adb_direct.c revision 1.1 1 /* $NetBSD: adb_direct.c,v 1.1 1998/05/15 10:15:47 tsubai Exp $ */
2
3 /* From: adb_direct.c 2.02 4/18/97 jpw */
4
5 /*
6 * Copyright (C) 1996, 1997 John P. Wittkoski
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by John P. Wittkoski.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*
36 * This code is rather messy, but I don't have time right now
37 * to clean it up as much as I would like.
38 * But it works, so I'm happy. :-) jpw
39 */
40
41 /*
42 * TO DO:
43 * - We could reduce the time spent in the adb_intr_* routines
44 * by having them save the incoming and outgoing data directly
45 * in the adbInbound and adbOutbound queues, as it would reduce
46 * the number of times we need to copy the data around. It
47 * would also make the code more readable and easier to follow.
48 * - (Related to above) Use the header part of adbCommand to
49 * reduce the number of copies we have to do of the data.
50 * - (Related to above) Actually implement the adbOutbound queue.
51 * This is fairly easy once you switch all the intr routines
52 * over to using adbCommand structs directly.
53 * - There is a bug in the state machine of adb_intr_cuda
54 * code that causes hangs, especially on 030 machines, probably
55 * because of some timing issues. Because I have been unable to
56 * determine the exact cause of this bug, I used the timeout function
57 * to check for and recover from this condition. If anyone finds
58 * the actual cause of this bug, the calls to timeout and the
59 * adb_cuda_tickle routine can be removed.
60 */
61
62 #include <sys/param.h>
63 #include <sys/cdefs.h>
64 #include <sys/systm.h>
65 #include <sys/device.h>
66
67 #include <machine/param.h>
68 #include <machine/cpu.h>
69 #include <machine/adbsys.h>
70
71 #include <macppc/dev/viareg.h>
72 #include <macppc/dev/adbvar.h>
73 #include <macppc/dev/adb_direct.h>
74
75 #define printf_intr printf
76
77 /* some misc. leftovers */
78 #define vPB 0x0000
79 #define vPB3 0x08
80 #define vPB4 0x10
81 #define vPB5 0x20
82 #define vSR_INT 0x04
83 #define vSR_OUT 0x10
84
85 /* types of adb hardware that we (will eventually) support */
86 #define ADB_HW_UNKNOWN 0x01 /* don't know */
87 #define ADB_HW_II 0x02 /* Mac II series */
88 #define ADB_HW_IISI 0x03 /* Mac IIsi series */
89 #define ADB_HW_PB 0x04 /* PowerBook series */
90 #define ADB_HW_CUDA 0x05 /* Machines with a Cuda chip */
91
92 /* the type of ADB action that we are currently preforming */
93 #define ADB_ACTION_NOTREADY 0x01 /* has not been initialized yet */
94 #define ADB_ACTION_IDLE 0x02 /* the bus is currently idle */
95 #define ADB_ACTION_OUT 0x03 /* sending out a command */
96 #define ADB_ACTION_IN 0x04 /* receiving data */
97 #define ADB_ACTION_POLLING 0x05 /* polling - II only */
98
99 /*
100 * These describe the state of the ADB bus itself, although they
101 * don't necessarily correspond directly to ADB states.
102 * Note: these are not really used in the IIsi code.
103 */
104 #define ADB_BUS_UNKNOWN 0x01 /* we don't know yet - all models */
105 #define ADB_BUS_IDLE 0x02 /* bus is idle - all models */
106 #define ADB_BUS_CMD 0x03 /* starting a command - II models */
107 #define ADB_BUS_ODD 0x04 /* the "odd" state - II models */
108 #define ADB_BUS_EVEN 0x05 /* the "even" state - II models */
109 #define ADB_BUS_ACTIVE 0x06 /* active state - IIsi models */
110 #define ADB_BUS_ACK 0x07 /* currently ACKing - IIsi models */
111
112 /*
113 * Shortcuts for setting or testing the VIA bit states.
114 * Not all shortcuts are used for every type of ADB hardware.
115 */
116 #define ADB_SET_STATE_IDLE_II() via_reg_or(VIA1, vBufB, (vPB4 | vPB5))
117 #define ADB_SET_STATE_IDLE_IISI() via_reg_and(VIA1, vBufB, ~(vPB4 | vPB5))
118 #define ADB_SET_STATE_IDLE_CUDA() via_reg_or(VIA1, vBufB, (vPB4 | vPB5))
119 #define ADB_SET_STATE_CMD() via_reg_and(VIA1, vBufB, ~(vPB4 | vPB5))
120 #define ADB_SET_STATE_EVEN() write_via_reg(VIA1, vBufB, \
121 (read_via_reg(VIA1, vBufB) | vPB4) & ~vPB5)
122 #define ADB_SET_STATE_ODD() write_via_reg(VIA1, vBufB, \
123 (read_via_reg(VIA1, vBufB) | vPB5) & ~vPB4 )
124 #define ADB_SET_STATE_ACTIVE() via_reg_or(VIA1, vBufB, vPB5)
125 #define ADB_SET_STATE_INACTIVE() via_reg_and(VIA1, vBufB, ~vPB5)
126 #define ADB_SET_STATE_TIP() via_reg_and(VIA1, vBufB, ~vPB5)
127 #define ADB_CLR_STATE_TIP() via_reg_or(VIA1, vBufB, vPB5)
128 #define ADB_SET_STATE_ACKON() via_reg_or(VIA1, vBufB, vPB4)
129 #define ADB_SET_STATE_ACKOFF() via_reg_and(VIA1, vBufB, ~vPB4)
130 #define ADB_TOGGLE_STATE_ACK_CUDA() via_reg_xor(VIA1, vBufB, vPB4)
131 #define ADB_SET_STATE_ACKON_CUDA() via_reg_and(VIA1, vBufB, ~vPB4)
132 #define ADB_SET_STATE_ACKOFF_CUDA() via_reg_or(VIA1, vBufB, vPB4)
133 #define ADB_SET_SR_INPUT() via_reg_and(VIA1, vACR, ~vSR_OUT)
134 #define ADB_SET_SR_OUTPUT() via_reg_or(VIA1, vACR, vSR_OUT)
135 #define ADB_SR() read_via_reg(VIA1, vSR)
136 #define ADB_VIA_INTR_ENABLE() write_via_reg(VIA1, vIER, 0x84)
137 #define ADB_VIA_INTR_DISABLE() write_via_reg(VIA1, vIER, 0x04)
138 #define ADB_VIA_CLR_INTR() write_via_reg(VIA1, vIFR, 0x04)
139 #define ADB_INTR_IS_OFF (vPB3 == (read_via_reg(VIA1, vBufB) & vPB3))
140 #define ADB_INTR_IS_ON (0 == (read_via_reg(VIA1, vBufB) & vPB3))
141 #define ADB_SR_INTR_IS_OFF (0 == (read_via_reg(VIA1, vIFR) & vSR_INT))
142 #define ADB_SR_INTR_IS_ON (vSR_INT == (read_via_reg(VIA1, \
143 vIFR) & vSR_INT))
144
145 /*
146 * This is the delay that is required (in uS) between certain
147 * ADB transactions. The actual timing delay for for each uS is
148 * calculated at boot time to account for differences in machine speed.
149 */
150 /*#define ADB_DELAY 150*/
151 #define ADB_DELAY 1000
152
153 /*
154 * Maximum ADB message length; includes space for data, result, and
155 * device code - plus a little for safety.
156 */
157 #define ADB_MAX_MSG_LENGTH 16
158 #define ADB_MAX_HDR_LENGTH 8
159
160 #define ADB_QUEUE 32
161 #define ADB_TICKLE_TICKS 4
162
163 /*
164 * A structure for storing information about each ADB device.
165 */
166 struct ADBDevEntry {
167 void (*ServiceRtPtr) __P((void));
168 void *DataAreaAddr;
169 char devType;
170 char origAddr;
171 char currentAddr;
172 };
173
174 /*
175 * Used to hold ADB commands that are waiting to be sent out.
176 */
177 struct adbCmdHoldEntry {
178 u_char outBuf[ADB_MAX_MSG_LENGTH]; /* our message */
179 u_char *saveBuf; /* buffer to know where to save result */
180 u_char *compRout; /* completion routine pointer */
181 u_char *data; /* completion routine data pointer */
182 };
183
184 /*
185 * Eventually used for two separate queues, the queue between
186 * the upper and lower halves, and the outgoing packet queue.
187 * TO DO: adbCommand can replace all of adbCmdHoldEntry eventually
188 */
189 struct adbCommand {
190 u_char header[ADB_MAX_HDR_LENGTH]; /* not used yet */
191 u_char data[ADB_MAX_MSG_LENGTH]; /* packet data only */
192 u_char *saveBuf; /* where to save result */
193 u_char *compRout; /* completion routine pointer */
194 u_char *compData; /* completion routine data pointer */
195 u_int cmd; /* the original command for this data */
196 u_int unsol; /* 1 if packet was unsolicited */
197 u_int ack_only; /* 1 for no special processing */
198 };
199
200 /*
201 * A few variables that we need and their initial values.
