esp.c revision 1.42 1 /* $NetBSD: esp.c,v 1.42 2005/12/24 20:07:15 perry Exp $ */
2
3 /*
4 * Copyright (c) 1997 Jason R. Thorpe.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed for the NetBSD Project
18 * by Jason R. Thorpe.
19 * 4. The name of the author may not be used to endorse or promote products
20 * derived from this software without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
27 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
31 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 /*
35 * Copyright (c) 1994 Peter Galbavy
36 * All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 * must display the following acknowledgement:
48 * This product includes software developed by Peter Galbavy
49 * 4. The name of the author may not be used to endorse or promote products
50 * derived from this software without specific prior written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
53 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
54 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
55 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
56 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
57 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
58 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
60 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
61 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
62 * POSSIBILITY OF SUCH DAMAGE.
63 */
64
65 /*
66 * Based on aic6360 by Jarle Greipsland
67 *
68 * Acknowledgements: Many of the algorithms used in this driver are
69 * inspired by the work of Julian Elischer (julian (at) tfs.com) and
70 * Charles Hannum (mycroft (at) duality.gnu.ai.mit.edu). Thanks a million!
71 */
72
73 /*
74 * Initial m68k mac support from Allen Briggs <briggs (at) macbsd.com>
75 * (basically consisting of the match, a bit of the attach, and the
76 * "DMA" glue functions).
77 */
78
79 #include <sys/cdefs.h>
80 __KERNEL_RCSID(0, "$NetBSD: esp.c,v 1.42 2005/12/24 20:07:15 perry Exp $");
81
82 #include <sys/types.h>
83 #include <sys/param.h>
84 #include <sys/systm.h>
85 #include <sys/kernel.h>
86 #include <sys/errno.h>
87 #include <sys/ioctl.h>
88 #include <sys/device.h>
89 #include <sys/buf.h>
90 #include <sys/proc.h>
91 #include <sys/user.h>
92 #include <sys/queue.h>
93
94 #include <dev/scsipi/scsi_all.h>
95 #include <dev/scsipi/scsipi_all.h>
96 #include <dev/scsipi/scsiconf.h>
97 #include <dev/scsipi/scsi_message.h>
98
99 #include <machine/cpu.h>
100 #include <machine/bus.h>
101 #include <machine/param.h>
102
103 #include <dev/ic/ncr53c9xreg.h>
104 #include <dev/ic/ncr53c9xvar.h>
105
106 #include <machine/viareg.h>
107
108 #include <mac68k/obio/espvar.h>
109 #include <mac68k/obio/obiovar.h>
110
111 void espattach(struct device *, struct device *, void *);
112 int espmatch(struct device *, struct cfdata *, void *);
113
114 /* Linkup to the rest of the kernel */
115 CFATTACH_DECL(esp, sizeof(struct esp_softc),
116 espmatch, espattach, NULL, NULL);
117
118 /*
119 * Functions and the switch for the MI code.
