adb_direct.c revision 1.25 1 /* $NetBSD: adb_direct.c,v 1.25 2003/07/15 02:43:26 lukem Exp $ */
2
3 /* From: adb_direct.c 2.02 4/18/97 jpw */
4
5 /*
6 * Copyright (C) 1996, 1997 John P. Wittkoski
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by John P. Wittkoski.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*
36 * This code is rather messy, but I don't have time right now
37 * to clean it up as much as I would like.
38 * But it works, so I'm happy. :-) jpw
39 */
40
41 /*
42 * TO DO:
43 * - We could reduce the time spent in the adb_intr_* routines
44 * by having them save the incoming and outgoing data directly
45 * in the adbInbound and adbOutbound queues, as it would reduce
46 * the number of times we need to copy the data around. It
47 * would also make the code more readable and easier to follow.
48 * - (Related to above) Use the header part of adbCommand to
49 * reduce the number of copies we have to do of the data.
50 * - (Related to above) Actually implement the adbOutbound queue.
51 * This is fairly easy once you switch all the intr routines
52 * over to using adbCommand structs directly.
53 * - There is a bug in the state machine of adb_intr_cuda
54 * code that causes hangs, especially on 030 machines, probably
55 * because of some timing issues. Because I have been unable to
56 * determine the exact cause of this bug, I used the timeout function
57 * to check for and recover from this condition. If anyone finds
58 * the actual cause of this bug, the calls to timeout and the
59 * adb_cuda_tickle routine can be removed.
60 */
61
62 #include <sys/cdefs.h>
63 __KERNEL_RCSID(0, "$NetBSD: adb_direct.c,v 1.25 2003/07/15 02:43:26 lukem Exp $");
64
65 #include <sys/param.h>
66 #include <sys/cdefs.h>
67 #include <sys/systm.h>
68 #include <sys/callout.h>
69 #include <sys/device.h>
70
71 #include <machine/param.h>
72 #include <machine/cpu.h>
73 #include <machine/adbsys.h>
74
75 #include <macppc/dev/viareg.h>
76 #include <macppc/dev/adbvar.h>
77 #include <macppc/dev/pm_direct.h>
78
79 #define printf_intr printf
80
81 #ifdef DEBUG
82 #ifndef ADB_DEBUG
83 #define ADB_DEBUG
84 #endif
85 #endif
86
87 /* some misc. leftovers */
88 #define vPB 0x0000
89 #define vPB3 0x08
90 #define vPB4 0x10
91 #define vPB5 0x20
92 #define vSR_INT 0x04
93 #define vSR_OUT 0x10
94
95 /* the type of ADB action that we are currently preforming */
96 #define ADB_ACTION_NOTREADY 0x1 /* has not been initialized yet */
97 #define ADB_ACTION_IDLE 0x2 /* the bus is currently idle */
98 #define ADB_ACTION_OUT 0x3 /* sending out a command */
99 #define ADB_ACTION_IN 0x4 /* receiving data */
100 #define ADB_ACTION_POLLING 0x5 /* polling - II only */
101
102 /*
103 * These describe the state of the ADB bus itself, although they
104 * don't necessarily correspond directly to ADB states.
105 * Note: these are not really used in the IIsi code.
106 */
107 #define ADB_BUS_UNKNOWN 0x1 /* we don't know yet - all models */
108 #define ADB_BUS_IDLE 0x2 /* bus is idle - all models */
109 #define ADB_BUS_CMD 0x3 /* starting a command - II models */
110 #define ADB_BUS_ODD 0x4 /* the "odd" state - II models */
111 #define ADB_BUS_EVEN 0x5 /* the "even" state - II models */
112 #define ADB_BUS_ACTIVE 0x6 /* active state - IIsi models */
113 #define ADB_BUS_ACK 0x7 /* currently ACKing - IIsi models */
114
115 /*
116 * Shortcuts for setting or testing the VIA bit states.
117 * Not all shortcuts are used for every type of ADB hardware.
