adb_direct.c revision 1.13 1 /* $NetBSD: adb_direct.c,v 1.13 2000/03/23 06:40:33 thorpej Exp $ */
2
3 /* From: adb_direct.c 2.02 4/18/97 jpw */
4
5 /*
6 * Copyright (C) 1996, 1997 John P. Wittkoski
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by John P. Wittkoski.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*
36 * This code is rather messy, but I don't have time right now
37 * to clean it up as much as I would like.
38 * But it works, so I'm happy. :-) jpw
39 */
40
41 /*
42 * TO DO:
43 * - We could reduce the time spent in the adb_intr_* routines
44 * by having them save the incoming and outgoing data directly
45 * in the adbInbound and adbOutbound queues, as it would reduce
46 * the number of times we need to copy the data around. It
47 * would also make the code more readable and easier to follow.
48 * - (Related to above) Use the header part of adbCommand to
49 * reduce the number of copies we have to do of the data.
50 * - (Related to above) Actually implement the adbOutbound queue.
51 * This is fairly easy once you switch all the intr routines
52 * over to using adbCommand structs directly.
53 * - There is a bug in the state machine of adb_intr_cuda
54 * code that causes hangs, especially on 030 machines, probably
55 * because of some timing issues. Because I have been unable to
56 * determine the exact cause of this bug, I used the timeout function
57 * to check for and recover from this condition. If anyone finds
58 * the actual cause of this bug, the calls to timeout and the
59 * adb_cuda_tickle routine can be removed.
60 */
61
62 #include <sys/param.h>
63 #include <sys/cdefs.h>
64 #include <sys/systm.h>
65 #include <sys/callout.h>
66 #include <sys/device.h>
67
68 #include <machine/param.h>
69 #include <machine/cpu.h>
70 #include <machine/adbsys.h>
71
72 #include <macppc/dev/viareg.h>
73 #include <macppc/dev/adbvar.h>
74
75 #define printf_intr printf
76
77 #ifdef DEBUG
78 #ifndef ADB_DEBUG
79 #define ADB_DEBUG
80 #endif
81 #endif
82
83 /* some misc. leftovers */
84 #define vPB 0x0000
85 #define vPB3 0x08
86 #define vPB4 0x10
87 #define vPB5 0x20
88 #define vSR_INT 0x04
89 #define vSR_OUT 0x10
90
91 /* the type of ADB action that we are currently preforming */
92 #define ADB_ACTION_NOTREADY 0x1 /* has not been initialized yet */
93 #define ADB_ACTION_IDLE 0x2 /* the bus is currently idle */
94 #define ADB_ACTION_OUT 0x3 /* sending out a command */
95 #define ADB_ACTION_IN 0x4 /* receiving data */
96 #define ADB_ACTION_POLLING 0x5 /* polling - II only */
97
98 /*
99 * These describe the state of the ADB bus itself, although they
100 * don't necessarily correspond directly to ADB states.
101 * Note: these are not really used in the IIsi code.
102 */
103 #define ADB_BUS_UNKNOWN 0x1 /* we don't know yet - all models */
104 #define ADB_BUS_IDLE 0x2 /* bus is idle - all models */
105 #define ADB_BUS_CMD 0x3 /* starting a command - II models */
106 #define ADB_BUS_ODD 0x4 /* the "odd" state - II models */
107 #define ADB_BUS_EVEN 0x5 /* the "even" state - II models */
108 #define ADB_BUS_ACTIVE 0x6 /* active state - IIsi models */
109 #define ADB_BUS_ACK 0x7 /* currently ACKing - IIsi models */
110
111 /*
112 * Shortcuts for setting or testing the VIA bit states.
113 * Not all shortcuts are used for every type of ADB hardware.
114 */
115 #define ADB_SET_STATE_IDLE_II() via_reg_or(VIA1, vBufB, (vPB4 | vPB5))
116 #define ADB_SET_STATE_IDLE_IISI() via_reg_and(VIA1, vBufB, ~(vPB4 | vPB5))
117 #define ADB_SET_STATE_IDLE_CUDA() via_reg_or(VIA1, vBufB, (vPB4 | vPB5))
118 #define ADB_SET_STATE_CMD() via_reg_and(VIA1, vBufB, ~(vPB4 | vPB5))
119 #define ADB_SET_STATE_EVEN() write_via_reg(VIA1, vBufB, \
120 (read_via_reg(VIA1, vBufB) | vPB4) & ~vPB5)
121 #define ADB_SET_STATE_ODD() write_via_reg(VIA1, vBufB, \
122 (read_via_reg(VIA1, vBufB) | vPB5) & ~vPB4 )
123 #define ADB_SET_STATE_ACTIVE() via_reg_or(VIA1, vBufB, vPB5)
124 #define ADB_SET_STATE_INACTIVE() via_reg_and(VIA1, vBufB, ~vPB5)
125 #define ADB_SET_STATE_TIP() via_reg_and(VIA1, vBufB, ~vPB5)
126 #define ADB_CLR_STATE_TIP() via_reg_or(VIA1, vBufB, vPB5)
127 #define ADB_SET_STATE_ACKON() via_reg_or(VIA1, vBufB, vPB4)
128 #define ADB_SET_STATE_ACKOFF() via_reg_and(VIA1, vBufB, ~vPB4)
129 #define ADB_TOGGLE_STATE_ACK_CUDA() via_reg_xor(VIA1, vBufB, vPB4)
130 #define ADB_SET_STATE_ACKON_CUDA() via_reg_and(VIA1, vBufB, ~vPB4)
131 #define ADB_SET_STATE_ACKOFF_CUDA() via_reg_or(VIA1, vBufB, vPB4)
132 #define ADB_SET_SR_INPUT() via_reg_and(VIA1, vACR, ~vSR_OUT)
133 #define ADB_SET_SR_OUTPUT() via_reg_or(VIA1, vACR, vSR_OUT)
134 #define ADB_SR() read_via_reg(VIA1, vSR)
135 #define ADB_VIA_INTR_ENABLE() write_via_reg(VIA1, vIER, 0x84)
136 #define ADB_VIA_INTR_DISABLE() write_via_reg(VIA1, vIER, 0x04)
137 #define ADB_VIA_CLR_INTR() write_via_reg(VIA1, vIFR, 0x04)
138 #define ADB_INTR_IS_OFF (vPB3 == (read_via_reg(VIA1, vBufB) & vPB3))
139 #define ADB_INTR_IS_ON (0 == (read_via_reg(VIA1, vBufB) & vPB3))
140 #define ADB_SR_INTR_IS_OFF (0 == (read_via_reg(VIA1, vIFR) & vSR_INT))
141 #define ADB_SR_INTR_IS_ON (vSR_INT == (read_via_reg(VIA1, \
142 vIFR) & vSR_INT))
143
144 /*
145 * This is the delay that is required (in uS) between certain
146 * ADB transactions. The actual timing delay for for each uS is
147 * calculated at boot time to account for differences in machine speed.
148 */
149 #define ADB_DELAY 150
150
151 /*
152 * Maximum ADB message length; includes space for data, result, and
153 * device code - plus a little for safety.
154 */
155 #define ADB_MAX_MSG_LENGTH 16
156 #define ADB_MAX_HDR_LENGTH 8
157
158 #define ADB_QUEUE 32
159 #define ADB_TICKLE_TICKS 4
160
161 /*
162 * A structure for storing information about each ADB device.
163 */
164 struct ADBDevEntry {
165 void (*ServiceRtPtr) __P((void));
166 void *DataAreaAddr;
167 char devType;
168 char origAddr;
169 char currentAddr;
170 };
171
172 /*
173 * Used to hold ADB commands that are waiting to be sent out.
174 */
175 struct adbCmdHoldEntry {
176 u_char outBuf[ADB_MAX_MSG_LENGTH]; /* our message */
177 u_char *saveBuf; /* buffer to know where to save result */
178 u_char *compRout; /* completion routine pointer */
179 u_char *data; /* completion routine data pointer */
180 };
181
182 /*
183 * Eventually used for two separate queues, the queue between
184 * the upper and lower halves, and the outgoing packet queue.
185 * TO DO: adbCommand can replace all of adbCmdHoldEntry eventually
186 */
187 struct adbCommand {
188 u_char header[ADB_MAX_HDR_LENGTH]; /* not used yet */
189 u_char data[ADB_MAX_MSG_LENGTH]; /* packet data only */
190 u_char *saveBuf; /* where to save result */
191 u_char *compRout; /* completion routine pointer */
192 u_char *compData; /* completion routine data pointer */
193 u_int cmd; /* the original command for this data */
194 u_int unsol; /* 1 if packet was unsolicited */
195 u_int ack_only; /* 1 for no special processing */
196 };
197
198 /*
199 * A few variables that we need and their initial values.
