adb_direct.c revision 1.18 1 /* $NetBSD: adb_direct.c,v 1.18 2001/06/19 12:02:55 simonb Exp $ */
2
3 /* From: adb_direct.c 2.02 4/18/97 jpw */
4
5 /*
6 * Copyright (C) 1996, 1997 John P. Wittkoski
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by John P. Wittkoski.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*
36 * This code is rather messy, but I don't have time right now
37 * to clean it up as much as I would like.
38 * But it works, so I'm happy. :-) jpw
39 */
40
41 /*
42 * TO DO:
43 * - We could reduce the time spent in the adb_intr_* routines
44 * by having them save the incoming and outgoing data directly
45 * in the adbInbound and adbOutbound queues, as it would reduce
46 * the number of times we need to copy the data around. It
47 * would also make the code more readable and easier to follow.
48 * - (Related to above) Use the header part of adbCommand to
49 * reduce the number of copies we have to do of the data.
50 * - (Related to above) Actually implement the adbOutbound queue.
51 * This is fairly easy once you switch all the intr routines
52 * over to using adbCommand structs directly.
53 * - There is a bug in the state machine of adb_intr_cuda
54 * code that causes hangs, especially on 030 machines, probably
55 * because of some timing issues. Because I have been unable to
56 * determine the exact cause of this bug, I used the timeout function
57 * to check for and recover from this condition. If anyone finds
58 * the actual cause of this bug, the calls to timeout and the
59 * adb_cuda_tickle routine can be removed.
60 */
61
62 #include <sys/param.h>
63 #include <sys/cdefs.h>
64 #include <sys/systm.h>
65 #include <sys/callout.h>
66 #include <sys/device.h>
67
68 #include <machine/param.h>
69 #include <machine/cpu.h>
70 #include <machine/adbsys.h>
71
72 #include <macppc/dev/viareg.h>
73 #include <macppc/dev/adbvar.h>
74 #include <macppc/dev/pm_direct.h>
75
76 #define printf_intr printf
77
78 #ifdef DEBUG
79 #ifndef ADB_DEBUG
80 #define ADB_DEBUG
81 #endif
82 #endif
83
84 /* some misc. leftovers */
85 #define vPB 0x0000
86 #define vPB3 0x08
87 #define vPB4 0x10
88 #define vPB5 0x20
89 #define vSR_INT 0x04
90 #define vSR_OUT 0x10
91
92 /* the type of ADB action that we are currently preforming */
93 #define ADB_ACTION_NOTREADY 0x1 /* has not been initialized yet */
94 #define ADB_ACTION_IDLE 0x2 /* the bus is currently idle */
95 #define ADB_ACTION_OUT 0x3 /* sending out a command */
96 #define ADB_ACTION_IN 0x4 /* receiving data */
97 #define ADB_ACTION_POLLING 0x5 /* polling - II only */
98
99 /*
100 * These describe the state of the ADB bus itself, although they
101 * don't necessarily correspond directly to ADB states.
102 * Note: these are not really used in the IIsi code.
103 */
104 #define ADB_BUS_UNKNOWN 0x1 /* we don't know yet - all models */
105 #define ADB_BUS_IDLE 0x2 /* bus is idle - all models */
106 #define ADB_BUS_CMD 0x3 /* starting a command - II models */
107 #define ADB_BUS_ODD 0x4 /* the "odd" state - II models */
108 #define ADB_BUS_EVEN 0x5 /* the "even" state - II models */
109 #define ADB_BUS_ACTIVE 0x6 /* active state - IIsi models */
110 #define ADB_BUS_ACK 0x7 /* currently ACKing - IIsi models */
111
112 /*
113 * Shortcuts for setting or testing the VIA bit states.
114 * Not all shortcuts are used for every type of ADB hardware.
115 */
116 #define ADB_SET_STATE_IDLE_II() via_reg_or(VIA1, vBufB, (vPB4 | vPB5))
117 #define ADB_SET_STATE_IDLE_IISI() via_reg_and(VIA1, vBufB, ~(vPB4 | vPB5))
118 #define ADB_SET_STATE_IDLE_CUDA() via_reg_or(VIA1, vBufB, (vPB4 | vPB5))
119 #define ADB_SET_STATE_CMD() via_reg_and(VIA1, vBufB, ~(vPB4 | vPB5))
120 #define ADB_SET_STATE_EVEN() write_via_reg(VIA1, vBufB, \
121 (read_via_reg(VIA1, vBufB) | vPB4) & ~vPB5)
122 #define ADB_SET_STATE_ODD() write_via_reg(VIA1, vBufB, \
123 (read_via_reg(VIA1, vBufB) | vPB5) & ~vPB4 )
124 #define ADB_SET_STATE_ACTIVE() via_reg_or(VIA1, vBufB, vPB5)
125 #define ADB_SET_STATE_INACTIVE() via_reg_and(VIA1, vBufB, ~vPB5)
126 #define ADB_SET_STATE_TIP() via_reg_and(VIA1, vBufB, ~vPB5)
127 #define ADB_CLR_STATE_TIP() via_reg_or(VIA1, vBufB, vPB5)
128 #define ADB_SET_STATE_ACKON() via_reg_or(VIA1, vBufB, vPB4)
129 #define ADB_SET_STATE_ACKOFF() via_reg_and(VIA1, vBufB, ~vPB4)
130 #define ADB_TOGGLE_STATE_ACK_CUDA() via_reg_xor(VIA1, vBufB, vPB4)
131 #define ADB_SET_STATE_ACKON_CUDA() via_reg_and(VIA1, vBufB, ~vPB4)
132 #define ADB_SET_STATE_ACKOFF_CUDA() via_reg_or(VIA1, vBufB, vPB4)
133 #define ADB_SET_SR_INPUT() via_reg_and(VIA1, vACR, ~vSR_OUT)
134 #define ADB_SET_SR_OUTPUT() via_reg_or(VIA1, vACR, vSR_OUT)
135 #define ADB_SR() read_via_reg(VIA1, vSR)
136 #define ADB_VIA_INTR_ENABLE() write_via_reg(VIA1, vIER, 0x84)
137 #define ADB_VIA_INTR_DISABLE() write_via_reg(VIA1, vIER, 0x04)
138 #define ADB_VIA_CLR_INTR() write_via_reg(VIA1, vIFR, 0x04)
139 #define ADB_INTR_IS_OFF (vPB3 == (read_via_reg(VIA1, vBufB) & vPB3))
140 #define ADB_INTR_IS_ON (0 == (read_via_reg(VIA1, vBufB) & vPB3))
141 #define ADB_SR_INTR_IS_OFF (0 == (read_via_reg(VIA1, vIFR) & vSR_INT))
142 #define ADB_SR_INTR_IS_ON (vSR_INT == (read_via_reg(VIA1, \
143 vIFR) & vSR_INT))
144
145 /*
146 * This is the delay that is required (in uS) between certain
147 * ADB transactions. The actual timing delay for for each uS is
148 * calculated at boot time to account for differences in machine speed.
149 */
150 #define ADB_DELAY 150
151
152 /*
153 * Maximum ADB message length; includes space for data, result, and
154 * device code - plus a little for safety.
155 */
156 #define ADB_MAX_MSG_LENGTH 16
157 #define ADB_MAX_HDR_LENGTH 8
158
159 #define ADB_QUEUE 32
160 #define ADB_TICKLE_TICKS 4
161
162 /*
163 * A structure for storing information about each ADB device.
164 */
165 struct ADBDevEntry {
166 void (*ServiceRtPtr) __P((void));
167 void *DataAreaAddr;
168 int devType;
169 int origAddr;
170 int currentAddr;
171 };
172
173 /*
174 * Used to hold ADB commands that are waiting to be sent out.
175 */
176 struct adbCmdHoldEntry {
177 u_char outBuf[ADB_MAX_MSG_LENGTH]; /* our message */
178 u_char *saveBuf; /* buffer to know where to save result */
179 u_char *compRout; /* completion routine pointer */
180 u_char *data; /* completion routine data pointer */
181 };
182
183 /*
184 * Eventually used for two separate queues, the queue between
185 * the upper and lower halves, and the outgoing packet queue.
186 * TO DO: adbCommand can replace all of adbCmdHoldEntry eventually
187 */
188 struct adbCommand {
189 u_char header[ADB_MAX_HDR_LENGTH]; /* not used yet */
190 u_char data[ADB_MAX_MSG_LENGTH]; /* packet data only */
191 u_char *saveBuf; /* where to save result */
192 u_char *compRout; /* completion routine pointer */
193 u_char *compData; /* completion routine data pointer */
194 u_int cmd; /* the original command for this data */
195 u_int unsol; /* 1 if packet was unsolicited */
196 u_int ack_only; /* 1 for no special processing */
197 };
198
199 /*
200 * A few variables that we need and their initial values.
