dmaaddr;
677 len = esc->sc_dmasize;
678
679 restart_dmago:
680 #if DEBUG
681 if (mac68k_esp_debug) {
682 printf("eqdg: a %lx, l %lx, in? %d ... ",
683 (long) addr, (long) len, esc->sc_datain);
684 }
685 #endif
686 nofault = (int *) &faultbuf;
687 if (setjmp((label_t *) nofault)) {
688 int i=0;
689
690 nofault = (int *) 0;
691 #if DEBUG
692 if (mac68k_esp_debug) {
693 printf("be\n");
694 }
695 #endif
696 /*
697 * Bus error...
698 * So, we first check for an interrupt. If we have
699 * one, go handle it. Next we check for DREQ/. If
700 * we have it, then we restart the transfer. If
701 * neither, then loop until we get one or the other.
702 */
703 statreg = esc->sc_reg + NCR_STAT * 16;
704 for (;;) {
705 spl2(); /* Give serial a chance... */
706 splhigh(); /* That's enough... */
707
708 if (*statreg & 0x80) {
709 goto gotintr;
710 }
711
712 if (esp_have_dreq(esc)) {
713 /*
714 * Get the remaining length from the address
715 * differential.
716 */
717 addr = (u_int16_t *) mac68k_a2_fromfault;
718 len = esc->sc_dmasize -
719 ((long) addr - (long) *esc->sc_dmaaddr);
720
721 if (esc->sc_datain == 0) {
722 /*
723 * Let the FIFO drain before we read
724 * the transfer count.
725 * Do we need to do this?
726 * Can we do this?
727 */
728 while (NCR_READ_REG(sc, NCR_FFLAG)
729 & 0x1f);
730 /*
731 * Get the length from the transfer
732 * counters.
733 */
734 res = NCR_READ_REG(sc, NCR_TCL);
735 res += NCR_READ_REG(sc, NCR_TCM) << 8;
736 /*
737 * If they don't agree,
738 * adjust accordingly.
739 */
740 while (res > len) {
741 len+=2; addr--;
742 }
743 if (res != len) {
744 panic("esp_quick_dma_go: res %d != len %d\n",
745 res, len);
746 }
747 }
748 break;
749 }
750
751 DELAY(1);
752 if (i++ > 1000000)
753 panic("esp_dma_go: Bus error, but no condition! Argh!");
754 }
755 goto restart_dmago;
756 }
757
758 len &= ~1;
759
760 statreg = esc->sc_reg + NCR_STAT * 16;
761 pdma = (u_int16_t *) (esc->sc_reg + 0x100);
762
763 /*
764 * These loops are unrolled into assembly for two reasons:
765 * 1) We can make sure that they are as efficient as possible, and
766 * 2) (more importantly) we need the address that we are reading
767 * from or writing to to be in a2.
768 */
769 cnt32 = len / 32;
770 cnt2 = (len % 32) / 2;
771 if (esc->sc_datain == 0) {
772 /* while (cnt32--) { 16 instances of *pdma = *addr++; } */
773 /* while (cnt2--) { *pdma = *addr++; } */
774 __asm __volatile ("
775 movl %1, %%a2
776 movl %2, %%a3
777 movw %3, %%d2
778 cmpw #0, %%d2
779 beq 2f
780 subql #1, %%d2
781 1: movw %%a2@+,%%a3@; movw %%a2@+,%%a3@
782 movw %%a2@+,%%a3@; movw %%a2@+,%%a3@
783 movw %%a2@+,%%a3@; movw %%a2@+,%%a3@
784 movw %%a2@+,%%a3@; movw %%a2@+,%%a3@
785 movw %%a2@+,%%a3@; movw %%a2@+,%%a3@
786 movw %%a2@+,%%a3@; movw %%a2@+,%%a3@
787 movw %%a2@+,%%a3@; movw %%a2@+,%%a3@