200 */
201 int adbHardware = ADB_HW_UNKNOWN;
202 int adbActionState = ADB_ACTION_NOTREADY;
203 int adbBusState = ADB_BUS_UNKNOWN;
204 int adbWaiting = 0; /* waiting for return data from the device */
205 int adbWriteDelay = 0; /* working on (or waiting to do) a write */
206 int adbOutQueueHasData = 0; /* something in the queue waiting to go out */
207 int adbNextEnd = 0; /* the next incoming bute is the last (II) */
208 int adbSoftPower = 0; /* machine supports soft power */
209
210 int adbWaitingCmd = 0; /* ADB command we are waiting for */
211 u_char *adbBuffer = (long)0; /* pointer to user data area */
212 void *adbCompRout = (long)0; /* pointer to the completion routine */
213 void *adbCompData = (long)0; /* pointer to the completion routine data */
214 long adbFakeInts = 0; /* keeps track of fake ADB interrupts for
215 * timeouts (II) */
216 int adbStarting = 1; /* doing ADBReInit so do polling differently */
217 int adbSendTalk = 0; /* the intr routine is sending the talk, not
218 * the user (II) */
219 int adbPolling = 0; /* we are polling for service request */
220 int adbPollCmd = 0; /* the last poll command we sent */
221
222 u_char adbInputBuffer[ADB_MAX_MSG_LENGTH]; /* data input buffer */
223 u_char adbOutputBuffer[ADB_MAX_MSG_LENGTH]; /* data output buffer */
224 struct adbCmdHoldEntry adbOutQueue; /* our 1 entry output queue */
225
226 int adbSentChars = 0; /* how many characters we have sent */
227 int adbLastDevice = 0; /* last ADB dev we heard from (II ONLY) */
228 int adbLastDevIndex = 0; /* last ADB dev loc in dev table (II ONLY) */
229 int adbLastCommand = 0; /* the last ADB command we sent (II) */
230
231 struct ADBDevEntry ADBDevTable[16]; /* our ADB device table */
232 int ADBNumDevices; /* num. of ADB devices found with ADBReInit */
233
234 struct adbCommand adbInbound[ADB_QUEUE]; /* incoming queue */
235 int adbInCount = 0; /* how many packets in in queue */
236 int adbInHead = 0; /* head of in queue */
237 int adbInTail = 0; /* tail of in queue */
238 struct adbCommand adbOutbound[ADB_QUEUE]; /* outgoing queue - not used yet */
239 int adbOutCount = 0; /* how many packets in out queue */
240 int adbOutHead = 0; /* head of out queue */
241 int adbOutTail = 0; /* tail of out queue */
242
243 int tickle_count = 0; /* how many tickles seen for this packet? */
244 int tickle_serial = 0; /* the last packet tickled */
245 int adb_cuda_serial = 0; /* the current packet */
246
247 struct callout adb_cuda_tickle_ch = CALLOUT_INITIALIZER;
248 struct callout adb_soft_intr_ch = CALLOUT_INITIALIZER;
249
250 volatile u_char *Via1Base;
251 extern int adb_polling; /* Are we polling? */
252
253 void pm_setup_adb __P((void));
254 void pm_check_adb_devices __P((int));
255 void pm_intr __P((void));
256 int pm_adb_op __P((u_char *, void *, void *, int));
257 void pm_init_adb_device __P((void));
258
259 /*
260 * The following are private routines.
261 */
262 #ifdef ADB_DEBUG
263 void print_single __P((u_char *));
264 #endif
265 void adb_intr __P((void));
266 void adb_intr_II __P((void));
267 void adb_intr_IIsi __P((void));
268 void adb_intr_cuda __P((void));
269 void adb_soft_intr __P((void));
270 int send_adb_II __P((u_char *, u_char *, void *, void *, int));
271 int send_adb_IIsi __P((u_char *, u_char *, void *, void *, int));
272 int send_adb_cuda __P((u_char *, u_char *, void *, void *, int));
273 void adb_intr_cuda_test __P((void));
274 void adb_cuda_tickle __P((void));
275 void adb_pass_up __P((struct adbCommand *));
276 void adb_op_comprout __P((caddr_t, caddr_t, int));
277 void adb_reinit __P((void));
278 int count_adbs __P((void));
279 int get_ind_adb_info __P((ADBDataBlock *, int));
280 int get_adb_info __P((ADBDataBlock *, int));
281 int set_adb_info __P((ADBSetInfoBlock *, int));
282 void adb_setup_hw_type __P((void));
283 int adb_op __P((Ptr, Ptr, Ptr, short));
284 int adb_op_sync __P((Ptr, Ptr, Ptr, short));
285 void adb_read_II __P((u_char *));
286 void adb_hw_setup __P((void));
287 void adb_hw_setup_IIsi __P((u_char *));
288 void adb_comp_exec __P((void));
289 int adb_cmd_result __P((u_char *));
290 int adb_cmd_extra __P((u_char *));
291 int adb_guess_next_device __P((void));
292 int adb_prog_switch_enable __P((void));
293 int adb_prog_switch_disable __P((void));
294 /* we should create this and it will be the public version */
295 int send_adb __P((u_char *, void *, void *));
296
297 #ifdef ADB_DEBUG
298 /*
299 * print_single
300 * Diagnostic display routine. Displays the hex values of the
301 * specified elements of the u_char. The length of the "string"
302 * is in [0].
303 */
304 void
305 print_single(thestring)
306 u_char *thestring;
307 {
308 int x;
309
310 if ((int)(thestring[0]) == 0) {
311 printf_intr("nothing returned\n");
312 return;
313 }
314 if (thestring == 0) {
315 printf_intr("no data - null pointer\n");
316 return;
317 }
318 if (thestring[0] > 20) {
319 printf_intr("ADB: ACK > 20 no way!\n");
320 thestring[0] = 20;
321 }
322 printf_intr("(length=0x%x):", thestring[0]);
323 for (x = 0; x < thestring[0]; x++)
324 printf_intr(" 0x%02x", thestring[x + 1]);
325 printf_intr("\n");
326 }
327 #endif
328
329 void
330 adb_cuda_tickle(void)
331 {
332 volatile int s;
333
334 if (adbActionState == ADB_ACTION_IN) {
335 if (tickle_serial == adb_cuda_serial) {
336 if (++tickle_count > 0) {
337 s = splhigh();
338 adbActionState = ADB_ACTION_IDLE;
339 adbInputBuffer[0] = 0;
340 ADB_SET_STATE_IDLE_CUDA();
341 splx(s);
342 }
343 } else {
344 tickle_serial = adb_cuda_serial;
345 tickle_count = 0;
346 }
347 } else {
348 tickle_serial = adb_cuda_serial;
349 tickle_count = 0;
350 }
351
352 callout_reset(&adb_cuda_tickle_ch, ADB_TICKLE_TICKS,
353 (void *)adb_cuda_tickle, NULL);
354 }
355
356 /*
357 * called when when an adb interrupt happens
358 *
359 * Cuda version of adb_intr
360 * TO DO: do we want to add some calls to intr_dispatch() here to
361 * grab serial interrupts?
362 */
363 void
364 adb_intr_cuda(void)
365 {
366 volatile int i, ending;
367 volatile unsigned int s;
368 struct adbCommand packet;
369
370 s = splhigh(); /* can't be too careful - might be called */
371 /* from a routine, NOT an interrupt */
372
373 ADB_VIA_CLR_INTR(); /* clear interrupt */
374 ADB_VIA_INTR_DISABLE(); /* disable ADB interrupt on IIs. */
375
376 switch_start:
377 switch (adbActionState) {
378 case ADB_ACTION_IDLE:
379 /*
380 * This is an unexpected packet, so grab the first (dummy)
381 * byte, set up the proper vars, and tell the chip we are
382 * starting to receive the packet by setting the TIP bit.
383 */
384 adbInputBuffer[1] = ADB_SR();
385 adb_cuda_serial++;
386 if (ADB_INTR_IS_OFF) /* must have been a fake start */
387 break;
388
389 ADB_SET_SR_INPUT();
390 ADB_SET_STATE_TIP();
391
392 adbInputBuffer[0] = 1;
393 adbActionState = ADB_ACTION_IN;
394 #ifdef ADB_DEBUG
395 if (adb_debug)
396 printf_intr("idle 0x%02x ", adbInputBuffer[1]);
397 #endif
398 break;
399
400 case ADB_ACTION_IN:
401 adbInputBuffer[++adbInputBuffer[0]] = ADB_SR();
402 /* intr off means this is the last byte (end of frame) */
403 if (ADB_INTR_IS_OFF)
404 ending = 1;
405 else
406 ending = 0;
407
408 if (1 == ending) { /* end of message? */
409 #ifdef ADB_DEBUG
410 if (adb_debug) {
411 printf_intr("in end 0x%02x ",
412 adbInputBuffer[adbInputBuffer[0]]);
413 print_single(adbInputBuffer);
414 }
415 #endif
416
417 /*
418 * Are we waiting AND does this packet match what we
419 * are waiting for AND is it coming from either the
420 * ADB or RTC/PRAM sub-device? This section _should_
421 * recognize all ADB and RTC/PRAM type commands, but
422 * there may be more... NOTE: commands are always at
423 * [4], even for RTC/PRAM commands.
424 */
425 /* set up data for adb_pass_up */
426 for (i = 0; i <= adbInputBuffer[0]; i++)
427 packet.data[i] = adbInputBuffer[i];
428
429 if ((adbWaiting == 1) &&
430 (adbInputBuffer[4] == adbWaitingCmd) &&
431 ((adbInputBuffer[2] == 0x00) ||
432 (adbInputBuffer[2] == 0x01))) {
433 packet.saveBuf = adbBuffer;
434 packet.compRout = adbCompRout;
435 packet.compData = adbCompData;
436 packet.unsol = 0;
437 packet.ack_only = 0;
438 adb_pass_up(&packet);
439
440 adbWaitingCmd = 0; /* reset "waiting" vars */
441 adbWaiting = 0;
442 adbBuffer = (long)0;
443 adbCompRout = (long)0;
444 adbCompData = (long)0;
445 } else {
446 packet.unsol = 1;
447 packet.ack_only = 0;
448 adb_pass_up(&packet);
449 }
450
451
452 /* reset vars and signal the end of this frame */
453 adbActionState = ADB_ACTION_IDLE;
454 adbInputBuffer[0] = 0;
455 ADB_SET_STATE_IDLE_CUDA();
456 /*ADB_SET_SR_INPUT();*/
457
458 /*
459 * If there is something waiting to be sent out,
460 * the set everything up and send the first byte.
461 */
462 if (adbWriteDelay == 1) {
463 delay(ADB_DELAY); /* required */
464 adbSentChars = 0;
465 adbActionState = ADB_ACTION_OUT;
466 /*
467 * If the interrupt is on, we were too slow
468 * and the chip has already started to send
469 * something to us, so back out of the write
470 * and start a read cycle.