201 */
202 int adbHardware = ADB_HW_UNKNOWN;
203 int adbActionState = ADB_ACTION_NOTREADY;
204 int adbBusState = ADB_BUS_UNKNOWN;
205 int adbWaiting = 0; /* waiting for return data from the device */
206 int adbWriteDelay = 0; /* working on (or waiting to do) a write */
207 int adbOutQueueHasData = 0; /* something in the queue waiting to go out */
208 int adbNextEnd = 0; /* the next incoming bute is the last (II) */
209 int adbSoftPower = 0; /* machine supports soft power */
210
211 int adbWaitingCmd = 0; /* ADB command we are waiting for */
212 u_char *adbBuffer = (long)0; /* pointer to user data area */
213 void *adbCompRout = (long)0; /* pointer to the completion routine */
214 void *adbCompData = (long)0; /* pointer to the completion routine data */
215 long adbFakeInts = 0; /* keeps track of fake ADB interrupts for
216 * timeouts (II) */
217 int adbStarting = 1; /* doing ADBReInit so do polling differently */
218 int adbSendTalk = 0; /* the intr routine is sending the talk, not
219 * the user (II) */
220 int adbPolling = 0; /* we are polling for service request */
221 int adbPollCmd = 0; /* the last poll command we sent */
222
223 u_char adbInputBuffer[ADB_MAX_MSG_LENGTH]; /* data input buffer */
224 u_char adbOutputBuffer[ADB_MAX_MSG_LENGTH]; /* data output buffer */
225 struct adbCmdHoldEntry adbOutQueue; /* our 1 entry output queue */
226
227 int adbSentChars = 0; /* how many characters we have sent */
228 int adbLastDevice = 0; /* last ADB dev we heard from (II ONLY) */
229 int adbLastDevIndex = 0; /* last ADB dev loc in dev table (II ONLY) */
230 int adbLastCommand = 0; /* the last ADB command we sent (II) */
231
232 struct ADBDevEntry ADBDevTable[16]; /* our ADB device table */
233 int ADBNumDevices; /* num. of ADB devices found with ADBReInit */
234
235 struct adbCommand adbInbound[ADB_QUEUE]; /* incoming queue */
236 int adbInCount = 0; /* how many packets in in queue */
237 int adbInHead = 0; /* head of in queue */
238 int adbInTail = 0; /* tail of in queue */
239 struct adbCommand adbOutbound[ADB_QUEUE]; /* outgoing queue - not used yet */
240 int adbOutCount = 0; /* how many packets in out queue */
241 int adbOutHead = 0; /* head of out queue */
242 int adbOutTail = 0; /* tail of out queue */
243
244 int tickle_count = 0; /* how many tickles seen for this packet? */
245 int tickle_serial = 0; /* the last packet tickled */
246 int adb_cuda_serial = 0; /* the current packet */
247
248 struct callout adb_cuda_tickle_ch = CALLOUT_INITIALIZER;
249 struct callout adb_soft_intr_ch = CALLOUT_INITIALIZER;
250
251 volatile u_char *Via1Base;
252 extern int adb_polling; /* Are we polling? */
253
254 void pm_setup_adb __P((void));
255 void pm_check_adb_devices __P((int));
256 void pm_intr __P((void));
257 int pm_adb_op __P((u_char *, void *, void *, int));
258 void pm_init_adb_device __P((void));
259
260 /*
261 * The following are private routines.
262 */
263 #ifdef ADB_DEBUG
264 void print_single __P((u_char *));
265 #endif
266 void adb_intr __P((void));
267 void adb_intr_II __P((void));
268 void adb_intr_IIsi __P((void));
269 void adb_intr_cuda __P((void));
270 void adb_soft_intr __P((void));
271 int send_adb_II __P((u_char *, u_char *, void *, void *, int));
272 int send_adb_IIsi __P((u_char *, u_char *, void *, void *, int));
273 int send_adb_cuda __P((u_char *, u_char *, void *, void *, int));
274 void adb_intr_cuda_test __P((void));
275 void adb_cuda_tickle __P((void));
276 void adb_pass_up __P((struct adbCommand *));
277 void adb_op_comprout __P((caddr_t, caddr_t, int));
278 void adb_reinit __P((void));
279 int count_adbs __P((void));
280 int get_ind_adb_info __P((ADBDataBlock *, int));
281 int get_adb_info __P((ADBDataBlock *, int));
282 int set_adb_info __P((ADBSetInfoBlock *, int));
283 void adb_setup_hw_type __P((void));
284 int adb_op __P((Ptr, Ptr, Ptr, short));
285 int adb_op_sync __P((Ptr, Ptr, Ptr, short));
286 void adb_read_II __P((u_char *));
287 void adb_hw_setup __P((void));
288 void adb_hw_setup_IIsi __P((u_char *));
289 void adb_comp_exec __P((void));
290 int adb_cmd_result __P((u_char *));
291 int adb_cmd_extra __P((u_char *));
292 int adb_guess_next_device __P((void));
293 int adb_prog_switch_enable __P((void));
294 int adb_prog_switch_disable __P((void));
295 /* we should create this and it will be the public version */
296 int send_adb __P((u_char *, void *, void *));
297
298 int setsoftadb __P((void));
299
300 #ifdef ADB_DEBUG
301 /*
302 * print_single
303 * Diagnostic display routine. Displays the hex values of the
304 * specified elements of the u_char. The length of the "string"
305 * is in [0].
306 */
307 void
308 print_single(str)
309 u_char *str;
310 {
311 int x;
312
313 if (str == 0) {
314 printf_intr("no data - null pointer\n");
315 return;
316 }
317 if (*str == 0) {
318 printf_intr("nothing returned\n");
319 return;
320 }
321 if (*str > 20) {
322 printf_intr("ADB: ACK > 20 no way!\n");
323 *str = 20;
324 }
325 printf_intr("(length=0x%x):", *str);
326 for (x = 1; x <= *str; x++)
327 printf_intr(" 0x%02x", str[x]);
328 printf_intr("\n");
329 }
330 #endif
331
332 void
333 adb_cuda_tickle(void)
334 {
335 volatile int s;
336
337 if (adbActionState == ADB_ACTION_IN) {
338 if (tickle_serial == adb_cuda_serial) {
339 if (++tickle_count > 0) {
340 s = splhigh();
341 adbActionState = ADB_ACTION_IDLE;
342 adbInputBuffer[0] = 0;
343 ADB_SET_STATE_IDLE_CUDA();
344 splx(s);
345 }
346 } else {
347 tickle_serial = adb_cuda_serial;
348 tickle_count = 0;
349 }
350 } else {
351 tickle_serial = adb_cuda_serial;
352 tickle_count = 0;
353 }
354
355 callout_reset(&adb_cuda_tickle_ch, ADB_TICKLE_TICKS,
356 (void *)adb_cuda_tickle, NULL);
357 }
358
359 /*
360 * called when when an adb interrupt happens
361 *
362 * Cuda version of adb_intr
363 * TO DO: do we want to add some calls to intr_dispatch() here to
364 * grab serial interrupts?
365 */
366 void
367 adb_intr_cuda(void)
368 {
369 volatile int i, ending;
370 volatile unsigned int s;
371 struct adbCommand packet;
372
373 s = splhigh(); /* can't be too careful - might be called */
374 /* from a routine, NOT an interrupt */
375
376 ADB_VIA_CLR_INTR(); /* clear interrupt */
377 ADB_VIA_INTR_DISABLE(); /* disable ADB interrupt on IIs. */
378
379 switch_start:
380 switch (adbActionState) {
381 case ADB_ACTION_IDLE:
382 /*
383 * This is an unexpected packet, so grab the first (dummy)
384 * byte, set up the proper vars, and tell the chip we are
385 * starting to receive the packet by setting the TIP bit.
386 */
387 adbInputBuffer[1] = ADB_SR();
388 adb_cuda_serial++;
389 if (ADB_INTR_IS_OFF) /* must have been a fake start */
390 break;
391
392 ADB_SET_SR_INPUT();
393 ADB_SET_STATE_TIP();
394
395 adbInputBuffer[0] = 1;
396 adbActionState = ADB_ACTION_IN;
397 #ifdef ADB_DEBUG
398 if (adb_debug)
399 printf_intr("idle 0x%02x ", adbInputBuffer[1]);
400 #endif
401 break;
402
403 case ADB_ACTION_IN:
404 adbInputBuffer[++adbInputBuffer[0]] = ADB_SR();
405 /* intr off means this is the last byte (end of frame) */
406 if (ADB_INTR_IS_OFF)
407 ending = 1;
408 else
409 ending = 0;
410
411 if (1 == ending) { /* end of message? */
412 #ifdef ADB_DEBUG
413 if (adb_debug) {
414 printf_intr("in end 0x%02x ",
415 adbInputBuffer[adbInputBuffer[0]]);
416 print_single(adbInputBuffer);
417 }
418 #endif
419
420 /*
421 * Are we waiting AND does this packet match what we
422 * are waiting for AND is it coming from either the
423 * ADB or RTC/PRAM sub-device? This section _should_
424 * recognize all ADB and RTC/PRAM type commands, but
425 * there may be more... NOTE: commands are always at
426 * [4], even for RTC/PRAM commands.
427 */
428 /* set up data for adb_pass_up */
429 memcpy(packet.data, adbInputBuffer, adbInputBuffer[0] + 1);
430
431 if ((adbWaiting == 1) &&
432 (adbInputBuffer[4] == adbWaitingCmd) &&
433 ((adbInputBuffer[2] == 0x00) ||
434 (adbInputBuffer[2] == 0x01))) {
435 packet.saveBuf = adbBuffer;
436 packet.compRout = adbCompRout;
437 packet.compData = adbCompData;
438 packet.unsol = 0;
439 packet.ack_only = 0;
440 adb_pass_up(&packet);
441
442 adbWaitingCmd = 0; /* reset "waiting" vars */
443 adbWaiting = 0;
444 adbBuffer = (long)0;
445 adbCompRout = (long)0;
446 adbCompData = (long)0;
447 } else {
448 packet.unsol = 1;
449 packet.ack_only = 0;
450 adb_pass_up(&packet);
451 }
452
453
454 /* reset vars and signal the end of this frame */
455 adbActionState = ADB_ACTION_IDLE;
456 adbInputBuffer[0] = 0;
457 ADB_SET_STATE_IDLE_CUDA();
458 /*ADB_SET_SR_INPUT();*/
459
460 /*
461 * If there is something waiting to be sent out,
462 * the set everything up and send the first byte.
463 */
464 if (adbWriteDelay == 1) {
465 delay(ADB_DELAY); /* required */
466 adbSentChars = 0;
467 adbActionState = ADB_ACTION_OUT;
468 /*
469 * If the interrupt is on, we were too slow
470 * and the chip has already started to send
471 * something to us, so back out of the write
472 * and start a read cycle.
473 */
474 if (ADB_INTR_IS_ON) {
475 ADB_SET_SR_INPUT();
476 ADB_SET_STATE_IDLE_CUDA();
477 adbSentChars = 0;
478 adbActionState = ADB_ACTION_IDLE;
479 adbInputBuffer[0] = 0;
480 break;
481 }
482 /*
483 * If we got here, it's ok to start sending
484 * so load the first byte and tell the chip
485 * we want to send.