118 */
119 #define ADB_SET_STATE_IDLE_II() via_reg_or(VIA1, vBufB, (vPB4 | vPB5))
120 #define ADB_SET_STATE_IDLE_IISI() via_reg_and(VIA1, vBufB, ~(vPB4 | vPB5))
121 #define ADB_SET_STATE_IDLE_CUDA() via_reg_or(VIA1, vBufB, (vPB4 | vPB5))
122 #define ADB_SET_STATE_CMD() via_reg_and(VIA1, vBufB, ~(vPB4 | vPB5))
123 #define ADB_SET_STATE_EVEN() write_via_reg(VIA1, vBufB, \
124 (read_via_reg(VIA1, vBufB) | vPB4) & ~vPB5)
125 #define ADB_SET_STATE_ODD() write_via_reg(VIA1, vBufB, \
126 (read_via_reg(VIA1, vBufB) | vPB5) & ~vPB4 )
127 #define ADB_SET_STATE_ACTIVE() via_reg_or(VIA1, vBufB, vPB5)
128 #define ADB_SET_STATE_INACTIVE() via_reg_and(VIA1, vBufB, ~vPB5)
129 #define ADB_SET_STATE_TIP() via_reg_and(VIA1, vBufB, ~vPB5)
130 #define ADB_CLR_STATE_TIP() via_reg_or(VIA1, vBufB, vPB5)
131 #define ADB_SET_STATE_ACKON() via_reg_or(VIA1, vBufB, vPB4)
132 #define ADB_SET_STATE_ACKOFF() via_reg_and(VIA1, vBufB, ~vPB4)
133 #define ADB_TOGGLE_STATE_ACK_CUDA() via_reg_xor(VIA1, vBufB, vPB4)
134 #define ADB_SET_STATE_ACKON_CUDA() via_reg_and(VIA1, vBufB, ~vPB4)
135 #define ADB_SET_STATE_ACKOFF_CUDA() via_reg_or(VIA1, vBufB, vPB4)
136 #define ADB_SET_SR_INPUT() via_reg_and(VIA1, vACR, ~vSR_OUT)
137 #define ADB_SET_SR_OUTPUT() via_reg_or(VIA1, vACR, vSR_OUT)
138 #define ADB_SR() read_via_reg(VIA1, vSR)
139 #define ADB_VIA_INTR_ENABLE() write_via_reg(VIA1, vIER, 0x84)
140 #define ADB_VIA_INTR_DISABLE() write_via_reg(VIA1, vIER, 0x04)
141 #define ADB_VIA_CLR_INTR() write_via_reg(VIA1, vIFR, 0x04)
142 #define ADB_INTR_IS_OFF (vPB3 == (read_via_reg(VIA1, vBufB) & vPB3))
143 #define ADB_INTR_IS_ON (0 == (read_via_reg(VIA1, vBufB) & vPB3))
144 #define ADB_SR_INTR_IS_OFF (0 == (read_via_reg(VIA1, vIFR) & vSR_INT))
145 #define ADB_SR_INTR_IS_ON (vSR_INT == (read_via_reg(VIA1, \
146 vIFR) & vSR_INT))
147
148 /*
149 * This is the delay that is required (in uS) between certain
150 * ADB transactions. The actual timing delay for for each uS is
151 * calculated at boot time to account for differences in machine speed.
152 */
153 #define ADB_DELAY 150
154
155 /*
156 * Maximum ADB message length; includes space for data, result, and
157 * device code - plus a little for safety.
158 */
159 #define ADB_MAX_MSG_LENGTH 16
160 #define ADB_MAX_HDR_LENGTH 8
161
162 #define ADB_QUEUE 32
163 #define ADB_TICKLE_TICKS 4
164
165 /*
166 * A structure for storing information about each ADB device.
167 */
168 struct ADBDevEntry {
169 void (*ServiceRtPtr) __P((void));
170 void *DataAreaAddr;
171 int devType;
172 int origAddr;
173 int currentAddr;
174 };
175
176 /*
177 * Used to hold ADB commands that are waiting to be sent out.
178 */
179 struct adbCmdHoldEntry {
180 u_char outBuf[ADB_MAX_MSG_LENGTH]; /* our message */
181 u_char *saveBuf; /* buffer to know where to save result */
182 u_char *compRout; /* completion routine pointer */
183 u_char *data; /* completion routine data pointer */
184 };
185
186 /*
187 * Eventually used for two separate queues, the queue between
188 * the upper and lower halves, and the outgoing packet queue.