120 */
121 u_char esp_read_reg(struct ncr53c9x_softc *, int);
122 void esp_write_reg(struct ncr53c9x_softc *, int, u_char);
123 int esp_dma_isintr(struct ncr53c9x_softc *);
124 void esp_dma_reset(struct ncr53c9x_softc *);
125 int esp_dma_intr(struct ncr53c9x_softc *);
126 int esp_dma_setup(struct ncr53c9x_softc *, caddr_t *, size_t *, int,
127 size_t *);
128 void esp_dma_go(struct ncr53c9x_softc *);
129 void esp_dma_stop(struct ncr53c9x_softc *);
130 int esp_dma_isactive(struct ncr53c9x_softc *);
131 void esp_quick_write_reg(struct ncr53c9x_softc *, int, u_char);
132 int esp_quick_dma_intr(struct ncr53c9x_softc *);
133 int esp_quick_dma_setup(struct ncr53c9x_softc *, caddr_t *, size_t *, int,
134 size_t *);
135 void esp_quick_dma_go(struct ncr53c9x_softc *);
136
137 void esp_intr(void *);
138 void esp_dualbus_intr(void *);
139 static struct esp_softc *esp0, *esp1;
140
141 static __inline__ int esp_dafb_have_dreq(struct esp_softc *);
142 static __inline__ int esp_iosb_have_dreq(struct esp_softc *);
143 int (*esp_have_dreq)(struct esp_softc *);
144
145 struct ncr53c9x_glue esp_glue = {
146 esp_read_reg,
147 esp_write_reg,
148 esp_dma_isintr,
149 esp_dma_reset,
150 esp_dma_intr,
151 esp_dma_setup,
152 esp_dma_go,
153 esp_dma_stop,
154 esp_dma_isactive,
155 NULL, /* gl_clear_latched_intr */
156 };
157
158 int
159 espmatch(struct device *parent, struct cfdata *cf, void *aux)
160 {
161 struct obio_attach_args *oa = (struct obio_attach_args *)aux;
162
163 if (oa->oa_addr == 0 && mac68k_machine.scsi96) {
164 return 1;
165 }
166 if (oa->oa_addr == 1 && mac68k_machine.scsi96_2) {
167 return 1;
168 }
169 return 0;
170 }
171
172 /*
173 * Attach this instance, and then all the sub-devices
174 */
175 void
176 espattach(struct device *parent, struct device *self, void *aux)
177 {
178 struct obio_attach_args *oa = (struct obio_attach_args *)aux;
179 extern vaddr_t SCSIBase;
180 struct esp_softc *esc = (void *)self;
181 struct ncr53c9x_softc *sc = &esc->sc_ncr53c9x;
182 int quick = 0;
183 unsigned long reg_offset;
184
185 reg_offset = SCSIBase - IOBase;
186 esc->sc_tag = oa->oa_tag;
187
188 /*
189 * For Wombat, Primus and Optimus motherboards, DREQ is
190 * visible on bit 0 of the IOSB's emulated VIA2 vIFR (and
191 * the scsi registers are offset 0x1000 bytes from IOBase).
192 *
193 * For the Q700/900/950 it's at f9800024 for bus 0 and
194 * f9800028 for bus 1 (900/950). For these machines, that is also
195 * a (12-bit) configuration register for DAFB's control of the
196 * pseudo-DMA timing. The default value is 0x1d1.
197 */
198 esp_have_dreq = esp_dafb_have_dreq;
199 if (oa->oa_addr == 0) {
200 if (reg_offset == 0x10000) {
201 quick = 1;
202 esp_have_dreq = esp_iosb_have_dreq;
203 } else if (reg_offset == 0x18000) {
204 quick = 0;
205 } else {
206 if (bus_space_map(esc->sc_tag, 0xf9800024,
207 4, 0, &esc->sc_bsh)) {
208 printf("failed to map 4 at 0xf9800024.\n");
209 } else {
210 quick = 1;
211 bus_space_write_4(esc->sc_tag,
212 esc->sc_bsh, 0, 0x1d1);
213 }
214 }
215 } else {
216 if (bus_space_map(esc->sc_tag, 0xf9800028,
217 4, 0, &esc->sc_bsh)) {
218 printf("failed to map 4 at 0xf9800028.\n");
219 } else {
220 quick = 1;
221 bus_space_write_4(esc->sc_tag, esc->sc_bsh, 0, 0x1d1);
222 }
223 }
224 if (quick) {
225 esp_glue.gl_write_reg = esp_quick_write_reg;
226 esp_glue.gl_dma_intr = esp_quick_dma_intr;
227 esp_glue.gl_dma_setup = esp_quick_dma_setup;
228 esp_glue.gl_dma_go = esp_quick_dma_go;
229 }
230
231 /*
232 * Set up the glue for MI code early; we use some of it here.