202 */
203 int adbHardware = ADB_HW_UNKNOWN;
204 int adbActionState = ADB_ACTION_NOTREADY;
205 int adbBusState = ADB_BUS_UNKNOWN;
206 int adbWaiting = 0; /* waiting for return data from the device */
207 int adbWriteDelay = 0; /* working on (or waiting to do) a write */
208 int adbOutQueueHasData = 0; /* something in the queue waiting to go out */
209 int adbNextEnd = 0; /* the next incoming bute is the last (II) */
210 int adbSoftPower = 0; /* machine supports soft power */
211
212 int adbWaitingCmd = 0; /* ADB command we are waiting for */
213 u_char *adbBuffer = (long)0; /* pointer to user data area */
214 void *adbCompRout = (long)0; /* pointer to the completion routine */
215 void *adbCompData = (long)0; /* pointer to the completion routine data */
216 long adbFakeInts = 0; /* keeps track of fake ADB interrupts for
217 * timeouts (II) */
218 int adbStarting = 1; /* doing ADBReInit so do polling differently */
219 int adbSendTalk = 0; /* the intr routine is sending the talk, not
220 * the user (II) */
221 int adbPolling = 0; /* we are polling for service request */
222 int adbPollCmd = 0; /* the last poll command we sent */
223
224 u_char adbInputBuffer[ADB_MAX_MSG_LENGTH]; /* data input buffer */
225 u_char adbOutputBuffer[ADB_MAX_MSG_LENGTH]; /* data output buffer */
226 struct adbCmdHoldEntry adbOutQueue; /* our 1 entry output queue */
227
228 int adbSentChars = 0; /* how many characters we have sent */
229 int adbLastDevice = 0; /* last ADB dev we heard from (II ONLY) */
230 int adbLastDevIndex = 0; /* last ADB dev loc in dev table (II ONLY) */
231 int adbLastCommand = 0; /* the last ADB command we sent (II) */
232
233 struct ADBDevEntry ADBDevTable[16]; /* our ADB device table */
234 int ADBNumDevices; /* num. of ADB devices found with ADBReInit */
235
236 struct adbCommand adbInbound[ADB_QUEUE]; /* incoming queue */
237 int adbInCount = 0; /* how many packets in in queue */
238 int adbInHead = 0; /* head of in queue */
239 int adbInTail = 0; /* tail of in queue */
240 struct adbCommand adbOutbound[ADB_QUEUE]; /* outgoing queue - not used yet */
241 int adbOutCount = 0; /* how many packets in out queue */
242 int adbOutHead = 0; /* head of out queue */
243 int adbOutTail = 0; /* tail of out queue */
244
245 int tickle_count = 0; /* how many tickles seen for this packet? */
246 int tickle_serial = 0; /* the last packet tickled */
247 int adb_cuda_serial = 0; /* the current packet */
248
249 extern struct mac68k_machine_S mac68k_machine;
250 extern int adb_polling;
251
252 int zshard __P((int));
253
254 void pm_setup_adb __P((void));
255 void pm_check_adb_devices __P((int));
256 int pm_adb_op __P((u_char *, void *, void *, int));
257 void pm_init_adb_device __P((void));
258
259 /*
260 * The following are private routines.
261 */
262 void print_single __P((u_char *));
263 void adb_intr __P((void));
264 void adb_intr_II __P((void));
265 void adb_intr_IIsi __P((void));
266 void adb_intr_cuda __P((void));
267 void adb_soft_intr __P((void));
268 int send_adb_II __P((u_char *, u_char *, void *, void *, int));
269 int send_adb_IIsi __P((u_char *, u_char *, void *, void *, int));
270 int send_adb_cuda __P((u_char *, u_char *, void *, void *, int));
271 void adb_intr_cuda_test __P((void));
272 void adb_cuda_tickle __P((void));
273 void adb_pass_up __P((struct adbCommand *));
274 void adb_op_comprout __P((caddr_t, caddr_t, int));
275 void adb_reinit __P((void));
276 int count_adbs __P((void));
277 int get_ind_adb_info __P((ADBDataBlock *, int));
278 int get_adb_info __P((ADBDataBlock *, int));
279 int set_adb_info __P((ADBSetInfoBlock *, int));
280 void adb_setup_hw_type __P((void));
281 int adb_op __P((Ptr, Ptr, Ptr, short));
282 int adb_op_sync __P((Ptr, Ptr, Ptr, short));
283 void adb_read_II __P((u_char *));
284 void adb_hw_setup __P((void));
285 void adb_hw_setup_IIsi __P((u_char *));
286 void adb_comp_exec __P((void));
287 int adb_cmd_result __P((u_char *));
288 int adb_cmd_extra __P((u_char *));
289 int adb_guess_next_device __P((void));
290 int adb_prog_switch_enable __P((void));
291 int adb_prog_switch_disable __P((void));
292 /* we should create this and it will be the public version */
293 int send_adb __P((u_char *, void *, void *));
294
295 /*
296 * print_single
297 * Diagnostic display routine. Displays the hex values of the
298 * specified elements of the u_char. The length of the "string"
299 * is in [0].
300 */
301 void
302 print_single(thestring)
303 u_char *thestring;
304 {
305 int x;
306
307 if ((int)(thestring[0]) == 0) {
308 printf_intr("nothing returned\n");
309 return;
310 }
311 if (thestring == 0) {
312 printf_intr("no data - null pointer\n");
313 return;
314 }
315 if (thestring[0] > 20) {
316 printf_intr("ADB: ACK > 20 no way!\n");
317 thestring[0] = 20;
318 }
319 printf_intr("(length=0x%x):", thestring[0]);
320 for (x = 0; x < thestring[0]; x++)
321 printf_intr(" 0x%02x", thestring[x + 1]);
322 printf_intr("\n");
323 }
324
325 void
326 adb_cuda_tickle(void)
327 {
328 volatile int s;
329
330 if (adbActionState == ADB_ACTION_IN) {
331 if (tickle_serial == adb_cuda_serial) {
332 if (++tickle_count > 0) {
333 s = splhigh();
334 adbActionState = ADB_ACTION_IDLE;
335 adbInputBuffer[0] = 0;
336 ADB_SET_STATE_IDLE_CUDA();
337 splx(s);
338 }
339 } else {
340 tickle_serial = adb_cuda_serial;
341 tickle_count = 0;
342 }
343 } else {
344 tickle_serial = adb_cuda_serial;
345 tickle_count = 0;
346 }
347
348 timeout((void *)adb_cuda_tickle, 0, ADB_TICKLE_TICKS);
349 }
350
351 /*
352 * called when when an adb interrupt happens
353 *
354 * Cuda version of adb_intr
355 * TO DO: do we want to add some zshard calls in here?
356 */
357 void
358 adb_intr_cuda(void)
359 {
360 volatile int i, ending;
361 volatile unsigned int s;
362 struct adbCommand packet;
363
364 s = splhigh(); /* can't be too careful - might be called */
365 /* from a routine, NOT an interrupt */
366
367 ADB_VIA_CLR_INTR(); /* clear interrupt */
368 ADB_VIA_INTR_DISABLE(); /* disable ADB interrupt on IIs. */
369
370 switch_start:
371 switch (adbActionState) {
372 case ADB_ACTION_IDLE:
373 /*
374 * This is an unexpected packet, so grab the first (dummy)
375 * byte, set up the proper vars, and tell the chip we are
376 * starting to receive the packet by setting the TIP bit.
377 */
378 adbInputBuffer[1] = ADB_SR();
379 adb_cuda_serial++;
380 if (ADB_INTR_IS_OFF) /* must have been a fake start */
381 break;
382
383 ADB_SET_SR_INPUT();
384 ADB_SET_STATE_TIP();
385
386 adbInputBuffer[0] = 1;
387 adbActionState = ADB_ACTION_IN;
388 #ifdef ADB_DEBUG
389 if (adb_debug)
390 printf_intr("idle 0x%02x ", adbInputBuffer[1]);
391 #endif
392 break;
393
394 case ADB_ACTION_IN:
395 adbInputBuffer[++adbInputBuffer[0]] = ADB_SR();
396 /* intr off means this is the last byte (end of frame) */
397 if (ADB_INTR_IS_OFF)
398 ending = 1;
399 else
400 ending = 0;
401
402 if (1 == ending) { /* end of message? */
403 #ifdef ADB_DEBUG
404 if (adb_debug) {
405 printf_intr("in end 0x%02x ",
406 adbInputBuffer[adbInputBuffer[0]]);
407 print_single(adbInputBuffer);
408 }
409 #endif
410
411 /*
412 * Are we waiting AND does this packet match what we
413 * are waiting for AND is it coming from either the
414 * ADB or RTC/PRAM sub-device? This section _should_
415 * recognize all ADB and RTC/PRAM type commands, but
416 * there may be more... NOTE: commands are always at
417 * [4], even for RTC/PRAM commands.
418 */
419 /* set up data for adb_pass_up */
420 for (i = 0; i <= adbInputBuffer[0]; i++)
421 packet.data[i] = adbInputBuffer[i];
422
423 if ((adbWaiting == 1) &&
424 (adbInputBuffer[4] == adbWaitingCmd) &&
425 ((adbInputBuffer[2] == 0x00) ||
426 (adbInputBuffer[2] == 0x01))) {
427 packet.saveBuf = adbBuffer;
428 packet.compRout = adbCompRout;
429 packet.compData = adbCompData;
430 packet.unsol = 0;
431 packet.ack_only = 0;
432 adb_pass_up(&packet);
433
434 adbWaitingCmd = 0; /* reset "waiting" vars */
435 adbWaiting = 0;
436 adbBuffer = (long)0;
437 adbCompRout = (long)0;
438 adbCompData = (long)0;
439 } else {
440 packet.unsol = 1;
441 packet.ack_only = 0;
442 adb_pass_up(&packet);
443 }
444
445
446 /* reset vars and signal the end of this frame */
447 adbActionState = ADB_ACTION_IDLE;
448 adbInputBuffer[0] = 0;
449 ADB_SET_STATE_IDLE_CUDA();
450 /*ADB_SET_SR_INPUT();*/
451
452 /*
453 * If there is something waiting to be sent out,
454 * the set everything up and send the first byte.