189 * TO DO: adbCommand can replace all of adbCmdHoldEntry eventually
190 */
191 struct adbCommand {
192 u_char header[ADB_MAX_HDR_LENGTH]; /* not used yet */
193 u_char data[ADB_MAX_MSG_LENGTH]; /* packet data only */
194 u_char *saveBuf; /* where to save result */
195 u_char *compRout; /* completion routine pointer */
196 u_char *compData; /* completion routine data pointer */
197 u_int cmd; /* the original command for this data */
198 u_int unsol; /* 1 if packet was unsolicited */
199 u_int ack_only; /* 1 for no special processing */
200 };
201
202 /*
203 * A few variables that we need and their initial values.
204 */
205 int adbHardware = ADB_HW_UNKNOWN;
206 int adbActionState = ADB_ACTION_NOTREADY;
207 int adbBusState = ADB_BUS_UNKNOWN;
208 int adbWaiting = 0; /* waiting for return data from the device */
209 int adbWriteDelay = 0; /* working on (or waiting to do) a write */
210 int adbOutQueueHasData = 0; /* something in the queue waiting to go out */
211 int adbNextEnd = 0; /* the next incoming bute is the last (II) */
212 int adbSoftPower = 0; /* machine supports soft power */
213
214 int adbWaitingCmd = 0; /* ADB command we are waiting for */
215 u_char *adbBuffer = (long)0; /* pointer to user data area */
216 void *adbCompRout = (long)0; /* pointer to the completion routine */
217 void *adbCompData = (long)0; /* pointer to the completion routine data */
218 long adbFakeInts = 0; /* keeps track of fake ADB interrupts for
219 * timeouts (II) */
220 int adbStarting = 1; /* doing ADBReInit so do polling differently */
221 int adbSendTalk = 0; /* the intr routine is sending the talk, not
222 * the user (II) */
223 int adbPolling = 0; /* we are polling for service request */
224 int adbPollCmd = 0; /* the last poll command we sent */
225
226 u_char adbInputBuffer[ADB_MAX_MSG_LENGTH]; /* data input buffer */
227 u_char adbOutputBuffer[ADB_MAX_MSG_LENGTH]; /* data output buffer */
228 struct adbCmdHoldEntry adbOutQueue; /* our 1 entry output queue */
229
230 int adbSentChars = 0; /* how many characters we have sent */
231 int adbLastDevice = 0; /* last ADB dev we heard from (II ONLY) */
232 int adbLastDevIndex = 0; /* last ADB dev loc in dev table (II ONLY) */
233 int adbLastCommand = 0; /* the last ADB command we sent (II) */
234
235 struct ADBDevEntry ADBDevTable[16]; /* our ADB device table */
236 int ADBNumDevices; /* num. of ADB devices found with ADBReInit */
237
238 struct adbCommand adbInbound[ADB_QUEUE]; /* incoming queue */
239 int adbInCount = 0; /* how many packets in in queue */
240 int adbInHead = 0; /* head of in queue */
241 int adbInTail = 0; /* tail of in queue */
242 struct adbCommand adbOutbound[ADB_QUEUE]; /* outgoing queue - not used yet */
243 int adbOutCount = 0; /* how many packets in out queue */
244 int adbOutHead = 0; /* head of out queue */
245 int adbOutTail = 0; /* tail of out queue */
246
247 int tickle_count = 0; /* how many tickles seen for this packet? */
248 int tickle_serial = 0; /* the last packet tickled */
249 int adb_cuda_serial = 0; /* the current packet */
250
251 struct callout adb_cuda_tickle_ch = CALLOUT_INITIALIZER;
252 struct callout adb_soft_intr_ch = CALLOUT_INITIALIZER;
253
254 volatile u_char *Via1Base;
255 extern int adb_polling; /* Are we polling? */
256
257 void pm_setup_adb __P((void));
258 void pm_check_adb_devices __P((int));
259 void pm_intr __P((void));
260 int pm_adb_op __P((u_char *, void *, void *, int));
261 void pm_init_adb_device __P((void));
262
263 /*
264 * The following are private routines.
