adb_direct.c revision 1.20 1 /* $NetBSD: adb_direct.c,v 1.20 2002/01/02 20:30:45 dbj Exp $ */
2
3 /* From: adb_direct.c 2.02 4/18/97 jpw */
4
5 /*
6 * Copyright (C) 1996, 1997 John P. Wittkoski
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by John P. Wittkoski.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*
36 * This code is rather messy, but I don't have time right now
37 * to clean it up as much as I would like.
38 * But it works, so I'm happy. :-) jpw
39 */
40
41 /*
42 * TO DO:
43 * - We could reduce the time spent in the adb_intr_* routines
44 * by having them save the incoming and outgoing data directly
45 * in the adbInbound and adbOutbound queues, as it would reduce
46 * the number of times we need to copy the data around. It
47 * would also make the code more readable and easier to follow.
48 * - (Related to above) Use the header part of adbCommand to
49 * reduce the number of copies we have to do of the data.
50 * - (Related to above) Actually implement the adbOutbound queue.
51 * This is fairly easy once you switch all the intr routines
52 * over to using adbCommand structs directly.
53 * - There is a bug in the state machine of adb_intr_cuda
54 * code that causes hangs, especially on 030 machines, probably
55 * because of some timing issues. Because I have been unable to
56 * determine the exact cause of this bug, I used the timeout function
57 * to check for and recover from this condition. If anyone finds
58 * the actual cause of this bug, the calls to timeout and the
59 * adb_cuda_tickle routine can be removed.
60 */
61
62 #include <sys/param.h>
63 #include <sys/cdefs.h>
64 #include <sys/systm.h>
65 #include <sys/callout.h>
66 #include <sys/device.h>
67
68 #include <machine/param.h>
69 #include <machine/cpu.h>
70 #include <machine/adbsys.h>
71
72 #include <macppc/dev/viareg.h>
73 #include <macppc/dev/adbvar.h>
74 #include <macppc/dev/pm_direct.h>
75
76 #define printf_intr printf
77
78 #ifdef DEBUG
79 #ifndef ADB_DEBUG
80 #define ADB_DEBUG
81 #endif
82 #endif
83
84 /* some misc. leftovers */
85 #define vPB 0x0000
86 #define vPB3 0x08
87 #define vPB4 0x10
88 #define vPB5 0x20
89 #define vSR_INT 0x04
90 #define vSR_OUT 0x10
91
92 /* the type of ADB action that we are currently preforming */
93 #define ADB_ACTION_NOTREADY 0x1 /* has not been initialized yet */
94 #define ADB_ACTION_IDLE 0x2 /* the bus is currently idle */
95 #define ADB_ACTION_OUT 0x3 /* sending out a command */
96 #define ADB_ACTION_IN 0x4 /* receiving data */
97 #define ADB_ACTION_POLLING 0x5 /* polling - II only */
98
99 /*
100 * These describe the state of the ADB bus itself, although they
101 * don't necessarily correspond directly to ADB states.
102 * Note: these are not really used in the IIsi code.
103 */
104 #define ADB_BUS_UNKNOWN 0x1 /* we don't know yet - all models */
105 #define ADB_BUS_IDLE 0x2 /* bus is idle - all models */
106 #define ADB_BUS_CMD 0x3 /* starting a command - II models */
107 #define ADB_BUS_ODD 0x4 /* the "odd" state - II models */
108 #define ADB_BUS_EVEN 0x5 /* the "even" state - II models */
109 #define ADB_BUS_ACTIVE 0x6 /* active state - IIsi models */
110 #define ADB_BUS_ACK 0x7 /* currently ACKing - IIsi models */
111
112 /*
113 * Shortcuts for setting or testing the VIA bit states.
114 * Not all shortcuts are used for every type of ADB hardware.
115 */
116 #define ADB_SET_STATE_IDLE_II() via_reg_or(VIA1, vBufB, (vPB4 | vPB5))
117 #define ADB_SET_STATE_IDLE_IISI() via_reg_and(VIA1, vBufB, ~(vPB4 | vPB5))
118 #define ADB_SET_STATE_IDLE_CUDA() via_reg_or(VIA1, vBufB, (vPB4 | vPB5))
119 #define ADB_SET_STATE_CMD() via_reg_and(VIA1, vBufB, ~(vPB4 | vPB5))
120 #define ADB_SET_STATE_EVEN() write_via_reg(VIA1, vBufB, \
121 (read_via_reg(VIA1, vBufB) | vPB4) & ~vPB5)
122 #define ADB_SET_STATE_ODD() write_via_reg(VIA1, vBufB, \
123 (read_via_reg(VIA1, vBufB) | vPB5) & ~vPB4 )
124 #define ADB_SET_STATE_ACTIVE() via_reg_or(VIA1, vBufB, vPB5)
125 #define ADB_SET_STATE_INACTIVE() via_reg_and(VIA1, vBufB, ~vPB5)
126 #define ADB_SET_STATE_TIP() via_reg_and(VIA1, vBufB, ~vPB5)
127 #define ADB_CLR_STATE_TIP() via_reg_or(VIA1, vBufB, vPB5)
128 #define ADB_SET_STATE_ACKON() via_reg_or(VIA1, vBufB, vPB4)
129 #define ADB_SET_STATE_ACKOFF() via_reg_and(VIA1, vBufB, ~vPB4)
130 #define ADB_TOGGLE_STATE_ACK_CUDA() via_reg_xor(VIA1, vBufB, vPB4)
131 #define ADB_SET_STATE_ACKON_CUDA() via_reg_and(VIA1, vBufB, ~vPB4)
132 #define ADB_SET_STATE_ACKOFF_CUDA() via_reg_or(VIA1, vBufB, vPB4)
133 #define ADB_SET_SR_INPUT() via_reg_and(VIA1, vACR, ~vSR_OUT)
134 #define ADB_SET_SR_OUTPUT() via_reg_or(VIA1, vACR, vSR_OUT)
135 #define ADB_SR() read_via_reg(VIA1, vSR)
136 #define ADB_VIA_INTR_ENABLE() write_via_reg(VIA1, vIER, 0x84)
137 #define ADB_VIA_INTR_DISABLE() write_via_reg(VIA1, vIER, 0x04)
138 #define ADB_VIA_CLR_INTR() write_via_reg(VIA1, vIFR, 0x04)
139 #define ADB_INTR_IS_OFF (vPB3 == (read_via_reg(VIA1, vBufB) & vPB3))
140 #define ADB_INTR_IS_ON (0 == (read_via_reg(VIA1, vBufB) & vPB3))
141 #define ADB_SR_INTR_IS_OFF (0 == (read_via_reg(VIA1, vIFR) & vSR_INT))
142 #define ADB_SR_INTR_IS_ON (vSR_INT == (read_via_reg(VIA1, \
143 vIFR) & vSR_INT))
144
145 /*
146 * This is the delay that is required (in uS) between certain
147 * ADB transactions. The actual timing delay for for each uS is
148 * calculated at boot time to account for differences in machine speed.
149 */
150 #define ADB_DELAY 150
151
152 /*
153 * Maximum ADB message length; includes space for data, result, and
154 * device code - plus a little for safety.
155 */
156 #define ADB_MAX_MSG_LENGTH 16
157 #define ADB_MAX_HDR_LENGTH 8
158
159 #define ADB_QUEUE 32
160 #define ADB_TICKLE_TICKS 4
161
162 /*
163 * A structure for storing information about each ADB device.
164 */
165 struct ADBDevEntry {
166 void (*ServiceRtPtr) __P((void));
167 void *DataAreaAddr;
168 int devType;
169 int origAddr;
170 int currentAddr;
171 };
172
173 /*
174 * Used to hold ADB commands that are waiting to be sent out.
175 */
176 struct adbCmdHoldEntry {
177 u_char outBuf[ADB_MAX_MSG_LENGTH]; /* our message */
178 u_char *saveBuf; /* buffer to know where to save result */
179 u_char *compRout; /* completion routine pointer */
180 u_char *data; /* completion routine data pointer */
181 };
182
183 /*
184 * Eventually used for two separate queues, the queue between
185 * the upper and lower halves, and the outgoing packet queue.
186 * TO DO: adbCommand can replace all of adbCmdHoldEntry eventually
187 */
188 struct adbCommand {
189 u_char header[ADB_MAX_HDR_LENGTH]; /* not used yet */
190 u_char data[ADB_MAX_MSG_LENGTH]; /* packet data only */
191 u_char *saveBuf; /* where to save result */
192 u_char *compRout; /* completion routine pointer */
193 u_char *compData; /* completion routine data pointer */
194 u_int cmd; /* the original command for this data */
195 u_int unsol; /* 1 if packet was unsolicited */
196 u_int ack_only; /* 1 for no special processing */
197 };
198
199 /*
200 * A few variables that we need and their initial values.