455 */
456 if (adbWriteDelay == 1) {
457 delay(ADB_DELAY); /* required */
458 adbSentChars = 0;
459 adbActionState = ADB_ACTION_OUT;
460 /*
461 * If the interrupt is on, we were too slow
462 * and the chip has already started to send
463 * something to us, so back out of the write
464 * and start a read cycle.
465 */
466 if (ADB_INTR_IS_ON) {
467 ADB_SET_SR_INPUT();
468 ADB_SET_STATE_IDLE_CUDA();
469 adbSentChars = 0;
470 adbActionState = ADB_ACTION_IDLE;
471 adbInputBuffer[0] = 0;
472 break;
473 }
474 /*
475 * If we got here, it's ok to start sending
476 * so load the first byte and tell the chip
477 * we want to send.
478 */
479 ADB_SET_STATE_TIP();
480 ADB_SET_SR_OUTPUT();
481 write_via_reg(VIA1, vSR, adbOutputBuffer[adbSentChars + 1]);
482 }
483 } else {
484 ADB_TOGGLE_STATE_ACK_CUDA();
485 #ifdef ADB_DEBUG
486 if (adb_debug)
487 printf_intr("in 0x%02x ",
488 adbInputBuffer[adbInputBuffer[0]]);
489 #endif
490 }
491 break;
492
493 case ADB_ACTION_OUT:
494 i = ADB_SR(); /* reset SR-intr in IFR */
495 #ifdef ADB_DEBUG
496 if (adb_debug)
497 printf_intr("intr out 0x%02x ", i);
498 #endif
499
500 adbSentChars++;
501 if (ADB_INTR_IS_ON) { /* ADB intr low during write */
502 #ifdef ADB_DEBUG
503 if (adb_debug)
504 printf_intr("intr was on ");
505 #endif
506 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
507 ADB_SET_STATE_IDLE_CUDA();
508 adbSentChars = 0; /* must start all over */
509 adbActionState = ADB_ACTION_IDLE; /* new state */
510 adbInputBuffer[0] = 0;
511 adbWriteDelay = 1; /* must retry when done with
512 * read */
513 delay(ADB_DELAY);
514 goto switch_start; /* process next state right
515 * now */
516 break;
517 }
518 if (adbOutputBuffer[0] == adbSentChars) { /* check for done */
519 if (0 == adb_cmd_result(adbOutputBuffer)) { /* do we expect data
520 * back? */
521 adbWaiting = 1; /* signal waiting for return */
522 adbWaitingCmd = adbOutputBuffer[2]; /* save waiting command */
523 } else { /* no talk, so done */
524 /* set up stuff for adb_pass_up */
525 for (i = 0; i <= adbInputBuffer[0]; i++)
526 packet.data[i] = adbInputBuffer[i];
527 packet.saveBuf = adbBuffer;
528 packet.compRout = adbCompRout;
529 packet.compData = adbCompData;
530 packet.cmd = adbWaitingCmd;
531 packet.unsol = 0;
532 packet.ack_only = 1;
533 adb_pass_up(&packet);
534
535 /* reset "waiting" vars, just in case */
536 adbWaitingCmd = 0;
537 adbBuffer = (long)0;
538 adbCompRout = (long)0;
539 adbCompData = (long)0;
540 }
541
542 adbWriteDelay = 0; /* done writing */
543 adbActionState = ADB_ACTION_IDLE; /* signal bus is idle */
544 ADB_SET_SR_INPUT();
545 ADB_SET_STATE_IDLE_CUDA();
546 #ifdef ADB_DEBUG
547 if (adb_debug)
548 printf_intr("write done ");
549 #endif
550 } else {
551 write_via_reg(VIA1, vSR, adbOutputBuffer[adbSentChars + 1]); /* send next byte */
552 ADB_TOGGLE_STATE_ACK_CUDA(); /* signal byte ready to
553 * shift */
554 #ifdef ADB_DEBUG
555 if (adb_debug)
556 printf_intr("toggle ");
557 #endif
558 }
559 break;
560
561 case ADB_ACTION_NOTREADY:
562 printf_intr("adb: not yet initialized\n");
563 break;
564
565 default:
566 printf_intr("intr: unknown ADB state\n");
567 }
568
569 ADB_VIA_INTR_ENABLE(); /* enable ADB interrupt on IIs. */
570
571 splx(s); /* restore */
572
573 return;
574 } /* end adb_intr_cuda */
575
576
577 int
578 send_adb_cuda(u_char * in, u_char * buffer, void *compRout, void *data, int
579 command)
580 {
581 int i, s, len;
582
583 #ifdef ADB_DEBUG
584 if (adb_debug)
585 printf_intr("SEND\n");
586 #endif
587
588 if (adbActionState == ADB_ACTION_NOTREADY)
589 return 1;
590
591 /* Don't interrupt while we are messing with the ADB */
592 s = splhigh();
593
594 if ((adbActionState == ADB_ACTION_IDLE) && /* ADB available? */
595 (ADB_INTR_IS_OFF)) { /* and no incoming interrupt? */
596 } else
597 if (adbWriteDelay == 0) /* it's busy, but is anything waiting? */
598 adbWriteDelay = 1; /* if no, then we'll "queue"
599 * it up */
600 else {
601 splx(s);
602 return 1; /* really busy! */
603 }
604
605 #ifdef ADB_DEBUG
606 if (adb_debug)
607 printf_intr("QUEUE\n");
608 #endif
609 if ((long)in == (long)0) { /* need to convert? */
610 /*
611 * Don't need to use adb_cmd_extra here because this section
612 * will be called ONLY when it is an ADB command (no RTC or
613 * PRAM)
614 */
615 if ((command & 0x0c) == 0x08) /* copy addl data ONLY if
616 * doing a listen! */
617 len = buffer[0]; /* length of additional data */
618 else
619 len = 0;/* no additional data */
620
621 adbOutputBuffer[0] = 2 + len; /* dev. type + command + addl.
622 * data */
623 adbOutputBuffer[1] = 0x00; /* mark as an ADB command */
624 adbOutputBuffer[2] = (u_char)command; /* load command */
625
626 for (i = 1; i <= len; i++) /* copy additional output
627 * data, if any */
628 adbOutputBuffer[2 + i] = buffer[i];
629 } else
630 for (i = 0; i <= (in[0] + 1); i++)
631 adbOutputBuffer[i] = in[i];
632
633 adbSentChars = 0; /* nothing sent yet */
634 adbBuffer = buffer; /* save buffer to know where to save result */
635 adbCompRout = compRout; /* save completion routine pointer */
636 adbCompData = data; /* save completion routine data pointer */
637 adbWaitingCmd = adbOutputBuffer[2]; /* save wait command */
638
639 if (adbWriteDelay != 1) { /* start command now? */
640 #ifdef ADB_DEBUG
641 if (adb_debug)
642 printf_intr("out start NOW");
643 #endif
644 delay(ADB_DELAY);
645 adbActionState = ADB_ACTION_OUT; /* set next state */
646 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
647 write_via_reg(VIA1, vSR, adbOutputBuffer[adbSentChars + 1]); /* load byte for output */
648 ADB_SET_STATE_ACKOFF_CUDA();
649 ADB_SET_STATE_TIP(); /* tell ADB that we want to send */
650 }
651 adbWriteDelay = 1; /* something in the write "queue" */
652
653 splx(s);
654
655 if ((s & (1 << 18)) || adb_polling) /* XXX were VIA1 interrupts blocked ? */
656 /* poll until byte done */
657 while ((adbActionState != ADB_ACTION_IDLE) || (ADB_INTR_IS_ON)
658 || (adbWaiting == 1))
659 if (ADB_SR_INTR_IS_ON) { /* wait for "interrupt" */
660 adb_intr_cuda(); /* process it */
661 adb_soft_intr();
662 }
663
664 return 0;
665 } /* send_adb_cuda */
666
667
668 void
669 adb_intr_II(void)
670 {
671 panic("adb_intr_II");
672 }
673
674
675 /*
676 * send_adb version for II series machines
677 */
678 int
679 send_adb_II(u_char * in, u_char * buffer, void *compRout, void *data, int command)
680 {
681 panic("send_adb_II");
682 }
683
684
685 /*
686 * This routine is called from the II series interrupt routine
687 * to determine what the "next" device is that should be polled.
688 */
689 int
690 adb_guess_next_device(void)
691 {
692 int last, i, dummy;
693
694 if (adbStarting) {
695 /*
696 * Start polling EVERY device, since we can't be sure there is
697 * anything in the device table yet
698 */
699 if (adbLastDevice < 1 || adbLastDevice > 15)
700 adbLastDevice = 1;
701 if (++adbLastDevice > 15) /* point to next one */
702 adbLastDevice = 1;
703 } else {
704 /* find the next device using the device table */
705 if (adbLastDevice < 1 || adbLastDevice > 15) /* let's be parinoid */
706 adbLastDevice = 2;
707 last = 1; /* default index location */
708
709 for (i = 1; i < 16; i++) /* find index entry */
710 if (ADBDevTable[i].currentAddr == adbLastDevice) { /* look for device */
711 last = i; /* found it */
712 break;
713 }
714 dummy = last; /* index to start at */
715 for (;;) { /* find next device in index */
716 if (++dummy > 15) /* wrap around if needed */
717 dummy = 1;
718 if (dummy == last) { /* didn't find any other
719 * device! This can happen if
720 * there are no devices on the
721 * bus */
722 dummy = 2;
723 break;
724 }
725 /* found the next device */
726 if (ADBDevTable[dummy].devType != 0)
727 break;
728 }
729 adbLastDevice = ADBDevTable[dummy].currentAddr;
730 }
731 return adbLastDevice;
732 }
733
734
735 /*
736 * Called when when an adb interrupt happens.