471 */
472 if (ADB_INTR_IS_ON) {
473 ADB_SET_SR_INPUT();
474 ADB_SET_STATE_IDLE_CUDA();
475 adbSentChars = 0;
476 adbActionState = ADB_ACTION_IDLE;
477 adbInputBuffer[0] = 0;
478 break;
479 }
480 /*
481 * If we got here, it's ok to start sending
482 * so load the first byte and tell the chip
483 * we want to send.
484 */
485 ADB_SET_STATE_TIP();
486 ADB_SET_SR_OUTPUT();
487 write_via_reg(VIA1, vSR, adbOutputBuffer[adbSentChars + 1]);
488 }
489 } else {
490 ADB_TOGGLE_STATE_ACK_CUDA();
491 #ifdef ADB_DEBUG
492 if (adb_debug)
493 printf_intr("in 0x%02x ",
494 adbInputBuffer[adbInputBuffer[0]]);
495 #endif
496 }
497 break;
498
499 case ADB_ACTION_OUT:
500 i = ADB_SR(); /* reset SR-intr in IFR */
501 #ifdef ADB_DEBUG
502 if (adb_debug)
503 printf_intr("intr out 0x%02x ", i);
504 #endif
505
506 adbSentChars++;
507 if (ADB_INTR_IS_ON) { /* ADB intr low during write */
508 #ifdef ADB_DEBUG
509 if (adb_debug)
510 printf_intr("intr was on ");
511 #endif
512 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
513 ADB_SET_STATE_IDLE_CUDA();
514 adbSentChars = 0; /* must start all over */
515 adbActionState = ADB_ACTION_IDLE; /* new state */
516 adbInputBuffer[0] = 0;
517 adbWriteDelay = 1; /* must retry when done with
518 * read */
519 delay(ADB_DELAY);
520 goto switch_start; /* process next state right
521 * now */
522 break;
523 }
524 if (adbOutputBuffer[0] == adbSentChars) { /* check for done */
525 if (0 == adb_cmd_result(adbOutputBuffer)) { /* do we expect data
526 * back? */
527 adbWaiting = 1; /* signal waiting for return */
528 adbWaitingCmd = adbOutputBuffer[2]; /* save waiting command */
529 } else { /* no talk, so done */
530 /* set up stuff for adb_pass_up */
531 for (i = 0; i <= adbInputBuffer[0]; i++)
532 packet.data[i] = adbInputBuffer[i];
533 packet.saveBuf = adbBuffer;
534 packet.compRout = adbCompRout;
535 packet.compData = adbCompData;
536 packet.cmd = adbWaitingCmd;
537 packet.unsol = 0;
538 packet.ack_only = 1;
539 adb_pass_up(&packet);
540
541 /* reset "waiting" vars, just in case */
542 adbWaitingCmd = 0;
543 adbBuffer = (long)0;
544 adbCompRout = (long)0;
545 adbCompData = (long)0;
546 }
547
548 adbWriteDelay = 0; /* done writing */
549 adbActionState = ADB_ACTION_IDLE; /* signal bus is idle */
550 ADB_SET_SR_INPUT();
551 ADB_SET_STATE_IDLE_CUDA();
552 #ifdef ADB_DEBUG
553 if (adb_debug)
554 printf_intr("write done ");
555 #endif
556 } else {
557 write_via_reg(VIA1, vSR, adbOutputBuffer[adbSentChars + 1]); /* send next byte */
558 ADB_TOGGLE_STATE_ACK_CUDA(); /* signal byte ready to
559 * shift */
560 #ifdef ADB_DEBUG
561 if (adb_debug)
562 printf_intr("toggle ");
563 #endif
564 }
565 break;
566
567 case ADB_ACTION_NOTREADY:
568 #ifdef ADB_DEBUG
569 if (adb_debug)
570 printf_intr("adb: not yet initialized\n");
571 #endif
572 break;
573
574 default:
575 #ifdef ADB_DEBUG
576 if (adb_debug)
577 printf_intr("intr: unknown ADB state\n");
578 #endif
579 }
580
581 ADB_VIA_INTR_ENABLE(); /* enable ADB interrupt on IIs. */
582
583 splx(s); /* restore */
584
585 return;
586 } /* end adb_intr_cuda */
587
588
589 int
590 send_adb_cuda(u_char * in, u_char * buffer, void *compRout, void *data, int
591 command)
592 {
593 int i, s, len;
594
595 #ifdef ADB_DEBUG
596 if (adb_debug)
597 printf_intr("SEND\n");
598 #endif
599
600 if (adbActionState == ADB_ACTION_NOTREADY)
601 return 1;
602
603 /* Don't interrupt while we are messing with the ADB */
604 s = splhigh();
605
606 if ((adbActionState == ADB_ACTION_IDLE) && /* ADB available? */
607 (ADB_INTR_IS_OFF)) { /* and no incoming interrupt? */
608 } else
609 if (adbWriteDelay == 0) /* it's busy, but is anything waiting? */
610 adbWriteDelay = 1; /* if no, then we'll "queue"
611 * it up */
612 else {
613 splx(s);
614 return 1; /* really busy! */
615 }
616
617 #ifdef ADB_DEBUG
618 if (adb_debug)
619 printf_intr("QUEUE\n");
620 #endif
621 if ((long)in == (long)0) { /* need to convert? */
622 /*
623 * Don't need to use adb_cmd_extra here because this section
624 * will be called ONLY when it is an ADB command (no RTC or
625 * PRAM)
626 */
627 if ((command & 0x0c) == 0x08) /* copy addl data ONLY if
628 * doing a listen! */
629 len = buffer[0]; /* length of additional data */
630 else
631 len = 0;/* no additional data */
632
633 adbOutputBuffer[0] = 2 + len; /* dev. type + command + addl.
634 * data */
635 adbOutputBuffer[1] = 0x00; /* mark as an ADB command */
636 adbOutputBuffer[2] = (u_char)command; /* load command */
637
638 for (i = 1; i <= len; i++) /* copy additional output
639 * data, if any */
640 adbOutputBuffer[2 + i] = buffer[i];
641 } else
642 for (i = 0; i <= (in[0] + 1); i++)
643 adbOutputBuffer[i] = in[i];
644
645 adbSentChars = 0; /* nothing sent yet */
646 adbBuffer = buffer; /* save buffer to know where to save result */
647 adbCompRout = compRout; /* save completion routine pointer */
648 adbCompData = data; /* save completion routine data pointer */
649 adbWaitingCmd = adbOutputBuffer[2]; /* save wait command */
650
651 if (adbWriteDelay != 1) { /* start command now? */
652 #ifdef ADB_DEBUG
653 if (adb_debug)
654 printf_intr("out start NOW");
655 #endif
656 delay(ADB_DELAY);
657 adbActionState = ADB_ACTION_OUT; /* set next state */
658 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
659 write_via_reg(VIA1, vSR, adbOutputBuffer[adbSentChars + 1]); /* load byte for output */
660 ADB_SET_STATE_ACKOFF_CUDA();
661 ADB_SET_STATE_TIP(); /* tell ADB that we want to send */
662 }
663 adbWriteDelay = 1; /* something in the write "queue" */
664
665 splx(s);
666
667 if ((s & (1 << 18)) || adb_polling) /* XXX were VIA1 interrupts blocked ? */
668 /* poll until byte done */
669 while ((adbActionState != ADB_ACTION_IDLE) || (ADB_INTR_IS_ON)
670 || (adbWaiting == 1))
671 if (ADB_SR_INTR_IS_ON) { /* wait for "interrupt" */
672 adb_intr_cuda(); /* process it */
673 adb_soft_intr();
674 }
675
676 return 0;
677 } /* send_adb_cuda */
678
679
680 void
681 adb_intr_II(void)
682 {
683 panic("adb_intr_II");
684 }
685
686
687 /*
688 * send_adb version for II series machines
689 */
690 int
691 send_adb_II(u_char * in, u_char * buffer, void *compRout, void *data, int command)
692 {
693 panic("send_adb_II");
694 }
695
696
697 /*
698 * This routine is called from the II series interrupt routine
699 * to determine what the "next" device is that should be polled.
700 */
701 int
702 adb_guess_next_device(void)
703 {
704 int last, i, dummy;
705
706 if (adbStarting) {
707 /*
708 * Start polling EVERY device, since we can't be sure there is
709 * anything in the device table yet
710 */
711 if (adbLastDevice < 1 || adbLastDevice > 15)
712 adbLastDevice = 1;
713 if (++adbLastDevice > 15) /* point to next one */
714 adbLastDevice = 1;
715 } else {
716 /* find the next device using the device table */
717 if (adbLastDevice < 1 || adbLastDevice > 15) /* let's be parinoid */
718 adbLastDevice = 2;
719 last = 1; /* default index location */
720
721 for (i = 1; i < 16; i++) /* find index entry */
722 if (ADBDevTable[i].currentAddr == adbLastDevice) { /* look for device */
723 last = i; /* found it */
724 break;
725 }
726 dummy = last; /* index to start at */
727 for (;;) { /* find next device in index */
728 if (++dummy > 15) /* wrap around if needed */
729 dummy = 1;
730 if (dummy == last) { /* didn't find any other
731 * device! This can happen if
732 * there are no devices on the
733 * bus */
734 dummy = 2;
735 break;
736 }
737 /* found the next device */
738 if (ADBDevTable[dummy].devType != 0)
739 break;
740 }
741 adbLastDevice = ADBDevTable[dummy].currentAddr;
742 }
743 return adbLastDevice;
744 }
745
746
747 /*
748 * Called when when an adb interrupt happens.
749 * This routine simply transfers control over to the appropriate
750 * code for the machine we are running on.