201 */
202 int adbHardware = ADB_HW_UNKNOWN;
203 int adbActionState = ADB_ACTION_NOTREADY;
204 int adbBusState = ADB_BUS_UNKNOWN;
205 int adbWaiting = 0; /* waiting for return data from the device */
206 int adbWriteDelay = 0; /* working on (or waiting to do) a write */
207 int adbOutQueueHasData = 0; /* something in the queue waiting to go out */
208 int adbNextEnd = 0; /* the next incoming bute is the last (II) */
209 int adbSoftPower = 0; /* machine supports soft power */
210
211 int adbWaitingCmd = 0; /* ADB command we are waiting for */
212 u_char *adbBuffer = (long)0; /* pointer to user data area */
213 void *adbCompRout = (long)0; /* pointer to the completion routine */
214 void *adbCompData = (long)0; /* pointer to the completion routine data */
215 long adbFakeInts = 0; /* keeps track of fake ADB interrupts for
216 * timeouts (II) */
217 int adbStarting = 1; /* doing ADBReInit so do polling differently */
218 int adbSendTalk = 0; /* the intr routine is sending the talk, not
219 * the user (II) */
220 int adbPolling = 0; /* we are polling for service request */
221 int adbPollCmd = 0; /* the last poll command we sent */
222
223 u_char adbInputBuffer[ADB_MAX_MSG_LENGTH]; /* data input buffer */
224 u_char adbOutputBuffer[ADB_MAX_MSG_LENGTH]; /* data output buffer */
225 struct adbCmdHoldEntry adbOutQueue; /* our 1 entry output queue */
226
227 int adbSentChars = 0; /* how many characters we have sent */
228 int adbLastDevice = 0; /* last ADB dev we heard from (II ONLY) */
229 int adbLastDevIndex = 0; /* last ADB dev loc in dev table (II ONLY) */
230 int adbLastCommand = 0; /* the last ADB command we sent (II) */
231
232 struct ADBDevEntry ADBDevTable[16]; /* our ADB device table */
233 int ADBNumDevices; /* num. of ADB devices found with ADBReInit */
234
235 struct adbCommand adbInbound[ADB_QUEUE]; /* incoming queue */
236 int adbInCount = 0; /* how many packets in in queue */
237 int adbInHead = 0; /* head of in queue */
238 int adbInTail = 0; /* tail of in queue */
239 struct adbCommand adbOutbound[ADB_QUEUE]; /* outgoing queue - not used yet */
240 int adbOutCount = 0; /* how many packets in out queue */
241 int adbOutHead = 0; /* head of out queue */
242 int adbOutTail = 0; /* tail of out queue */
243
244 int tickle_count = 0; /* how many tickles seen for this packet? */
245 int tickle_serial = 0; /* the last packet tickled */
246 int adb_cuda_serial = 0; /* the current packet */
247
248 struct callout adb_cuda_tickle_ch = CALLOUT_INITIALIZER;
249 struct callout adb_soft_intr_ch = CALLOUT_INITIALIZER;
250
251 volatile u_char *Via1Base;
252 extern int adb_polling; /* Are we polling? */
253
254 void pm_setup_adb __P((void));
255 void pm_check_adb_devices __P((int));
256 void pm_intr __P((void));
257 int pm_adb_op __P((u_char *, void *, void *, int));
258 void pm_init_adb_device __P((void));
259
260 /*
261 * The following are private routines.
262 */
263 #ifdef ADB_DEBUG
264 void print_single __P((u_char *));
265 #endif
266 void adb_intr __P((void));
267 void adb_intr_II __P((void));
268 void adb_intr_IIsi __P((void));
269 void adb_intr_cuda __P((void));
270 void adb_soft_intr __P((void));
271 int send_adb_II __P((u_char *, u_char *, void *, void *, int));
272 int send_adb_IIsi __P((u_char *, u_char *, void *, void *, int));
273 int send_adb_cuda __P((u_char *, u_char *, void *, void *, int));
274 void adb_intr_cuda_test __P((void));
275 void adb_cuda_tickle __P((void));
276 void adb_pass_up __P((struct adbCommand *));
277 void adb_op_comprout __P((caddr_t, caddr_t, int));
278 void adb_reinit __P((void));
279 int count_adbs __P((void));
280 int get_ind_adb_info __P((ADBDataBlock *, int));
281 int get_adb_info __P((ADBDataBlock *, int));
282 int set_adb_info __P((ADBSetInfoBlock *, int));
283 void adb_setup_hw_type __P((void));
284 int adb_op __P((Ptr, Ptr, Ptr, short));
285 int adb_op_sync __P((Ptr, Ptr, Ptr, short));
286 void adb_read_II __P((u_char *));
287 void adb_hw_setup __P((void));
288 void adb_hw_setup_IIsi __P((u_char *));
289 int adb_cmd_result __P((u_char *));
290 int adb_cmd_extra __P((u_char *));
291 int adb_guess_next_device __P((void));
292 int adb_prog_switch_enable __P((void));
293 int adb_prog_switch_disable __P((void));
294 /* we should create this and it will be the public version */
295 int send_adb __P((u_char *, void *, void *));
296
297 int setsoftadb __P((void));
298
299 #ifdef ADB_DEBUG
300 /*
301 * print_single
302 * Diagnostic display routine. Displays the hex values of the
303 * specified elements of the u_char. The length of the "string"
304 * is in [0].
305 */
306 void
307 print_single(str)
308 u_char *str;
309 {
310 int x;
311
312 if (str == 0) {
313 printf_intr("no data - null pointer\n");
314 return;
315 }
316 if (*str == 0) {
317 printf_intr("nothing returned\n");
318 return;
319 }
320 if (*str > 20) {
321 printf_intr("ADB: ACK > 20 no way!\n");
322 *str = 20;
323 }
324 printf_intr("(length=0x%x):", *str);
325 for (x = 1; x <= *str; x++)
326 printf_intr(" 0x%02x", str[x]);
327 printf_intr("\n");
328 }
329 #endif
330
331 void
332 adb_cuda_tickle(void)
333 {
334 volatile int s;
335
336 if (adbActionState == ADB_ACTION_IN) {
337 if (tickle_serial == adb_cuda_serial) {
338 if (++tickle_count > 0) {
339 s = splhigh();
340 adbActionState = ADB_ACTION_IDLE;
341 adbInputBuffer[0] = 0;
342 ADB_SET_STATE_IDLE_CUDA();
343 splx(s);
344 }
345 } else {
346 tickle_serial = adb_cuda_serial;
347 tickle_count = 0;
348 }
349 } else {
350 tickle_serial = adb_cuda_serial;
351 tickle_count = 0;
352 }
353
354 callout_reset(&adb_cuda_tickle_ch, ADB_TICKLE_TICKS,
355 (void *)adb_cuda_tickle, NULL);
356 }
357
358 /*
359 * called when when an adb interrupt happens
360 *
361 * Cuda version of adb_intr
362 * TO DO: do we want to add some calls to intr_dispatch() here to
363 * grab serial interrupts?
364 */
365 void
366 adb_intr_cuda(void)
367 {
368 volatile int i, ending;
369 volatile unsigned int s;
370 struct adbCommand packet;
371
372 s = splhigh(); /* can't be too careful - might be called */
373 /* from a routine, NOT an interrupt */
374
375 ADB_VIA_CLR_INTR(); /* clear interrupt */
376 ADB_VIA_INTR_DISABLE(); /* disable ADB interrupt on IIs. */
377
378 switch_start:
379 switch (adbActionState) {
380 case ADB_ACTION_IDLE:
381 /*
382 * This is an unexpected packet, so grab the first (dummy)
383 * byte, set up the proper vars, and tell the chip we are
384 * starting to receive the packet by setting the TIP bit.
385 */
386 adbInputBuffer[1] = ADB_SR();
387 adb_cuda_serial++;
388 if (ADB_INTR_IS_OFF) /* must have been a fake start */
389 break;
390
391 ADB_SET_SR_INPUT();
392 ADB_SET_STATE_TIP();
393
394 adbInputBuffer[0] = 1;
395 adbActionState = ADB_ACTION_IN;
396 #ifdef ADB_DEBUG
397 if (adb_debug)
398 printf_intr("idle 0x%02x ", adbInputBuffer[1]);
399 #endif
400 break;
401
402 case ADB_ACTION_IN:
403 adbInputBuffer[++adbInputBuffer[0]] = ADB_SR();
404 /* intr off means this is the last byte (end of frame) */
405 if (ADB_INTR_IS_OFF)
406 ending = 1;
407 else
408 ending = 0;
409
410 if (1 == ending) { /* end of message? */
411 #ifdef ADB_DEBUG
412 if (adb_debug) {
413 printf_intr("in end 0x%02x ",
414 adbInputBuffer[adbInputBuffer[0]]);
415 print_single(adbInputBuffer);
416 }
417 #endif
418
419 /*
420 * Are we waiting AND does this packet match what we
421 * are waiting for AND is it coming from either the
422 * ADB or RTC/PRAM sub-device? This section _should_
423 * recognize all ADB and RTC/PRAM type commands, but
424 * there may be more... NOTE: commands are always at
425 * [4], even for RTC/PRAM commands.
426 */
427 /* set up data for adb_pass_up */
428 memcpy(packet.data, adbInputBuffer, adbInputBuffer[0] + 1);
429
430 if ((adbWaiting == 1) &&
431 (adbInputBuffer[4] == adbWaitingCmd) &&
432 ((adbInputBuffer[2] == 0x00) ||
433 (adbInputBuffer[2] == 0x01))) {
434 packet.saveBuf = adbBuffer;
435 packet.compRout = adbCompRout;
436 packet.compData = adbCompData;
437 packet.unsol = 0;
438 packet.ack_only = 0;
439 adb_pass_up(&packet);
440
441 adbWaitingCmd = 0; /* reset "waiting" vars */
442 adbWaiting = 0;
443 adbBuffer = (long)0;
444 adbCompRout = (long)0;
445 adbCompData = (long)0;
446 } else {
447 packet.unsol = 1;
448 packet.ack_only = 0;
449 adb_pass_up(&packet);
450 }
451
452
453 /* reset vars and signal the end of this frame */
454 adbActionState = ADB_ACTION_IDLE;
455 adbInputBuffer[0] = 0;
456 ADB_SET_STATE_IDLE_CUDA();
457 /*ADB_SET_SR_INPUT();*/
458
459 /*
460 * If there is something waiting to be sent out,
461 * the set everything up and send the first byte.
462 */
463 if (adbWriteDelay == 1) {
464 delay(ADB_DELAY); /* required */
465 adbSentChars = 0;
466 adbActionState = ADB_ACTION_OUT;
467 /*
468 * If the interrupt is on, we were too slow
469 * and the chip has already started to send
470 * something to us, so back out of the write
471 * and start a read cycle.