737 * This routine simply transfers control over to the appropriate
738 * code for the machine we are running on.
739 */
740 void
741 adb_intr(void)
742 {
743 switch (adbHardware) {
744 case ADB_HW_II:
745 adb_intr_II();
746 break;
747
748 case ADB_HW_IISI:
749 adb_intr_IIsi();
750 break;
751
752 case ADB_HW_PB:
753 break;
754
755 case ADB_HW_CUDA:
756 adb_intr_cuda();
757 break;
758
759 case ADB_HW_UNKNOWN:
760 break;
761 }
762 }
763
764
765 /*
766 * called when when an adb interrupt happens
767 *
768 * IIsi version of adb_intr
769 *
770 */
771 void
772 adb_intr_IIsi(void)
773 {
774 panic("adb_intr_IIsi");
775 }
776
777
778 /*****************************************************************************
779 * if the device is currently busy, and there is no data waiting to go out, then
780 * the data is "queued" in the outgoing buffer. If we are already waiting, then
781 * we return.
782 * in: if (in == 0) then the command string is built from command and buffer
783 * if (in != 0) then in is used as the command string
784 * buffer: additional data to be sent (used only if in == 0)
785 * this is also where return data is stored
786 * compRout: the completion routine that is called when then return value
787 * is received (if a return value is expected)
788 * data: a data pointer that can be used by the completion routine
789 * command: an ADB command to be sent (used only if in == 0)
790 *
791 */
792 int
793 send_adb_IIsi(u_char * in, u_char * buffer, void *compRout, void *data, int
794 command)
795 {
796 panic("send_adb_IIsi");
797 }
798
799
800 /*
801 * adb_pass_up is called by the interrupt-time routines.
802 * It takes the raw packet data that was received from the
803 * device and puts it into the queue that the upper half
804 * processes. It then signals for a soft ADB interrupt which
805 * will eventually call the upper half routine (adb_soft_intr).
806 *
807 * If in->unsol is 0, then this is either the notification
808 * that the packet was sent (on a LISTEN, for example), or the
809 * response from the device (on a TALK). The completion routine
810 * is called only if the user specified one.
811 *
812 * If in->unsol is 1, then this packet was unsolicited and
813 * so we look up the device in the ADB device table to determine
814 * what it's default service routine is.
815 *
816 * If in->ack_only is 1, then we really only need to call
817 * the completion routine, so don't do any other stuff.
818 *
819 * Note that in->data contains the packet header AND data,
820 * while adbInbound[]->data contains ONLY data.
821 *
822 * Note: Called only at interrupt time. Assumes this.
823 */
824 void
825 adb_pass_up(struct adbCommand *in)
826 {
827 int i, start = 0, len = 0, cmd = 0;
828 ADBDataBlock block;
829
830 /* temp for testing */
831 /*u_char *buffer = 0;*/
832 /*u_char *compdata = 0;*/
833 /*u_char *comprout = 0;*/
834
835 if (adbInCount >= ADB_QUEUE) {
836 printf_intr("adb: ring buffer overflow\n");
837 return;
838 }
839
840 if (in->ack_only) {
841 len = in->data[0];
842 cmd = in->cmd;
843 start = 0;
844 } else {
845 switch (adbHardware) {
846 case ADB_HW_II:
847 cmd = in->data[1];
848 if (in->data[0] < 2)
849 len = 0;
850 else
851 len = in->data[0]-1;
852 start = 1;
853 break;
854
855 case ADB_HW_IISI:
856 case ADB_HW_CUDA:
857 /* If it's unsolicited, accept only ADB data for now */
858 if (in->unsol)
859 if (0 != in->data[2])
860 return;
861 cmd = in->data[4];
862 if (in->data[0] < 5)
863 len = 0;
864 else
865 len = in->data[0]-4;
866 start = 4;
867 break;
868
869 case ADB_HW_PB:
870 return; /* how does PM handle "unsolicited" messages? */
871
872 case ADB_HW_UNKNOWN:
873 return;
874 }
875
876 /* Make sure there is a valid device entry for this device */
877 if (in->unsol) {
878 /* ignore unsolicited data during adbreinit */
879 if (adbStarting)
880 return;
881 /* get device's comp. routine and data area */
882 if (-1 == get_adb_info(&block, ((cmd & 0xf0) >> 4)))
883 return;
884 }
885 }
886
887 /*
888 * If this is an unsolicited packet, we need to fill in
889 * some info so adb_soft_intr can process this packet
890 * properly. If it's not unsolicited, then use what
891 * the caller sent us.
892 */
893 if (in->unsol) {
894 adbInbound[adbInTail].compRout = (void *)block.dbServiceRtPtr;
895 adbInbound[adbInTail].compData = (void *)block.dbDataAreaAddr;
896 adbInbound[adbInTail].saveBuf = (void *)adbInbound[adbInTail].data;
897 } else {
898 adbInbound[adbInTail].compRout = (void *)in->compRout;
899 adbInbound[adbInTail].compData = (void *)in->compData;
900 adbInbound[adbInTail].saveBuf = (void *)in->saveBuf;
901 }
902
903 #ifdef ADB_DEBUG
904 if (adb_debug && in->data[1] == 2)
905 printf_intr("adb: caught error\n");
906 #endif
907
908 /* copy the packet data over */
909 /*
910 * TO DO: If the *_intr routines fed their incoming data
911 * directly into an adbCommand struct, which is passed to
912 * this routine, then we could eliminate this copy.
913 */
914 for (i = 1; i <= len; i++)
915 adbInbound[adbInTail].data[i] = in->data[start+i];
916
917 adbInbound[adbInTail].data[0] = len;
918 adbInbound[adbInTail].cmd = cmd;
919
920 adbInCount++;
921 if (++adbInTail >= ADB_QUEUE)
922 adbInTail = 0;
923
924 /*
925 * If the debugger is running, call upper half manually.
926 * Otherwise, trigger a soft interrupt to handle the rest later.
927 */
928 if (adb_polling)
929 adb_soft_intr();
930 else
931 setsoftadb();
932
933 return;
934 }
935
936
937 /*
938 * Called to process the packets after they have been
939 * placed in the incoming queue.
940 *
941 */
942 void
943 adb_soft_intr(void)
944 {
945 int s, i;
946 int cmd = 0;
947 u_char *buffer = 0;
948 u_char *comprout = 0;
949 u_char *compdata = 0;
950
951 #if 0
952 s = splhigh();
953 printf_intr("sr: %x\n", (s & 0x0700));
954 splx(s);
955 #endif
956
957 /*delay(2*ADB_DELAY);*/
958
959 while (adbInCount) {
960 #ifdef ADB_DEBUG
961 if (adb_debug & 0x80)
962 printf_intr("%x %x %x ",
963 adbInCount, adbInHead, adbInTail);
964 #endif
965 /* get the data we need from the queue */
966 buffer = adbInbound[adbInHead].saveBuf;
967 comprout = adbInbound[adbInHead].compRout;
968 compdata = adbInbound[adbInHead].compData;
969 cmd = adbInbound[adbInHead].cmd;
970
971 /* copy over data to data area if it's valid */
972 /*
973 * Note that for unsol packets we don't want to copy the
974 * data anywhere, so buffer was already set to 0.
975 * For ack_only buffer was set to 0, so don't copy.
976 */
977 if (buffer)
978 for (i = 0; i <= adbInbound[adbInHead].data[0]; i++)
979 *(buffer+i) = adbInbound[adbInHead].data[i];
980
981 #ifdef ADB_DEBUG
982 if (adb_debug & 0x80) {
983 printf_intr("%p %p %p %x ",
984 buffer, comprout, compdata, (short)cmd);
985 printf_intr("buf: ");
986 print_single(adbInbound[adbInHead].data);
987 }
988 #endif
989
990 /* call default completion routine if it's valid */
991 if (comprout) {
992 int (*f)() = (void *)comprout;
993
994 (*f)(buffer, compdata, cmd);
995 #if 0
996 #ifdef __NetBSD__
997 asm(" movml #0xffff,sp@- | save all registers
998 movl %0,a2 | compdata
999 movl %1,a1 | comprout
1000 movl %2,a0 | buffer
1001 movl %3,d0 | cmd
1002 jbsr a1@ | go call the routine
1003 movml sp@+,#0xffff | restore all registers"
1004 :
1005 : "g"(compdata), "g"(comprout),
1006 "g"(buffer), "g"(cmd)
1007 : "d0", "a0", "a1", "a2");
1008 #else /* for macos based testing */
1009 asm
1010 {
1011 movem.l a0/a1/a2/d0, -(a7)
1012 move.l compdata, a2
1013 move.l comprout, a1
1014 move.l buffer, a0
1015 move.w cmd, d0
1016 jsr(a1)
1017 movem.l(a7)+, d0/a2/a1/a0
1018 }
1019 #endif
1020 #endif
1021 }
1022
1023 s = splhigh();
1024 adbInCount--;
1025 if (++adbInHead >= ADB_QUEUE)
1026 adbInHead = 0;
1027 splx(s);
1028
1029 }
1030 return;
1031 }
1032
1033
1034 /*
1035 * This is my version of the ADBOp routine. It mainly just calls the
1036 * hardware-specific routine.