265 */
266 #ifdef ADB_DEBUG
267 void print_single __P((u_char *));
268 #endif
269 void adb_intr __P((void));
270 void adb_intr_II __P((void));
271 void adb_intr_IIsi __P((void));
272 void adb_intr_cuda __P((void));
273 void adb_soft_intr __P((void));
274 int send_adb_II __P((u_char *, u_char *, void *, void *, int));
275 int send_adb_IIsi __P((u_char *, u_char *, void *, void *, int));
276 int send_adb_cuda __P((u_char *, u_char *, void *, void *, int));
277 void adb_intr_cuda_test __P((void));
278 void adb_cuda_tickle __P((void));
279 void adb_pass_up __P((struct adbCommand *));
280 void adb_op_comprout __P((caddr_t, caddr_t, int));
281 void adb_reinit __P((void));
282 int count_adbs __P((void));
283 int get_ind_adb_info __P((ADBDataBlock *, int));
284 int get_adb_info __P((ADBDataBlock *, int));
285 int set_adb_info __P((ADBSetInfoBlock *, int));
286 void adb_setup_hw_type __P((void));
287 int adb_op __P((Ptr, Ptr, Ptr, short));
288 int adb_op_sync __P((Ptr, Ptr, Ptr, short));
289 void adb_read_II __P((u_char *));
290 void adb_hw_setup __P((void));
291 void adb_hw_setup_IIsi __P((u_char *));
292 int adb_cmd_result __P((u_char *));
293 int adb_cmd_extra __P((u_char *));
294 int adb_guess_next_device __P((void));
295 int adb_prog_switch_enable __P((void));
296 int adb_prog_switch_disable __P((void));
297 /* we should create this and it will be the public version */
298 int send_adb __P((u_char *, void *, void *));
299
300 int setsoftadb __P((void));
301
302 #ifdef ADB_DEBUG
303 /*
304 * print_single
305 * Diagnostic display routine. Displays the hex values of the
306 * specified elements of the u_char. The length of the "string"
307 * is in [0].
308 */
309 void
310 print_single(str)
311 u_char *str;
312 {
313 int x;
314
315 if (str == 0) {
316 printf_intr("no data - null pointer\n");
317 return;
318 }
319 if (*str == 0) {
320 printf_intr("nothing returned\n");
321 return;
322 }
323 if (*str > 20) {
324 printf_intr("ADB: ACK > 20 no way!\n");
325 *str = 20;
326 }
327 printf_intr("(length=0x%x):", *str);
328 for (x = 1; x <= *str; x++)
329 printf_intr(" 0x%02x", str[x]);
330 printf_intr("\n");
331 }
332 #endif
333
334 void
335 adb_cuda_tickle(void)
336 {
337 volatile int s;
338
339 if (adbActionState == ADB_ACTION_IN) {
340 if (tickle_serial == adb_cuda_serial) {
341 if (++tickle_count > 0) {
342 s = splhigh();
343 adbActionState = ADB_ACTION_IDLE;
344 adbInputBuffer[0] = 0;
345 ADB_SET_STATE_IDLE_CUDA();
346 splx(s);
347 }
348 } else {
349 tickle_serial = adb_cuda_serial;
350 tickle_count = 0;
351 }
352 } else {
353 tickle_serial = adb_cuda_serial;
354 tickle_count = 0;
355 }
356
357 callout_reset(&adb_cuda_tickle_ch, ADB_TICKLE_TICKS,
358 (void *)adb_cuda_tickle, NULL);
359 }
360
361 /*
362 * called when when an adb interrupt happens
363 *
364 * Cuda version of adb_intr
365 * TO DO: do we want to add some calls to intr_dispatch() here to
366 * grab serial interrupts?
367 */
368 void
369 adb_intr_cuda(void)
370 {
371 volatile int i, ending;
372 volatile unsigned int s;
373 struct adbCommand packet;
374
375 s = splhigh(); /* can't be too careful - might be called */
376 /* from a routine, NOT an interrupt */
377
378 ADB_VIA_CLR_INTR(); /* clear interrupt */
379 ADB_VIA_INTR_DISABLE(); /* disable ADB interrupt on IIs. */
380
381 switch_start:
382 switch (adbActionState) {
383 case ADB_ACTION_IDLE:
384 /*
385 * This is an unexpected packet, so grab the first (dummy)
386 * byte, set up the proper vars, and tell the chip we are
387 * starting to receive the packet by setting the TIP bit.