472 */
473 if (ADB_INTR_IS_ON) {
474 ADB_SET_SR_INPUT();
475 ADB_SET_STATE_IDLE_CUDA();
476 adbSentChars = 0;
477 adbActionState = ADB_ACTION_IDLE;
478 adbInputBuffer[0] = 0;
479 break;
480 }
481 /*
482 * If we got here, it's ok to start sending
483 * so load the first byte and tell the chip
484 * we want to send.
485 */
486 ADB_SET_STATE_TIP();
487 ADB_SET_SR_OUTPUT();
488 write_via_reg(VIA1, vSR, adbOutputBuffer[adbSentChars + 1]);
489 }
490 } else {
491 ADB_TOGGLE_STATE_ACK_CUDA();
492 #ifdef ADB_DEBUG
493 if (adb_debug)
494 printf_intr("in 0x%02x ",
495 adbInputBuffer[adbInputBuffer[0]]);
496 #endif
497 }
498 break;
499
500 case ADB_ACTION_OUT:
501 i = ADB_SR(); /* reset SR-intr in IFR */
502 #ifdef ADB_DEBUG
503 if (adb_debug)
504 printf_intr("intr out 0x%02x ", i);
505 #endif
506
507 adbSentChars++;
508 if (ADB_INTR_IS_ON) { /* ADB intr low during write */
509 #ifdef ADB_DEBUG
510 if (adb_debug)
511 printf_intr("intr was on ");
512 #endif
513 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
514 ADB_SET_STATE_IDLE_CUDA();
515 adbSentChars = 0; /* must start all over */
516 adbActionState = ADB_ACTION_IDLE; /* new state */
517 adbInputBuffer[0] = 0;
518 adbWriteDelay = 1; /* must retry when done with
519 * read */
520 delay(ADB_DELAY);
521 goto switch_start; /* process next state right
522 * now */
523 break;
524 }
525 if (adbOutputBuffer[0] == adbSentChars) { /* check for done */
526 if (0 == adb_cmd_result(adbOutputBuffer)) { /* do we expect data
527 * back? */
528 adbWaiting = 1; /* signal waiting for return */
529 adbWaitingCmd = adbOutputBuffer[2]; /* save waiting command */
530 } else { /* no talk, so done */
531 /* set up stuff for adb_pass_up */
532 memcpy(packet.data, adbInputBuffer, adbInputBuffer[0] + 1);
533 packet.saveBuf = adbBuffer;
534 packet.compRout = adbCompRout;
535 packet.compData = adbCompData;
536 packet.cmd = adbWaitingCmd;
537 packet.unsol = 0;
538 packet.ack_only = 1;
539 adb_pass_up(&packet);
540
541 /* reset "waiting" vars, just in case */
542 adbWaitingCmd = 0;
543 adbBuffer = (long)0;
544 adbCompRout = (long)0;
545 adbCompData = (long)0;
546 }
547
548 adbWriteDelay = 0; /* done writing */
549 adbActionState = ADB_ACTION_IDLE; /* signal bus is idle */
550 ADB_SET_SR_INPUT();
551 ADB_SET_STATE_IDLE_CUDA();
552 #ifdef ADB_DEBUG
553 if (adb_debug)
554 printf_intr("write done ");
555 #endif
556 } else {
557 write_via_reg(VIA1, vSR, adbOutputBuffer[adbSentChars + 1]); /* send next byte */
558 ADB_TOGGLE_STATE_ACK_CUDA(); /* signal byte ready to
559 * shift */
560 #ifdef ADB_DEBUG
561 if (adb_debug)
562 printf_intr("toggle ");
563 #endif
564 }
565 break;
566
567 case ADB_ACTION_NOTREADY:
568 #ifdef ADB_DEBUG
569 if (adb_debug)
570 printf_intr("adb: not yet initialized\n");
571 #endif
572 break;
573
574 default:
575 #ifdef ADB_DEBUG
576 if (adb_debug)
577 printf_intr("intr: unknown ADB state\n");
578 #endif
579 break;
580 }
581
582 ADB_VIA_INTR_ENABLE(); /* enable ADB interrupt on IIs. */
583
584 splx(s); /* restore */
585
586 return;
587 } /* end adb_intr_cuda */
588
589
590 int
591 send_adb_cuda(u_char * in, u_char * buffer, void *compRout, void *data, int
592 command)
593 {
594 int s, len;
595
596 #ifdef ADB_DEBUG
597 if (adb_debug)
598 printf_intr("SEND\n");
599 #endif
600
601 if (adbActionState == ADB_ACTION_NOTREADY)
602 return 1;
603
604 /* Don't interrupt while we are messing with the ADB */
605 s = splhigh();
606
607 if ((adbActionState == ADB_ACTION_IDLE) && /* ADB available? */
608 (ADB_INTR_IS_OFF)) { /* and no incoming interrupt? */
609 } else
610 if (adbWriteDelay == 0) /* it's busy, but is anything waiting? */
611 adbWriteDelay = 1; /* if no, then we'll "queue"
612 * it up */
613 else {
614 splx(s);
615 return 1; /* really busy! */
616 }
617
618 #ifdef ADB_DEBUG
619 if (adb_debug)
620 printf_intr("QUEUE\n");
621 #endif
622 if ((long)in == (long)0) { /* need to convert? */
623 /*
624 * Don't need to use adb_cmd_extra here because this section
625 * will be called ONLY when it is an ADB command (no RTC or
626 * PRAM)
627 */
628 if ((command & 0x0c) == 0x08) /* copy addl data ONLY if
629 * doing a listen! */
630 len = buffer[0]; /* length of additional data */
631 else
632 len = 0;/* no additional data */
633
634 adbOutputBuffer[0] = 2 + len; /* dev. type + command + addl.
635 * data */
636 adbOutputBuffer[1] = 0x00; /* mark as an ADB command */
637 adbOutputBuffer[2] = (u_char)command; /* load command */
638
639 /* copy additional output data, if any */
640 memcpy(adbOutputBuffer + 3, buffer + 1, len);
641 } else
642 /* if data ready, just copy over */
643 memcpy(adbOutputBuffer, in, in[0] + 2);
644
645 adbSentChars = 0; /* nothing sent yet */
646 adbBuffer = buffer; /* save buffer to know where to save result */
647 adbCompRout = compRout; /* save completion routine pointer */
648 adbCompData = data; /* save completion routine data pointer */
649 adbWaitingCmd = adbOutputBuffer[2]; /* save wait command */
650
651 if (adbWriteDelay != 1) { /* start command now? */
652 #ifdef ADB_DEBUG
653 if (adb_debug)
654 printf_intr("out start NOW");
655 #endif
656 delay(ADB_DELAY);
657 adbActionState = ADB_ACTION_OUT; /* set next state */
658 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
659 write_via_reg(VIA1, vSR, adbOutputBuffer[adbSentChars + 1]); /* load byte for output */
660 ADB_SET_STATE_ACKOFF_CUDA();
661 ADB_SET_STATE_TIP(); /* tell ADB that we want to send */
662 }
663 adbWriteDelay = 1; /* something in the write "queue" */
664
665 splx(s);
666
667 if ((s & (1 << 18)) || adb_polling) /* XXX were VIA1 interrupts blocked ? */
668 /* poll until byte done */
669 while ((adbActionState != ADB_ACTION_IDLE) || (ADB_INTR_IS_ON)
670 || (adbWaiting == 1))
671 if (ADB_SR_INTR_IS_ON) { /* wait for "interrupt" */
672 adb_intr_cuda(); /* process it */
673 adb_soft_intr();
674 }
675
676 return 0;
677 } /* send_adb_cuda */
678
679
680 void
681 adb_intr_II(void)
682 {
683 panic("adb_intr_II");
684 }
685
686
687 /*
688 * send_adb version for II series machines
689 */
690 int
691 send_adb_II(u_char * in, u_char * buffer, void *compRout, void *data, int command)
692 {
693 panic("send_adb_II");
694 }
695
696
697 /*
698 * This routine is called from the II series interrupt routine
699 * to determine what the "next" device is that should be polled.
700 */
701 int
702 adb_guess_next_device(void)
703 {
704 int last, i, dummy;
705
706 if (adbStarting) {
707 /*
708 * Start polling EVERY device, since we can't be sure there is
709 * anything in the device table yet
710 */
711 if (adbLastDevice < 1 || adbLastDevice > 15)
712 adbLastDevice = 1;
713 if (++adbLastDevice > 15) /* point to next one */
714 adbLastDevice = 1;
715 } else {
716 /* find the next device using the device table */
717 if (adbLastDevice < 1 || adbLastDevice > 15) /* let's be parinoid */
718 adbLastDevice = 2;
719 last = 1; /* default index location */
720
721 for (i = 1; i < 16; i++) /* find index entry */
722 if (ADBDevTable[i].currentAddr == adbLastDevice) { /* look for device */
723 last = i; /* found it */
724 break;
725 }
726 dummy = last; /* index to start at */
727 for (;;) { /* find next device in index */
728 if (++dummy > 15) /* wrap around if needed */
729 dummy = 1;
730 if (dummy == last) { /* didn't find any other
731 * device! This can happen if
732 * there are no devices on the
733 * bus */
734 dummy = 1;
735 break;
736 }
737 /* found the next device */
738 if (ADBDevTable[dummy].devType != 0)
739 break;
740 }
741 adbLastDevice = ADBDevTable[dummy].currentAddr;
742 }
743 return adbLastDevice;
744 }
745
746
747 /*
748 * Called when when an adb interrupt happens.
749 * This routine simply transfers control over to the appropriate
750 * code for the machine we are running on.