751 */
752 void
753 adb_intr(void)
754 {
755 switch (adbHardware) {
756 case ADB_HW_II:
757 adb_intr_II();
758 break;
759
760 case ADB_HW_IISI:
761 adb_intr_IIsi();
762 break;
763
764 case ADB_HW_PB:
765 pm_intr();
766 break;
767
768 case ADB_HW_CUDA:
769 adb_intr_cuda();
770 break;
771
772 case ADB_HW_UNKNOWN:
773 break;
774 }
775 }
776
777
778 /*
779 * called when when an adb interrupt happens
780 *
781 * IIsi version of adb_intr
782 *
783 */
784 void
785 adb_intr_IIsi(void)
786 {
787 panic("adb_intr_IIsi");
788 }
789
790
791 /*****************************************************************************
792 * if the device is currently busy, and there is no data waiting to go out, then
793 * the data is "queued" in the outgoing buffer. If we are already waiting, then
794 * we return.
795 * in: if (in == 0) then the command string is built from command and buffer
796 * if (in != 0) then in is used as the command string
797 * buffer: additional data to be sent (used only if in == 0)
798 * this is also where return data is stored
799 * compRout: the completion routine that is called when then return value
800 * is received (if a return value is expected)
801 * data: a data pointer that can be used by the completion routine
802 * command: an ADB command to be sent (used only if in == 0)
803 *
804 */
805 int
806 send_adb_IIsi(u_char * in, u_char * buffer, void *compRout, void *data, int
807 command)
808 {
809 panic("send_adb_IIsi");
810 }
811
812
813 /*
814 * adb_pass_up is called by the interrupt-time routines.
815 * It takes the raw packet data that was received from the
816 * device and puts it into the queue that the upper half
817 * processes. It then signals for a soft ADB interrupt which
818 * will eventually call the upper half routine (adb_soft_intr).
819 *
820 * If in->unsol is 0, then this is either the notification
821 * that the packet was sent (on a LISTEN, for example), or the
822 * response from the device (on a TALK). The completion routine
823 * is called only if the user specified one.
824 *
825 * If in->unsol is 1, then this packet was unsolicited and
826 * so we look up the device in the ADB device table to determine
827 * what it's default service routine is.
828 *
829 * If in->ack_only is 1, then we really only need to call
830 * the completion routine, so don't do any other stuff.
831 *
832 * Note that in->data contains the packet header AND data,
833 * while adbInbound[]->data contains ONLY data.
834 *
835 * Note: Called only at interrupt time. Assumes this.
836 */
837 void
838 adb_pass_up(struct adbCommand *in)
839 {
840 int i, start = 0, len = 0, cmd = 0;
841 ADBDataBlock block;
842
843 /* temp for testing */
844 /*u_char *buffer = 0;*/
845 /*u_char *compdata = 0;*/
846 /*u_char *comprout = 0;*/
847
848 if (adbInCount >= ADB_QUEUE) {
849 #ifdef ADB_DEBUG
850 if (adb_debug)
851 printf_intr("adb: ring buffer overflow\n");
852 #endif
853 return;
854 }
855
856 if (in->ack_only) {
857 len = in->data[0];
858 cmd = in->cmd;
859 start = 0;
860 } else {
861 switch (adbHardware) {
862 case ADB_HW_II:
863 cmd = in->data[1];
864 if (in->data[0] < 2)
865 len = 0;
866 else
867 len = in->data[0]-1;
868 start = 1;
869 break;
870
871 case ADB_HW_IISI:
872 case ADB_HW_CUDA:
873 /* If it's unsolicited, accept only ADB data for now */
874 if (in->unsol)
875 if (0 != in->data[2])
876 return;
877 cmd = in->data[4];
878 if (in->data[0] < 5)
879 len = 0;
880 else
881 len = in->data[0]-4;
882 start = 4;
883 break;
884
885 case ADB_HW_PB:
886 cmd = in->data[1];
887 if (in->data[0] < 2)
888 len = 0;
889 else
890 len = in->data[0]-1;
891 start = 1;
892 break;
893
894 case ADB_HW_UNKNOWN:
895 return;
896 }
897
898 /* Make sure there is a valid device entry for this device */
899 if (in->unsol) {
900 /* ignore unsolicited data during adbreinit */
901 if (adbStarting)
902 return;
903 /* get device's comp. routine and data area */
904 if (-1 == get_adb_info(&block, ((cmd & 0xf0) >> 4)))
905 return;
906 }
907 }
908
909 /*
910 * If this is an unsolicited packet, we need to fill in
911 * some info so adb_soft_intr can process this packet
912 * properly. If it's not unsolicited, then use what
913 * the caller sent us.
914 */
915 if (in->unsol) {
916 adbInbound[adbInTail].compRout = (void *)block.dbServiceRtPtr;
917 adbInbound[adbInTail].compData = (void *)block.dbDataAreaAddr;
918 adbInbound[adbInTail].saveBuf = (void *)adbInbound[adbInTail].data;
919 } else {
920 adbInbound[adbInTail].compRout = (void *)in->compRout;
921 adbInbound[adbInTail].compData = (void *)in->compData;
922 adbInbound[adbInTail].saveBuf = (void *)in->saveBuf;
923 }
924
925 #ifdef ADB_DEBUG
926 if (adb_debug && in->data[1] == 2)
927 printf_intr("adb: caught error\n");
928 #endif
929
930 /* copy the packet data over */
931 /*
932 * TO DO: If the *_intr routines fed their incoming data
933 * directly into an adbCommand struct, which is passed to
934 * this routine, then we could eliminate this copy.
935 */
936 for (i = 1; i <= len; i++)
937 adbInbound[adbInTail].data[i] = in->data[start+i];
938
939 adbInbound[adbInTail].data[0] = len;
940 adbInbound[adbInTail].cmd = cmd;
941
942 adbInCount++;
943 if (++adbInTail >= ADB_QUEUE)
944 adbInTail = 0;
945
946 /*
947 * If the debugger is running, call upper half manually.
948 * Otherwise, trigger a soft interrupt to handle the rest later.
949 */
950 if (adb_polling)
951 adb_soft_intr();
952 else
953 setsoftadb();
954
955 return;
956 }
957
958
959 /*
960 * Called to process the packets after they have been
961 * placed in the incoming queue.
962 *
963 */
964 void
965 adb_soft_intr(void)
966 {
967 int s, i;
968 int cmd = 0;
969 u_char *buffer = 0;
970 u_char *comprout = 0;
971 u_char *compdata = 0;
972
973 #if 0
974 s = splhigh();
975 printf_intr("sr: %x\n", (s & 0x0700));
976 splx(s);
977 #endif
978
979 /*delay(2*ADB_DELAY);*/
980
981 while (adbInCount) {
982 #ifdef ADB_DEBUG
983 if (adb_debug & 0x80)
984 printf_intr("%x %x %x ",
985 adbInCount, adbInHead, adbInTail);
986 #endif
987 /* get the data we need from the queue */
988 buffer = adbInbound[adbInHead].saveBuf;
989 comprout = adbInbound[adbInHead].compRout;
990 compdata = adbInbound[adbInHead].compData;
991 cmd = adbInbound[adbInHead].cmd;
992
993 /* copy over data to data area if it's valid */
994 /*
995 * Note that for unsol packets we don't want to copy the
996 * data anywhere, so buffer was already set to 0.
997 * For ack_only buffer was set to 0, so don't copy.
998 */
999 if (buffer)
1000 for (i = 0; i <= adbInbound[adbInHead].data[0]; i++)
1001 *(buffer+i) = adbInbound[adbInHead].data[i];
1002
1003 #ifdef ADB_DEBUG
1004 if (adb_debug & 0x80) {
1005 printf_intr("%p %p %p %x ",
1006 buffer, comprout, compdata, (short)cmd);
1007 printf_intr("buf: ");
1008 print_single(adbInbound[adbInHead].data);
1009 }
1010 #endif
1011
1012 /* call default completion routine if it's valid */
1013 if (comprout) {
1014 int (*f)() = (void *)comprout;
1015
1016 (*f)(buffer, compdata, cmd);
1017 #if 0
1018 #ifdef __NetBSD__
1019 asm(" movml #0xffff,sp@- | save all registers
1020 movl %0,a2 | compdata
1021 movl %1,a1 | comprout
1022 movl %2,a0 | buffer
1023 movl %3,d0 | cmd
1024 jbsr a1@ | go call the routine
1025 movml sp@+,#0xffff | restore all registers"
1026 :
1027 : "g"(compdata), "g"(comprout),
1028 "g"(buffer), "g"(cmd)
1029 : "d0", "a0", "a1", "a2");
1030 #else /* for macos based testing */
1031 asm
1032 {
1033 movem.l a0/a1/a2/d0, -(a7)
1034 move.l compdata, a2
1035 move.l comprout, a1
1036 move.l buffer, a0
1037 move.w cmd, d0
1038 jsr(a1)
1039 movem.l(a7)+, d0/a2/a1/a0
1040 }
1041 #endif
1042 #endif
1043 }
1044
1045 s = splhigh();
1046 adbInCount--;
1047 if (++adbInHead >= ADB_QUEUE)
1048 adbInHead = 0;
1049 splx(s);
1050
1051 }
1052 return;
1053 }
1054
1055
1056 /*
1057 * This is my version of the ADBOp routine. It mainly just calls the
1058 * hardware-specific routine.