486 */
487 ADB_SET_STATE_TIP();
488 ADB_SET_SR_OUTPUT();
489 write_via_reg(VIA1, vSR, adbOutputBuffer[adbSentChars + 1]);
490 }
491 } else {
492 ADB_TOGGLE_STATE_ACK_CUDA();
493 #ifdef ADB_DEBUG
494 if (adb_debug)
495 printf_intr("in 0x%02x ",
496 adbInputBuffer[adbInputBuffer[0]]);
497 #endif
498 }
499 break;
500
501 case ADB_ACTION_OUT:
502 i = ADB_SR(); /* reset SR-intr in IFR */
503 #ifdef ADB_DEBUG
504 if (adb_debug)
505 printf_intr("intr out 0x%02x ", i);
506 #endif
507
508 adbSentChars++;
509 if (ADB_INTR_IS_ON) { /* ADB intr low during write */
510 #ifdef ADB_DEBUG
511 if (adb_debug)
512 printf_intr("intr was on ");
513 #endif
514 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
515 ADB_SET_STATE_IDLE_CUDA();
516 adbSentChars = 0; /* must start all over */
517 adbActionState = ADB_ACTION_IDLE; /* new state */
518 adbInputBuffer[0] = 0;
519 adbWriteDelay = 1; /* must retry when done with
520 * read */
521 delay(ADB_DELAY);
522 goto switch_start; /* process next state right
523 * now */
524 break;
525 }
526 if (adbOutputBuffer[0] == adbSentChars) { /* check for done */
527 if (0 == adb_cmd_result(adbOutputBuffer)) { /* do we expect data
528 * back? */
529 adbWaiting = 1; /* signal waiting for return */
530 adbWaitingCmd = adbOutputBuffer[2]; /* save waiting command */
531 } else { /* no talk, so done */
532 /* set up stuff for adb_pass_up */
533 memcpy(packet.data, adbInputBuffer, adbInputBuffer[0] + 1);
534 packet.saveBuf = adbBuffer;
535 packet.compRout = adbCompRout;
536 packet.compData = adbCompData;
537 packet.cmd = adbWaitingCmd;
538 packet.unsol = 0;
539 packet.ack_only = 1;
540 adb_pass_up(&packet);
541
542 /* reset "waiting" vars, just in case */
543 adbWaitingCmd = 0;
544 adbBuffer = (long)0;
545 adbCompRout = (long)0;
546 adbCompData = (long)0;
547 }
548
549 adbWriteDelay = 0; /* done writing */
550 adbActionState = ADB_ACTION_IDLE; /* signal bus is idle */
551 ADB_SET_SR_INPUT();
552 ADB_SET_STATE_IDLE_CUDA();
553 #ifdef ADB_DEBUG
554 if (adb_debug)
555 printf_intr("write done ");
556 #endif
557 } else {
558 write_via_reg(VIA1, vSR, adbOutputBuffer[adbSentChars + 1]); /* send next byte */
559 ADB_TOGGLE_STATE_ACK_CUDA(); /* signal byte ready to
560 * shift */
561 #ifdef ADB_DEBUG
562 if (adb_debug)
563 printf_intr("toggle ");
564 #endif
565 }
566 break;
567
568 case ADB_ACTION_NOTREADY:
569 #ifdef ADB_DEBUG
570 if (adb_debug)
571 printf_intr("adb: not yet initialized\n");
572 #endif
573 break;
574
575 default:
576 #ifdef ADB_DEBUG
577 if (adb_debug)
578 printf_intr("intr: unknown ADB state\n");
579 #endif
580 }
581
582 ADB_VIA_INTR_ENABLE(); /* enable ADB interrupt on IIs. */
583
584 splx(s); /* restore */
585
586 return;
587 } /* end adb_intr_cuda */
588
589
590 int
591 send_adb_cuda(u_char * in, u_char * buffer, void *compRout, void *data, int
592 command)
593 {
594 int s, len;
595
596 #ifdef ADB_DEBUG
597 if (adb_debug)
598 printf_intr("SEND\n");
599 #endif
600
601 if (adbActionState == ADB_ACTION_NOTREADY)
602 return 1;
603
604 /* Don't interrupt while we are messing with the ADB */
605 s = splhigh();
606
607 if ((adbActionState == ADB_ACTION_IDLE) && /* ADB available? */
608 (ADB_INTR_IS_OFF)) { /* and no incoming interrupt? */
609 } else
610 if (adbWriteDelay == 0) /* it's busy, but is anything waiting? */
611 adbWriteDelay = 1; /* if no, then we'll "queue"
612 * it up */
613 else {
614 splx(s);
615 return 1; /* really busy! */
616 }
617
618 #ifdef ADB_DEBUG
619 if (adb_debug)
620 printf_intr("QUEUE\n");
621 #endif
622 if ((long)in == (long)0) { /* need to convert? */
623 /*
624 * Don't need to use adb_cmd_extra here because this section
625 * will be called ONLY when it is an ADB command (no RTC or
626 * PRAM)
627 */
628 if ((command & 0x0c) == 0x08) /* copy addl data ONLY if
629 * doing a listen! */
630 len = buffer[0]; /* length of additional data */
631 else
632 len = 0;/* no additional data */
633
634 adbOutputBuffer[0] = 2 + len; /* dev. type + command + addl.
635 * data */
636 adbOutputBuffer[1] = 0x00; /* mark as an ADB command */
637 adbOutputBuffer[2] = (u_char)command; /* load command */
638
639 /* copy additional output data, if any */
640 memcpy(adbOutputBuffer + 3, buffer + 1, len);
641 } else
642 /* if data ready, just copy over */
643 memcpy(adbOutputBuffer, in, in[0] + 2);
644
645 adbSentChars = 0; /* nothing sent yet */
646 adbBuffer = buffer; /* save buffer to know where to save result */
647 adbCompRout = compRout; /* save completion routine pointer */
648 adbCompData = data; /* save completion routine data pointer */
649 adbWaitingCmd = adbOutputBuffer[2]; /* save wait command */
650
651 if (adbWriteDelay != 1) { /* start command now? */
652 #ifdef ADB_DEBUG
653 if (adb_debug)
654 printf_intr("out start NOW");
655 #endif
656 delay(ADB_DELAY);
657 adbActionState = ADB_ACTION_OUT; /* set next state */
658 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
659 write_via_reg(VIA1, vSR, adbOutputBuffer[adbSentChars + 1]); /* load byte for output */
660 ADB_SET_STATE_ACKOFF_CUDA();
661 ADB_SET_STATE_TIP(); /* tell ADB that we want to send */
662 }
663 adbWriteDelay = 1; /* something in the write "queue" */
664
665 splx(s);
666
667 if ((s & (1 << 18)) || adb_polling) /* XXX were VIA1 interrupts blocked ? */
668 /* poll until byte done */
669 while ((adbActionState != ADB_ACTION_IDLE) || (ADB_INTR_IS_ON)
670 || (adbWaiting == 1))
671 if (ADB_SR_INTR_IS_ON) { /* wait for "interrupt" */
672 adb_intr_cuda(); /* process it */
673 adb_soft_intr();
674 }
675
676 return 0;
677 } /* send_adb_cuda */
678
679
680 void
681 adb_intr_II(void)
682 {
683 panic("adb_intr_II");
684 }
685
686
687 /*
688 * send_adb version for II series machines
689 */
690 int
691 send_adb_II(u_char * in, u_char * buffer, void *compRout, void *data, int command)
692 {
693 panic("send_adb_II");
694 }
695
696
697 /*
698 * This routine is called from the II series interrupt routine
699 * to determine what the "next" device is that should be polled.
700 */
701 int
702 adb_guess_next_device(void)
703 {
704 int last, i, dummy;
705
706 if (adbStarting) {
707 /*
708 * Start polling EVERY device, since we can't be sure there is
709 * anything in the device table yet
710 */
711 if (adbLastDevice < 1 || adbLastDevice > 15)
712 adbLastDevice = 1;
713 if (++adbLastDevice > 15) /* point to next one */
714 adbLastDevice = 1;
715 } else {
716 /* find the next device using the device table */
717 if (adbLastDevice < 1 || adbLastDevice > 15) /* let's be parinoid */
718 adbLastDevice = 2;
719 last = 1; /* default index location */
720
721 for (i = 1; i < 16; i++) /* find index entry */
722 if (ADBDevTable[i].currentAddr == adbLastDevice) { /* look for device */
723 last = i; /* found it */
724 break;
725 }
726 dummy = last; /* index to start at */
727 for (;;) { /* find next device in index */
728 if (++dummy > 15) /* wrap around if needed */
729 dummy = 1;
730 if (dummy == last) { /* didn't find any other
731 * device! This can happen if
732 * there are no devices on the
733 * bus */
734 dummy = 1;
735 break;
736 }
737 /* found the next device */
738 if (ADBDevTable[dummy].devType != 0)
739 break;
740 }
741 adbLastDevice = ADBDevTable[dummy].currentAddr;
742 }
743 return adbLastDevice;
744 }
745
746
747 /*
748 * Called when when an adb interrupt happens.
749 * This routine simply transfers control over to the appropriate
750 * code for the machine we are running on.
751 */
752 void
753 adb_intr(void)
754 {
755 switch (adbHardware) {
756 case ADB_HW_II:
757 adb_intr_II();
758 break;
759
760 case ADB_HW_IISI:
761 adb_intr_IIsi();
762 break;
763
764 case ADB_HW_PB:
765 pm_intr();
766 break;
767
768 case ADB_HW_CUDA:
769 adb_intr_cuda();
770 break;
771
772 case ADB_HW_UNKNOWN:
773 break;
774 }
775 }
776
777
778 /*
779 * called when when an adb interrupt happens
780 *
781 * IIsi version of adb_intr
782 *
783 */
784 void
785 adb_intr_IIsi(void)
786 {
787 panic("adb_intr_IIsi");
788 }
789
790
791 /*****************************************************************************
792 * if the device is currently busy, and there is no data waiting to go out, then
793 * the data is "queued" in the outgoing buffer. If we are already waiting, then
794 * we return.