751 */
752 void
753 adb_intr(void)
754 {
755 switch (adbHardware) {
756 case ADB_HW_II:
757 adb_intr_II();
758 break;
759
760 case ADB_HW_IISI:
761 adb_intr_IIsi();
762 break;
763
764 case ADB_HW_PB:
765 pm_intr();
766 break;
767
768 case ADB_HW_CUDA:
769 adb_intr_cuda();
770 break;
771
772 case ADB_HW_UNKNOWN:
773 break;
774 }
775 }
776
777
778 /*
779 * called when when an adb interrupt happens
780 *
781 * IIsi version of adb_intr
782 *
783 */
784 void
785 adb_intr_IIsi(void)
786 {
787 panic("adb_intr_IIsi");
788 }
789
790
791 /*****************************************************************************
792 * if the device is currently busy, and there is no data waiting to go out, then
793 * the data is "queued" in the outgoing buffer. If we are already waiting, then
794 * we return.
795 * in: if (in == 0) then the command string is built from command and buffer
796 * if (in != 0) then in is used as the command string
797 * buffer: additional data to be sent (used only if in == 0)
798 * this is also where return data is stored
799 * compRout: the completion routine that is called when then return value
800 * is received (if a return value is expected)
801 * data: a data pointer that can be used by the completion routine
802 * command: an ADB command to be sent (used only if in == 0)
803 *
804 */
805 int
806 send_adb_IIsi(u_char * in, u_char * buffer, void *compRout, void *data, int
807 command)
808 {
809 panic("send_adb_IIsi");
810 }
811
812
813 /*
814 * adb_pass_up is called by the interrupt-time routines.
815 * It takes the raw packet data that was received from the
816 * device and puts it into the queue that the upper half
817 * processes. It then signals for a soft ADB interrupt which
818 * will eventually call the upper half routine (adb_soft_intr).
819 *
820 * If in->unsol is 0, then this is either the notification
821 * that the packet was sent (on a LISTEN, for example), or the
822 * response from the device (on a TALK). The completion routine
823 * is called only if the user specified one.
824 *
825 * If in->unsol is 1, then this packet was unsolicited and
826 * so we look up the device in the ADB device table to determine
827 * what it's default service routine is.
828 *
829 * If in->ack_only is 1, then we really only need to call
830 * the completion routine, so don't do any other stuff.
831 *
832 * Note that in->data contains the packet header AND data,
833 * while adbInbound[]->data contains ONLY data.
834 *
835 * Note: Called only at interrupt time. Assumes this.
836 */
837 void
838 adb_pass_up(struct adbCommand *in)
839 {
840 int start = 0, len = 0, cmd = 0;
841 ADBDataBlock block;
842
843 /* temp for testing */
844 /*u_char *buffer = 0;*/
845 /*u_char *compdata = 0;*/
846 /*u_char *comprout = 0;*/
847
848 if (adbInCount >= ADB_QUEUE) {
849 #ifdef ADB_DEBUG
850 if (adb_debug)
851 printf_intr("adb: ring buffer overflow\n");
852 #endif
853 return;
854 }
855
856 if (in->ack_only) {
857 len = in->data[0];
858 cmd = in->cmd;
859 start = 0;
860 } else {
861 switch (adbHardware) {
862 case ADB_HW_II:
863 cmd = in->data[1];
864 if (in->data[0] < 2)
865 len = 0;
866 else
867 len = in->data[0]-1;
868 start = 1;
869 break;
870
871 case ADB_HW_IISI:
872 case ADB_HW_CUDA:
873 /* If it's unsolicited, accept only ADB data for now */
874 if (in->unsol)
875 if (0 != in->data[2])
876 return;
877 cmd = in->data[4];
878 if (in->data[0] < 5)
879 len = 0;
880 else
881 len = in->data[0]-4;
882 start = 4;
883 break;
884
885 case ADB_HW_PB:
886 cmd = in->data[1];
887 if (in->data[0] < 2)
888 len = 0;
889 else
890 len = in->data[0]-1;
891 start = 1;
892 break;
893
894 case ADB_HW_UNKNOWN:
895 return;
896 }
897
898 /* Make sure there is a valid device entry for this device */
899 if (in->unsol) {
900 /* ignore unsolicited data during adbreinit */
901 if (adbStarting)
902 return;
903 /* get device's comp. routine and data area */
904 if (-1 == get_adb_info(&block, ADB_CMDADDR(cmd)))
905 return;
906 }
907 }
908
909 /*
910 * If this is an unsolicited packet, we need to fill in
911 * some info so adb_soft_intr can process this packet
912 * properly. If it's not unsolicited, then use what
913 * the caller sent us.
914 */
915 if (in->unsol) {
916 adbInbound[adbInTail].compRout = (void *)block.dbServiceRtPtr;
917 adbInbound[adbInTail].compData = (void *)block.dbDataAreaAddr;
918 adbInbound[adbInTail].saveBuf = (void *)adbInbound[adbInTail].data;
919 } else {
920 adbInbound[adbInTail].compRout = (void *)in->compRout;
921 adbInbound[adbInTail].compData = (void *)in->compData;
922 adbInbound[adbInTail].saveBuf = (void *)in->saveBuf;
923 }
924
925 #ifdef ADB_DEBUG
926 if (adb_debug && in->data[1] == 2)
927 printf_intr("adb: caught error\n");
928 #endif
929
930 /* copy the packet data over */
931 /*
932 * TO DO: If the *_intr routines fed their incoming data
933 * directly into an adbCommand struct, which is passed to
934 * this routine, then we could eliminate this copy.
935 */
936 memcpy(adbInbound[adbInTail].data + 1, in->data + start + 1, len);
937 adbInbound[adbInTail].data[0] = len;
938 adbInbound[adbInTail].cmd = cmd;
939
940 adbInCount++;
941 if (++adbInTail >= ADB_QUEUE)
942 adbInTail = 0;
943
944 /*
945 * If the debugger is running, call upper half manually.
946 * Otherwise, trigger a soft interrupt to handle the rest later.
947 */
948 if (adb_polling)
949 adb_soft_intr();
950 else
951 setsoftadb();
952
953 return;
954 }
955
956
957 /*
958 * Called to process the packets after they have been
959 * placed in the incoming queue.
960 *
961 */
962 void
963 adb_soft_intr(void)
964 {
965 int s;
966 int cmd = 0;
967 u_char *buffer = 0;
968 u_char *comprout = 0;
969 u_char *compdata = 0;
970
971 #if 0
972 s = splhigh();
973 printf_intr("sr: %x\n", (s & 0x0700));
974 splx(s);
975 #endif
976
977 /*delay(2*ADB_DELAY);*/
978
979 while (adbInCount) {
980 #ifdef ADB_DEBUG
981 if (adb_debug & 0x80)
982 printf_intr("%x %x %x ",
983 adbInCount, adbInHead, adbInTail);
984 #endif
985 /* get the data we need from the queue */
986 buffer = adbInbound[adbInHead].saveBuf;
987 comprout = adbInbound[adbInHead].compRout;
988 compdata = adbInbound[adbInHead].compData;
989 cmd = adbInbound[adbInHead].cmd;
990
991 /* copy over data to data area if it's valid */
992 /*
993 * Note that for unsol packets we don't want to copy the
994 * data anywhere, so buffer was already set to 0.
995 * For ack_only buffer was set to 0, so don't copy.
996 */
997 if (buffer)
998 memcpy(buffer, adbInbound[adbInHead].data,
999 adbInbound[adbInHead].data[0] + 1);
1000
1001 #ifdef ADB_DEBUG
1002 if (adb_debug & 0x80) {
1003 printf_intr("%p %p %p %x ",
1004 buffer, comprout, compdata, (short)cmd);
1005 printf_intr("buf: ");
1006 print_single(adbInbound[adbInHead].data);
1007 }
1008 #endif
1009
1010 /* call default completion routine if it's valid */
1011 if (comprout) {
1012 void (*f)(caddr_t, caddr_t, int) =
1013 (void (*)(caddr_t, caddr_t, int))comprout;
1014
1015 (*f)(buffer, compdata, cmd);
1016 }
1017
1018 s = splhigh();
1019 adbInCount--;
1020 if (++adbInHead >= ADB_QUEUE)
1021 adbInHead = 0;
1022 splx(s);
1023
1024 }
1025 return;
1026 }
1027
1028
1029 /*
1030 * This is my version of the ADBOp routine. It mainly just calls the
1031 * hardware-specific routine.
1032 *
1033 * data : pointer to data area to be used by compRout
1034 * compRout : completion routine
1035 * buffer : for LISTEN: points to data to send - MAX 8 data bytes,
1036 * byte 0 = # of bytes
1037 * : for TALK: points to place to save return data
1038 * command : the adb command to send
1039 * result : 0 = success
1040 * : -1 = could not complete
1041 */
1042 int
1043 adb_op(Ptr buffer, Ptr compRout, Ptr data, short command)
1044 {
1045 int result;
1046
1047 switch (adbHardware) {
1048 case ADB_HW_II:
1049 result = send_adb_II((u_char *)0, (u_char *)buffer,
1050 (void *)compRout, (void *)data, (int)command);
1051 if (result == 0)
1052 return 0;
1053 else
1054 return -1;
1055 break;
1056
1057 case ADB_HW_IISI:
1058 result = send_adb_IIsi((u_char *)0, (u_char *)buffer,
1059 (void *)compRout, (void *)data, (int)command);
1060 /*
1061 * I wish I knew why this delay is needed. It usually needs to
1062 * be here when several commands are sent in close succession,
1063 * especially early in device probes when doing collision
1064 * detection. It must be some race condition. Sigh. - jpw
1065 */
1066 delay(100);
1067 if (result == 0)
1068 return 0;
1069 else
1070 return -1;
1071 break;
1072
1073 case ADB_HW_PB:
1074 result = pm_adb_op((u_char *)buffer, (void *)compRout,
1075 (void *)data, (int)command);
1076
1077 if (result == 0)
1078 return 0;
1079 else
1080 return -1;
1081 break;
1082
1083 case ADB_HW_CUDA:
1084 result = send_adb_cuda((u_char *)0, (u_char *)buffer,
1085 (void *)compRout, (void *)data, (int)command);
1086 if (result == 0)
1087 return 0;
1088 else
1089 return -1;
1090 break;
1091
1092 case ADB_HW_UNKNOWN:
1093 default:
1094 return -1;
1095 }
1096 }
1097
1098
1099 /*
1100 * adb_hw_setup
1101 * This routine sets up the possible machine specific hardware
1102 * config (mainly VIA settings) for the various models.