1037 *
1038 * data : pointer to data area to be used by compRout
1039 * compRout : completion routine
1040 * buffer : for LISTEN: points to data to send - MAX 8 data bytes,
1041 * byte 0 = # of bytes
1042 * : for TALK: points to place to save return data
1043 * command : the adb command to send
1044 * result : 0 = success
1045 * : -1 = could not complete
1046 */
1047 int
1048 adb_op(Ptr buffer, Ptr compRout, Ptr data, short command)
1049 {
1050 int result;
1051
1052 switch (adbHardware) {
1053 case ADB_HW_II:
1054 result = send_adb_II((u_char *)0, (u_char *)buffer,
1055 (void *)compRout, (void *)data, (int)command);
1056 if (result == 0)
1057 return 0;
1058 else
1059 return -1;
1060 break;
1061
1062 case ADB_HW_IISI:
1063 result = send_adb_IIsi((u_char *)0, (u_char *)buffer,
1064 (void *)compRout, (void *)data, (int)command);
1065 /*
1066 * I wish I knew why this delay is needed. It usually needs to
1067 * be here when several commands are sent in close succession,
1068 * especially early in device probes when doing collision
1069 * detection. It must be some race condition. Sigh. - jpw
1070 */
1071 delay(100);
1072 if (result == 0)
1073 return 0;
1074 else
1075 return -1;
1076 break;
1077
1078 #if 0
1079 case ADB_HW_PB:
1080 result = pm_adb_op((u_char *)buffer, (void *)compRout,
1081 (void *)data, (int)command);
1082
1083 if (result == 0)
1084 return 0;
1085 else
1086 return -1;
1087 break;
1088 #endif
1089
1090 case ADB_HW_CUDA:
1091 result = send_adb_cuda((u_char *)0, (u_char *)buffer,
1092 (void *)compRout, (void *)data, (int)command);
1093 if (result == 0)
1094 return 0;
1095 else
1096 return -1;
1097 break;
1098
1099 case ADB_HW_UNKNOWN:
1100 default:
1101 return -1;
1102 }
1103 }
1104
1105
1106 /*
1107 * adb_hw_setup
1108 * This routine sets up the possible machine specific hardware
1109 * config (mainly VIA settings) for the various models.
1110 */
1111 void
1112 adb_hw_setup(void)
1113 {
1114 volatile int i;
1115 u_char send_string[ADB_MAX_MSG_LENGTH];
1116
1117 switch (adbHardware) {
1118 case ADB_HW_II:
1119 via_reg(VIA1, vDirB) |= 0x30; /* register B bits 4 and 5:
1120 * outputs */
1121 via_reg(VIA1, vDirB) &= 0xf7; /* register B bit 3: input */
1122 via_reg(VIA1, vACR) &= ~vSR_OUT; /* make sure SR is set
1123 * to IN (II, IIsi) */
1124 adbActionState = ADB_ACTION_IDLE; /* used by all types of
1125 * hardware (II, IIsi) */
1126 adbBusState = ADB_BUS_IDLE; /* this var. used in II-series
1127 * code only */
1128 via_reg(VIA1, vIER) = 0x84; /* make sure VIA interrupts
1129 * are on (II, IIsi) */
1130 ADB_SET_STATE_IDLE_II(); /* set ADB bus state to idle */
1131
1132 ADB_VIA_CLR_INTR(); /* clear interrupt */
1133 break;
1134
1135 case ADB_HW_IISI:
1136 via_reg(VIA1, vDirB) |= 0x30; /* register B bits 4 and 5:
1137 * outputs */
1138 via_reg(VIA1, vDirB) &= 0xf7; /* register B bit 3: input */
1139 via_reg(VIA1, vACR) &= ~vSR_OUT; /* make sure SR is set
1140 * to IN (II, IIsi) */
1141 adbActionState = ADB_ACTION_IDLE; /* used by all types of
1142 * hardware (II, IIsi) */
1143 adbBusState = ADB_BUS_IDLE; /* this var. used in II-series
1144 * code only */
1145 via_reg(VIA1, vIER) = 0x84; /* make sure VIA interrupts
1146 * are on (II, IIsi) */
1147 ADB_SET_STATE_IDLE_IISI(); /* set ADB bus state to idle */
1148
1149 /* get those pesky clock ticks we missed while booting */
1150 for (i = 0; i < 30; i++) {
1151 delay(ADB_DELAY);
1152 adb_hw_setup_IIsi(send_string);
1153 printf_intr("adb: cleanup: ");
1154 print_single(send_string);
1155 delay(ADB_DELAY);
1156 if (ADB_INTR_IS_OFF)
1157 break;
1158 }
1159 break;
1160
1161 case ADB_HW_PB:
1162 /*
1163 * XXX - really PM_VIA_CLR_INTR - should we put it in
1164 * pm_direct.h?
1165 */
1166 via_reg(VIA1, vIFR) = 0x90; /* clear interrupt */
1167 break;
1168
1169 case ADB_HW_CUDA:
1170 via_reg_or(VIA1, vDirB, 0x30); /* register B bits 4 and 5:
1171 * outputs */
1172 via_reg_and(VIA1, vDirB, 0xf7); /* register B bit 3: input */
1173 via_reg_and(VIA1, vACR, ~vSR_OUT); /* make sure SR is set
1174 * to IN */
1175 write_via_reg(VIA1, vACR, (read_via_reg(VIA1, vACR) | 0x0c) & ~0x10);
1176 adbActionState = ADB_ACTION_IDLE; /* used by all types of
1177 * hardware */
1178 adbBusState = ADB_BUS_IDLE; /* this var. used in II-series
1179 * code only */
1180 write_via_reg(VIA1, vIER, 0x84);/* make sure VIA interrupts
1181 * are on */
1182 ADB_SET_STATE_IDLE_CUDA(); /* set ADB bus state to idle */
1183
1184 /* sort of a device reset */
1185 i = ADB_SR(); /* clear interrupt */
1186 ADB_VIA_INTR_DISABLE(); /* no interrupts while clearing */
1187 ADB_SET_STATE_IDLE_CUDA(); /* reset state to idle */
1188 delay(ADB_DELAY);
1189 ADB_SET_STATE_TIP(); /* signal start of frame */
1190 delay(ADB_DELAY);
1191 ADB_TOGGLE_STATE_ACK_CUDA();
1192 delay(ADB_DELAY);
1193 ADB_CLR_STATE_TIP();
1194 delay(ADB_DELAY);
1195 ADB_SET_STATE_IDLE_CUDA(); /* back to idle state */
1196 i = ADB_SR(); /* clear interrupt */
1197 ADB_VIA_INTR_ENABLE(); /* ints ok now */
1198 break;
1199
1200 case ADB_HW_UNKNOWN:
1201 default:
1202 via_reg(VIA1, vIER) = 0x04; /* turn interrupts off - TO
1203 * DO: turn PB ints off? */
1204 return;
1205 break;
1206 }
1207 }
1208
1209
1210 /*
1211 * adb_hw_setup_IIsi
1212 * This is sort of a "read" routine that forces the adb hardware through a read cycle
1213 * if there is something waiting. This helps "clean up" any commands that may have gotten
1214 * stuck or stopped during the boot process.
1215 *
1216 */
1217 void
1218 adb_hw_setup_IIsi(u_char * buffer)
1219 {
1220 panic("adb_hw_setup_IIsi");
1221 }
1222
1223
1224
1225 /*
1226 * adb_reinit sets up the adb stuff
1227 *
1228 */
1229 void
1230 adb_reinit(void)
1231 {
1232 u_char send_string[ADB_MAX_MSG_LENGTH];
1233 int s = 0;
1234 volatile int i, x;
1235 int command;
1236 int result;
1237 int saveptr; /* point to next free relocation address */
1238 int device;
1239 int nonewtimes; /* times thru loop w/o any new devices */
1240 ADBDataBlock data; /* temp. holder for getting device info */
1241
1242 (void)(&s); /* work around lame GCC bug */
1243
1244 /* Make sure we are not interrupted while building the table. */
1245 if (adbHardware != ADB_HW_PB) /* ints must be on for PB? */
1246 s = splhigh();
1247
1248 ADBNumDevices = 0; /* no devices yet */
1249
1250 /* Let intr routines know we are running reinit */
1251 adbStarting = 1;
1252
1253 /*
1254 * Initialize the ADB table. For now, we'll always use the same table
1255 * that is defined at the beginning of this file - no mallocs.
1256 */
1257 for (i = 0; i < 16; i++)
1258 ADBDevTable[i].devType = 0;
1259
1260 adb_setup_hw_type(); /* setup hardware type */
1261
1262 adb_hw_setup(); /* init the VIA bits and hard reset ADB */
1263
1264 DELAY(1000);
1265
1266 /* send an ADB reset first */
1267 adb_op_sync((Ptr)0, (Ptr)0, (Ptr)0, (short)0x00);
1268
1269 /*
1270 * Probe for ADB devices. Probe devices 1-15 quickly to determine
1271 * which device addresses are in use and which are free. For each
1272 * address that is in use, move the device at that address to a higher
1273 * free address. Continue doing this at that address until no device
1274 * responds at that address. Then move the last device that was moved
1275 * back to the original address. Do this for the remaining addresses
1276 * that we determined were in use.