788 movw %%a2@+,%%a3@; movw %%a2@+,%%a3@
789 movw #8704,%%sr
790 movw #9728,%%sr
791 dbra %%d2, 1b
792 2: movw %4, %%d2
793 cmpw #0, %%d2
794 beq 4f
795 subql #1, %%d2
796 3: movw %%a2@+,%%a3@
797 dbra %%d2, 3b
798 4: movl %%a2, %0"
799 : "=g" (addr)
800 : "0" (addr), "g" (pdma), "g" (cnt32), "g" (cnt2)
801 : "a2", "a3", "d2");
802 if (esc->sc_pad) {
803 unsigned char *c;
804 c = (unsigned char *) addr;
805 /* Wait for DREQ */
806 while (!esp_have_dreq(esc)) {
807 if (*statreg & 0x80) {
808 nofault = (int *) 0;
809 goto gotintr;
810 }
811 }
812 *(unsigned char *)pdma = *c;
813 }
814 } else {
815 /* while (cnt32--) { 16 instances of *addr++ = *pdma; } */
816 /* while (cnt2--) { *addr++ = *pdma; } */
817 __asm __volatile ("
818 movl %1, %%a2
819 movl %2, %%a3
820 movw %3, %%d2
821 cmpw #0, %%d2
822 beq 6f
823 subql #1, %%d2
824 5: movw %%a3@,%%a2@+; movw %%a3@,%%a2@+
825 movw %%a3@,%%a2@+; movw %%a3@,%%a2@+
826 movw %%a3@,%%a2@+; movw %%a3@,%%a2@+
827 movw %%a3@,%%a2@+; movw %%a3@,%%a2@+
828 movw %%a3@,%%a2@+; movw %%a3@,%%a2@+
829 movw %%a3@,%%a2@+; movw %%a3@,%%a2@+
830 movw %%a3@,%%a2@+; movw %%a3@,%%a2@+
831 movw %%a3@,%%a2@+; movw %%a3@,%%a2@+
832 movw #8704,%%sr
833 movw #9728,%%sr
834 dbra %%d2, 5b
835 6: movw %4, %%d2
836 cmpw #0, %%d2
837 beq 8f
838 subql #1, %%d2
839 7: movw %%a3@,%%a2@+
840 dbra %%d2, 7b
841 8: movl %%a2, %0"
842 : "=g" (addr)
843 : "0" (addr), "g" (pdma), "g" (cnt32), "g" (cnt2)
844 : "a2", "a3", "d2");
845 if (esc->sc_pad) {
846 unsigned char *c;
847 c = (unsigned char *) addr;
848 /* Wait for DREQ */
849 while (!esp_have_dreq(esc)) {
850 if (*statreg & 0x80) {
851 nofault = (int *) 0;
852 goto gotintr;
853 }
854 }
855 *c = *(unsigned char *)pdma;
856 }
857 }
858
859 nofault = (int *) 0;
860
861 /*
862 * If we have not received an interrupt yet, we should shortly,
863 * and we can't prevent it, so return and wait for it.
864 */
865 if ((*statreg & 0x80) == 0) {
866 #if DEBUG
867 if (mac68k_esp_debug) {
868 printf("g.\n");
869 }
870 #endif
871 if (espspl != -1) splx(espspl); espspl = -1;
872 return;
873 }
874
875 gotintr:
876 #if DEBUG
877 if (mac68k_esp_debug) {
878 printf("g!\n");
879 }
880 #endif
881 ncr53c9x_intr(sc);
882 if (espspl != -1) splx(espspl); espspl = -1;
883 }
884
885 void
886 esp_intr(sc)
887 void *sc;
888 {
889 struct esp_softc *esc = (struct esp_softc *)sc;
890
891 if (esc->sc_reg[NCR_STAT * 16] & 0x80) {
892 ncr53c9x_intr((struct ncr53c9x_softc *) esp0);
893 }
894 }
895
896 void
897 esp_dualbus_intr(sc)
898 void *sc;
899 {
900 if (esp0 && (esp0->sc_reg[NCR_STAT * 16] & 0x80)) {
901 ncr53c9x_intr((struct ncr53c9x_softc *) esp0);
902 }
903
904 if (esp1 && (esp1->sc_reg[NCR_STAT * 16] & 0x80)) {
905 ncr53c9x_intr((struct ncr53c9x_softc *) esp1);
906 }
907 }
908