795 * in: if (in == 0) then the command string is built from command and buffer
796 * if (in != 0) then in is used as the command string
797 * buffer: additional data to be sent (used only if in == 0)
798 * this is also where return data is stored
799 * compRout: the completion routine that is called when then return value
800 * is received (if a return value is expected)
801 * data: a data pointer that can be used by the completion routine
802 * command: an ADB command to be sent (used only if in == 0)
803 *
804 */
805 int
806 send_adb_IIsi(u_char * in, u_char * buffer, void *compRout, void *data, int
807 command)
808 {
809 panic("send_adb_IIsi");
810 }
811
812
813 /*
814 * adb_pass_up is called by the interrupt-time routines.
815 * It takes the raw packet data that was received from the
816 * device and puts it into the queue that the upper half
817 * processes. It then signals for a soft ADB interrupt which
818 * will eventually call the upper half routine (adb_soft_intr).
819 *
820 * If in->unsol is 0, then this is either the notification
821 * that the packet was sent (on a LISTEN, for example), or the
822 * response from the device (on a TALK). The completion routine
823 * is called only if the user specified one.
824 *
825 * If in->unsol is 1, then this packet was unsolicited and
826 * so we look up the device in the ADB device table to determine
827 * what it's default service routine is.
828 *
829 * If in->ack_only is 1, then we really only need to call
830 * the completion routine, so don't do any other stuff.
831 *
832 * Note that in->data contains the packet header AND data,
833 * while adbInbound[]->data contains ONLY data.
834 *
835 * Note: Called only at interrupt time. Assumes this.
836 */
837 void
838 adb_pass_up(struct adbCommand *in)
839 {
840 int start = 0, len = 0, cmd = 0;
841 ADBDataBlock block;
842
843 /* temp for testing */
844 /*u_char *buffer = 0;*/
845 /*u_char *compdata = 0;*/
846 /*u_char *comprout = 0;*/
847
848 if (adbInCount >= ADB_QUEUE) {
849 #ifdef ADB_DEBUG
850 if (adb_debug)
851 printf_intr("adb: ring buffer overflow\n");
852 #endif
853 return;
854 }
855
856 if (in->ack_only) {
857 len = in->data[0];
858 cmd = in->cmd;
859 start = 0;
860 } else {
861 switch (adbHardware) {
862 case ADB_HW_II:
863 cmd = in->data[1];
864 if (in->data[0] < 2)
865 len = 0;
866 else
867 len = in->data[0]-1;
868 start = 1;
869 break;
870
871 case ADB_HW_IISI:
872 case ADB_HW_CUDA:
873 /* If it's unsolicited, accept only ADB data for now */
874 if (in->unsol)
875 if (0 != in->data[2])
876 return;
877 cmd = in->data[4];
878 if (in->data[0] < 5)
879 len = 0;
880 else
881 len = in->data[0]-4;
882 start = 4;
883 break;
884
885 case ADB_HW_PB:
886 cmd = in->data[1];
887 if (in->data[0] < 2)
888 len = 0;
889 else
890 len = in->data[0]-1;
891 start = 1;
892 break;
893
894 case ADB_HW_UNKNOWN:
895 return;
896 }
897
898 /* Make sure there is a valid device entry for this device */
899 if (in->unsol) {
900 /* ignore unsolicited data during adbreinit */
901 if (adbStarting)
902 return;
903 /* get device's comp. routine and data area */
904 if (-1 == get_adb_info(&block, ADB_CMDADDR(cmd)))
905 return;
906 }
907 }
908
909 /*
910 * If this is an unsolicited packet, we need to fill in
911 * some info so adb_soft_intr can process this packet
912 * properly. If it's not unsolicited, then use what
913 * the caller sent us.
914 */
915 if (in->unsol) {
916 adbInbound[adbInTail].compRout = (void *)block.dbServiceRtPtr;
917 adbInbound[adbInTail].compData = (void *)block.dbDataAreaAddr;
918 adbInbound[adbInTail].saveBuf = (void *)adbInbound[adbInTail].data;
919 } else {
920 adbInbound[adbInTail].compRout = (void *)in->compRout;
921 adbInbound[adbInTail].compData = (void *)in->compData;
922 adbInbound[adbInTail].saveBuf = (void *)in->saveBuf;
923 }
924
925 #ifdef ADB_DEBUG
926 if (adb_debug && in->data[1] == 2)
927 printf_intr("adb: caught error\n");
928 #endif
929
930 /* copy the packet data over */
931 /*
932 * TO DO: If the *_intr routines fed their incoming data
933 * directly into an adbCommand struct, which is passed to
934 * this routine, then we could eliminate this copy.
935 */
936 memcpy(adbInbound[adbInTail].data + 1, in->data + start + 1, len);
937 adbInbound[adbInTail].data[0] = len;
938 adbInbound[adbInTail].cmd = cmd;
939
940 adbInCount++;
941 if (++adbInTail >= ADB_QUEUE)
942 adbInTail = 0;
943
944 /*
945 * If the debugger is running, call upper half manually.
946 * Otherwise, trigger a soft interrupt to handle the rest later.
947 */
948 if (adb_polling)
949 adb_soft_intr();
950 else
951 setsoftadb();
952
953 return;
954 }
955
956
957 /*
958 * Called to process the packets after they have been
959 * placed in the incoming queue.
960 *
961 */
962 void
963 adb_soft_intr(void)
964 {
965 int s;
966 int cmd = 0;
967 u_char *buffer = 0;
968 u_char *comprout = 0;
969 u_char *compdata = 0;
970
971 #if 0
972 s = splhigh();
973 printf_intr("sr: %x\n", (s & 0x0700));
974 splx(s);
975 #endif
976
977 /*delay(2*ADB_DELAY);*/
978
979 while (adbInCount) {
980 #ifdef ADB_DEBUG
981 if (adb_debug & 0x80)
982 printf_intr("%x %x %x ",
983 adbInCount, adbInHead, adbInTail);
984 #endif
985 /* get the data we need from the queue */
986 buffer = adbInbound[adbInHead].saveBuf;
987 comprout = adbInbound[adbInHead].compRout;
988 compdata = adbInbound[adbInHead].compData;
989 cmd = adbInbound[adbInHead].cmd;
990
991 /* copy over data to data area if it's valid */
992 /*
993 * Note that for unsol packets we don't want to copy the
994 * data anywhere, so buffer was already set to 0.
995 * For ack_only buffer was set to 0, so don't copy.
996 */
997 if (buffer)
998 memcpy(buffer, adbInbound[adbInHead].data,
999 adbInbound[adbInHead].data[0] + 1);
1000
1001 #ifdef ADB_DEBUG
1002 if (adb_debug & 0x80) {
1003 printf_intr("%p %p %p %x ",
1004 buffer, comprout, compdata, (short)cmd);
1005 printf_intr("buf: ");
1006 print_single(adbInbound[adbInHead].data);
1007 }
1008 #endif
1009
1010 /* call default completion routine if it's valid */
1011 if (comprout) {
1012 void (*f)(caddr_t, caddr_t, int) =
1013 (void (*)(caddr_t, caddr_t, int))comprout;
1014
1015 (*f)(buffer, compdata, cmd);
1016 #if 0
1017 #ifdef __NetBSD__
1018 asm(" movml #0xffff,sp@- | save all registers
1019 movl %0,a2 | compdata
1020 movl %1,a1 | comprout
1021 movl %2,a0 | buffer
1022 movl %3,d0 | cmd
1023 jbsr a1@ | go call the routine
1024 movml sp@+,#0xffff | restore all registers"
1025 :
1026 : "g"(compdata), "g"(comprout),
1027 "g"(buffer), "g"(cmd)
1028 : "d0", "a0", "a1", "a2");
1029 #else /* for macos based testing */
1030 asm
1031 {
1032 movem.l a0/a1/a2/d0, -(a7)
1033 move.l compdata, a2
1034 move.l comprout, a1
1035 move.l buffer, a0
1036 move.w cmd, d0
1037 jsr(a1)
1038 movem.l(a7)+, d0/a2/a1/a0
1039 }
1040 #endif
1041 #endif
1042 }
1043
1044 s = splhigh();
1045 adbInCount--;
1046 if (++adbInHead >= ADB_QUEUE)
1047 adbInHead = 0;
1048 splx(s);
1049
1050 }
1051 return;
1052 }
1053
1054
1055 /*
1056 * This is my version of the ADBOp routine. It mainly just calls the
1057 * hardware-specific routine.
1058 *
1059 * data : pointer to data area to be used by compRout
1060 * compRout : completion routine
1061 * buffer : for LISTEN: points to data to send - MAX 8 data bytes,
1062 * byte 0 = # of bytes
1063 * : for TALK: points to place to save return data
1064 * command : the adb command to send
1065 * result : 0 = success
1066 * : -1 = could not complete
1067 */
1068 int
1069 adb_op(Ptr buffer, Ptr compRout, Ptr data, short command)
1070 {
1071 int result;
1072
1073 switch (adbHardware) {
1074 case ADB_HW_II:
1075 result = send_adb_II((u_char *)0, (u_char *)buffer,
1076 (void *)compRout, (void *)data, (int)command);
1077 if (result == 0)
1078 return 0;
1079 else
1080 return -1;
1081 break;
1082
1083 case ADB_HW_IISI:
1084 result = send_adb_IIsi((u_char *)0, (u_char *)buffer,
1085 (void *)compRout, (void *)data, (int)command);
1086 /*
1087 * I wish I knew why this delay is needed. It usually needs to
1088 * be here when several commands are sent in close succession,
1089 * especially early in device probes when doing collision
1090 * detection. It must be some race condition. Sigh. - jpw
1091 */
1092 delay(100);
1093 if (result == 0)
1094 return 0;
1095 else
1096 return -1;
1097 break;
1098
1099 case ADB_HW_PB:
1100 result = pm_adb_op((u_char *)buffer, (void *)compRout,
1101 (void *)data, (int)command);
1102
1103 if (result == 0)
1104 return 0;
1105 else
1106 return -1;
1107 break;
1108
1109 case ADB_HW_CUDA:
1110 result = send_adb_cuda((u_char *)0, (u_char *)buffer,
1111 (void *)compRout, (void *)data, (int)command);
1112 if (result == 0)
1113 return 0;
1114 else
1115 return -1;
1116 break;
1117
1118 case ADB_HW_UNKNOWN:
1119 default:
1120 return -1;
1121 }
1122 }
1123
1124
1125 /*
1126 * adb_hw_setup
1127 * This routine sets up the possible machine specific hardware
1128 * config (mainly VIA settings) for the various models.