1277 *
1278 * When finished, do this entire process over again with the updated
1279 * list of in use addresses. Do this until no new devices have been
1280 * found in 20 passes though the in use address list. (This probably
1281 * seems long and complicated, but it's the best way to detect multiple
1282 * devices at the same address - sometimes it takes a couple of tries
1283 * before the collision is detected.)
1284 */
1285
1286 /* initial scan through the devices */
1287 for (i = 1; i < 16; i++) {
1288 command = (int)(0x0f | ((int)(i & 0x000f) << 4)); /* talk R3 */
1289 result = adb_op_sync((Ptr)send_string, (Ptr)0,
1290 (Ptr)0, (short)command);
1291 if (0x00 != send_string[0]) { /* anything come back ?? */
1292 ADBDevTable[++ADBNumDevices].devType =
1293 (u_char)send_string[2];
1294 ADBDevTable[ADBNumDevices].origAddr = i;
1295 ADBDevTable[ADBNumDevices].currentAddr = i;
1296 ADBDevTable[ADBNumDevices].DataAreaAddr =
1297 (long)0;
1298 ADBDevTable[ADBNumDevices].ServiceRtPtr = (void *)0;
1299 pm_check_adb_devices(i); /* tell pm driver device
1300 * is here */
1301 }
1302 }
1303
1304 /* find highest unused address */
1305 for (saveptr = 15; saveptr > 0; saveptr--)
1306 if (-1 == get_adb_info(&data, saveptr))
1307 break;
1308
1309 if (saveptr == 0) /* no free addresses??? */
1310 saveptr = 15;
1311
1312 #ifdef ADB_DEBUG
1313 if (adb_debug & 0x80) {
1314 printf_intr("first free is: 0x%02x\n", saveptr);
1315 printf_intr("devices: %i\n", ADBNumDevices);
1316 }
1317 #endif
1318
1319 nonewtimes = 0; /* no loops w/o new devices */
1320 while (nonewtimes++ < 11) {
1321 for (i = 1; i <= ADBNumDevices; i++) {
1322 device = ADBDevTable[i].currentAddr;
1323 #ifdef ADB_DEBUG
1324 if (adb_debug & 0x80)
1325 printf_intr("moving device 0x%02x to 0x%02x "
1326 "(index 0x%02x) ", device, saveptr, i);
1327 #endif
1328
1329 /* send TALK R3 to address */
1330 command = (int)(0x0f | ((int)(device & 0x000f) << 4));
1331 adb_op_sync((Ptr)send_string, (Ptr)0,
1332 (Ptr)0, (short)command);
1333
1334 /* move device to higher address */
1335 command = (int)(0x0b | ((int)(device & 0x000f) << 4));
1336 send_string[0] = 2;
1337 send_string[1] = (u_char)(saveptr | 0x60);
1338 send_string[2] = 0xfe;
1339 adb_op_sync((Ptr)send_string, (Ptr)0,
1340 (Ptr)0, (short)command);
1341
1342 /* send TALK R3 - anything at old address? */
1343 command = (int)(0x0f | ((int)(device & 0x000f) << 4));
1344 result = adb_op_sync((Ptr)send_string, (Ptr)0,
1345 (Ptr)0, (short)command);
1346 if (send_string[0] != 0) {
1347 /* new device found */
1348 /* update data for previously moved device */
1349 ADBDevTable[i].currentAddr = saveptr;
1350 #ifdef ADB_DEBUG
1351 if (adb_debug & 0x80)
1352 printf_intr("old device at index %i\n",i);
1353 #endif
1354 /* add new device in table */
1355 #ifdef ADB_DEBUG
1356 if (adb_debug & 0x80)
1357 printf_intr("new device found\n");
1358 #endif
1359 ADBDevTable[++ADBNumDevices].devType =
1360 (u_char)send_string[2];
1361 ADBDevTable[ADBNumDevices].origAddr = device;
1362 ADBDevTable[ADBNumDevices].currentAddr = device;
1363 /* These will be set correctly in adbsys.c */
1364 /* Until then, unsol. data will be ignored. */
1365 ADBDevTable[ADBNumDevices].DataAreaAddr =
1366 (long)0;
1367 ADBDevTable[ADBNumDevices].ServiceRtPtr =
1368 (void *)0;
1369 /* find next unused address */
1370 for (x = saveptr; x > 0; x--)
1371 if (-1 == get_adb_info(&data, x)) {
1372 saveptr = x;
1373 break;
1374 }
1375 #ifdef ADB_DEBUG
1376 if (adb_debug & 0x80)
1377 printf_intr("new free is 0x%02x\n",
1378 saveptr);
1379 #endif
1380 nonewtimes = 0;
1381 /* tell pm driver device is here */
1382 pm_check_adb_devices(device);
1383 } else {
1384 #ifdef ADB_DEBUG
1385 if (adb_debug & 0x80)
1386 printf_intr("moving back...\n");
1387 #endif
1388 /* move old device back */
1389 command = (int)(0x0b | ((int)(saveptr & 0x000f) << 4));
1390 send_string[0] = 2;
1391 send_string[1] = (u_char)(device | 0x60);
1392 send_string[2] = 0xfe;
1393 adb_op_sync((Ptr)send_string, (Ptr)0,
1394 (Ptr)0, (short)command);
1395 }
1396 }
1397 }
1398
1399 #ifdef ADB_DEBUG
1400 if (adb_debug) {
1401 for (i = 1; i <= ADBNumDevices; i++) {
1402 x = get_ind_adb_info(&data, i);
1403 if (x != -1)
1404 printf_intr("index 0x%x, addr 0x%x, type 0x%x\n",
1405 i, x, data.devType);
1406 }
1407 }
1408 #endif
1409
1410 /* enable the programmer's switch, if we have one */
1411 adb_prog_switch_enable();
1412
1413 if (0 == ADBNumDevices) /* tell user if no devices found */
1414 printf_intr("adb: no devices found\n");
1415
1416 adbStarting = 0; /* not starting anymore */
1417 #ifdef ADB_DEBUG
1418 printf_intr("adb: ADBReInit complete\n");
1419 #endif
1420
1421 if (adbHardware == ADB_HW_CUDA)
1422 timeout((void *)adb_cuda_tickle, 0, ADB_TICKLE_TICKS);
1423
1424 if (adbHardware != ADB_HW_PB) /* ints must be on for PB? */
1425 splx(s);
1426 return;
1427 }
1428
1429
1430 #if 0
1431 /*
1432 * adb_comp_exec
1433 * This is a general routine that calls the completion routine if there is one.
1434 * NOTE: This routine is now only used by pm_direct.c
1435 * All the code in this file (adb_direct.c) uses
1436 * the adb_pass_up routine now.
1437 */
1438 void
1439 adb_comp_exec(void)
1440 {
1441 if ((long)0 != adbCompRout) /* don't call if empty return location */
1442 #ifdef __NetBSD__
1443 asm(" movml #0xffff,sp@- | save all registers
1444 movl %0,a2 | adbCompData
1445 movl %1,a1 | adbCompRout
1446 movl %2,a0 | adbBuffer
1447 movl %3,d0 | adbWaitingCmd
1448 jbsr a1@ | go call the routine
1449 movml sp@+,#0xffff | restore all registers"
1450 :
1451 : "g"(adbCompData), "g"(adbCompRout),
1452 "g"(adbBuffer), "g"(adbWaitingCmd)
1453 : "d0", "a0", "a1", "a2");
1454 #else /* for Mac OS-based testing */
1455 asm {
1456 movem.l a0/a1/a2/d0, -(a7)
1457 move.l adbCompData, a2
1458 move.l adbCompRout, a1
1459 move.l adbBuffer, a0
1460 move.w adbWaitingCmd, d0
1461 jsr(a1)
1462 movem.l(a7) +, d0/a2/a1/a0
1463 }
1464 #endif
1465 }
1466 #endif
1467
1468
1469 /*
1470 * adb_cmd_result
1471 *
1472 * This routine lets the caller know whether the specified adb command string
1473 * should expect a returned result, such as a TALK command.
1474 *
1475 * returns: 0 if a result should be expected
1476 * 1 if a result should NOT be expected
1477 */
1478 int
1479 adb_cmd_result(u_char *in)
1480 {
1481 switch (adbHardware) {
1482 case ADB_HW_II:
1483 /* was it an ADB talk command? */
1484 if ((in[1] & 0x0c) == 0x0c)
1485 return 0;
1486 return 1;
1487
1488 case ADB_HW_IISI:
1489 case ADB_HW_CUDA:
1490 /* was it an ADB talk command? */
1491 if ((in[1] == 0x00) && ((in[2] & 0x0c) == 0x0c))
1492 return 0;
1493 /* was it an RTC/PRAM read date/time? */
1494 if ((in[1] == 0x01) && (in[2] == 0x03))
1495 return 0;
1496 return 1;
1497
1498 case ADB_HW_PB:
1499 return 1;
1500
1501 case ADB_HW_UNKNOWN:
1502 default:
1503 return 1;
1504 }
1505 }
1506
1507
1508 /*
1509 * adb_cmd_extra
1510 *
1511 * This routine lets the caller know whether the specified adb command string
1512 * may have extra data appended to the end of it, such as a LISTEN command.