233 */
234 sc->sc_glue = &esp_glue;
235
236 /*
237 * Save the regs
238 */
239 if (oa->oa_addr == 0) {
240 esp0 = esc;
241
242 esc->sc_reg = (volatile u_char *) SCSIBase;
243 via2_register_irq(VIA2_SCSIIRQ, esp_intr, esc);
244 esc->irq_mask = V2IF_SCSIIRQ;
245 if (reg_offset == 0x10000) {
246 /* From the Q650 developer's note */
247 sc->sc_freq = 16500000;
248 } else {
249 sc->sc_freq = 25000000;
250 }
251
252 if (esp_glue.gl_dma_go == esp_quick_dma_go) {
253 printf(" (quick)");
254 }
255 } else {
256 esp1 = esc;
257
258 esc->sc_reg = (volatile u_char *) SCSIBase + 0x402;
259 via2_register_irq(VIA2_SCSIIRQ, esp_dualbus_intr, NULL);
260 esc->irq_mask = 0;
261 sc->sc_freq = 25000000;
262
263 if (esp_glue.gl_dma_go == esp_quick_dma_go) {
264 printf(" (quick)");
265 }
266 }
267
268 printf(": address %p", esc->sc_reg);
269
270 sc->sc_id = 7;
271
272 /* gimme Mhz */
273 sc->sc_freq /= 1000000;
274
275 /*
276 * It is necessary to try to load the 2nd config register here,
277 * to find out what rev the esp chip is, else the esp_reset
278 * will not set up the defaults correctly.
279 */
280 sc->sc_cfg1 = sc->sc_id; /* | NCRCFG1_PARENB; */
281 sc->sc_cfg2 = NCRCFG2_SCSI2;
282 sc->sc_cfg3 = 0;
283 sc->sc_rev = NCR_VARIANT_NCR53C96;
284
285 /*
286 * This is the value used to start sync negotiations
287 * Note that the NCR register "SYNCTP" is programmed
288 * in "clocks per byte", and has a minimum value of 4.
289 * The SCSI period used in negotiation is one-fourth
290 * of the time (in nanoseconds) needed to transfer one byte.
291 * Since the chip's clock is given in MHz, we have the following
292 * formula: 4 * period = (1000 / freq) * 4
293 */
294 sc->sc_minsync = 1000 / sc->sc_freq;
295
296 /* We need this to fit into the TCR... */
297 sc->sc_maxxfer = 64 * 1024;
298
299 if (!quick) {
300 sc->sc_minsync = 0; /* No synchronous xfers w/o DMA */
301 sc->sc_maxxfer = 8 * 1024;
302 }
303
304 /*
305 * Configure interrupts.
306 */
307 if (esc->irq_mask) {
308 via2_reg(vPCR) = 0x22;
309 via2_reg(vIFR) = esc->irq_mask;
310 via2_reg(vIER) = 0x80 | esc->irq_mask;
311 }
312
313 /*
314 * Now try to attach all the sub-devices
315 */
316 sc->sc_adapter.adapt_minphys = minphys;
317 sc->sc_adapter.adapt_request = ncr53c9x_scsipi_request;
318 ncr53c9x_attach(sc);
319 }
320
321 /*
322 * Glue functions.