1129 */
1130 void
1131 adb_hw_setup(void)
1132 {
1133 volatile int i;
1134 u_char send_string[ADB_MAX_MSG_LENGTH];
1135
1136 switch (adbHardware) {
1137 case ADB_HW_II:
1138 via_reg_or(VIA1, vDirB, 0x30); /* register B bits 4 and 5:
1139 * outputs */
1140 via_reg_and(VIA1, vDirB, 0xf7); /* register B bit 3: input */
1141 via_reg_and(VIA1, vACR, ~vSR_OUT); /* make sure SR is set
1142 * to IN (II, IIsi) */
1143 adbActionState = ADB_ACTION_IDLE; /* used by all types of
1144 * hardware (II, IIsi) */
1145 adbBusState = ADB_BUS_IDLE; /* this var. used in II-series
1146 * code only */
1147 write_via_reg(VIA1, vIER, 0x84);/* make sure VIA interrupts
1148 * are on (II, IIsi) */
1149 ADB_SET_STATE_IDLE_II(); /* set ADB bus state to idle */
1150
1151 ADB_VIA_CLR_INTR(); /* clear interrupt */
1152 break;
1153
1154 case ADB_HW_IISI:
1155 via_reg_or(VIA1, vDirB, 0x30); /* register B bits 4 and 5:
1156 * outputs */
1157 via_reg_and(VIA1, vDirB, 0xf7); /* register B bit 3: input */
1158 via_reg_and(VIA1, vACR, ~vSR_OUT); /* make sure SR is set
1159 * to IN (II, IIsi) */
1160 adbActionState = ADB_ACTION_IDLE; /* used by all types of
1161 * hardware (II, IIsi) */
1162 adbBusState = ADB_BUS_IDLE; /* this var. used in II-series
1163 * code only */
1164 write_via_reg(VIA1, vIER, 0x84);/* make sure VIA interrupts
1165 * are on (II, IIsi) */
1166 ADB_SET_STATE_IDLE_IISI(); /* set ADB bus state to idle */
1167
1168 /* get those pesky clock ticks we missed while booting */
1169 for (i = 0; i < 30; i++) {
1170 delay(ADB_DELAY);
1171 adb_hw_setup_IIsi(send_string);
1172 #ifdef ADB_DEBUG
1173 if (adb_debug) {
1174 printf_intr("adb: cleanup: ");
1175 print_single(send_string);
1176 }
1177 #endif
1178 delay(ADB_DELAY);
1179 if (ADB_INTR_IS_OFF)
1180 break;
1181 }
1182 break;
1183
1184 case ADB_HW_PB:
1185 /*
1186 * XXX - really PM_VIA_CLR_INTR - should we put it in
1187 * pm_direct.h?
1188 */
1189 write_via_reg(VIA1, vIFR, 0x90); /* clear interrupt */
1190 break;
1191
1192 case ADB_HW_CUDA:
1193 via_reg_or(VIA1, vDirB, 0x30); /* register B bits 4 and 5:
1194 * outputs */
1195 via_reg_and(VIA1, vDirB, 0xf7); /* register B bit 3: input */
1196 via_reg_and(VIA1, vACR, ~vSR_OUT); /* make sure SR is set
1197 * to IN */
1198 write_via_reg(VIA1, vACR, (read_via_reg(VIA1, vACR) | 0x0c) & ~0x10);
1199 adbActionState = ADB_ACTION_IDLE; /* used by all types of
1200 * hardware */
1201 adbBusState = ADB_BUS_IDLE; /* this var. used in II-series
1202 * code only */
1203 write_via_reg(VIA1, vIER, 0x84);/* make sure VIA interrupts
1204 * are on */
1205 ADB_SET_STATE_IDLE_CUDA(); /* set ADB bus state to idle */
1206
1207 /* sort of a device reset */
1208 i = ADB_SR(); /* clear interrupt */
1209 ADB_VIA_INTR_DISABLE(); /* no interrupts while clearing */
1210 ADB_SET_STATE_IDLE_CUDA(); /* reset state to idle */
1211 delay(ADB_DELAY);
1212 ADB_SET_STATE_TIP(); /* signal start of frame */
1213 delay(ADB_DELAY);
1214 ADB_TOGGLE_STATE_ACK_CUDA();
1215 delay(ADB_DELAY);
1216 ADB_CLR_STATE_TIP();
1217 delay(ADB_DELAY);
1218 ADB_SET_STATE_IDLE_CUDA(); /* back to idle state */
1219 i = ADB_SR(); /* clear interrupt */
1220 ADB_VIA_INTR_ENABLE(); /* ints ok now */
1221 break;
1222
1223 case ADB_HW_UNKNOWN:
1224 default:
1225 write_via_reg(VIA1, vIER, 0x04);/* turn interrupts off - TO
1226 * DO: turn PB ints off? */
1227 return;
1228 break;
1229 }
1230 }
1231
1232
1233 /*
1234 * adb_hw_setup_IIsi
1235 * This is sort of a "read" routine that forces the adb hardware through a read cycle
1236 * if there is something waiting. This helps "clean up" any commands that may have gotten
1237 * stuck or stopped during the boot process.
1238 *
1239 */
1240 void
1241 adb_hw_setup_IIsi(u_char * buffer)
1242 {
1243 panic("adb_hw_setup_IIsi");
1244 }
1245
1246
1247 /*
1248 * adb_reinit sets up the adb stuff
1249 *
1250 */
1251 void
1252 adb_reinit(void)
1253 {
1254 u_char send_string[ADB_MAX_MSG_LENGTH];
1255 ADBDataBlock data; /* temp. holder for getting device info */
1256 volatile int i, x;
1257 int s;
1258 int command;
1259 int result;
1260 int saveptr; /* point to next free relocation address */
1261 int device;
1262 int nonewtimes; /* times thru loop w/o any new devices */
1263
1264 /* Make sure we are not interrupted while building the table. */
1265 if (adbHardware != ADB_HW_PB) /* ints must be on for PB? */
1266 s = splhigh();
1267
1268 ADBNumDevices = 0; /* no devices yet */
1269
1270 /* Let intr routines know we are running reinit */
1271 adbStarting = 1;
1272
1273 /*
1274 * Initialize the ADB table. For now, we'll always use the same table
1275 * that is defined at the beginning of this file - no mallocs.
1276 */
1277 for (i = 0; i < 16; i++)
1278 ADBDevTable[i].devType = 0;
1279
1280 adb_setup_hw_type(); /* setup hardware type */
1281
1282 adb_hw_setup(); /* init the VIA bits and hard reset ADB */
1283
1284 delay(1000);
1285
1286 /* send an ADB reset first */
1287 adb_op_sync((Ptr)0, (Ptr)0, (Ptr)0, (short)0x00);
1288 delay(200000);
1289
1290 /*
1291 * Probe for ADB devices. Probe devices 1-15 quickly to determine
1292 * which device addresses are in use and which are free. For each
1293 * address that is in use, move the device at that address to a higher
1294 * free address. Continue doing this at that address until no device
1295 * responds at that address. Then move the last device that was moved
1296 * back to the original address. Do this for the remaining addresses
1297 * that we determined were in use.
1298 *
1299 * When finished, do this entire process over again with the updated
1300 * list of in use addresses. Do this until no new devices have been
1301 * found in 20 passes though the in use address list. (This probably
1302 * seems long and complicated, but it's the best way to detect multiple
1303 * devices at the same address - sometimes it takes a couple of tries
1304 * before the collision is detected.)