1513 *
1514 * returns: 0 if extra data is allowed
1515 * 1 if extra data is NOT allowed
1516 */
1517 int
1518 adb_cmd_extra(u_char *in)
1519 {
1520 switch (adbHardware) {
1521 case ADB_HW_II:
1522 if ((in[1] & 0x0c) == 0x08) /* was it a listen command? */
1523 return 0;
1524 return 1;
1525
1526 case ADB_HW_IISI:
1527 case ADB_HW_CUDA:
1528 /*
1529 * TO DO: support needs to be added to recognize RTC and PRAM
1530 * commands
1531 */
1532 if ((in[2] & 0x0c) == 0x08) /* was it a listen command? */
1533 return 0;
1534 /* add others later */
1535 return 1;
1536
1537 case ADB_HW_PB:
1538 return 1;
1539
1540 case ADB_HW_UNKNOWN:
1541 default:
1542 return 1;
1543 }
1544 }
1545
1546
1547 /*
1548 * adb_op_sync
1549 *
1550 * This routine does exactly what the adb_op routine does, except that after
1551 * the adb_op is called, it waits until the return value is present before
1552 * returning.
1553 *
1554 * NOTE: The user specified compRout is ignored, since this routine specifies
1555 * it's own to adb_op, which is why you really called this in the first place
1556 * anyway.
1557 */
1558 int
1559 adb_op_sync(Ptr buffer, Ptr compRout, Ptr data, short command)
1560 {
1561 int result;
1562 volatile int flag = 0;
1563
1564 result = adb_op(buffer, (void *)adb_op_comprout,
1565 (void *)&flag, command); /* send command */
1566 if (result == 0) /* send ok? */
1567 while (0 == flag)
1568 /* wait for compl. routine */;
1569
1570 return result;
1571 }
1572
1573
1574 /*
1575 * adb_op_comprout
1576 *
1577 * This function is used by the adb_op_sync routine so it knows when the
1578 * function is done.
1579 */
1580 void
1581 adb_op_comprout(buffer, compdata, cmd)
1582 caddr_t buffer, compdata;
1583 int cmd;
1584 {
1585 short *p = (short *)compdata;
1586
1587 *p = 1;
1588 }
1589
1590 void
1591 adb_setup_hw_type(void)
1592 {
1593 long response;
1594
1595 adbHardware = ADB_HW_CUDA;
1596 return;
1597
1598 response = 0; /*mac68k_machine.machineid;*/
1599
1600 /*
1601 * Determine what type of ADB hardware we are running on.
1602 */
1603 switch (response) {
1604 case 6: /* II */
1605 case 7: /* IIx */
1606 case 8: /* IIcx */
1607 case 9: /* SE/30 */
1608 case 11: /* IIci */
1609 case 22: /* Quadra 700 */
1610 case 30: /* Centris 650 */
1611 case 35: /* Quadra 800 */
1612 case 36: /* Quadra 650 */
1613 case 52: /* Centris 610 */
1614 case 53: /* Quadra 610 */
1615 adbHardware = ADB_HW_II;
1616 printf_intr("adb: using II series hardware support\n");
1617 break;
1618 case 18: /* IIsi */
1619 case 20: /* Quadra 900 - not sure if IIsi or not */
1620 case 23: /* Classic II */
1621 case 26: /* Quadra 950 - not sure if IIsi or not */
1622 case 27: /* LC III, Performa 450 */
1623 case 37: /* LC II, Performa 400/405/430 */
1624 case 44: /* IIvi */
1625 case 45: /* Performa 600 */
1626 case 48: /* IIvx */
1627 case 62: /* Performa 460/465/467 */
1628 adbHardware = ADB_HW_IISI;
1629 printf_intr("adb: using IIsi series hardware support\n");
1630 break;
1631 case 21: /* PowerBook 170 */
1632 case 25: /* PowerBook 140 */
1633 case 54: /* PowerBook 145 */
1634 case 34: /* PowerBook 160 */
1635 case 84: /* PowerBook 165 */
1636 case 50: /* PowerBook 165c */
1637 case 33: /* PowerBook 180 */
1638 case 71: /* PowerBook 180c */
1639 case 115: /* PowerBook 150 */
1640 adbHardware = ADB_HW_PB;
1641 pm_setup_adb();
1642 printf_intr("adb: using PowerBook 100-series hardware support\n");
1643 break;
1644 case 29: /* PowerBook Duo 210 */
1645 case 32: /* PowerBook Duo 230 */
1646 case 38: /* PowerBook Duo 250 */
1647 case 72: /* PowerBook 500 series */
1648 case 77: /* PowerBook Duo 270 */
1649 case 102: /* PowerBook Duo 280 */
1650 case 103: /* PowerBook Duo 280c */
1651 adbHardware = ADB_HW_PB;
1652 pm_setup_adb();
1653 printf_intr("adb: using PowerBook Duo-series and PowerBook 500-series hardware support\n");
1654 break;
1655 case 49: /* Color Classic */
1656 case 56: /* LC 520 */
1657 case 60: /* Centris 660AV */
1658 case 78: /* Quadra 840AV */
1659 case 80: /* LC 550, Performa 550 */
1660 case 83: /* Color Classic II */
1661 case 89: /* LC 475, Performa 475/476 */
1662 case 92: /* LC 575, Performa 575/577/578 */
1663 case 94: /* Quadra 605 */
1664 case 98: /* LC 630, Performa 630, Quadra 630 */
1665 case 99: /* Performa 580(?)/588 */
1666 adbHardware = ADB_HW_CUDA;
1667 printf_intr("adb: using Cuda series hardware support\n");
1668 break;
1669 default:
1670 adbHardware = ADB_HW_UNKNOWN;
1671 printf_intr("adb: hardware type unknown for this machine\n");
1672 printf_intr("adb: ADB support is disabled\n");
1673 break;
1674 }
1675
1676 /*
1677 * Determine whether this machine has ADB based soft power.
1678 */
1679 switch (response) {
1680 case 18: /* IIsi */
1681 case 20: /* Quadra 900 - not sure if IIsi or not */
1682 case 26: /* Quadra 950 - not sure if IIsi or not */
1683 case 44: /* IIvi */
1684 case 45: /* Performa 600 */
1685 case 48: /* IIvx */
1686 case 49: /* Color Classic */
1687 case 83: /* Color Classic II */
1688 case 56: /* LC 520 */
1689 case 78: /* Quadra 840AV */
1690 case 80: /* LC 550, Performa 550 */
1691 case 92: /* LC 575, Performa 575/577/578 */
1692 case 98: /* LC 630, Performa 630, Quadra 630 */
1693 adbSoftPower = 1;
1694 break;
1695 }
1696 }
1697
1698 int
1699 count_adbs(void)
1700 {
1701 int i;
1702 int found;
1703
1704 found = 0;
1705
1706 for (i = 1; i < 16; i++)
1707 if (0 != ADBDevTable[i].devType)
1708 found++;
1709
1710 return found;
1711 }
1712
1713 int
1714 get_ind_adb_info(ADBDataBlock * info, int index)
1715 {
1716 if ((index < 1) || (index > 15)) /* check range 1-15 */
1717 return (-1);
1718
1719 #ifdef ADB_DEBUG
1720 if (adb_debug & 0x80)
1721 printf_intr("index 0x%x devType is: 0x%x\n", index,
1722 ADBDevTable[index].devType);
1723 #endif
1724 if (0 == ADBDevTable[index].devType) /* make sure it's a valid entry */
1725 return (-1);
1726
1727 info->devType = ADBDevTable[index].devType;
1728 info->origADBAddr = ADBDevTable[index].origAddr;
1729 info->dbServiceRtPtr = (Ptr)ADBDevTable[index].ServiceRtPtr;
1730 info->dbDataAreaAddr = (Ptr)ADBDevTable[index].DataAreaAddr;
1731
1732 return (ADBDevTable[index].currentAddr);
1733 }
1734
1735 int
1736 get_adb_info(ADBDataBlock * info, int adbAddr)
1737 {
1738 int i;
1739
1740 if ((adbAddr < 1) || (adbAddr > 15)) /* check range 1-15 */
1741 return (-1);
1742
1743 for (i = 1; i < 15; i++)
1744 if (ADBDevTable[i].currentAddr == adbAddr) {
1745 info->devType = ADBDevTable[i].devType;
1746 info->origADBAddr = ADBDevTable[i].origAddr;
1747 info->dbServiceRtPtr = (Ptr)ADBDevTable[i].ServiceRtPtr;
1748 info->dbDataAreaAddr = ADBDevTable[i].DataAreaAddr;
1749 return 0; /* found */
1750 }
1751
1752 return (-1); /* not found */
1753 }
1754
1755 int
1756 set_adb_info(ADBSetInfoBlock * info, int adbAddr)
1757 {
1758 int i;
1759
1760 if ((adbAddr < 1) || (adbAddr > 15)) /* check range 1-15 */
1761 return (-1);
1762
1763 for (i = 1; i < 15; i++)
1764 if (ADBDevTable[i].currentAddr == adbAddr) {
1765 ADBDevTable[i].ServiceRtPtr =
1766 (void *)(info->siServiceRtPtr);
1767 ADBDevTable[i].DataAreaAddr = info->siDataAreaAddr;
1768 return 0; /* found */
1769 }
1770
1771 return (-1); /* not found */
1772
1773 }
1774
1775 /* caller should really use machine-independant version: getPramTime */