1059 *
1060 * data : pointer to data area to be used by compRout
1061 * compRout : completion routine
1062 * buffer : for LISTEN: points to data to send - MAX 8 data bytes,
1063 * byte 0 = # of bytes
1064 * : for TALK: points to place to save return data
1065 * command : the adb command to send
1066 * result : 0 = success
1067 * : -1 = could not complete
1068 */
1069 int
1070 adb_op(Ptr buffer, Ptr compRout, Ptr data, short command)
1071 {
1072 int result;
1073
1074 switch (adbHardware) {
1075 case ADB_HW_II:
1076 result = send_adb_II((u_char *)0, (u_char *)buffer,
1077 (void *)compRout, (void *)data, (int)command);
1078 if (result == 0)
1079 return 0;
1080 else
1081 return -1;
1082 break;
1083
1084 case ADB_HW_IISI:
1085 result = send_adb_IIsi((u_char *)0, (u_char *)buffer,
1086 (void *)compRout, (void *)data, (int)command);
1087 /*
1088 * I wish I knew why this delay is needed. It usually needs to
1089 * be here when several commands are sent in close succession,
1090 * especially early in device probes when doing collision
1091 * detection. It must be some race condition. Sigh. - jpw
1092 */
1093 delay(100);
1094 if (result == 0)
1095 return 0;
1096 else
1097 return -1;
1098 break;
1099
1100 case ADB_HW_PB:
1101 result = pm_adb_op((u_char *)buffer, (void *)compRout,
1102 (void *)data, (int)command);
1103
1104 if (result == 0)
1105 return 0;
1106 else
1107 return -1;
1108 break;
1109
1110 case ADB_HW_CUDA:
1111 result = send_adb_cuda((u_char *)0, (u_char *)buffer,
1112 (void *)compRout, (void *)data, (int)command);
1113 if (result == 0)
1114 return 0;
1115 else
1116 return -1;
1117 break;
1118
1119 case ADB_HW_UNKNOWN:
1120 default:
1121 return -1;
1122 }
1123 }
1124
1125
1126 /*
1127 * adb_hw_setup
1128 * This routine sets up the possible machine specific hardware
1129 * config (mainly VIA settings) for the various models.
1130 */
1131 void
1132 adb_hw_setup(void)
1133 {
1134 volatile int i;
1135 u_char send_string[ADB_MAX_MSG_LENGTH];
1136
1137 switch (adbHardware) {
1138 case ADB_HW_II:
1139 via_reg_or(VIA1, vDirB, 0x30); /* register B bits 4 and 5:
1140 * outputs */
1141 via_reg_and(VIA1, vDirB, 0xf7); /* register B bit 3: input */
1142 via_reg_and(VIA1, vACR, ~vSR_OUT); /* make sure SR is set
1143 * to IN (II, IIsi) */
1144 adbActionState = ADB_ACTION_IDLE; /* used by all types of
1145 * hardware (II, IIsi) */
1146 adbBusState = ADB_BUS_IDLE; /* this var. used in II-series
1147 * code only */
1148 write_via_reg(VIA1, vIER, 0x84);/* make sure VIA interrupts
1149 * are on (II, IIsi) */
1150 ADB_SET_STATE_IDLE_II(); /* set ADB bus state to idle */
1151
1152 ADB_VIA_CLR_INTR(); /* clear interrupt */
1153 break;
1154
1155 case ADB_HW_IISI:
1156 via_reg_or(VIA1, vDirB, 0x30); /* register B bits 4 and 5:
1157 * outputs */
1158 via_reg_and(VIA1, vDirB, 0xf7); /* register B bit 3: input */
1159 via_reg_and(VIA1, vACR, ~vSR_OUT); /* make sure SR is set
1160 * to IN (II, IIsi) */
1161 adbActionState = ADB_ACTION_IDLE; /* used by all types of
1162 * hardware (II, IIsi) */
1163 adbBusState = ADB_BUS_IDLE; /* this var. used in II-series
1164 * code only */
1165 write_via_reg(VIA1, vIER, 0x84);/* make sure VIA interrupts
1166 * are on (II, IIsi) */
1167 ADB_SET_STATE_IDLE_IISI(); /* set ADB bus state to idle */
1168
1169 /* get those pesky clock ticks we missed while booting */
1170 for (i = 0; i < 30; i++) {
1171 delay(ADB_DELAY);
1172 adb_hw_setup_IIsi(send_string);
1173 #ifdef ADB_DEBUG
1174 if (adb_debug) {
1175 printf_intr("adb: cleanup: ");
1176 print_single(send_string);
1177 }
1178 #endif
1179 delay(ADB_DELAY);
1180 if (ADB_INTR_IS_OFF)
1181 break;
1182 }
1183 break;
1184
1185 case ADB_HW_PB:
1186 /*
1187 * XXX - really PM_VIA_CLR_INTR - should we put it in
1188 * pm_direct.h?
1189 */
1190 write_via_reg(VIA1, vIFR, 0x90); /* clear interrupt */
1191 break;
1192
1193 case ADB_HW_CUDA:
1194 via_reg_or(VIA1, vDirB, 0x30); /* register B bits 4 and 5:
1195 * outputs */
1196 via_reg_and(VIA1, vDirB, 0xf7); /* register B bit 3: input */
1197 via_reg_and(VIA1, vACR, ~vSR_OUT); /* make sure SR is set
1198 * to IN */
1199 write_via_reg(VIA1, vACR, (read_via_reg(VIA1, vACR) | 0x0c) & ~0x10);
1200 adbActionState = ADB_ACTION_IDLE; /* used by all types of
1201 * hardware */
1202 adbBusState = ADB_BUS_IDLE; /* this var. used in II-series
1203 * code only */
1204 write_via_reg(VIA1, vIER, 0x84);/* make sure VIA interrupts
1205 * are on */
1206 ADB_SET_STATE_IDLE_CUDA(); /* set ADB bus state to idle */
1207
1208 /* sort of a device reset */
1209 i = ADB_SR(); /* clear interrupt */
1210 ADB_VIA_INTR_DISABLE(); /* no interrupts while clearing */
1211 ADB_SET_STATE_IDLE_CUDA(); /* reset state to idle */
1212 delay(ADB_DELAY);
1213 ADB_SET_STATE_TIP(); /* signal start of frame */
1214 delay(ADB_DELAY);
1215 ADB_TOGGLE_STATE_ACK_CUDA();
1216 delay(ADB_DELAY);
1217 ADB_CLR_STATE_TIP();
1218 delay(ADB_DELAY);
1219 ADB_SET_STATE_IDLE_CUDA(); /* back to idle state */
1220 i = ADB_SR(); /* clear interrupt */
1221 ADB_VIA_INTR_ENABLE(); /* ints ok now */
1222 break;
1223
1224 case ADB_HW_UNKNOWN:
1225 default:
1226 write_via_reg(VIA1, vIER, 0x04);/* turn interrupts off - TO
1227 * DO: turn PB ints off? */
1228 return;
1229 break;
1230 }
1231 }
1232
1233
1234 /*
1235 * adb_hw_setup_IIsi
1236 * This is sort of a "read" routine that forces the adb hardware through a read cycle
1237 * if there is something waiting. This helps "clean up" any commands that may have gotten
1238 * stuck or stopped during the boot process.
1239 *
1240 */
1241 void
1242 adb_hw_setup_IIsi(u_char * buffer)
1243 {
1244 panic("adb_hw_setup_IIsi");
1245 }
1246
1247
1248 /*
1249 * adb_reinit sets up the adb stuff
1250 *
1251 */
1252 void
1253 adb_reinit(void)
1254 {
1255 u_char send_string[ADB_MAX_MSG_LENGTH];
1256 int s = 0;
1257 volatile int i, x;
1258 int command;
1259 int result;
1260 int saveptr; /* point to next free relocation address */
1261 int device;
1262 int nonewtimes; /* times thru loop w/o any new devices */
1263 ADBDataBlock data; /* temp. holder for getting device info */
1264
1265 (void)(&s); /* work around lame GCC bug */
1266
1267 /* Make sure we are not interrupted while building the table. */
1268 if (adbHardware != ADB_HW_PB) /* ints must be on for PB? */
1269 s = splhigh();
1270
1271 ADBNumDevices = 0; /* no devices yet */
1272
1273 /* Let intr routines know we are running reinit */
1274 adbStarting = 1;
1275
1276 /*
1277 * Initialize the ADB table. For now, we'll always use the same table
1278 * that is defined at the beginning of this file - no mallocs.
1279 */
1280 for (i = 0; i < 16; i++)
1281 ADBDevTable[i].devType = 0;
1282
1283 adb_setup_hw_type(); /* setup hardware type */
1284
1285 adb_hw_setup(); /* init the VIA bits and hard reset ADB */
1286
1287 delay(1000);
1288
1289 /* send an ADB reset first */
1290 adb_op_sync((Ptr)0, (Ptr)0, (Ptr)0, (short)0x00);
1291
1292 /*
1293 * Probe for ADB devices. Probe devices 1-15 quickly to determine
1294 * which device addresses are in use and which are free. For each
1295 * address that is in use, move the device at that address to a higher
1296 * free address. Continue doing this at that address until no device
1297 * responds at that address. Then move the last device that was moved
1298 * back to the original address. Do this for the remaining addresses
1299 * that we determined were in use.
1300 *
1301 * When finished, do this entire process over again with the updated
1302 * list of in use addresses. Do this until no new devices have been
1303 * found in 20 passes though the in use address list. (This probably
1304 * seems long and complicated, but it's the best way to detect multiple
1305 * devices at the same address - sometimes it takes a couple of tries
1306 * before the collision is detected.)