388 */
389 adbInputBuffer[1] = ADB_SR();
390 adb_cuda_serial++;
391 if (ADB_INTR_IS_OFF) /* must have been a fake start */
392 break;
393
394 ADB_SET_SR_INPUT();
395 ADB_SET_STATE_TIP();
396
397 adbInputBuffer[0] = 1;
398 adbActionState = ADB_ACTION_IN;
399 #ifdef ADB_DEBUG
400 if (adb_debug)
401 printf_intr("idle 0x%02x ", adbInputBuffer[1]);
402 #endif
403 break;
404
405 case ADB_ACTION_IN:
406 adbInputBuffer[++adbInputBuffer[0]] = ADB_SR();
407 /* intr off means this is the last byte (end of frame) */
408 if (ADB_INTR_IS_OFF)
409 ending = 1;
410 else
411 ending = 0;
412
413 if (1 == ending) { /* end of message? */
414 #ifdef ADB_DEBUG
415 if (adb_debug) {
416 printf_intr("in end 0x%02x ",
417 adbInputBuffer[adbInputBuffer[0]]);
418 print_single(adbInputBuffer);
419 }
420 #endif
421
422 /*
423 * Are we waiting AND does this packet match what we
424 * are waiting for AND is it coming from either the
425 * ADB or RTC/PRAM sub-device? This section _should_
426 * recognize all ADB and RTC/PRAM type commands, but
427 * there may be more... NOTE: commands are always at
428 * [4], even for RTC/PRAM commands.
429 */
430 /* set up data for adb_pass_up */
431 memcpy(packet.data, adbInputBuffer, adbInputBuffer[0] + 1);
432
433 if ((adbWaiting == 1) &&
434 (adbInputBuffer[4] == adbWaitingCmd) &&
435 ((adbInputBuffer[2] == 0x00) ||
436 (adbInputBuffer[2] == 0x01))) {
437 packet.saveBuf = adbBuffer;
438 packet.compRout = adbCompRout;
439 packet.compData = adbCompData;
440 packet.unsol = 0;
441 packet.ack_only = 0;
442 adb_pass_up(&packet);
443
444 adbWaitingCmd = 0; /* reset "waiting" vars */
445 adbWaiting = 0;
446 adbBuffer = (long)0;
447 adbCompRout = (long)0;
448 adbCompData = (long)0;
449 } else {
450 packet.unsol = 1;
451 packet.ack_only = 0;
452 adb_pass_up(&packet);
453 }
454
455
456 /* reset vars and signal the end of this frame */
457 adbActionState = ADB_ACTION_IDLE;
458 adbInputBuffer[0] = 0;
459 ADB_SET_STATE_IDLE_CUDA();
460 /*ADB_SET_SR_INPUT();*/
461
462 /*
463 * If there is something waiting to be sent out,
464 * the set everything up and send the first byte.
465 */
466 if (adbWriteDelay == 1) {
467 delay(ADB_DELAY); /* required */
468 adbSentChars = 0;
469 adbActionState = ADB_ACTION_OUT;
470 /*
471 * If the interrupt is on, we were too slow
472 * and the chip has already started to send
473 * something to us, so back out of the write
474 * and start a read cycle.
475 */
476 if (ADB_INTR_IS_ON) {
477 ADB_SET_SR_INPUT();
478 ADB_SET_STATE_IDLE_CUDA();
479 adbSentChars = 0;
480 adbActionState = ADB_ACTION_IDLE;
481 adbInputBuffer[0] = 0;
482 break;
483 }
484 /*
485 * If we got here, it's ok to start sending
486 * so load the first byte and tell the chip
487 * we want to send.