323 */
324
325 u_char
326 esp_read_reg(struct ncr53c9x_softc *sc, int reg)
327 {
328 struct esp_softc *esc = (struct esp_softc *)sc;
329
330 return esc->sc_reg[reg * 16];
331 }
332
333 void
334 esp_write_reg(struct ncr53c9x_softc *sc, int reg, u_char val)
335 {
336 struct esp_softc *esc = (struct esp_softc *)sc;
337 u_char v = val;
338
339 if (reg == NCR_CMD && v == (NCRCMD_TRANS|NCRCMD_DMA)) {
340 v = NCRCMD_TRANS;
341 }
342 esc->sc_reg[reg * 16] = v;
343 }
344
345 void
346 esp_dma_stop(struct ncr53c9x_softc *sc)
347 {
348 }
349
350 int
351 esp_dma_isactive(struct ncr53c9x_softc *sc)
352 {
353 struct esp_softc *esc = (struct esp_softc *)sc;
354
355 return esc->sc_active;
356 }
357
358 int
359 esp_dma_isintr(struct ncr53c9x_softc *sc)
360 {
361 struct esp_softc *esc = (struct esp_softc *)sc;
362
363 return esc->sc_reg[NCR_STAT * 16] & 0x80;
364 }
365
366 void
367 esp_dma_reset(struct ncr53c9x_softc *sc)
368 {
369 struct esp_softc *esc = (struct esp_softc *)sc;
370
371 esc->sc_active = 0;
372 esc->sc_tc = 0;
373 }
374
375 int
376 esp_dma_intr(struct ncr53c9x_softc *sc)
377 {
378 struct esp_softc *esc = (struct esp_softc *)sc;
379 volatile u_char *cmdreg, *intrreg, *statreg, *fiforeg;
380 u_char *p;
381 u_int espphase, espstat, espintr;
382 int cnt, s;
383
384 if (esc->sc_active == 0) {
385 printf("dma_intr--inactive DMA\n");
386 return -1;
387 }
388
389 if ((sc->sc_espintr & NCRINTR_BS) == 0) {
390 esc->sc_active = 0;
391 return 0;
392 }
393
394 cnt = *esc->sc_dmalen;
395 if (*esc->sc_dmalen == 0) {
396 printf("data interrupt, but no count left.");
397 }
398
399 p = *esc->sc_dmaaddr;
400 espphase = sc->sc_phase;
401 espstat = (u_int) sc->sc_espstat;
402 espintr = (u_int) sc->sc_espintr;
403 cmdreg = esc->sc_reg + NCR_CMD * 16;
404 fiforeg = esc->sc_reg + NCR_FIFO * 16;
405 statreg = esc->sc_reg + NCR_STAT * 16;
406 intrreg = esc->sc_reg + NCR_INTR * 16;
407 do {
408 if (esc->sc_datain) {
409 *p++ = *fiforeg;
410 cnt--;
411 if (espphase == DATA_IN_PHASE) {
412 *cmdreg = NCRCMD_TRANS;
413 } else {
414 esc->sc_active = 0;
415 }
416 } else {
417 if ( (espphase == DATA_OUT_PHASE)
418 || (espphase == MESSAGE_OUT_PHASE)) {
419 *fiforeg = *p++;
420 cnt--;
421 *cmdreg = NCRCMD_TRANS;
422 } else {
423 esc->sc_active = 0;
424 }
425 }
426
427 if (esc->sc_active) {
428 while (!(*statreg & 0x80));
429 s = splhigh();
430 espstat = *statreg;
431 espintr = *intrreg;
432 espphase = (espintr & NCRINTR_DIS)
433 ? /* Disconnected */ BUSFREE_PHASE
434 : espstat & PHASE_MASK;
435 splx(s);
436 }
437 } while (esc->sc_active && (espintr & NCRINTR_BS));
438 sc->sc_phase = espphase;
439 sc->sc_espstat = (u_char) espstat;
440 sc->sc_espintr = (u_char) espintr;
441 *esc->sc_dmaaddr = p;
442 *esc->sc_dmalen = cnt;
443
444 if (*esc->sc_dmalen == 0) {
445 esc->sc_tc = NCRSTAT_TC;
446 }
447 sc->sc_espstat |= esc->sc_tc;
448 return 0;
449 }
450
451 int
452 esp_dma_setup(struct ncr53c9x_softc *sc, caddr_t *addr, size_t *len, int datain,
453 size_t *dmasize)
454 {
455 struct esp_softc *esc = (struct esp_softc *)sc;
456
457 esc->sc_dmaaddr = addr;
458 esc->sc_dmalen = len;
459 esc->sc_datain = datain;