1103 */
1104 void
1105 adb_hw_setup(void)
1106 {
1107 volatile int i;
1108 u_char send_string[ADB_MAX_MSG_LENGTH];
1109
1110 switch (adbHardware) {
1111 case ADB_HW_II:
1112 via_reg_or(VIA1, vDirB, 0x30); /* register B bits 4 and 5:
1113 * outputs */
1114 via_reg_and(VIA1, vDirB, 0xf7); /* register B bit 3: input */
1115 via_reg_and(VIA1, vACR, ~vSR_OUT); /* make sure SR is set
1116 * to IN (II, IIsi) */
1117 adbActionState = ADB_ACTION_IDLE; /* used by all types of
1118 * hardware (II, IIsi) */
1119 adbBusState = ADB_BUS_IDLE; /* this var. used in II-series
1120 * code only */
1121 write_via_reg(VIA1, vIER, 0x84);/* make sure VIA interrupts
1122 * are on (II, IIsi) */
1123 ADB_SET_STATE_IDLE_II(); /* set ADB bus state to idle */
1124
1125 ADB_VIA_CLR_INTR(); /* clear interrupt */
1126 break;
1127
1128 case ADB_HW_IISI:
1129 via_reg_or(VIA1, vDirB, 0x30); /* register B bits 4 and 5:
1130 * outputs */
1131 via_reg_and(VIA1, vDirB, 0xf7); /* register B bit 3: input */
1132 via_reg_and(VIA1, vACR, ~vSR_OUT); /* make sure SR is set
1133 * to IN (II, IIsi) */
1134 adbActionState = ADB_ACTION_IDLE; /* used by all types of
1135 * hardware (II, IIsi) */
1136 adbBusState = ADB_BUS_IDLE; /* this var. used in II-series
1137 * code only */
1138 write_via_reg(VIA1, vIER, 0x84);/* make sure VIA interrupts
1139 * are on (II, IIsi) */
1140 ADB_SET_STATE_IDLE_IISI(); /* set ADB bus state to idle */
1141
1142 /* get those pesky clock ticks we missed while booting */
1143 for (i = 0; i < 30; i++) {
1144 delay(ADB_DELAY);
1145 adb_hw_setup_IIsi(send_string);
1146 #ifdef ADB_DEBUG
1147 if (adb_debug) {
1148 printf_intr("adb: cleanup: ");
1149 print_single(send_string);
1150 }
1151 #endif
1152 delay(ADB_DELAY);
1153 if (ADB_INTR_IS_OFF)
1154 break;
1155 }
1156 break;
1157
1158 case ADB_HW_PB:
1159 /*
1160 * XXX - really PM_VIA_CLR_INTR - should we put it in
1161 * pm_direct.h?
1162 */
1163 write_via_reg(VIA1, vIFR, 0x90); /* clear interrupt */
1164 break;
1165
1166 case ADB_HW_CUDA:
1167 via_reg_or(VIA1, vDirB, 0x30); /* register B bits 4 and 5:
1168 * outputs */
1169 via_reg_and(VIA1, vDirB, 0xf7); /* register B bit 3: input */
1170 via_reg_and(VIA1, vACR, ~vSR_OUT); /* make sure SR is set
1171 * to IN */
1172 write_via_reg(VIA1, vACR, (read_via_reg(VIA1, vACR) | 0x0c) & ~0x10);
1173 adbActionState = ADB_ACTION_IDLE; /* used by all types of
1174 * hardware */
1175 adbBusState = ADB_BUS_IDLE; /* this var. used in II-series
1176 * code only */
1177 write_via_reg(VIA1, vIER, 0x84);/* make sure VIA interrupts
1178 * are on */
1179 ADB_SET_STATE_IDLE_CUDA(); /* set ADB bus state to idle */
1180
1181 /* sort of a device reset */
1182 i = ADB_SR(); /* clear interrupt */
1183 ADB_VIA_INTR_DISABLE(); /* no interrupts while clearing */
1184 ADB_SET_STATE_IDLE_CUDA(); /* reset state to idle */
1185 delay(ADB_DELAY);
1186 ADB_SET_STATE_TIP(); /* signal start of frame */
1187 delay(ADB_DELAY);
1188 ADB_TOGGLE_STATE_ACK_CUDA();
1189 delay(ADB_DELAY);
1190 ADB_CLR_STATE_TIP();
1191 delay(ADB_DELAY);
1192 ADB_SET_STATE_IDLE_CUDA(); /* back to idle state */
1193 i = ADB_SR(); /* clear interrupt */
1194 ADB_VIA_INTR_ENABLE(); /* ints ok now */
1195 break;
1196
1197 case ADB_HW_UNKNOWN:
1198 default:
1199 write_via_reg(VIA1, vIER, 0x04);/* turn interrupts off - TO
1200 * DO: turn PB ints off? */
1201 return;
1202 break;
1203 }
1204 }
1205
1206
1207 /*
1208 * adb_hw_setup_IIsi
1209 * This is sort of a "read" routine that forces the adb hardware through a read cycle
1210 * if there is something waiting. This helps "clean up" any commands that may have gotten
1211 * stuck or stopped during the boot process.
1212 *
1213 */
1214 void
1215 adb_hw_setup_IIsi(u_char * buffer)
1216 {
1217 panic("adb_hw_setup_IIsi");
1218 }
1219
1220
1221 /*
1222 * adb_reinit sets up the adb stuff
1223 *
1224 */
1225 void
1226 adb_reinit(void)
1227 {
1228 u_char send_string[ADB_MAX_MSG_LENGTH];
1229 ADBDataBlock data; /* temp. holder for getting device info */
1230 volatile int i, x;
1231 int s;
1232 int command;
1233 int result;
1234 int saveptr; /* point to next free relocation address */
1235 int device;
1236 int nonewtimes; /* times thru loop w/o any new devices */
1237
1238 /* Make sure we are not interrupted while building the table. */
1239 if (adbHardware != ADB_HW_PB) /* ints must be on for PB? */
1240 s = splhigh();
1241
1242 ADBNumDevices = 0; /* no devices yet */
1243
1244 /* Let intr routines know we are running reinit */
1245 adbStarting = 1;
1246
1247 /*
1248 * Initialize the ADB table. For now, we'll always use the same table
1249 * that is defined at the beginning of this file - no mallocs.
1250 */
1251 for (i = 0; i < 16; i++)
1252 ADBDevTable[i].devType = 0;
1253
1254 adb_setup_hw_type(); /* setup hardware type */
1255
1256 adb_hw_setup(); /* init the VIA bits and hard reset ADB */
1257
1258 delay(1000);
1259
1260 /* send an ADB reset first */
1261 result = adb_op_sync((Ptr)0, (Ptr)0, (Ptr)0, (short)0x00);
1262 delay(200000);
1263
1264 #ifdef ADB_DEBUG
1265 if (result && adb_debug) {
1266 printf_intr("adb_reinit: failed to reset, result = %d\n",result);
1267 }
1268 #endif
1269
1270 /*
1271 * Probe for ADB devices. Probe devices 1-15 quickly to determine
1272 * which device addresses are in use and which are free. For each
1273 * address that is in use, move the device at that address to a higher
1274 * free address. Continue doing this at that address until no device
1275 * responds at that address. Then move the last device that was moved
1276 * back to the original address. Do this for the remaining addresses
1277 * that we determined were in use.
1278 *
1279 * When finished, do this entire process over again with the updated
1280 * list of in use addresses. Do this until no new devices have been
1281 * found in 20 passes though the in use address list. (This probably
1282 * seems long and complicated, but it's the best way to detect multiple
1283 * devices at the same address - sometimes it takes a couple of tries
1284 * before the collision is detected.)