1307 */
1308
1309 /* initial scan through the devices */
1310 for (i = 1; i < 16; i++) {
1311 send_string[0] = 0;
1312 command = (int)(0x0f | ((int)(i & 0x000f) << 4)); /* talk R3 */
1313 result = adb_op_sync((Ptr)send_string, (Ptr)0,
1314 (Ptr)0, (short)command);
1315 if (0x00 != send_string[0]) { /* anything come back ?? */
1316 ADBDevTable[++ADBNumDevices].devType =
1317 (u_char)send_string[2];
1318 ADBDevTable[ADBNumDevices].origAddr = i;
1319 ADBDevTable[ADBNumDevices].currentAddr = i;
1320 ADBDevTable[ADBNumDevices].DataAreaAddr =
1321 (long)0;
1322 ADBDevTable[ADBNumDevices].ServiceRtPtr = (void *)0;
1323 pm_check_adb_devices(i); /* tell pm driver device
1324 * is here */
1325 }
1326 }
1327
1328 /* find highest unused address */
1329 for (saveptr = 15; saveptr > 0; saveptr--)
1330 if (-1 == get_adb_info(&data, saveptr))
1331 break;
1332
1333 if (saveptr == 0) /* no free addresses??? */
1334 saveptr = 15;
1335
1336 #ifdef ADB_DEBUG
1337 if (adb_debug & 0x80) {
1338 printf_intr("first free is: 0x%02x\n", saveptr);
1339 printf_intr("devices: %i\n", ADBNumDevices);
1340 }
1341 #endif
1342
1343 nonewtimes = 0; /* no loops w/o new devices */
1344 while (nonewtimes++ < 11) {
1345 for (i = 1; i <= ADBNumDevices; i++) {
1346 device = ADBDevTable[i].currentAddr;
1347 #ifdef ADB_DEBUG
1348 if (adb_debug & 0x80)
1349 printf_intr("moving device 0x%02x to 0x%02x "
1350 "(index 0x%02x) ", device, saveptr, i);
1351 #endif
1352
1353 /* send TALK R3 to address */
1354 command = (int)(0x0f | ((int)(device & 0x000f) << 4));
1355 adb_op_sync((Ptr)send_string, (Ptr)0,
1356 (Ptr)0, (short)command);
1357
1358 /* move device to higher address */
1359 command = (int)(0x0b | ((int)(device & 0x000f) << 4));
1360 send_string[0] = 2;
1361 send_string[1] = (u_char)(saveptr | 0x60);
1362 send_string[2] = 0xfe;
1363 adb_op_sync((Ptr)send_string, (Ptr)0,
1364 (Ptr)0, (short)command);
1365 delay(500);
1366
1367 /* send TALK R3 - anything at old address? */
1368 command = (int)(0x0f | ((int)(device & 0x000f) << 4));
1369 result = adb_op_sync((Ptr)send_string, (Ptr)0,
1370 (Ptr)0, (short)command);
1371 if (send_string[0] != 0) {
1372 /* new device found */
1373 /* update data for previously moved device */
1374 ADBDevTable[i].currentAddr = saveptr;
1375 #ifdef ADB_DEBUG
1376 if (adb_debug & 0x80)
1377 printf_intr("old device at index %i\n",i);
1378 #endif
1379 /* add new device in table */
1380 #ifdef ADB_DEBUG
1381 if (adb_debug & 0x80)
1382 printf_intr("new device found\n");
1383 #endif
1384 ADBDevTable[++ADBNumDevices].devType =
1385 (u_char)send_string[2];
1386 ADBDevTable[ADBNumDevices].origAddr = device;
1387 ADBDevTable[ADBNumDevices].currentAddr = device;
1388 /* These will be set correctly in adbsys.c */
1389 /* Until then, unsol. data will be ignored. */
1390 ADBDevTable[ADBNumDevices].DataAreaAddr =
1391 (long)0;
1392 ADBDevTable[ADBNumDevices].ServiceRtPtr =
1393 (void *)0;
1394 /* find next unused address */
1395 for (x = saveptr; x > 0; x--)
1396 if (-1 == get_adb_info(&data, x)) {
1397 saveptr = x;
1398 break;
1399 }
1400 #ifdef ADB_DEBUG
1401 if (adb_debug & 0x80)
1402 printf_intr("new free is 0x%02x\n",
1403 saveptr);
1404 #endif
1405 nonewtimes = 0;
1406 /* tell pm driver device is here */
1407 pm_check_adb_devices(device);
1408 } else {
1409 #ifdef ADB_DEBUG
1410 if (adb_debug & 0x80)
1411 printf_intr("moving back...\n");
1412 #endif
1413 /* move old device back */
1414 command = (int)(0x0b | ((int)(saveptr & 0x000f) << 4));
1415 send_string[0] = 2;
1416 send_string[1] = (u_char)(device | 0x60);
1417 send_string[2] = 0xfe;
1418 adb_op_sync((Ptr)send_string, (Ptr)0,
1419 (Ptr)0, (short)command);
1420 delay(1000);
1421 }
1422 }
1423 }
1424
1425 #ifdef ADB_DEBUG
1426 if (adb_debug) {
1427 for (i = 1; i <= ADBNumDevices; i++) {
1428 x = get_ind_adb_info(&data, i);
1429 if (x != -1)
1430 printf_intr("index 0x%x, addr 0x%x, type 0x%x\n",
1431 i, x, data.devType);
1432 }
1433 }
1434 #endif
1435
1436 #ifndef MRG_ADB
1437 /* enable the programmer's switch, if we have one */
1438 adb_prog_switch_enable();
1439 #endif
1440
1441 #ifdef ADB_DEBUG
1442 if (adb_debug) {
1443 if (0 == ADBNumDevices) /* tell user if no devices found */
1444 printf_intr("adb: no devices found\n");
1445 }
1446 #endif
1447
1448 adbStarting = 0; /* not starting anymore */
1449 #ifdef ADB_DEBUG
1450 if (adb_debug)
1451 printf_intr("adb: ADBReInit complete\n");
1452 #endif
1453
1454 if (adbHardware == ADB_HW_CUDA)
1455 callout_reset(&adb_cuda_tickle_ch, ADB_TICKLE_TICKS,
1456 (void *)adb_cuda_tickle, NULL);
1457
1458 if (adbHardware != ADB_HW_PB) /* ints must be on for PB? */
1459 splx(s);
1460 return;
1461 }
1462
1463
1464 #if 0
1465 /*
1466 * adb_comp_exec
1467 * This is a general routine that calls the completion routine if there is one.
1468 * NOTE: This routine is now only used by pm_direct.c
1469 * All the code in this file (adb_direct.c) uses
1470 * the adb_pass_up routine now.
1471 */
1472 void
1473 adb_comp_exec(void)
1474 {
1475 if ((long)0 != adbCompRout) /* don't call if empty return location */
1476 #ifdef __NetBSD__
1477 asm(" movml #0xffff,sp@- | save all registers
1478 movl %0,a2 | adbCompData
1479 movl %1,a1 | adbCompRout
1480 movl %2,a0 | adbBuffer
1481 movl %3,d0 | adbWaitingCmd
1482 jbsr a1@ | go call the routine
1483 movml sp@+,#0xffff | restore all registers"
1484 :
1485 : "g"(adbCompData), "g"(adbCompRout),
1486 "g"(adbBuffer), "g"(adbWaitingCmd)
1487 : "d0", "a0", "a1", "a2");
1488 #else /* for Mac OS-based testing */
1489 asm {
1490 movem.l a0/a1/a2/d0, -(a7)
1491 move.l adbCompData, a2
1492 move.l adbCompRout, a1
1493 move.l adbBuffer, a0
1494 move.w adbWaitingCmd, d0
1495 jsr(a1)
1496 movem.l(a7) +, d0/a2/a1/a0
1497 }
1498 #endif
1499 }
1500 #endif
1501
1502
1503 /*
1504 * adb_cmd_result
1505 *
1506 * This routine lets the caller know whether the specified adb command string
1507 * should expect a returned result, such as a TALK command.
1508 *
1509 * returns: 0 if a result should be expected
1510 * 1 if a result should NOT be expected
1511 */
1512 int
1513 adb_cmd_result(u_char *in)
1514 {
1515 switch (adbHardware) {
1516 case ADB_HW_II:
1517 /* was it an ADB talk command? */
1518 if ((in[1] & 0x0c) == 0x0c)
1519 return 0;
1520 return 1;
1521
1522 case ADB_HW_IISI:
1523 case ADB_HW_CUDA:
1524 /* was it an ADB talk command? */
1525 if ((in[1] == 0x00) && ((in[2] & 0x0c) == 0x0c))
1526 return 0;
1527 /* was it an RTC/PRAM read date/time? */
1528 if ((in[1] == 0x01) && (in[2] == 0x03))
1529 return 0;
1530 return 1;
1531
1532 case ADB_HW_PB:
1533 return 1;
1534
1535 case ADB_HW_UNKNOWN:
1536 default:
1537 return 1;
1538 }
1539 }
1540
1541
1542 /*
1543 * adb_cmd_extra
1544 *
1545 * This routine lets the caller know whether the specified adb command string
1546 * may have extra data appended to the end of it, such as a LISTEN command.
1547 *
1548 * returns: 0 if extra data is allowed
1549 * 1 if extra data is NOT allowed
1550 */
1551 int
1552 adb_cmd_extra(u_char *in)
1553 {
1554 switch (adbHardware) {
1555 case ADB_HW_II:
1556 if ((in[1] & 0x0c) == 0x08) /* was it a listen command? */
1557 return 0;
1558 return 1;
1559
1560 case ADB_HW_IISI:
1561 case ADB_HW_CUDA:
1562 /*
1563 * TO DO: support needs to be added to recognize RTC and PRAM
1564 * commands
1565 */
1566 if ((in[2] & 0x0c) == 0x08) /* was it a listen command? */
1567 return 0;
1568 /* add others later */
1569 return 1;
1570
1571 case ADB_HW_PB:
1572 return 1;
1573
1574 case ADB_HW_UNKNOWN:
1575 default:
1576 return 1;
1577 }
1578 }
1579
1580
1581 /*
1582 * adb_op_sync
1583 *
1584 * This routine does exactly what the adb_op routine does, except that after
1585 * the adb_op is called, it waits until the return value is present before
1586 * returning.
1587 *
1588 * NOTE: The user specified compRout is ignored, since this routine specifies
1589 * it's own to adb_op, which is why you really called this in the first place
1590 * anyway.