460 esc->sc_dmasize = *dmasize;
461 esc->sc_tc = 0;
462
463 return 0;
464 }
465
466 void
467 esp_dma_go(struct ncr53c9x_softc *sc)
468 {
469 struct esp_softc *esc = (struct esp_softc *)sc;
470
471 if (esc->sc_datain == 0) {
472 esc->sc_reg[NCR_FIFO * 16] = **esc->sc_dmaaddr;
473 (*esc->sc_dmalen)--;
474 (*esc->sc_dmaaddr)++;
475 }
476 esc->sc_active = 1;
477 }
478
479 void
480 esp_quick_write_reg(struct ncr53c9x_softc *sc, int reg, u_char val)
481 {
482 struct esp_softc *esc = (struct esp_softc *)sc;
483
484 esc->sc_reg[reg * 16] = val;
485 }
486
487 #if DEBUG
488 int mac68k_esp_debug=0;
489 #endif
490
491 int
492 esp_quick_dma_intr(struct ncr53c9x_softc *sc)
493 {
494 struct esp_softc *esc = (struct esp_softc *)sc;
495 int trans=0, resid=0;
496
497 if (esc->sc_active == 0)
498 panic("dma_intr--inactive DMA");
499
500 esc->sc_active = 0;
501
502 if (esc->sc_dmasize == 0) {
503 int res;
504
505 res = NCR_READ_REG(sc, NCR_TCL);
506 res += NCR_READ_REG(sc, NCR_TCM) << 8;
507 /* This can happen in the case of a TRPAD operation */
508 /* Pretend that it was complete */
509 sc->sc_espstat |= NCRSTAT_TC;
510 #if DEBUG
511 if (mac68k_esp_debug) {
512 printf("dmaintr: DMA xfer of zero xferred %d\n",
513 65536 - res);
514 }
515 #endif
516 return 0;
517 }
518
519 if ((sc->sc_espstat & NCRSTAT_TC) == 0) {
520 if (esc->sc_datain == 0) {
521 resid = NCR_READ_REG(sc, NCR_FFLAG) & 0x1f;
522 #if DEBUG
523 if (mac68k_esp_debug) {
524 printf("Write FIFO residual %d bytes\n", resid);
525 }
526 #endif
527 }
528 resid += NCR_READ_REG(sc, NCR_TCL);
529 resid += NCR_READ_REG(sc, NCR_TCM) << 8;
530 if (resid == 0)
531 resid = 65536;
532 }
533
534 trans = esc->sc_dmasize - resid;
535 if (trans < 0) {
536 printf("dmaintr: trans < 0????");
537 trans = *esc->sc_dmalen;
538 }
539
540 NCR_DMA(("dmaintr: trans %d, resid %d.\n", trans, resid));
541 #if DEBUG
542 if (mac68k_esp_debug) {
543 printf("eqd_intr: trans %d, resid %d.\n", trans, resid);
544 }
545 #endif
546 *esc->sc_dmaaddr += trans;
547 *esc->sc_dmalen -= trans;
548
549 return 0;
550 }
551
552 int
553 esp_quick_dma_setup(struct ncr53c9x_softc *sc, caddr_t *addr, size_t *len,
554 int datain, size_t *dmasize)
555 {
556 struct esp_softc *esc = (struct esp_softc *)sc;
557
558 esc->sc_dmaaddr = addr;
559 esc->sc_dmalen = len;
560
561 if (*len & 1) {
562 esc->sc_pad = 1;
563 } else {
564 esc->sc_pad = 0;
565 }
566
567 esc->sc_datain = datain;
568 esc->sc_dmasize = *dmasize;
569
570 #if DIAGNOSTIC
571 if (esc->sc_dmasize == 0) {
572 /* This can happen in the case of a TRPAD operation */
573 }
574 #endif
575 #if DEBUG
576 if (mac68k_esp_debug) {
577 printf("eqd_setup: addr %lx, len %lx, in? %d, dmasize %lx\n",
578 (long) *addr, (long) *len, datain, (long) esc->sc_dmasize);
579 }
580 #endif
581
582 return 0;
583 }
584
585 static __inline__ int
586 esp_dafb_have_dreq(struct esp_softc *esc)
587 {
588 return (*(volatile u_int32_t *)(esc->sc_bsh.base) & 0x200);
589 }
590
591 static __inline__ int
592 esp_iosb_have_dreq(struct esp_softc *esc)
593 {
594 return (via2_reg(vIFR) & V2IF_SCSIDRQ);
595 }
596
597 static volatile int espspl=-1;
598
599 /*
600 * Apple "DMA" is weird.