1285 */
1286
1287 /* initial scan through the devices */
1288 for (i = 1; i < 16; i++) {
1289 send_string[0] = 0;
1290 command = ADBTALK(i, 3);
1291 result = adb_op_sync((Ptr)send_string, (Ptr)0,
1292 (Ptr)0, (short)command);
1293
1294 #ifdef ADB_DEBUG
1295 if (result && adb_debug) {
1296 printf_intr("adb_reinit: scan of device %d, result = %d, str = 0x%x\n",
1297 i,result,send_string[0]);
1298 }
1299 #endif
1300
1301 if (send_string[0] != 0) {
1302 /* check for valid device handler */
1303 switch (send_string[2]) {
1304 case 0:
1305 case 0xfd:
1306 case 0xfe:
1307 case 0xff:
1308 continue; /* invalid, skip */
1309 }
1310
1311 /* found a device */
1312 ++ADBNumDevices;
1313 KASSERT(ADBNumDevices < 16);
1314 ADBDevTable[ADBNumDevices].devType =
1315 (int)send_string[2];
1316 ADBDevTable[ADBNumDevices].origAddr = i;
1317 ADBDevTable[ADBNumDevices].currentAddr = i;
1318 ADBDevTable[ADBNumDevices].DataAreaAddr =
1319 (long)0;
1320 ADBDevTable[ADBNumDevices].ServiceRtPtr = (void *)0;
1321 pm_check_adb_devices(i); /* tell pm driver device
1322 * is here */
1323 }
1324 }
1325
1326 /* find highest unused address */
1327 for (saveptr = 15; saveptr > 0; saveptr--)
1328 if (-1 == get_adb_info(&data, saveptr))
1329 break;
1330
1331 #ifdef ADB_DEBUG
1332 if (adb_debug & 0x80) {
1333 printf_intr("first free is: 0x%02x\n", saveptr);
1334 printf_intr("devices: %i\n", ADBNumDevices);
1335 }
1336 #endif
1337
1338 nonewtimes = 0; /* no loops w/o new devices */
1339 while (saveptr > 0 && nonewtimes++ < 11) {
1340 for (i = 1; i <= ADBNumDevices; i++) {
1341 device = ADBDevTable[i].currentAddr;
1342 #ifdef ADB_DEBUG
1343 if (adb_debug & 0x80)
1344 printf_intr("moving device 0x%02x to 0x%02x "
1345 "(index 0x%02x) ", device, saveptr, i);
1346 #endif
1347
1348 /* send TALK R3 to address */
1349 command = ADBTALK(device, 3);
1350 adb_op_sync((Ptr)send_string, (Ptr)0,
1351 (Ptr)0, (short)command);
1352
1353 /* move device to higher address */
1354 command = ADBLISTEN(device, 3);
1355 send_string[0] = 2;
1356 send_string[1] = (u_char)(saveptr | 0x60);
1357 send_string[2] = 0xfe;
1358 adb_op_sync((Ptr)send_string, (Ptr)0,
1359 (Ptr)0, (short)command);
1360 delay(500);
1361
1362 /* send TALK R3 - anything at new address? */
1363 command = ADBTALK(saveptr, 3);
1364 adb_op_sync((Ptr)send_string, (Ptr)0,
1365 (Ptr)0, (short)command);
1366 delay(500);
1367
1368 if (send_string[0] == 0) {
1369 #ifdef ADB_DEBUG
1370 if (adb_debug & 0x80)
1371 printf_intr("failed, continuing\n");
1372 #endif
1373 continue;
1374 }
1375
1376 /* send TALK R3 - anything at old address? */
1377 command = ADBTALK(device, 3);
1378 result = adb_op_sync((Ptr)send_string, (Ptr)0,
1379 (Ptr)0, (short)command);
1380 if (send_string[0] != 0) {
1381 /* check for valid device handler */
1382 switch (send_string[2]) {
1383 case 0:
1384 case 0xfd:
1385 case 0xfe:
1386 case 0xff:
1387 continue; /* invalid, skip */
1388 }
1389
1390 /* new device found */
1391 /* update data for previously moved device */
1392 ADBDevTable[i].currentAddr = saveptr;
1393 #ifdef ADB_DEBUG
1394 if (adb_debug & 0x80)
1395 printf_intr("old device at index %i\n",i);
1396 #endif
1397 /* add new device in table */
1398 #ifdef ADB_DEBUG
1399 if (adb_debug & 0x80)
1400 printf_intr("new device found\n");
1401 #endif
1402 if (saveptr > ADBNumDevices) {
1403 ++ADBNumDevices;
1404 KASSERT(ADBNumDevices < 16);
1405 }
1406 ADBDevTable[ADBNumDevices].devType =
1407 (int)send_string[2];
1408 ADBDevTable[ADBNumDevices].origAddr = device;
1409 ADBDevTable[ADBNumDevices].currentAddr = device;
1410 /* These will be set correctly in adbsys.c */
1411 /* Until then, unsol. data will be ignored. */
1412 ADBDevTable[ADBNumDevices].DataAreaAddr =
1413 (long)0;
1414 ADBDevTable[ADBNumDevices].ServiceRtPtr =
1415 (void *)0;
1416 /* find next unused address */
1417 for (x = saveptr; x > 0; x--) {
1418 if (-1 == get_adb_info(&data, x)) {
1419 saveptr = x;
1420 break;
1421 }
1422 }
1423 if (x == 0)
1424 saveptr = 0;
1425 #ifdef ADB_DEBUG
1426 if (adb_debug & 0x80)
1427 printf_intr("new free is 0x%02x\n",
1428 saveptr);
1429 #endif
1430 nonewtimes = 0;
1431 /* tell pm driver device is here */
1432 pm_check_adb_devices(device);
1433 } else {
1434 #ifdef ADB_DEBUG
1435 if (adb_debug & 0x80)
1436 printf_intr("moving back...\n");
1437 #endif
1438 /* move old device back */
1439 command = ADBLISTEN(saveptr, 3);
1440 send_string[0] = 2;
1441 send_string[1] = (u_char)(device | 0x60);
1442 send_string[2] = 0xfe;
1443 adb_op_sync((Ptr)send_string, (Ptr)0,
1444 (Ptr)0, (short)command);
1445 delay(1000);
1446 }
1447 }
1448 }
1449
1450 #ifdef ADB_DEBUG
1451 if (adb_debug) {
1452 for (i = 1; i <= ADBNumDevices; i++) {
1453 x = get_ind_adb_info(&data, i);
1454 if (x != -1)
1455 printf_intr("index 0x%x, addr 0x%x, type 0x%x\n",
1456 i, x, data.devType);
1457 }
1458 }
1459 #endif
1460
1461 #ifndef MRG_ADB
1462 /* enable the programmer's switch, if we have one */
1463 adb_prog_switch_enable();
1464 #endif
1465
1466 #ifdef ADB_DEBUG
1467 if (adb_debug) {
1468 if (0 == ADBNumDevices) /* tell user if no devices found */
1469 printf_intr("adb: no devices found\n");
1470 }
1471 #endif
1472
1473 adbStarting = 0; /* not starting anymore */
1474 #ifdef ADB_DEBUG
1475 if (adb_debug)
1476 printf_intr("adb: ADBReInit complete\n");
1477 #endif
1478
1479 if (adbHardware == ADB_HW_CUDA)
1480 callout_reset(&adb_cuda_tickle_ch, ADB_TICKLE_TICKS,
1481 (void *)adb_cuda_tickle, NULL);
1482
1483 if (adbHardware != ADB_HW_PB) /* ints must be on for PB? */
1484 splx(s);
1485 }
1486
1487 /*
1488 * adb_cmd_result
1489 *
1490 * This routine lets the caller know whether the specified adb command string
1491 * should expect a returned result, such as a TALK command.
1492 *
1493 * returns: 0 if a result should be expected
1494 * 1 if a result should NOT be expected
1495 */
1496 int
1497 adb_cmd_result(u_char *in)
1498 {
1499 switch (adbHardware) {
1500 case ADB_HW_II:
1501 /* was it an ADB talk command? */
1502 if ((in[1] & 0x0c) == 0x0c)
1503 return 0;
1504 return 1;
1505
1506 case ADB_HW_IISI:
1507 case ADB_HW_CUDA:
1508 /* was it an ADB talk command? */
1509 if ((in[1] == 0x00) && ((in[2] & 0x0c) == 0x0c))
1510 return 0;
1511 /* was it an RTC/PRAM read date/time? */
1512 if ((in[1] == 0x01) && (in[2] == 0x03))
1513 return 0;
1514 return 1;
1515
1516 case ADB_HW_PB:
1517 return 1;
1518
1519 case ADB_HW_UNKNOWN:
1520 default:
1521 return 1;
1522 }
1523 }
1524
1525
1526 /*
1527 * adb_cmd_extra
1528 *
1529 * This routine lets the caller know whether the specified adb command string
1530 * may have extra data appended to the end of it, such as a LISTEN command.
1531 *
1532 * returns: 0 if extra data is allowed
1533 * 1 if extra data is NOT allowed
1534 */
1535 int
1536 adb_cmd_extra(u_char *in)
1537 {
1538 switch (adbHardware) {
1539 case ADB_HW_II:
1540 if ((in[1] & 0x0c) == 0x08) /* was it a listen command? */
1541 return 0;
1542 return 1;
1543
1544 case ADB_HW_IISI:
1545 case ADB_HW_CUDA:
1546 /*
1547 * TO DO: support needs to be added to recognize RTC and PRAM
1548 * commands
1549 */
1550 if ((in[2] & 0x0c) == 0x08) /* was it a listen command? */
1551 return 0;
1552 /* add others later */
1553 return 1;
1554
1555 case ADB_HW_PB:
1556 return 1;
1557
1558 case ADB_HW_UNKNOWN:
1559 default:
1560 return 1;
1561 }
1562 }
1563
1564 /*
1565 * adb_op_sync
1566 *
1567 * This routine does exactly what the adb_op routine does, except that after
1568 * the adb_op is called, it waits until the return value is present before
1569 * returning.
1570 *
1571 * NOTE: The user specified compRout is ignored, since this routine specifies
1572 * it's own to adb_op, which is why you really called this in the first place
1573 * anyway.
1574 */
1575 int
1576 adb_op_sync(Ptr buffer, Ptr compRout, Ptr data, short command)
1577 {
1578 int tmout;
1579 int result;
1580 volatile int flag = 0;
1581
1582 result = adb_op(buffer, (void *)adb_op_comprout,
1583 (void *)&flag, command); /* send command */
1584 if (result == 0) { /* send ok? */
1585 /*
1586 * Total time to wait is calculated as follows:
1587 * - Tlt (stop to start time): 260 usec
1588 * - start bit: 100 usec
1589 * - up to 8 data bytes: 64 * 100 usec = 6400 usec
1590 * - stop bit (with SRQ): 140 usec
1591 * Total: 6900 usec
1592 *
1593 * This is the total time allowed by the specification. Any
1594 * device that doesn't conform to this will fail to operate
1595 * properly on some Apple systems. In spite of this we
1596 * double the time to wait; some Cuda-based apparently
1597 * queues some commands and allows the main CPU to continue
1598 * processing (radical concept, eh?). To be safe, allow
1599 * time for two complete ADB transactions to occur.