1591 */
1592 int
1593 adb_op_sync(Ptr buffer, Ptr compRout, Ptr data, short command)
1594 {
1595 int result;
1596 volatile int flag = 0;
1597
1598 result = adb_op(buffer, (void *)adb_op_comprout,
1599 (void *)&flag, command); /* send command */
1600 if (result == 0) /* send ok? */
1601 while (0 == flag)
1602 /* wait for compl. routine */;
1603
1604 return result;
1605 }
1606
1607
1608 /*
1609 * adb_op_comprout
1610 *
1611 * This function is used by the adb_op_sync routine so it knows when the
1612 * function is done.
1613 */
1614 void
1615 adb_op_comprout(buffer, compdata, cmd)
1616 caddr_t buffer, compdata;
1617 int cmd;
1618 {
1619 short *p = (short *)compdata;
1620
1621 *p = 1;
1622 }
1623
1624 void
1625 adb_setup_hw_type(void)
1626 {
1627 switch (adbHardware) {
1628 case ADB_HW_CUDA:
1629 adbSoftPower = 1;
1630 return;
1631
1632 case ADB_HW_PB:
1633 adbSoftPower = 1;
1634 pm_setup_adb();
1635 return;
1636
1637 default:
1638 panic("unknown adb hardware");
1639 }
1640 #if 0
1641 response = 0; /*mac68k_machine.machineid;*/
1642
1643 /*
1644 * Determine what type of ADB hardware we are running on.
1645 */
1646 switch (response) {
1647 case MACH_MACC610: /* Centris 610 */
1648 case MACH_MACC650: /* Centris 650 */
1649 case MACH_MACII: /* II */
1650 case MACH_MACIICI: /* IIci */
1651 case MACH_MACIICX: /* IIcx */
1652 case MACH_MACIIX: /* IIx */
1653 case MACH_MACQ610: /* Quadra 610 */
1654 case MACH_MACQ650: /* Quadra 650 */
1655 case MACH_MACQ700: /* Quadra 700 */
1656 case MACH_MACQ800: /* Quadra 800 */
1657 case MACH_MACSE30: /* SE/30 */
1658 adbHardware = ADB_HW_II;
1659 #ifdef ADB_DEBUG
1660 if (adb_debug)
1661 printf_intr("adb: using II series hardware support\n");
1662 #endif
1663 break;
1664
1665 case MACH_MACCLASSICII: /* Classic II */
1666 case MACH_MACLCII: /* LC II, Performa 400/405/430 */
1667 case MACH_MACLCIII: /* LC III, Performa 450 */
1668 case MACH_MACIISI: /* IIsi */
1669 case MACH_MACIIVI: /* IIvi */
1670 case MACH_MACIIVX: /* IIvx */
1671 case MACH_MACP460: /* Performa 460/465/467 */
1672 case MACH_MACP600: /* Performa 600 */
1673 case MACH_MACQ900: /* Quadra 900 - XXX not sure */
1674 case MACH_MACQ950: /* Quadra 950 - XXX not sure */
1675 adbHardware = ADB_HW_IISI;
1676 #ifdef ADB_DEBUG
1677 if (adb_debug)
1678 printf_intr("adb: using IIsi series hardware support\n");
1679 #endif
1680 break;
1681
1682 case MACH_MACPB140: /* PowerBook 140 */
1683 case MACH_MACPB145: /* PowerBook 145 */
1684 case MACH_MACPB150: /* PowerBook 150 */
1685 case MACH_MACPB160: /* PowerBook 160 */
1686 case MACH_MACPB165: /* PowerBook 165 */
1687 case MACH_MACPB165C: /* PowerBook 165c */
1688 case MACH_MACPB170: /* PowerBook 170 */
1689 case MACH_MACPB180: /* PowerBook 180 */
1690 case MACH_MACPB180C: /* PowerBook 180c */
1691 adbHardware = ADB_HW_PB;
1692 pm_setup_adb();
1693 #ifdef ADB_DEBUG
1694 if (adb_debug)
1695 printf_intr("adb: using PowerBook 100-series hardware support\n");
1696 #endif
1697 break;
1698
1699 case MACH_MACPB210: /* PowerBook Duo 210 */
1700 case MACH_MACPB230: /* PowerBook Duo 230 */
1701 case MACH_MACPB250: /* PowerBook Duo 250 */
1702 case MACH_MACPB270: /* PowerBook Duo 270 */
1703 case MACH_MACPB280: /* PowerBook Duo 280 */
1704 case MACH_MACPB280C: /* PowerBook Duo 280c */
1705 case MACH_MACPB500: /* PowerBook 500 series */
1706 adbHardware = ADB_HW_PB;
1707 pm_setup_adb();
1708 #ifdef ADB_DEBUG
1709 if (adb_debug)
1710 printf_intr("adb: using PowerBook Duo-series and PowerBook 500-series hardware support\n");
1711 #endif
1712 break;
1713
1714 case MACH_MACC660AV: /* Centris 660AV */
1715 case MACH_MACCCLASSIC: /* Color Classic */
1716 case MACH_MACCCLASSICII: /* Color Classic II */
1717 case MACH_MACLC475: /* LC 475, Performa 475/476 */
1718 case MACH_MACLC475_33: /* Clock-chipped 47x */
1719 case MACH_MACLC520: /* LC 520 */
1720 case MACH_MACLC575: /* LC 575, Performa 575/577/578 */
1721 case MACH_MACP550: /* LC 550, Performa 550 */
1722 case MACH_MACP580: /* Performa 580/588 */
1723 case MACH_MACQ605: /* Quadra 605 */
1724 case MACH_MACQ605_33: /* Clock-chipped Quadra 605 */
1725 case MACH_MACQ630: /* LC 630, Performa 630, Quadra 630 */
1726 case MACH_MACQ840AV: /* Quadra 840AV */
1727 adbHardware = ADB_HW_CUDA;
1728 #ifdef ADB_DEBUG
1729 if (adb_debug)
1730 printf_intr("adb: using Cuda series hardware support\n");
1731 #endif
1732 break;
1733 default:
1734 adbHardware = ADB_HW_UNKNOWN;
1735 #ifdef ADB_DEBUG
1736 if (adb_debug) {
1737 printf_intr("adb: hardware type unknown for this machine\n");
1738 printf_intr("adb: ADB support is disabled\n");
1739 }
1740 #endif
1741 break;
1742 }
1743
1744 /*
1745 * Determine whether this machine has ADB based soft power.
1746 */
1747 switch (response) {
1748 case MACH_MACCCLASSIC: /* Color Classic */
1749 case MACH_MACCCLASSICII: /* Color Classic II */
1750 case MACH_MACIISI: /* IIsi */
1751 case MACH_MACIIVI: /* IIvi */
1752 case MACH_MACIIVX: /* IIvx */
1753 case MACH_MACLC520: /* LC 520 */
1754 case MACH_MACLC575: /* LC 575, Performa 575/577/578 */
1755 case MACH_MACP550: /* LC 550, Performa 550 */
1756 case MACH_MACP600: /* Performa 600 */
1757 case MACH_MACQ630: /* LC 630, Performa 630, Quadra 630 */
1758 case MACH_MACQ840AV: /* Quadra 840AV */
1759 case MACH_MACQ900: /* Quadra 900 - XXX not sure */
1760 case MACH_MACQ950: /* Quadra 950 - XXX not sure */
1761 adbSoftPower = 1;
1762 break;
1763 }
1764 #endif
1765 }
1766
1767 int
1768 count_adbs(void)
1769 {
1770 int i;
1771 int found;
1772
1773 found = 0;
1774
1775 for (i = 1; i < 16; i++)
1776 if (0 != ADBDevTable[i].devType)
1777 found++;
1778
1779 return found;
1780 }
1781
1782 int
1783 get_ind_adb_info(ADBDataBlock * info, int index)
1784 {
1785 if ((index < 1) || (index > 15)) /* check range 1-15 */
1786 return (-1);
1787
1788 #ifdef ADB_DEBUG
1789 if (adb_debug & 0x80)
1790 printf_intr("index 0x%x devType is: 0x%x\n", index,
1791 ADBDevTable[index].devType);
1792 #endif
1793 if (0 == ADBDevTable[index].devType) /* make sure it's a valid entry */
1794 return (-1);
1795
1796 info->devType = ADBDevTable[index].devType;
1797 info->origADBAddr = ADBDevTable[index].origAddr;
1798 info->dbServiceRtPtr = (Ptr)ADBDevTable[index].ServiceRtPtr;
1799 info->dbDataAreaAddr = (Ptr)ADBDevTable[index].DataAreaAddr;
1800
1801 return (ADBDevTable[index].currentAddr);
1802 }
1803
1804 int
1805 get_adb_info(ADBDataBlock * info, int adbAddr)
1806 {
1807 int i;
1808
1809 if ((adbAddr < 1) || (adbAddr > 15)) /* check range 1-15 */
1810 return (-1);
1811
1812 for (i = 1; i < 15; i++)
1813 if (ADBDevTable[i].currentAddr == adbAddr) {
1814 info->devType = ADBDevTable[i].devType;
1815 info->origADBAddr = ADBDevTable[i].origAddr;
1816 info->dbServiceRtPtr = (Ptr)ADBDevTable[i].ServiceRtPtr;
1817 info->dbDataAreaAddr = ADBDevTable[i].DataAreaAddr;
1818 return 0; /* found */
1819 }
1820
1821 return (-1); /* not found */
1822 }
1823
1824 int
1825 set_adb_info(ADBSetInfoBlock * info, int adbAddr)
1826 {
1827 int i;
1828
1829 if ((adbAddr < 1) || (adbAddr > 15)) /* check range 1-15 */
1830 return (-1);
1831
1832 for (i = 1; i < 15; i++)
1833 if (ADBDevTable[i].currentAddr == adbAddr) {
1834 ADBDevTable[i].ServiceRtPtr =
1835 (void *)(info->siServiceRtPtr);
1836 ADBDevTable[i].DataAreaAddr = info->siDataAreaAddr;
1837 return 0; /* found */
1838 }
1839
1840 return (-1); /* not found */
1841
1842 }
1843
1844 #ifndef MRG_ADB
1845
1846 /* caller should really use machine-independant version: getPramTime */