488 */
489 ADB_SET_STATE_TIP();
490 ADB_SET_SR_OUTPUT();
491 write_via_reg(VIA1, vSR, adbOutputBuffer[adbSentChars + 1]);
492 }
493 } else {
494 ADB_TOGGLE_STATE_ACK_CUDA();
495 #ifdef ADB_DEBUG
496 if (adb_debug)
497 printf_intr("in 0x%02x ",
498 adbInputBuffer[adbInputBuffer[0]]);
499 #endif
500 }
501 break;
502
503 case ADB_ACTION_OUT:
504 i = ADB_SR(); /* reset SR-intr in IFR */
505 #ifdef ADB_DEBUG
506 if (adb_debug)
507 printf_intr("intr out 0x%02x ", i);
508 #endif
509
510 adbSentChars++;
511 if (ADB_INTR_IS_ON) { /* ADB intr low during write */
512 #ifdef ADB_DEBUG
513 if (adb_debug)
514 printf_intr("intr was on ");
515 #endif
516 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
517 ADB_SET_STATE_IDLE_CUDA();
518 adbSentChars = 0; /* must start all over */
519 adbActionState = ADB_ACTION_IDLE; /* new state */
520 adbInputBuffer[0] = 0;
521 adbWriteDelay = 1; /* must retry when done with
522 * read */
523 delay(ADB_DELAY);
524 goto switch_start; /* process next state right
525 * now */
526 break;
527 }
528 if (adbOutputBuffer[0] == adbSentChars) { /* check for done */
529 if (0 == adb_cmd_result(adbOutputBuffer)) { /* do we expect data
530 * back? */
531 adbWaiting = 1; /* signal waiting for return */
532 adbWaitingCmd = adbOutputBuffer[2]; /* save waiting command */
533 } else { /* no talk, so done */
534 /* set up stuff for adb_pass_up */
535 memcpy(packet.data, adbInputBuffer, adbInputBuffer[0] + 1);
536 packet.saveBuf = adbBuffer;
537 packet.compRout = adbCompRout;
538 packet.compData = adbCompData;
539 packet.cmd = adbWaitingCmd;
540 packet.unsol = 0;
541 packet.ack_only = 1;
542 adb_pass_up(&packet);
543
544 /* reset "waiting" vars, just in case */
545 adbWaitingCmd = 0;
546 adbBuffer = (long)0;
547 adbCompRout = (long)0;
548 adbCompData = (long)0;
549 }
550
551 adbWriteDelay = 0; /* done writing */
552 adbActionState = ADB_ACTION_IDLE; /* signal bus is idle */
553 ADB_SET_SR_INPUT();
554 ADB_SET_STATE_IDLE_CUDA();
555 #ifdef ADB_DEBUG
556 if (adb_debug)
557 printf_intr("write done ");
558 #endif
559 } else {
560 write_via_reg(VIA1, vSR, adbOutputBuffer[adbSentChars + 1]); /* send next byte */
561 ADB_TOGGLE_STATE_ACK_CUDA(); /* signal byte ready to
562 * shift */
563 #ifdef ADB_DEBUG
564 if (adb_debug)
565 printf_intr("toggle ");
566 #endif
567 }
568 break;
569
570 case ADB_ACTION_NOTREADY:
571 #ifdef ADB_DEBUG
572 if (adb_debug)
573 printf_intr("adb: not yet initialized\n");
574 #endif
575 break;
576
577 default:
578 #ifdef ADB_DEBUG
579 if (adb_debug)
580 printf_intr("intr: unknown ADB state\n");
581 #endif
582 break;
583 }
584
585 ADB_VIA_INTR_ENABLE(); /* enable ADB interrupt on IIs. */
586
587 splx(s); /* restore */
588
589 return;
590 } /* end adb_intr_cuda */
591
592
593 int
594 send_adb_cuda(u_char * in, u_char * buffer, void *compRout, void *data, int
595 command)
596 {
597 int s, len;
598
599 #ifdef ADB_DEBUG
600 if (adb_debug)
601 printf_intr("SEND\n");
602 #endif
603
604 if (adbActionState == ADB_ACTION_NOTREADY)
605 return 1;
606
607 /* Don't interrupt while we are messing with the ADB */
608 s = splhigh();
609
610 if ((adbActionState == ADB_ACTION_IDLE) && /* ADB available? */
611 (ADB_INTR_IS_OFF)) { /* and no incoming interrupt? */
612 } else
613 if (adbWriteDelay == 0) /* it's busy, but is anything waiting? */
614 adbWriteDelay = 1; /* if no, then we'll "queue"
615 * it up */
616 else {
617 splx(s);
618 return 1; /* really busy! */
619 }
620
621 #ifdef ADB_DEBUG
622 if (adb_debug)
623 printf_intr("QUEUE\n");
624 #endif
625 if ((long)in == (long)0) { /* need to convert? */
626 /*
627 * Don't need to use adb_cmd_extra here because this section
628 * will be called ONLY when it is an ADB command (no RTC or
629 * PRAM)
630 */
631 if ((command & 0x0c) == 0x08) /* copy addl data ONLY if
632 * doing a listen! */
633 len = buffer[0]; /* length of additional data */
634 else
635 len = 0;/* no additional data */
636
637 adbOutputBuffer[0] = 2 + len; /* dev. type + command + addl.