601 *
602 * Basically, the CPU acts like the DMA controller. The DREQ/ off the
603 * chip goes to a register that we've mapped at attach time (on the
604 * IOSB or DAFB, depending on the machine). Apple also provides some
605 * space for which the memory controller handshakes data to/from the
606 * NCR chip with the DACK/ line. This space appears to be mapped over
607 * and over, every 4 bytes, but only the lower 16 bits are valid (but
608 * reading the upper 16 bits will handshake DACK/ just fine, so if you
609 * read *u_int16_t++ = *u_int16_t++ in a loop, you'll get
610 * <databyte><databyte>0xff0xff<databyte><databyte>0xff0xff...
611 *
612 * When you're attempting to read or write memory to this DACK/ed space,
613 * and the NCR is not ready for some timeout period, the system will
614 * generate a bus error. This might be for one of several reasons:
615 *
616 * 1) (on write) The FIFO is full and is not draining.
617 * 2) (on read) The FIFO is empty and is not filling.
618 * 3) An interrupt condition has occurred.
619 * 4) Anything else?
620 *
621 * So if a bus error occurs, we first turn off the nofault bus error handler,
622 * then we check for an interrupt (which would render the first two
623 * possibilities moot). If there's no interrupt, check for a DREQ/. If we
624 * have that, then attempt to resume stuffing (or unstuffing) the FIFO. If
625 * neither condition holds, pause briefly and check again.
626 *
627 * NOTE!!! In order to make allowances for the hardware structure of
628 * the mac, spl values in here are hardcoded!!!!!!!!!
629 * This is done to allow serial interrupts to get in during
630 * scsi transfers. This is ugly.
631 */
632 void
633 esp_quick_dma_go(struct ncr53c9x_softc *sc)
634 {
635 struct esp_softc *esc = (struct esp_softc *)sc;
636 extern long mac68k_a2_fromfault;
637 extern int *nofault;
638 label_t faultbuf;
639 u_int16_t volatile *pdma;
640 u_int16_t *addr;
641 int len, res;
642 u_short cnt32, cnt2;
643 u_char volatile *statreg;
644
645 esc->sc_active = 1;
646
647 espspl = splhigh();
648
649 addr = (u_int16_t *) *esc->sc_dmaaddr;
650 len = esc->sc_dmasize;
651
652 restart_dmago:
653 #if DEBUG
654 if (mac68k_esp_debug) {
655 printf("eqdg: a %lx, l %lx, in? %d ... ",
656 (long) addr, (long) len, esc->sc_datain);
657 }
658 #endif
659 nofault = (int *) &faultbuf;
660 if (setjmp((label_t *) nofault)) {
661 int i=0;
662
663 nofault = (int *) 0;
664 #if DEBUG
665 if (mac68k_esp_debug) {
666 printf("be\n");
667 }
668 #endif
669 /*
670 * Bus error...
671 * So, we first check for an interrupt. If we have
672 * one, go handle it. Next we check for DREQ/. If
673 * we have it, then we restart the transfer. If
674 * neither, then loop until we get one or the other.