1305 */
1306
1307 /* initial scan through the devices */
1308 for (i = 1; i < 16; i++) {
1309 send_string[0] = 0;
1310 command = ADBTALK(i, 3);
1311 result = adb_op_sync((Ptr)send_string, (Ptr)0,
1312 (Ptr)0, (short)command);
1313
1314 if (send_string[0] != 0) {
1315 /* check for valid device handler */
1316 switch (send_string[2]) {
1317 case 0:
1318 case 0xfd:
1319 case 0xfe:
1320 case 0xff:
1321 continue; /* invalid, skip */
1322 }
1323
1324 /* found a device */
1325 ++ADBNumDevices;
1326 KASSERT(ADBNumDevices < 16);
1327 ADBDevTable[ADBNumDevices].devType =
1328 (int)send_string[2];
1329 ADBDevTable[ADBNumDevices].origAddr = i;
1330 ADBDevTable[ADBNumDevices].currentAddr = i;
1331 ADBDevTable[ADBNumDevices].DataAreaAddr =
1332 (long)0;
1333 ADBDevTable[ADBNumDevices].ServiceRtPtr = (void *)0;
1334 pm_check_adb_devices(i); /* tell pm driver device
1335 * is here */
1336 }
1337 }
1338
1339 /* find highest unused address */
1340 for (saveptr = 15; saveptr > 0; saveptr--)
1341 if (-1 == get_adb_info(&data, saveptr))
1342 break;
1343
1344 #ifdef ADB_DEBUG
1345 if (adb_debug & 0x80) {
1346 printf_intr("first free is: 0x%02x\n", saveptr);
1347 printf_intr("devices: %i\n", ADBNumDevices);
1348 }
1349 #endif
1350
1351 nonewtimes = 0; /* no loops w/o new devices */
1352 while (saveptr > 0 && nonewtimes++ < 11) {
1353 for (i = 1; i <= ADBNumDevices; i++) {
1354 device = ADBDevTable[i].currentAddr;
1355 #ifdef ADB_DEBUG
1356 if (adb_debug & 0x80)
1357 printf_intr("moving device 0x%02x to 0x%02x "
1358 "(index 0x%02x) ", device, saveptr, i);
1359 #endif
1360
1361 /* send TALK R3 to address */
1362 command = ADBTALK(device, 3);
1363 adb_op_sync((Ptr)send_string, (Ptr)0,
1364 (Ptr)0, (short)command);
1365
1366 /* move device to higher address */
1367 command = ADBLISTEN(device, 3);
1368 send_string[0] = 2;
1369 send_string[1] = (u_char)(saveptr | 0x60);
1370 send_string[2] = 0xfe;
1371 adb_op_sync((Ptr)send_string, (Ptr)0,
1372 (Ptr)0, (short)command);
1373 delay(500);
1374
1375 /* send TALK R3 - anything at new address? */
1376 command = ADBTALK(saveptr, 3);
1377 adb_op_sync((Ptr)send_string, (Ptr)0,
1378 (Ptr)0, (short)command);
1379 delay(500);
1380
1381 if (send_string[0] == 0) {
1382 #ifdef ADB_DEBUG
1383 if (adb_debug & 0x80)
1384 printf_intr("failed, continuing\n");
1385 #endif
1386 continue;
1387 }
1388
1389 /* send TALK R3 - anything at old address? */
1390 command = ADBTALK(device, 3);
1391 result = adb_op_sync((Ptr)send_string, (Ptr)0,
1392 (Ptr)0, (short)command);
1393 if (send_string[0] != 0) {
1394 /* check for valid device handler */
1395 switch (send_string[2]) {
1396 case 0:
1397 case 0xfd:
1398 case 0xfe:
1399 case 0xff:
1400 continue; /* invalid, skip */
1401 }
1402
1403 /* new device found */
1404 /* update data for previously moved device */
1405 ADBDevTable[i].currentAddr = saveptr;
1406 #ifdef ADB_DEBUG
1407 if (adb_debug & 0x80)
1408 printf_intr("old device at index %i\n",i);
1409 #endif
1410 /* add new device in table */
1411 #ifdef ADB_DEBUG
1412 if (adb_debug & 0x80)
1413 printf_intr("new device found\n");
1414 #endif
1415 if (saveptr > ADBNumDevices) {
1416 ++ADBNumDevices;
1417 KASSERT(ADBNumDevices < 16);
1418 }
1419 ADBDevTable[ADBNumDevices].devType =
1420 (int)send_string[2];
1421 ADBDevTable[ADBNumDevices].origAddr = device;
1422 ADBDevTable[ADBNumDevices].currentAddr = device;
1423 /* These will be set correctly in adbsys.c */
1424 /* Until then, unsol. data will be ignored. */
1425 ADBDevTable[ADBNumDevices].DataAreaAddr =
1426 (long)0;
1427 ADBDevTable[ADBNumDevices].ServiceRtPtr =
1428 (void *)0;
1429 /* find next unused address */
1430 for (x = saveptr; x > 0; x--) {
1431 if (-1 == get_adb_info(&data, x)) {
1432 saveptr = x;
1433 break;
1434 }
1435 }
1436 if (x == 0)
1437 saveptr = 0;
1438 #ifdef ADB_DEBUG
1439 if (adb_debug & 0x80)
1440 printf_intr("new free is 0x%02x\n",
1441 saveptr);
1442 #endif
1443 nonewtimes = 0;
1444 /* tell pm driver device is here */
1445 pm_check_adb_devices(device);
1446 } else {
1447 #ifdef ADB_DEBUG
1448 if (adb_debug & 0x80)
1449 printf_intr("moving back...\n");
1450 #endif
1451 /* move old device back */
1452 command = ADBLISTEN(saveptr, 3);
1453 send_string[0] = 2;
1454 send_string[1] = (u_char)(device | 0x60);
1455 send_string[2] = 0xfe;
1456 adb_op_sync((Ptr)send_string, (Ptr)0,
1457 (Ptr)0, (short)command);
1458 delay(1000);
1459 }
1460 }
1461 }
1462
1463 #ifdef ADB_DEBUG
1464 if (adb_debug) {
1465 for (i = 1; i <= ADBNumDevices; i++) {
1466 x = get_ind_adb_info(&data, i);
1467 if (x != -1)
1468 printf_intr("index 0x%x, addr 0x%x, type 0x%x\n",
1469 i, x, data.devType);
1470 }
1471 }
1472 #endif
1473
1474 #ifndef MRG_ADB
1475 /* enable the programmer's switch, if we have one */
1476 adb_prog_switch_enable();
1477 #endif
1478
1479 #ifdef ADB_DEBUG
1480 if (adb_debug) {
1481 if (0 == ADBNumDevices) /* tell user if no devices found */
1482 printf_intr("adb: no devices found\n");
1483 }
1484 #endif
1485
1486 adbStarting = 0; /* not starting anymore */
1487 #ifdef ADB_DEBUG
1488 if (adb_debug)
1489 printf_intr("adb: ADBReInit complete\n");
1490 #endif
1491
1492 if (adbHardware == ADB_HW_CUDA)
1493 callout_reset(&adb_cuda_tickle_ch, ADB_TICKLE_TICKS,
1494 (void *)adb_cuda_tickle, NULL);
1495
1496 if (adbHardware != ADB_HW_PB) /* ints must be on for PB? */
1497 splx(s);
1498 }
1499
1500
1501 #if 0
1502 /*
1503 * adb_comp_exec
1504 * This is a general routine that calls the completion routine if there is one.
1505 * NOTE: This routine is now only used by pm_direct.c
1506 * All the code in this file (adb_direct.c) uses
1507 * the adb_pass_up routine now.
1508 */
1509 void
1510 adb_comp_exec(void)
1511 {
1512 if ((long)0 != adbCompRout) /* don't call if empty return location */
1513 #ifdef __NetBSD__
1514 asm(" movml #0xffff,sp@- | save all registers
1515 movl %0,a2 | adbCompData
1516 movl %1,a1 | adbCompRout
1517 movl %2,a0 | adbBuffer
1518 movl %3,d0 | adbWaitingCmd
1519 jbsr a1@ | go call the routine
1520 movml sp@+,#0xffff | restore all registers"
1521 :
1522 : "g"(adbCompData), "g"(adbCompRout),
1523 "g"(adbBuffer), "g"(adbWaitingCmd)
1524 : "d0", "a0", "a1", "a2");
1525 #else /* for Mac OS-based testing */
1526 asm {
1527 movem.l a0/a1/a2/d0, -(a7)
1528 move.l adbCompData, a2
1529 move.l adbCompRout, a1
1530 move.l adbBuffer, a0
1531 move.w adbWaitingCmd, d0
1532 jsr(a1)
1533 movem.l(a7) +, d0/a2/a1/a0
1534 }
1535 #endif
1536 }
1537 #endif
1538
1539
1540 /*
1541 * adb_cmd_result
1542 *
1543 * This routine lets the caller know whether the specified adb command string
1544 * should expect a returned result, such as a TALK command.
1545 *
1546 * returns: 0 if a result should be expected
1547 * 1 if a result should NOT be expected
1548 */
1549 int
1550 adb_cmd_result(u_char *in)
1551 {
1552 switch (adbHardware) {
1553 case ADB_HW_II:
1554 /* was it an ADB talk command? */
1555 if ((in[1] & 0x0c) == 0x0c)
1556 return 0;
1557 return 1;
1558
1559 case ADB_HW_IISI:
1560 case ADB_HW_CUDA:
1561 /* was it an ADB talk command? */
1562 if ((in[1] == 0x00) && ((in[2] & 0x0c) == 0x0c))
1563 return 0;
1564 /* was it an RTC/PRAM read date/time? */
1565 if ((in[1] == 0x01) && (in[2] == 0x03))
1566 return 0;
1567 return 1;
1568
1569 case ADB_HW_PB:
1570 return 1;
1571
1572 case ADB_HW_UNKNOWN:
1573 default:
1574 return 1;
1575 }
1576 }
1577
1578
1579 /*
1580 * adb_cmd_extra
1581 *
1582 * This routine lets the caller know whether the specified adb command string
1583 * may have extra data appended to the end of it, such as a LISTEN command.
1584 *
1585 * returns: 0 if extra data is allowed
1586 * 1 if extra data is NOT allowed
1587 */
1588 int
1589 adb_cmd_extra(u_char *in)
1590 {
1591 switch (adbHardware) {
1592 case ADB_HW_II:
1593 if ((in[1] & 0x0c) == 0x08) /* was it a listen command? */
1594 return 0;
1595 return 1;
1596
1597 case ADB_HW_IISI:
1598 case ADB_HW_CUDA:
1599 /*
1600 * TO DO: support needs to be added to recognize RTC and PRAM
1601 * commands
1602 */
1603 if ((in[2] & 0x0c) == 0x08) /* was it a listen command? */
1604 return 0;
1605 /* add others later */
1606 return 1;
1607
1608 case ADB_HW_PB:
1609 return 1;
1610
1611 case ADB_HW_UNKNOWN:
1612 default:
1613 return 1;
1614 }
1615 }
1616
1617 /*
1618 * adb_op_sync
1619 *
1620 * This routine does exactly what the adb_op routine does, except that after
1621 * the adb_op is called, it waits until the return value is present before
1622 * returning.
1623 *
1624 * NOTE: The user specified compRout is ignored, since this routine specifies
1625 * it's own to adb_op, which is why you really called this in the first place
1626 * anyway.