1600 */
1601 for (tmout = 13800; !flag && tmout >= 10; tmout -= 10)
1602 delay(10);
1603 if (!flag && tmout > 0)
1604 delay(tmout);
1605
1606 if (!flag)
1607 result = -2;
1608 }
1609
1610 return result;
1611 }
1612
1613 /*
1614 * adb_op_comprout
1615 *
1616 * This function is used by the adb_op_sync routine so it knows when the
1617 * function is done.
1618 */
1619 void
1620 adb_op_comprout(buffer, compdata, cmd)
1621 caddr_t buffer, compdata;
1622 int cmd;
1623 {
1624 short *p = (short *)compdata;
1625
1626 *p = 1;
1627 }
1628
1629 void
1630 adb_setup_hw_type(void)
1631 {
1632 switch (adbHardware) {
1633 case ADB_HW_CUDA:
1634 adbSoftPower = 1;
1635 return;
1636
1637 case ADB_HW_PB:
1638 adbSoftPower = 1;
1639 pm_setup_adb();
1640 return;
1641
1642 default:
1643 panic("unknown adb hardware");
1644 }
1645 #if 0
1646 response = 0; /*mac68k_machine.machineid;*/
1647
1648 /*
1649 * Determine what type of ADB hardware we are running on.
1650 */
1651 switch (response) {
1652 case MACH_MACC610: /* Centris 610 */
1653 case MACH_MACC650: /* Centris 650 */
1654 case MACH_MACII: /* II */
1655 case MACH_MACIICI: /* IIci */
1656 case MACH_MACIICX: /* IIcx */
1657 case MACH_MACIIX: /* IIx */
1658 case MACH_MACQ610: /* Quadra 610 */
1659 case MACH_MACQ650: /* Quadra 650 */
1660 case MACH_MACQ700: /* Quadra 700 */
1661 case MACH_MACQ800: /* Quadra 800 */
1662 case MACH_MACSE30: /* SE/30 */
1663 adbHardware = ADB_HW_II;
1664 #ifdef ADB_DEBUG
1665 if (adb_debug)
1666 printf_intr("adb: using II series hardware support\n");
1667 #endif
1668 break;
1669
1670 case MACH_MACCLASSICII: /* Classic II */
1671 case MACH_MACLCII: /* LC II, Performa 400/405/430 */
1672 case MACH_MACLCIII: /* LC III, Performa 450 */
1673 case MACH_MACIISI: /* IIsi */
1674 case MACH_MACIIVI: /* IIvi */
1675 case MACH_MACIIVX: /* IIvx */
1676 case MACH_MACP460: /* Performa 460/465/467 */
1677 case MACH_MACP600: /* Performa 600 */
1678 adbHardware = ADB_HW_IISI;
1679 #ifdef ADB_DEBUG
1680 if (adb_debug)
1681 printf_intr("adb: using IIsi series hardware support\n");
1682 #endif
1683 break;
1684
1685 case MACH_MACPB140: /* PowerBook 140 */
1686 case MACH_MACPB145: /* PowerBook 145 */
1687 case MACH_MACPB150: /* PowerBook 150 */
1688 case MACH_MACPB160: /* PowerBook 160 */
1689 case MACH_MACPB165: /* PowerBook 165 */
1690 case MACH_MACPB165C: /* PowerBook 165c */
1691 case MACH_MACPB170: /* PowerBook 170 */
1692 case MACH_MACPB180: /* PowerBook 180 */
1693 case MACH_MACPB180C: /* PowerBook 180c */
1694 adbHardware = ADB_HW_PB;
1695 pm_setup_adb();
1696 #ifdef ADB_DEBUG
1697 if (adb_debug)
1698 printf_intr("adb: using PowerBook 100-series hardware support\n");
1699 #endif
1700 break;
1701
1702 case MACH_MACPB210: /* PowerBook Duo 210 */
1703 case MACH_MACPB230: /* PowerBook Duo 230 */
1704 case MACH_MACPB250: /* PowerBook Duo 250 */
1705 case MACH_MACPB270: /* PowerBook Duo 270 */
1706 case MACH_MACPB280: /* PowerBook Duo 280 */
1707 case MACH_MACPB280C: /* PowerBook Duo 280c */
1708 case MACH_MACPB500: /* PowerBook 500 series */
1709 adbHardware = ADB_HW_PB;
1710 pm_setup_adb();
1711 #ifdef ADB_DEBUG
1712 if (adb_debug)
1713 printf_intr("adb: using PowerBook Duo-series and PowerBook 500-series hardware support\n");
1714 #endif
1715 break;
1716
1717 case MACH_MACC660AV: /* Centris 660AV */
1718 case MACH_MACCCLASSIC: /* Color Classic */
1719 case MACH_MACCCLASSICII: /* Color Classic II */
1720 case MACH_MACLC475: /* LC 475, Performa 475/476 */
1721 case MACH_MACLC475_33: /* Clock-chipped 47x */
1722 case MACH_MACLC520: /* LC 520 */
1723 case MACH_MACLC575: /* LC 575, Performa 575/577/578 */
1724 case MACH_MACP550: /* LC 550, Performa 550 */
1725 case MACH_MACP580: /* Performa 580/588 */
1726 case MACH_MACQ605: /* Quadra 605 */
1727 case MACH_MACQ605_33: /* Clock-chipped Quadra 605 */
1728 case MACH_MACQ630: /* LC 630, Performa 630, Quadra 630 */
1729 case MACH_MACQ840AV: /* Quadra 840AV */
1730 adbHardware = ADB_HW_CUDA;
1731 #ifdef ADB_DEBUG
1732 if (adb_debug)
1733 printf_intr("adb: using Cuda series hardware support\n");
1734 #endif
1735 break;
1736 default:
1737 adbHardware = ADB_HW_UNKNOWN;
1738 #ifdef ADB_DEBUG
1739 if (adb_debug) {
1740 printf_intr("adb: hardware type unknown for this machine\n");
1741 printf_intr("adb: ADB support is disabled\n");
1742 }
1743 #endif
1744 break;
1745 }
1746
1747 /*
1748 * Determine whether this machine has ADB based soft power.
1749 */
1750 switch (response) {
1751 case MACH_MACCCLASSIC: /* Color Classic */
1752 case MACH_MACCCLASSICII: /* Color Classic II */
1753 case MACH_MACIISI: /* IIsi */
1754 case MACH_MACIIVI: /* IIvi */
1755 case MACH_MACIIVX: /* IIvx */
1756 case MACH_MACLC520: /* LC 520 */
1757 case MACH_MACLC575: /* LC 575, Performa 575/577/578 */
1758 case MACH_MACP550: /* LC 550, Performa 550 */
1759 case MACH_MACP600: /* Performa 600 */
1760 case MACH_MACQ630: /* LC 630, Performa 630, Quadra 630 */
1761 case MACH_MACQ840AV: /* Quadra 840AV */
1762 adbSoftPower = 1;
1763 break;
1764 }
1765 #endif
1766 }
1767
1768 int
1769 count_adbs(void)
1770 {
1771 int i;
1772 int found;
1773
1774 found = 0;
1775
1776 for (i = 1; i < 16; i++)
1777 if (0 != ADBDevTable[i].devType)
1778 found++;
1779
1780 return found;
1781 }
1782
1783 int
1784 get_ind_adb_info(ADBDataBlock * info, int index)
1785 {
1786 if ((index < 1) || (index > 15)) /* check range 1-15 */
1787 return (-1);
1788
1789 #ifdef ADB_DEBUG
1790 if (adb_debug & 0x80)
1791 printf_intr("index 0x%x devType is: 0x%x\n", index,
1792 ADBDevTable[index].devType);
1793 #endif
1794 if (0 == ADBDevTable[index].devType) /* make sure it's a valid entry */
1795 return (-1);
1796
1797 info->devType = ADBDevTable[index].devType;
1798 info->origADBAddr = ADBDevTable[index].origAddr;
1799 info->dbServiceRtPtr = (Ptr)ADBDevTable[index].ServiceRtPtr;
1800 info->dbDataAreaAddr = (Ptr)ADBDevTable[index].DataAreaAddr;
1801
1802 return (ADBDevTable[index].currentAddr);
1803 }
1804
1805 int
1806 get_adb_info(ADBDataBlock * info, int adbAddr)
1807 {
1808 int i;
1809
1810 if ((adbAddr < 1) || (adbAddr > 15)) /* check range 1-15 */
1811 return (-1);
1812
1813 for (i = 1; i < 15; i++)
1814 if (ADBDevTable[i].currentAddr == adbAddr) {
1815 info->devType = ADBDevTable[i].devType;
1816 info->origADBAddr = ADBDevTable[i].origAddr;
1817 info->dbServiceRtPtr = (Ptr)ADBDevTable[i].ServiceRtPtr;
1818 info->dbDataAreaAddr = ADBDevTable[i].DataAreaAddr;
1819 return 0; /* found */
1820 }
1821
1822 return (-1); /* not found */
1823 }
1824
1825 int
1826 set_adb_info(ADBSetInfoBlock * info, int adbAddr)
1827 {
1828 int i;
1829
1830 if ((adbAddr < 1) || (adbAddr > 15)) /* check range 1-15 */
1831 return (-1);
1832
1833 for (i = 1; i < 15; i++)
1834 if (ADBDevTable[i].currentAddr == adbAddr) {
1835 ADBDevTable[i].ServiceRtPtr =
1836 (void *)(info->siServiceRtPtr);
1837 ADBDevTable[i].DataAreaAddr = info->siDataAreaAddr;
1838 return 0; /* found */
1839 }
1840
1841 return (-1); /* not found */
1842
1843 }
1844
1845 #ifndef MRG_ADB
1846
1847 /* caller should really use machine-independant version: getPramTime */
1848 /* this version does pseudo-adb access only */
1849 int
1850 adb_read_date_time(unsigned long *time)
1851 {