675 */
676 statreg = esc->sc_reg + NCR_STAT * 16;
677 for (;;) {
678 spl2(); /* Give serial a chance... */
679 splhigh(); /* That's enough... */
680
681 if (*statreg & 0x80) {
682 goto gotintr;
683 }
684
685 if (esp_have_dreq(esc)) {
686 /*
687 * Get the remaining length from the address
688 * differential.
689 */
690 addr = (u_int16_t *) mac68k_a2_fromfault;
691 len = esc->sc_dmasize -
692 ((long) addr - (long) *esc->sc_dmaaddr);
693
694 if (esc->sc_datain == 0) {
695 /*
696 * Let the FIFO drain before we read
697 * the transfer count.
698 * Do we need to do this?
699 * Can we do this?
700 */
701 while (NCR_READ_REG(sc, NCR_FFLAG)
702 & 0x1f);
703 /*
704 * Get the length from the transfer
705 * counters.
706 */
707 res = NCR_READ_REG(sc, NCR_TCL);
708 res += NCR_READ_REG(sc, NCR_TCM) << 8;
709 /*
710 * If they don't agree,
711 * adjust accordingly.
712 */
713 while (res > len) {
714 len+=2; addr--;
715 }
716 if (res != len) {
717 panic("esp_quick_dma_go: res %d != len %d",
718 res, len);
719 }
720 }
721 break;
722 }
723
724 DELAY(1);
725 if (i++ > 1000000)
726 panic("esp_dma_go: Bus error, but no condition! Argh!");
727 }
728 goto restart_dmago;
729 }
730
731 len &= ~1;
732
733 statreg = esc->sc_reg + NCR_STAT * 16;
734 pdma = (volatile u_int16_t *) (esc->sc_reg + 0x100);
735
736 /*
737 * These loops are unrolled into assembly for two reasons:
738 * 1) We can make sure that they are as efficient as possible, and
739 * 2) (more importantly) we need the address that we are reading
740 * from or writing to to be in a2.
741 */
742 cnt32 = len / 32;
743 cnt2 = (len % 32) / 2;
744 if (esc->sc_datain == 0) {
745 /* while (cnt32--) { 16 instances of *pdma = *addr++; } */
746 /* while (cnt2--) { *pdma = *addr++; } */
747 __asm volatile (
748 " movl %1, %%a2 \n"
749 " movl %2, %%a3 \n"
750 " movw %3, %%d2 \n"
751 " cmpw #0, %%d2 \n"
752 " beq 2f \n"
753 " subql #1, %%d2 \n"
754 "1: movw %%a2@+,%%a3@; movw %%a2@+,%%a3@ \n"
755 " movw %%a2@+,%%a3@; movw %%a2@+,%%a3@ \n"
756 " movw %%a2@+,%%a3@; movw %%a2@+,%%a3@ \n"
757 " movw %%a2@+,%%a3@; movw %%a2@+,%%a3@ \n"
758 " movw %%a2@+,%%a3@; movw %%a2@+,%%a3@ \n"
759 " movw %%a2@+,%%a3@; movw %%a2@+,%%a3@ \n"
760 " movw %%a2@+,%%a3@; movw %%a2@+,%%a3@ \n"
761 " movw %%a2@+,%%a3@; movw %%a2@+,%%a3@ \n"
762 " movw #8704,%%sr \n"
763 " movw #9728,%%sr \n"
764 " dbra %%d2, 1b \n"
765 "2: movw %4, %%d2 \n"
766 " cmpw #0, %%d2 \n"
767 " beq 4f \n"
768 " subql #1, %%d2 \n"
769 "3: movw %%a2@+,%%a3@ \n"
770 " dbra %%d2, 3b \n"
771 "4: movl %%a2, %0"
772 : "=g" (addr)
773 : "0" (addr), "g" (pdma), "g" (cnt32), "g" (cnt2)
774 : "a2", "a3", "d2");