1627 */
1628 int
1629 adb_op_sync(Ptr buffer, Ptr compRout, Ptr data, short command)
1630 {
1631 int tmout;
1632 int result;
1633 volatile int flag = 0;
1634
1635 result = adb_op(buffer, (void *)adb_op_comprout,
1636 (void *)&flag, command); /* send command */
1637 if (result == 0) { /* send ok? */
1638 /*
1639 * Total time to wait is calculated as follows:
1640 * - Tlt (stop to start time): 260 usec
1641 * - start bit: 100 usec
1642 * - up to 8 data bytes: 64 * 100 usec = 6400 usec
1643 * - stop bit (with SRQ): 140 usec
1644 * Total: 6900 usec
1645 *
1646 * This is the total time allowed by the specification. Any
1647 * device that doesn't conform to this will fail to operate
1648 * properly on some Apple systems. In spite of this we
1649 * double the time to wait; some Cuda-based apparently
1650 * queues some commands and allows the main CPU to continue
1651 * processing (radical concept, eh?). To be safe, allow
1652 * time for two complete ADB transactions to occur.
1653 */
1654 for (tmout = 13800; !flag && tmout >= 10; tmout -= 10)
1655 delay(10);
1656 if (!flag && tmout > 0)
1657 delay(tmout);
1658
1659 if (!flag)
1660 result = -2;
1661 }
1662
1663 return result;
1664 }
1665
1666 /*
1667 * adb_op_comprout
1668 *
1669 * This function is used by the adb_op_sync routine so it knows when the
1670 * function is done.
1671 */
1672 void
1673 adb_op_comprout(buffer, compdata, cmd)
1674 caddr_t buffer, compdata;
1675 int cmd;
1676 {
1677 short *p = (short *)compdata;
1678
1679 *p = 1;
1680 }
1681
1682 void
1683 adb_setup_hw_type(void)
1684 {
1685 switch (adbHardware) {
1686 case ADB_HW_CUDA:
1687 adbSoftPower = 1;
1688 return;
1689
1690 case ADB_HW_PB:
1691 adbSoftPower = 1;
1692 pm_setup_adb();
1693 return;
1694
1695 default:
1696 panic("unknown adb hardware");
1697 }
1698 #if 0
1699 response = 0; /*mac68k_machine.machineid;*/
1700
1701 /*
1702 * Determine what type of ADB hardware we are running on.
1703 */
1704 switch (response) {
1705 case MACH_MACC610: /* Centris 610 */
1706 case MACH_MACC650: /* Centris 650 */
1707 case MACH_MACII: /* II */
1708 case MACH_MACIICI: /* IIci */
1709 case MACH_MACIICX: /* IIcx */
1710 case MACH_MACIIX: /* IIx */
1711 case MACH_MACQ610: /* Quadra 610 */
1712 case MACH_MACQ650: /* Quadra 650 */
1713 case MACH_MACQ700: /* Quadra 700 */
1714 case MACH_MACQ800: /* Quadra 800 */
1715 case MACH_MACSE30: /* SE/30 */
1716 adbHardware = ADB_HW_II;
1717 #ifdef ADB_DEBUG
1718 if (adb_debug)
1719 printf_intr("adb: using II series hardware support\n");
1720 #endif
1721 break;
1722
1723 case MACH_MACCLASSICII: /* Classic II */
1724 case MACH_MACLCII: /* LC II, Performa 400/405/430 */
1725 case MACH_MACLCIII: /* LC III, Performa 450 */
1726 case MACH_MACIISI: /* IIsi */
1727 case MACH_MACIIVI: /* IIvi */
1728 case MACH_MACIIVX: /* IIvx */
1729 case MACH_MACP460: /* Performa 460/465/467 */
1730 case MACH_MACP600: /* Performa 600 */
1731 adbHardware = ADB_HW_IISI;
1732 #ifdef ADB_DEBUG
1733 if (adb_debug)
1734 printf_intr("adb: using IIsi series hardware support\n");
1735 #endif
1736 break;
1737
1738 case MACH_MACPB140: /* PowerBook 140 */
1739 case MACH_MACPB145: /* PowerBook 145 */
1740 case MACH_MACPB150: /* PowerBook 150 */
1741 case MACH_MACPB160: /* PowerBook 160 */
1742 case MACH_MACPB165: /* PowerBook 165 */
1743 case MACH_MACPB165C: /* PowerBook 165c */
1744 case MACH_MACPB170: /* PowerBook 170 */
1745 case MACH_MACPB180: /* PowerBook 180 */
1746 case MACH_MACPB180C: /* PowerBook 180c */
1747 adbHardware = ADB_HW_PB;
1748 pm_setup_adb();
1749 #ifdef ADB_DEBUG
1750 if (adb_debug)
1751 printf_intr("adb: using PowerBook 100-series hardware support\n");
1752 #endif
1753 break;
1754
1755 case MACH_MACPB210: /* PowerBook Duo 210 */
1756 case MACH_MACPB230: /* PowerBook Duo 230 */
1757 case MACH_MACPB250: /* PowerBook Duo 250 */
1758 case MACH_MACPB270: /* PowerBook Duo 270 */
1759 case MACH_MACPB280: /* PowerBook Duo 280 */
1760 case MACH_MACPB280C: /* PowerBook Duo 280c */
1761 case MACH_MACPB500: /* PowerBook 500 series */
1762 adbHardware = ADB_HW_PB;
1763 pm_setup_adb();
1764 #ifdef ADB_DEBUG
1765 if (adb_debug)
1766 printf_intr("adb: using PowerBook Duo-series and PowerBook 500-series hardware support\n");
1767 #endif
1768 break;
1769
1770 case MACH_MACC660AV: /* Centris 660AV */
1771 case MACH_MACCCLASSIC: /* Color Classic */
1772 case MACH_MACCCLASSICII: /* Color Classic II */
1773 case MACH_MACLC475: /* LC 475, Performa 475/476 */
1774 case MACH_MACLC475_33: /* Clock-chipped 47x */
1775 case MACH_MACLC520: /* LC 520 */
1776 case MACH_MACLC575: /* LC 575, Performa 575/577/578 */
1777 case MACH_MACP550: /* LC 550, Performa 550 */
1778 case MACH_MACP580: /* Performa 580/588 */
1779 case MACH_MACQ605: /* Quadra 605 */
1780 case MACH_MACQ605_33: /* Clock-chipped Quadra 605 */
1781 case MACH_MACQ630: /* LC 630, Performa 630, Quadra 630 */
1782 case MACH_MACQ840AV: /* Quadra 840AV */
1783 adbHardware = ADB_HW_CUDA;
1784 #ifdef ADB_DEBUG
1785 if (adb_debug)
1786 printf_intr("adb: using Cuda series hardware support\n");
1787 #endif
1788 break;
1789 default:
1790 adbHardware = ADB_HW_UNKNOWN;
1791 #ifdef ADB_DEBUG
1792 if (adb_debug) {
1793 printf_intr("adb: hardware type unknown for this machine\n");
1794 printf_intr("adb: ADB support is disabled\n");
1795 }
1796 #endif
1797 break;
1798 }
1799
1800 /*
1801 * Determine whether this machine has ADB based soft power.
1802 */
1803 switch (response) {
1804 case MACH_MACCCLASSIC: /* Color Classic */
1805 case MACH_MACCCLASSICII: /* Color Classic II */
1806 case MACH_MACIISI: /* IIsi */
1807 case MACH_MACIIVI: /* IIvi */
1808 case MACH_MACIIVX: /* IIvx */
1809 case MACH_MACLC520: /* LC 520 */
1810 case MACH_MACLC575: /* LC 575, Performa 575/577/578 */
1811 case MACH_MACP550: /* LC 550, Performa 550 */
1812 case MACH_MACP600: /* Performa 600 */
1813 case MACH_MACQ630: /* LC 630, Performa 630, Quadra 630 */
1814 case MACH_MACQ840AV: /* Quadra 840AV */
1815 adbSoftPower = 1;
1816 break;
1817 }
1818 #endif
1819 }
1820
1821 int
1822 count_adbs(void)
1823 {
1824 int i;
1825 int found;
1826
1827 found = 0;
1828
1829 for (i = 1; i < 16; i++)
1830 if (0 != ADBDevTable[i].devType)
1831 found++;
1832
1833 return found;
1834 }
1835
1836 int
1837 get_ind_adb_info(ADBDataBlock * info, int index)
1838 {
1839 if ((index < 1) || (index > 15)) /* check range 1-15 */
1840 return (-1);
1841
1842 #ifdef ADB_DEBUG
1843 if (adb_debug & 0x80)
1844 printf_intr("index 0x%x devType is: 0x%x\n", index,
1845 ADBDevTable[index].devType);
1846 #endif
1847 if (0 == ADBDevTable[index].devType) /* make sure it's a valid entry */
1848 return (-1);
1849
1850 info->devType = ADBDevTable[index].devType;
1851 info->origADBAddr = ADBDevTable[index].origAddr;
1852 info->dbServiceRtPtr = (Ptr)ADBDevTable[index].ServiceRtPtr;
1853 info->dbDataAreaAddr = (Ptr)ADBDevTable[index].DataAreaAddr;
1854
1855 return (ADBDevTable[index].currentAddr);
1856 }
1857
1858 int
1859 get_adb_info(ADBDataBlock * info, int adbAddr)
1860 {
1861 int i;
1862
1863 if ((adbAddr < 1) || (adbAddr > 15)) /* check range 1-15 */
1864 return (-1);
1865
1866 for (i = 1; i < 15; i++)
1867 if (ADBDevTable[i].currentAddr == adbAddr) {
1868 info->devType = ADBDevTable[i].devType;
1869 info->origADBAddr = ADBDevTable[i].origAddr;
1870 info->dbServiceRtPtr = (Ptr)ADBDevTable[i].ServiceRtPtr;
1871 info->dbDataAreaAddr = ADBDevTable[i].DataAreaAddr;
1872 return 0; /* found */
1873 }
1874
1875 return (-1); /* not found */
1876 }
1877
1878 int
1879 set_adb_info(ADBSetInfoBlock * info, int adbAddr)
1880 {
1881 int i;
1882
1883 if ((adbAddr < 1) || (adbAddr > 15)) /* check range 1-15 */
1884 return (-1);
1885
1886 for (i = 1; i < 15; i++)