1776 /* this version does pseudo-adb access only */
1777 int
1778 adb_read_date_time(unsigned long *time)
1779 {
1780 u_char output[ADB_MAX_MSG_LENGTH];
1781 int result;
1782 volatile int flag = 0;
1783
1784 switch (adbHardware) {
1785 case ADB_HW_II:
1786 return -1;
1787
1788 case ADB_HW_IISI:
1789 output[0] = 0x02; /* 2 byte message */
1790 output[1] = 0x01; /* to pram/rtc device */
1791 output[2] = 0x03; /* read date/time */
1792 result = send_adb_IIsi((u_char *)output, (u_char *)output,
1793 (void *)adb_op_comprout, (int *)&flag, (int)0);
1794 if (result != 0) /* exit if not sent */
1795 return -1;
1796
1797 while (0 == flag) /* wait for result */
1798 ;
1799
1800 *time = (long)(*(long *)(output + 1));
1801 return 0;
1802
1803 case ADB_HW_PB:
1804 return -1;
1805
1806 case ADB_HW_CUDA:
1807 output[0] = 0x02; /* 2 byte message */
1808 output[1] = 0x01; /* to pram/rtc device */
1809 output[2] = 0x03; /* read date/time */
1810 result = send_adb_cuda((u_char *)output, (u_char *)output,
1811 (void *)adb_op_comprout, (void *)&flag, (int)0);
1812 if (result != 0) /* exit if not sent */
1813 return -1;
1814
1815 while (0 == flag) /* wait for result */
1816 ;
1817
1818 /* *time = (long)(*(long *)(output + 1)) - 2082844800; */
1819 bcopy(output + 1, time, 4);
1820 *time -= 2082844800;
1821 return 0;
1822
1823 case ADB_HW_UNKNOWN:
1824 default:
1825 return -1;
1826 }
1827 }
1828
1829 /* caller should really use machine-independant version: setPramTime */
1830 /* this version does pseudo-adb access only */
1831 int
1832 adb_set_date_time(unsigned long time)
1833 {
1834 u_char output[ADB_MAX_MSG_LENGTH];
1835 int result;
1836 volatile int flag = 0;
1837
1838 time += 2082844800;
1839
1840 switch (adbHardware) {
1841
1842 case ADB_HW_CUDA:
1843 output[0] = 0x06; /* 6 byte message */
1844 output[1] = 0x01; /* to pram/rtc device */
1845 output[2] = 0x09; /* set date/time */
1846 output[3] = (u_char)(time >> 24);
1847 output[4] = (u_char)(time >> 16);
1848 output[5] = (u_char)(time >> 8);
1849 output[6] = (u_char)(time);
1850 result = send_adb_cuda((u_char *)output, (u_char *)0,
1851 (void *)adb_op_comprout, (void *)&flag, (int)0);
1852 if (result != 0) /* exit if not sent */
1853 return -1;
1854
1855 while (0 == flag) /* wait for send to finish */
1856 ;
1857
1858 return 0;
1859
1860 case ADB_HW_II:
1861 case ADB_HW_IISI:
1862 case ADB_HW_PB:
1863 case ADB_HW_UNKNOWN:
1864 default:
1865 return -1;
1866 }
1867 }
1868
1869
1870 int
1871 adb_poweroff(void)
1872 {
1873 u_char output[ADB_MAX_MSG_LENGTH];
1874 int result;
1875
1876 if (!adbSoftPower)
1877 return -1;
1878
1879 switch (adbHardware) {
1880 case ADB_HW_IISI:
1881 output[0] = 0x02; /* 2 byte message */
1882 output[1] = 0x01; /* to pram/rtc/soft-power device */
1883 output[2] = 0x0a; /* set date/time */
1884 result = send_adb_IIsi((u_char *)output, (u_char *)0,
1885 (void *)0, (void *)0, (int)0);
1886 if (result != 0) /* exit if not sent */
1887 return -1;
1888
1889 for (;;); /* wait for power off */
1890
1891 return 0;
1892
1893 case ADB_HW_PB:
1894 return -1;
1895
1896 case ADB_HW_CUDA:
1897 output[0] = 0x02; /* 2 byte message */
1898 output[1] = 0x01; /* to pram/rtc/soft-power device */
1899 output[2] = 0x0a; /* set date/time */
1900 result = send_adb_cuda((u_char *)output, (u_char *)0,
1901 (void *)0, (void *)0, (int)0);
1902 if (result != 0) /* exit if not sent */
1903 return -1;
1904
1905 for (;;); /* wait for power off */
1906
1907 return 0;
1908
1909 case ADB_HW_II: /* II models don't do ADB soft power */
1910 case ADB_HW_UNKNOWN:
1911 default:
1912 return -1;
1913 }
1914 }
1915
1916 int
1917 adb_prog_switch_enable(void)
1918 {
1919 u_char output[ADB_MAX_MSG_LENGTH];
1920 int result;
1921 volatile int flag = 0;
1922
1923 switch (adbHardware) {
1924 case ADB_HW_IISI:
1925 output[0] = 0x03; /* 3 byte message */
1926 output[1] = 0x01; /* to pram/rtc/soft-power device */
1927 output[2] = 0x1c; /* prog. switch control */
1928 output[3] = 0x01; /* enable */
1929 result = send_adb_IIsi((u_char *)output, (u_char *)0,
1930 (void *)adb_op_comprout, (void *)&flag, (int)0);
1931 if (result != 0) /* exit if not sent */
1932 return -1;
1933
1934 while (0 == flag) /* wait for send to finish */
1935 ;
1936
1937 return 0;
1938
1939 case ADB_HW_PB:
1940 return -1;
1941
1942 case ADB_HW_II: /* II models don't do prog. switch */
1943 case ADB_HW_CUDA: /* cuda doesn't do prog. switch TO DO: verify this */
1944 case ADB_HW_UNKNOWN:
1945 default:
1946 return -1;
1947 }
1948 }
1949
1950 int
1951 adb_prog_switch_disable(void)
1952 {
1953 u_char output[ADB_MAX_MSG_LENGTH];
1954 int result;
1955 volatile int flag = 0;
1956
1957 switch (adbHardware) {
1958 case ADB_HW_IISI:
1959 output[0] = 0x03; /* 3 byte message */
1960 output[1] = 0x01; /* to pram/rtc/soft-power device */
1961 output[2] = 0x1c; /* prog. switch control */
1962 output[3] = 0x01; /* disable */
1963 result = send_adb_IIsi((u_char *)output, (u_char *)0,
1964 (void *)adb_op_comprout, (void *)&flag, (int)0);
1965 if (result != 0) /* exit if not sent */
1966 return -1;
1967
1968 while (0 == flag) /* wait for send to finish */
1969 ;
1970
1971 return 0;
1972
1973 case ADB_HW_PB:
1974 return -1;
1975
1976 case ADB_HW_II: /* II models don't do prog. switch */
1977 case ADB_HW_CUDA: /* cuda doesn't do prog. switch */
1978 case ADB_HW_UNKNOWN:
1979 default:
1980 return -1;
1981 }
1982 }
1983
1984 #ifndef MRG_ADB
1985
1986 int
1987 CountADBs(void)
1988 {
1989 return (count_adbs());
1990 }
1991
1992 void
1993 ADBReInit(void)
1994 {
1995 adb_reinit();
1996 }
1997
1998 int
1999 GetIndADB(ADBDataBlock * info, int index)
2000 {
2001 return (get_ind_adb_info(info, index));
2002 }
2003
2004 int
2005 GetADBInfo(ADBDataBlock * info, int adbAddr)
2006 {
2007 return (get_adb_info(info, adbAddr));
2008 }
2009
2010 int
2011 SetADBInfo(ADBSetInfoBlock * info, int adbAddr)
2012 {
2013 return (set_adb_info(info, adbAddr));
2014 }
2015
2016 int
2017 ADBOp(Ptr buffer, Ptr compRout, Ptr data, short commandNum)
2018 {
2019 return (adb_op(buffer, compRout, data, commandNum));
2020 }
2021
2022 #endif
2023
2024
2025
2026 void
2027 pm_check_adb_devices(x)
2028 int x;
2029 {
2030 }
2031
2032 int
2033 setsoftadb()
2034 {
2035 timeout((void *)adb_soft_intr, NULL, 1);
2036 return 0;
2037 }
2038
2039 void
2040 kbd_init()
2041 {
2042 volatile int flag = 0;
2043 int result;
2044 u_char output[16];
2045 extern void adb_op_comprout();
2046
2047 output[0] = 0x03; /* 3-byte message */
2048 output[1] = 0x01; /* to pram/rtc device */
2049 output[2] = 0x01; /* cuda autopoll */
2050 output[3] = 0x01;
2051 result = send_adb_cuda(output, output, adb_op_comprout,
2052 (void *)&flag, 0);
2053 if (result != 0) /* exit if not sent */
2054 return;
2055
2056 while (flag == 0); /* wait for result */
2057 }
2058
2059 void
2060 powermac_restart()
2061 {
2062 volatile int flag = 0;
2063 int result;
2064 u_char output[16];
2065
2066 output[0] = 0x02; /* 2 byte message */
2067 output[1] = 0x01; /* to pram/rtc/soft-power device */
2068 output[2] = 0x11; /* restart */
2069 result = send_adb_cuda((u_char *)output, (u_char *)0,
2070 (void *)0, (void *)0, (int)0);
2071 if (result != 0) /* exit if not sent */
2072 return;
2073
2074 while (1); /* not return */
2075 }
2076