775 if (esc->sc_pad) {
776 volatile unsigned char *c;
777 c = (volatile unsigned char *) addr;
778 /* Wait for DREQ */
779 while (!esp_have_dreq(esc)) {
780 if (*statreg & 0x80) {
781 nofault = (int *) 0;
782 goto gotintr;
783 }
784 }
785 *(volatile unsigned char *)pdma = *c;
786 }
787 } else {
788 /* while (cnt32--) { 16 instances of *addr++ = *pdma; } */
789 /* while (cnt2--) { *addr++ = *pdma; } */
790 __asm volatile (
791 " movl %1, %%a2 \n"
792 " movl %2, %%a3 \n"
793 " movw %3, %%d2 \n"
794 " cmpw #0, %%d2 \n"
795 " beq 6f \n"
796 " subql #1, %%d2 \n"
797 "5: movw %%a3@,%%a2@+; movw %%a3@,%%a2@+ \n"
798 " movw %%a3@,%%a2@+; movw %%a3@,%%a2@+ \n"
799 " movw %%a3@,%%a2@+; movw %%a3@,%%a2@+ \n"
800 " movw %%a3@,%%a2@+; movw %%a3@,%%a2@+ \n"
801 " movw %%a3@,%%a2@+; movw %%a3@,%%a2@+ \n"
802 " movw %%a3@,%%a2@+; movw %%a3@,%%a2@+ \n"
803 " movw %%a3@,%%a2@+; movw %%a3@,%%a2@+ \n"
804 " movw %%a3@,%%a2@+; movw %%a3@,%%a2@+ \n"
805 " movw #8704,%%sr \n"
806 " movw #9728,%%sr \n"
807 " dbra %%d2, 5b \n"
808 "6: movw %4, %%d2 \n"
809 " cmpw #0, %%d2 \n"
810 " beq 8f \n"
811 " subql #1, %%d2 \n"
812 "7: movw %%a3@,%%a2@+ \n"
813 " dbra %%d2, 7b \n"
814 "8: movl %%a2, %0"
815 : "=g" (addr)
816 : "0" (addr), "g" (pdma), "g" (cnt32), "g" (cnt2)
817 : "a2", "a3", "d2");
818 if (esc->sc_pad) {
819 volatile unsigned char *c;
820 c = (volatile unsigned char *) addr;
821 /* Wait for DREQ */
822 while (!esp_have_dreq(esc)) {
823 if (*statreg & 0x80) {
824 nofault = (int *) 0;
825 goto gotintr;
826 }
827 }
828 *c = *(volatile unsigned char *)pdma;
829 }
830 }
831
832 nofault = (int *) 0;
833
834 /*
835 * If we have not received an interrupt yet, we should shortly,
836 * and we can't prevent it, so return and wait for it.
837 */
838 if ((*statreg & 0x80) == 0) {
839 #if DEBUG
840 if (mac68k_esp_debug) {
841 printf("g.\n");
842 }
843 #endif
844 if (espspl != -1) splx(espspl); espspl = -1;
845 return;
846 }
847
848 gotintr:
849 #if DEBUG
850 if (mac68k_esp_debug) {
851 printf("g!\n");
852 }
853 #endif
854 ncr53c9x_intr(sc);
855 if (espspl != -1) splx(espspl); espspl = -1;
856 }
857
858 void
859 esp_intr(void *sc)
860 {
861 struct esp_softc *esc = (struct esp_softc *)sc;
862
863 if (esc->sc_reg[NCR_STAT * 16] & 0x80) {
864 ncr53c9x_intr((struct ncr53c9x_softc *) esp0);
865 }
866 }
867
868 void
869 esp_dualbus_intr(void *sc)
870 {
871 if (esp0 && (esp0->sc_reg[NCR_STAT * 16] & 0x80)) {
872 ncr53c9x_intr((struct ncr53c9x_softc *) esp0);
873 }
874
875 if (esp1 && (esp1->sc_reg[NCR_STAT * 16] & 0x80)) {
876 ncr53c9x_intr((struct ncr53c9x_softc *) esp1);
877 }
878 }
879