1887 if (ADBDevTable[i].currentAddr == adbAddr) {
1888 ADBDevTable[i].ServiceRtPtr =
1889 (void *)(info->siServiceRtPtr);
1890 ADBDevTable[i].DataAreaAddr = info->siDataAreaAddr;
1891 return 0; /* found */
1892 }
1893
1894 return (-1); /* not found */
1895
1896 }
1897
1898 #ifndef MRG_ADB
1899
1900 /* caller should really use machine-independant version: getPramTime */
1901 /* this version does pseudo-adb access only */
1902 int
1903 adb_read_date_time(unsigned long *time)
1904 {
1905 u_char output[ADB_MAX_MSG_LENGTH];
1906 int result;
1907 volatile int flag = 0;
1908
1909 switch (adbHardware) {
1910 case ADB_HW_II:
1911 return -1;
1912
1913 case ADB_HW_IISI:
1914 output[0] = 0x02; /* 2 byte message */
1915 output[1] = 0x01; /* to pram/rtc device */
1916 output[2] = 0x03; /* read date/time */
1917 result = send_adb_IIsi((u_char *)output, (u_char *)output,
1918 (void *)adb_op_comprout, (int *)&flag, (int)0);
1919 if (result != 0) /* exit if not sent */
1920 return -1;
1921
1922 while (0 == flag) /* wait for result */
1923 ;
1924
1925 *time = (long)(*(long *)(output + 1));
1926 return 0;
1927
1928 case ADB_HW_PB:
1929 pm_read_date_time(time);
1930 return 0;
1931
1932 case ADB_HW_CUDA:
1933 output[0] = 0x02; /* 2 byte message */
1934 output[1] = 0x01; /* to pram/rtc device */
1935 output[2] = 0x03; /* read date/time */
1936 result = send_adb_cuda((u_char *)output, (u_char *)output,
1937 (void *)adb_op_comprout, (void *)&flag, (int)0);
1938 if (result != 0) /* exit if not sent */
1939 return -1;
1940
1941 while (0 == flag) /* wait for result */
1942 ;
1943
1944 memcpy(time, output + 1, 4);
1945 return 0;
1946
1947 case ADB_HW_UNKNOWN:
1948 default:
1949 return -1;
1950 }
1951 }
1952
1953 /* caller should really use machine-independant version: setPramTime */
1954 /* this version does pseudo-adb access only */
1955 int
1956 adb_set_date_time(unsigned long time)
1957 {
1958 u_char output[ADB_MAX_MSG_LENGTH];
1959 int result;
1960 volatile int flag = 0;
1961
1962 switch (adbHardware) {
1963
1964 case ADB_HW_CUDA:
1965 output[0] = 0x06; /* 6 byte message */
1966 output[1] = 0x01; /* to pram/rtc device */
1967 output[2] = 0x09; /* set date/time */
1968 output[3] = (u_char)(time >> 24);
1969 output[4] = (u_char)(time >> 16);
1970 output[5] = (u_char)(time >> 8);
1971 output[6] = (u_char)(time);
1972 result = send_adb_cuda((u_char *)output, (u_char *)0,
1973 (void *)adb_op_comprout, (void *)&flag, (int)0);
1974 if (result != 0) /* exit if not sent */
1975 return -1;
1976
1977 while (0 == flag) /* wait for send to finish */
1978 ;
1979
1980 return 0;
1981
1982 case ADB_HW_PB:
1983 pm_set_date_time(time);
1984 return 0;
1985
1986 case ADB_HW_II:
1987 case ADB_HW_IISI:
1988 case ADB_HW_UNKNOWN:
1989 default:
1990 return -1;
1991 }
1992 }
1993
1994
1995 int
1996 adb_poweroff(void)
1997 {
1998 u_char output[ADB_MAX_MSG_LENGTH];
1999 int result;
2000
2001 if (!adbSoftPower)
2002 return -1;
2003
2004 adb_polling = 1;
2005
2006 switch (adbHardware) {
2007 case ADB_HW_IISI:
2008 output[0] = 0x02; /* 2 byte message */
2009 output[1] = 0x01; /* to pram/rtc/soft-power device */
2010 output[2] = 0x0a; /* set date/time */
2011 result = send_adb_IIsi((u_char *)output, (u_char *)0,
2012 (void *)0, (void *)0, (int)0);
2013 if (result != 0) /* exit if not sent */
2014 return -1;
2015
2016 for (;;); /* wait for power off */
2017
2018 return 0;
2019
2020 case ADB_HW_PB:
2021 pm_adb_poweroff();
2022
2023 for (;;); /* wait for power off */
2024
2025 return 0;
2026
2027 case ADB_HW_CUDA:
2028 output[0] = 0x02; /* 2 byte message */
2029 output[1] = 0x01; /* to pram/rtc/soft-power device */
2030 output[2] = 0x0a; /* set date/time */
2031 result = send_adb_cuda((u_char *)output, (u_char *)0,
2032 (void *)0, (void *)0, (int)0);
2033 if (result != 0) /* exit if not sent */
2034 return -1;
2035
2036 for (;;); /* wait for power off */
2037
2038 return 0;
2039
2040 case ADB_HW_II: /* II models don't do ADB soft power */
2041 case ADB_HW_UNKNOWN:
2042 default:
2043 return -1;
2044 }
2045 }
2046
2047 int
2048 adb_prog_switch_enable(void)
2049 {
2050 u_char output[ADB_MAX_MSG_LENGTH];
2051 int result;
2052 volatile int flag = 0;
2053
2054 switch (adbHardware) {
2055 case ADB_HW_IISI:
2056 output[0] = 0x03; /* 3 byte message */
2057 output[1] = 0x01; /* to pram/rtc/soft-power device */
2058 output[2] = 0x1c; /* prog. switch control */
2059 output[3] = 0x01; /* enable */
2060 result = send_adb_IIsi((u_char *)output, (u_char *)0,
2061 (void *)adb_op_comprout, (void *)&flag, (int)0);
2062 if (result != 0) /* exit if not sent */
2063 return -1;
2064
2065 while (0 == flag) /* wait for send to finish */
2066 ;
2067
2068 return 0;
2069
2070 case ADB_HW_PB:
2071 return -1;
2072
2073 case ADB_HW_II: /* II models don't do prog. switch */
2074 case ADB_HW_CUDA: /* cuda doesn't do prog. switch TO DO: verify this */
2075 case ADB_HW_UNKNOWN:
2076 default:
2077 return -1;
2078 }
2079 }
2080
2081 int
2082 adb_prog_switch_disable(void)
2083 {
2084 u_char output[ADB_MAX_MSG_LENGTH];
2085 int result;
2086 volatile int flag = 0;
2087
2088 switch (adbHardware) {
2089 case ADB_HW_IISI:
2090 output[0] = 0x03; /* 3 byte message */
2091 output[1] = 0x01; /* to pram/rtc/soft-power device */
2092 output[2] = 0x1c; /* prog. switch control */
2093 output[3] = 0x01; /* disable */
2094 result = send_adb_IIsi((u_char *)output, (u_char *)0,
2095 (void *)adb_op_comprout, (void *)&flag, (int)0);
2096 if (result != 0) /* exit if not sent */
2097 return -1;
2098
2099 while (0 == flag) /* wait for send to finish */
2100 ;
2101
2102 return 0;
2103
2104 case ADB_HW_PB:
2105 return -1;
2106
2107 case ADB_HW_II: /* II models don't do prog. switch */
2108 case ADB_HW_CUDA: /* cuda doesn't do prog. switch */
2109 case ADB_HW_UNKNOWN:
2110 default:
2111 return -1;
2112 }
2113 }
2114
2115 int
2116 CountADBs(void)
2117 {
2118 return (count_adbs());
2119 }
2120
2121 void
2122 ADBReInit(void)
2123 {
2124 adb_reinit();
2125 }
2126
2127 int
2128 GetIndADB(ADBDataBlock * info, int index)
2129 {
2130 return (get_ind_adb_info(info, index));
2131 }
2132
2133 int
2134 GetADBInfo(ADBDataBlock * info, int adbAddr)
2135 {
2136 return (get_adb_info(info, adbAddr));
2137 }
2138
2139 int
2140 SetADBInfo(ADBSetInfoBlock * info, int adbAddr)
2141 {
2142 return (set_adb_info(info, adbAddr));
2143 }
2144
2145 int
2146 ADBOp(Ptr buffer, Ptr compRout, Ptr data, short commandNum)
2147 {
2148 return (adb_op(buffer, compRout, data, commandNum));
2149 }
2150
2151 #endif
2152
2153 int
2154 setsoftadb()
2155 {
2156 callout_reset(&adb_soft_intr_ch, 1, (void *)adb_soft_intr, NULL);
2157 return 0;
2158 }
2159
2160 void
2161 adb_cuda_autopoll()
2162 {
2163 volatile int flag = 0;
2164 int result;
2165 u_char output[16];
2166
2167 output[0] = 0x03; /* 3-byte message */
2168 output[1] = 0x01; /* to pram/rtc device */
2169 output[2] = 0x01; /* cuda autopoll */
2170 output[3] = 0x01;
2171 result = send_adb_cuda(output, output, adb_op_comprout, (void *)&flag,
2172 0);
2173 if (result != 0) /* exit if not sent */
2174 return;
2175
2176 while (flag == 0); /* wait for result */
2177 }
2178
2179 void
2180 adb_restart(void)
2181 {
2182 int result;
2183 u_char output[16];
2184
2185 adb_polling = 1;
2186
2187 switch (adbHardware) {
2188 case ADB_HW_CUDA:
2189 output[0] = 0x02; /* 2 byte message */
2190 output[1] = 0x01; /* to pram/rtc/soft-power device */
2191 output[2] = 0x11; /* restart */
2192 result = send_adb_cuda(output, NULL, NULL, NULL, 0);
2193 if (result != 0) /* exit if not sent */
2194 return;
2195 while (1); /* not return */
2196
2197 case ADB_HW_PB:
2198 pm_adb_restart();
2199 while (1); /* not return */
2200 }
2201 }
2202