1852 u_char output[ADB_MAX_MSG_LENGTH];
1853 int result;
1854 volatile int flag = 0;
1855
1856 switch (adbHardware) {
1857 case ADB_HW_II:
1858 return -1;
1859
1860 case ADB_HW_IISI:
1861 output[0] = 0x02; /* 2 byte message */
1862 output[1] = 0x01; /* to pram/rtc device */
1863 output[2] = 0x03; /* read date/time */
1864 result = send_adb_IIsi((u_char *)output, (u_char *)output,
1865 (void *)adb_op_comprout, (int *)&flag, (int)0);
1866 if (result != 0) /* exit if not sent */
1867 return -1;
1868
1869 while (0 == flag) /* wait for result */
1870 ;
1871
1872 *time = (long)(*(long *)(output + 1));
1873 return 0;
1874
1875 case ADB_HW_PB:
1876 pm_read_date_time(time);
1877 return 0;
1878
1879 case ADB_HW_CUDA:
1880 output[0] = 0x02; /* 2 byte message */
1881 output[1] = 0x01; /* to pram/rtc device */
1882 output[2] = 0x03; /* read date/time */
1883 result = send_adb_cuda((u_char *)output, (u_char *)output,
1884 (void *)adb_op_comprout, (void *)&flag, (int)0);
1885 if (result != 0) /* exit if not sent */
1886 return -1;
1887
1888 while (0 == flag) /* wait for result */
1889 ;
1890
1891 memcpy(time, output + 1, 4);
1892 return 0;
1893
1894 case ADB_HW_UNKNOWN:
1895 default:
1896 return -1;
1897 }
1898 }
1899
1900 /* caller should really use machine-independant version: setPramTime */
1901 /* this version does pseudo-adb access only */
1902 int
1903 adb_set_date_time(unsigned long time)
1904 {
1905 u_char output[ADB_MAX_MSG_LENGTH];
1906 int result;
1907 volatile int flag = 0;
1908
1909 switch (adbHardware) {
1910
1911 case ADB_HW_CUDA:
1912 output[0] = 0x06; /* 6 byte message */
1913 output[1] = 0x01; /* to pram/rtc device */
1914 output[2] = 0x09; /* set date/time */
1915 output[3] = (u_char)(time >> 24);
1916 output[4] = (u_char)(time >> 16);
1917 output[5] = (u_char)(time >> 8);
1918 output[6] = (u_char)(time);
1919 result = send_adb_cuda((u_char *)output, (u_char *)0,
1920 (void *)adb_op_comprout, (void *)&flag, (int)0);
1921 if (result != 0) /* exit if not sent */
1922 return -1;
1923
1924 while (0 == flag) /* wait for send to finish */
1925 ;
1926
1927 return 0;
1928
1929 case ADB_HW_PB:
1930 pm_set_date_time(time);
1931 return 0;
1932
1933 case ADB_HW_II:
1934 case ADB_HW_IISI:
1935 case ADB_HW_UNKNOWN:
1936 default:
1937 return -1;
1938 }
1939 }
1940
1941
1942 int
1943 adb_poweroff(void)
1944 {
1945 u_char output[ADB_MAX_MSG_LENGTH];
1946 int result;
1947
1948 if (!adbSoftPower)
1949 return -1;
1950
1951 adb_polling = 1;
1952
1953 switch (adbHardware) {
1954 case ADB_HW_IISI:
1955 output[0] = 0x02; /* 2 byte message */
1956 output[1] = 0x01; /* to pram/rtc/soft-power device */
1957 output[2] = 0x0a; /* set date/time */
1958 result = send_adb_IIsi((u_char *)output, (u_char *)0,
1959 (void *)0, (void *)0, (int)0);
1960 if (result != 0) /* exit if not sent */
1961 return -1;
1962
1963 for (;;); /* wait for power off */
1964
1965 return 0;
1966
1967 case ADB_HW_PB:
1968 pm_adb_poweroff();
1969
1970 for (;;); /* wait for power off */
1971
1972 return 0;
1973
1974 case ADB_HW_CUDA:
1975 output[0] = 0x02; /* 2 byte message */
1976 output[1] = 0x01; /* to pram/rtc/soft-power device */
1977 output[2] = 0x0a; /* set date/time */
1978 result = send_adb_cuda((u_char *)output, (u_char *)0,
1979 (void *)0, (void *)0, (int)0);
1980 if (result != 0) /* exit if not sent */
1981 return -1;
1982
1983 for (;;); /* wait for power off */
1984
1985 return 0;
1986
1987 case ADB_HW_II: /* II models don't do ADB soft power */
1988 case ADB_HW_UNKNOWN:
1989 default:
1990 return -1;
1991 }
1992 }
1993
1994 int
1995 adb_prog_switch_enable(void)
1996 {
1997 u_char output[ADB_MAX_MSG_LENGTH];
1998 int result;
1999 volatile int flag = 0;
2000
2001 switch (adbHardware) {
2002 case ADB_HW_IISI:
2003 output[0] = 0x03; /* 3 byte message */
2004 output[1] = 0x01; /* to pram/rtc/soft-power device */
2005 output[2] = 0x1c; /* prog. switch control */
2006 output[3] = 0x01; /* enable */
2007 result = send_adb_IIsi((u_char *)output, (u_char *)0,
2008 (void *)adb_op_comprout, (void *)&flag, (int)0);
2009 if (result != 0) /* exit if not sent */
2010 return -1;
2011
2012 while (0 == flag) /* wait for send to finish */
2013 ;
2014
2015 return 0;
2016
2017 case ADB_HW_PB:
2018 return -1;
2019
2020 case ADB_HW_II: /* II models don't do prog. switch */
2021 case ADB_HW_CUDA: /* cuda doesn't do prog. switch TO DO: verify this */
2022 case ADB_HW_UNKNOWN:
2023 default:
2024 return -1;
2025 }
2026 }
2027
2028 int
2029 adb_prog_switch_disable(void)
2030 {
2031 u_char output[ADB_MAX_MSG_LENGTH];
2032 int result;
2033 volatile int flag = 0;
2034
2035 switch (adbHardware) {
2036 case ADB_HW_IISI:
2037 output[0] = 0x03; /* 3 byte message */
2038 output[1] = 0x01; /* to pram/rtc/soft-power device */
2039 output[2] = 0x1c; /* prog. switch control */
2040 output[3] = 0x01; /* disable */
2041 result = send_adb_IIsi((u_char *)output, (u_char *)0,
2042 (void *)adb_op_comprout, (void *)&flag, (int)0);
2043 if (result != 0) /* exit if not sent */
2044 return -1;
2045
2046 while (0 == flag) /* wait for send to finish */
2047 ;
2048
2049 return 0;
2050
2051 case ADB_HW_PB:
2052 return -1;
2053
2054 case ADB_HW_II: /* II models don't do prog. switch */
2055 case ADB_HW_CUDA: /* cuda doesn't do prog. switch */
2056 case ADB_HW_UNKNOWN:
2057 default:
2058 return -1;
2059 }
2060 }
2061
2062 int
2063 CountADBs(void)
2064 {
2065 return (count_adbs());
2066 }
2067
2068 void
2069 ADBReInit(void)
2070 {
2071 adb_reinit();
2072 }
2073
2074 int
2075 GetIndADB(ADBDataBlock * info, int index)
2076 {
2077 return (get_ind_adb_info(info, index));
2078 }
2079
2080 int
2081 GetADBInfo(ADBDataBlock * info, int adbAddr)
2082 {
2083 return (get_adb_info(info, adbAddr));
2084 }
2085
2086 int
2087 SetADBInfo(ADBSetInfoBlock * info, int adbAddr)
2088 {
2089 return (set_adb_info(info, adbAddr));
2090 }
2091
2092 int
2093 ADBOp(Ptr buffer, Ptr compRout, Ptr data, short commandNum)
2094 {
2095 return (adb_op(buffer, compRout, data, commandNum));
2096 }
2097
2098 #endif
2099
2100 int
2101 setsoftadb()
2102 {
2103 callout_reset(&adb_soft_intr_ch, 1, (void *)adb_soft_intr, NULL);
2104 return 0;
2105 }
2106
2107 void
2108 adb_cuda_autopoll()
2109 {
2110 volatile int flag = 0;
2111 int result;
2112 u_char output[16];
2113
2114 output[0] = 0x03; /* 3-byte message */
2115 output[1] = 0x01; /* to pram/rtc device */
2116 output[2] = 0x01; /* cuda autopoll */
2117 output[3] = 0x01;
2118 result = send_adb_cuda(output, output, adb_op_comprout, (void *)&flag,
2119 0);
2120 if (result != 0) /* exit if not sent */
2121 return;
2122
2123 while (flag == 0); /* wait for result */
2124 }
2125
2126 void
2127 adb_restart(void)
2128 {
2129 int result;
2130 u_char output[16];
2131
2132 adb_polling = 1;
2133
2134 switch (adbHardware) {
2135 case ADB_HW_CUDA:
2136 output[0] = 0x02; /* 2 byte message */
2137 output[1] = 0x01; /* to pram/rtc/soft-power device */
2138 output[2] = 0x11; /* restart */
2139 result = send_adb_cuda(output, NULL, NULL, NULL, 0);
2140 if (result != 0) /* exit if not sent */
2141 return;
2142 while (1); /* not return */
2143
2144 case ADB_HW_PB:
2145 pm_adb_restart();
2146 while (1); /* not return */
2147 }
2148 }
2149