1847 /* this version does pseudo-adb access only */
1848 int
1849 adb_read_date_time(unsigned long *time)
1850 {
1851 u_char output[ADB_MAX_MSG_LENGTH];
1852 int result;
1853 volatile int flag = 0;
1854
1855 switch (adbHardware) {
1856 case ADB_HW_II:
1857 return -1;
1858
1859 case ADB_HW_IISI:
1860 output[0] = 0x02; /* 2 byte message */
1861 output[1] = 0x01; /* to pram/rtc device */
1862 output[2] = 0x03; /* read date/time */
1863 result = send_adb_IIsi((u_char *)output, (u_char *)output,
1864 (void *)adb_op_comprout, (int *)&flag, (int)0);
1865 if (result != 0) /* exit if not sent */
1866 return -1;
1867
1868 while (0 == flag) /* wait for result */
1869 ;
1870
1871 *time = (long)(*(long *)(output + 1));
1872 return 0;
1873
1874 case ADB_HW_PB:
1875 pm_read_date_time(time);
1876 return 0;
1877
1878 case ADB_HW_CUDA:
1879 output[0] = 0x02; /* 2 byte message */
1880 output[1] = 0x01; /* to pram/rtc device */
1881 output[2] = 0x03; /* read date/time */
1882 result = send_adb_cuda((u_char *)output, (u_char *)output,
1883 (void *)adb_op_comprout, (void *)&flag, (int)0);
1884 if (result != 0) /* exit if not sent */
1885 return -1;
1886
1887 while (0 == flag) /* wait for result */
1888 ;
1889
1890 memcpy(time, output + 1, 4);
1891 return 0;
1892
1893 case ADB_HW_UNKNOWN:
1894 default:
1895 return -1;
1896 }
1897 }
1898
1899 /* caller should really use machine-independant version: setPramTime */
1900 /* this version does pseudo-adb access only */
1901 int
1902 adb_set_date_time(unsigned long time)
1903 {
1904 u_char output[ADB_MAX_MSG_LENGTH];
1905 int result;
1906 volatile int flag = 0;
1907
1908 switch (adbHardware) {
1909
1910 case ADB_HW_CUDA:
1911 output[0] = 0x06; /* 6 byte message */
1912 output[1] = 0x01; /* to pram/rtc device */
1913 output[2] = 0x09; /* set date/time */
1914 output[3] = (u_char)(time >> 24);
1915 output[4] = (u_char)(time >> 16);
1916 output[5] = (u_char)(time >> 8);
1917 output[6] = (u_char)(time);
1918 result = send_adb_cuda((u_char *)output, (u_char *)0,
1919 (void *)adb_op_comprout, (void *)&flag, (int)0);
1920 if (result != 0) /* exit if not sent */
1921 return -1;
1922
1923 while (0 == flag) /* wait for send to finish */
1924 ;
1925
1926 return 0;
1927
1928 case ADB_HW_PB:
1929 pm_set_date_time(time);
1930 return 0;
1931
1932 case ADB_HW_II:
1933 case ADB_HW_IISI:
1934 case ADB_HW_UNKNOWN:
1935 default:
1936 return -1;
1937 }
1938 }
1939
1940
1941 int
1942 adb_poweroff(void)
1943 {
1944 u_char output[ADB_MAX_MSG_LENGTH];
1945 int result;
1946
1947 if (!adbSoftPower)
1948 return -1;
1949
1950 adb_polling = 1;
1951
1952 switch (adbHardware) {
1953 case ADB_HW_IISI:
1954 output[0] = 0x02; /* 2 byte message */
1955 output[1] = 0x01; /* to pram/rtc/soft-power device */
1956 output[2] = 0x0a; /* set date/time */
1957 result = send_adb_IIsi((u_char *)output, (u_char *)0,
1958 (void *)0, (void *)0, (int)0);
1959 if (result != 0) /* exit if not sent */
1960 return -1;
1961
1962 for (;;); /* wait for power off */
1963
1964 return 0;
1965
1966 case ADB_HW_PB:
1967 pm_adb_poweroff();
1968
1969 for (;;); /* wait for power off */
1970
1971 return 0;
1972
1973 case ADB_HW_CUDA:
1974 output[0] = 0x02; /* 2 byte message */
1975 output[1] = 0x01; /* to pram/rtc/soft-power device */
1976 output[2] = 0x0a; /* set date/time */
1977 result = send_adb_cuda((u_char *)output, (u_char *)0,
1978 (void *)0, (void *)0, (int)0);
1979 if (result != 0) /* exit if not sent */
1980 return -1;
1981
1982 for (;;); /* wait for power off */
1983
1984 return 0;
1985
1986 case ADB_HW_II: /* II models don't do ADB soft power */
1987 case ADB_HW_UNKNOWN:
1988 default:
1989 return -1;
1990 }
1991 }
1992
1993 int
1994 adb_prog_switch_enable(void)
1995 {
1996 u_char output[ADB_MAX_MSG_LENGTH];
1997 int result;
1998 volatile int flag = 0;
1999
2000 switch (adbHardware) {
2001 case ADB_HW_IISI:
2002 output[0] = 0x03; /* 3 byte message */
2003 output[1] = 0x01; /* to pram/rtc/soft-power device */
2004 output[2] = 0x1c; /* prog. switch control */
2005 output[3] = 0x01; /* enable */
2006 result = send_adb_IIsi((u_char *)output, (u_char *)0,
2007 (void *)adb_op_comprout, (void *)&flag, (int)0);
2008 if (result != 0) /* exit if not sent */
2009 return -1;
2010
2011 while (0 == flag) /* wait for send to finish */
2012 ;
2013
2014 return 0;
2015
2016 case ADB_HW_PB:
2017 return -1;
2018
2019 case ADB_HW_II: /* II models don't do prog. switch */
2020 case ADB_HW_CUDA: /* cuda doesn't do prog. switch TO DO: verify this */
2021 case ADB_HW_UNKNOWN:
2022 default:
2023 return -1;
2024 }
2025 }
2026
2027 int
2028 adb_prog_switch_disable(void)
2029 {
2030 u_char output[ADB_MAX_MSG_LENGTH];
2031 int result;
2032 volatile int flag = 0;
2033
2034 switch (adbHardware) {
2035 case ADB_HW_IISI:
2036 output[0] = 0x03; /* 3 byte message */
2037 output[1] = 0x01; /* to pram/rtc/soft-power device */
2038 output[2] = 0x1c; /* prog. switch control */
2039 output[3] = 0x01; /* disable */
2040 result = send_adb_IIsi((u_char *)output, (u_char *)0,
2041 (void *)adb_op_comprout, (void *)&flag, (int)0);
2042 if (result != 0) /* exit if not sent */
2043 return -1;
2044
2045 while (0 == flag) /* wait for send to finish */
2046 ;
2047
2048 return 0;
2049
2050 case ADB_HW_PB:
2051 return -1;
2052
2053 case ADB_HW_II: /* II models don't do prog. switch */
2054 case ADB_HW_CUDA: /* cuda doesn't do prog. switch */
2055 case ADB_HW_UNKNOWN:
2056 default:
2057 return -1;
2058 }
2059 }
2060
2061 int
2062 CountADBs(void)
2063 {
2064 return (count_adbs());
2065 }
2066
2067 void
2068 ADBReInit(void)
2069 {
2070 adb_reinit();
2071 }
2072
2073 int
2074 GetIndADB(ADBDataBlock * info, int index)
2075 {
2076 return (get_ind_adb_info(info, index));
2077 }
2078
2079 int
2080 GetADBInfo(ADBDataBlock * info, int adbAddr)
2081 {
2082 return (get_adb_info(info, adbAddr));
2083 }
2084
2085 int
2086 SetADBInfo(ADBSetInfoBlock * info, int adbAddr)
2087 {
2088 return (set_adb_info(info, adbAddr));
2089 }
2090
2091 int
2092 ADBOp(Ptr buffer, Ptr compRout, Ptr data, short commandNum)
2093 {
2094 return (adb_op(buffer, compRout, data, commandNum));
2095 }
2096
2097 #endif
2098
2099 int
2100 setsoftadb()
2101 {
2102 callout_reset(&adb_soft_intr_ch, 1, (void *)adb_soft_intr, NULL);
2103 return 0;
2104 }
2105
2106 void
2107 adb_cuda_autopoll()
2108 {
2109 volatile int flag = 0;
2110 int result;
2111 u_char output[16];
2112 extern void adb_op_comprout();
2113
2114 output[0] = 0x03; /* 3-byte message */
2115 output[1] = 0x01; /* to pram/rtc device */
2116 output[2] = 0x01; /* cuda autopoll */
2117 output[3] = 0x01;
2118 result = send_adb_cuda(output, output, adb_op_comprout,
2119 (void *)&flag, 0);
2120 if (result != 0) /* exit if not sent */
2121 return;
2122
2123 while (flag == 0); /* wait for result */
2124 }
2125
2126 void
2127 adb_restart()
2128 {
2129 volatile int flag = 0;
2130 int result;
2131 u_char output[16];
2132
2133 adb_polling = 1;
2134
2135 switch (adbHardware) {
2136 case ADB_HW_CUDA:
2137 output[0] = 0x02; /* 2 byte message */
2138 output[1] = 0x01; /* to pram/rtc/soft-power device */
2139 output[2] = 0x11; /* restart */
2140 result = send_adb_cuda((u_char *)output, (u_char *)0,
2141 (void *)0, (void *)0, (int)0);
2142 if (result != 0) /* exit if not sent */
2143 return;
2144 while (1); /* not return */
2145
2146 case ADB_HW_PB:
2147 pm_adb_restart();
2148 while (1); /* not return */
2149 }
2150 }
2151