638 * data */
639 adbOutputBuffer[1] = 0x00; /* mark as an ADB command */
640 adbOutputBuffer[2] = (u_char)command; /* load command */
641
642 /* copy additional output data, if any */
643 memcpy(adbOutputBuffer + 3, buffer + 1, len);
644 } else
645 /* if data ready, just copy over */
646 memcpy(adbOutputBuffer, in, in[0] + 2);
647
648 adbSentChars = 0; /* nothing sent yet */
649 adbBuffer = buffer; /* save buffer to know where to save result */
650 adbCompRout = compRout; /* save completion routine pointer */
651 adbCompData = data; /* save completion routine data pointer */
652 adbWaitingCmd = adbOutputBuffer[2]; /* save wait command */
653
654 if (adbWriteDelay != 1) { /* start command now? */
655 #ifdef ADB_DEBUG
656 if (adb_debug)
657 printf_intr("out start NOW");
658 #endif
659 delay(ADB_DELAY);
660 adbActionState = ADB_ACTION_OUT; /* set next state */
661 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
662 write_via_reg(VIA1, vSR, adbOutputBuffer[adbSentChars + 1]); /* load byte for output */
663 ADB_SET_STATE_ACKOFF_CUDA();
664 ADB_SET_STATE_TIP(); /* tell ADB that we want to send */
665 }
666 adbWriteDelay = 1; /* something in the write "queue" */
667
668 splx(s);
669
670 if ((s & (1 << 18)) || adb_polling) /* XXX were VIA1 interrupts blocked ? */
671 /* poll until byte done */
672 while ((adbActionState != ADB_ACTION_IDLE) || (ADB_INTR_IS_ON)
673 || (adbWaiting == 1))
674 if (ADB_SR_INTR_IS_ON) { /* wait for "interrupt" */
675 adb_intr_cuda(); /* process it */
676 adb_soft_intr();
677 }
678
679 return 0;
680 } /* send_adb_cuda */
681
682
683 void
684 adb_intr_II(void)
685 {
686 panic("adb_intr_II");
687 }
688
689
690 /*
691 * send_adb version for II series machines
692 */
693 int
694 send_adb_II(u_char * in, u_char * buffer, void *compRout, void *data, int command)
695 {
696 panic("send_adb_II");
697 }
698
699
700 /*
701 * This routine is called from the II series interrupt routine
702 * to determine what the "next" device is that should be polled.
703 */
704 int
705 adb_guess_next_device(void)
706 {
707 int last, i, dummy;
708
709 if (adbStarting) {
710 /*
711 * Start polling EVERY device, since we can't be sure there is
712 * anything in the device table yet
713 */
714 if (adbLastDevice < 1 || adbLastDevice > 15)
715 adbLastDevice = 1;
716 if (++adbLastDevice > 15) /* point to next one */
717 adbLastDevice = 1;
718 } else {
719 /* find the next device using the device table */
720 if (adbLastDevice < 1 || adbLastDevice > 15) /* let's be parinoid */
721 adbLastDevice = 2;
722 last = 1; /* default index location */
723
724 for (i = 1; i < 16; i++) /* find index entry */
725 if (ADBDevTable[i].currentAddr == adbLastDevice) { /* look for device */
726 last = i; /* found it */
727 break;
728 }
729 dummy = last; /* index to start at */
730 for (;;) { /* find next device in index */
731 if (++dummy > 15) /* wrap around if needed */
732 dummy = 1;
733 if (dummy == last) { /* didn't find any other
734 * device! This can happen if
735 * there are no devices on the
736 * bus */
737 dummy = 1;
738 break;
739 }
740 /* found the next device */
741 if (ADBDevTable[dummy].devType != 0)
742 break;
743 }
744 adbLastDevice = ADBDevTable[dummy].currentAddr;
745 }
746 return adbLastDevice;
747 }
748
749
750 /*
751 * Called when when an adb interrupt happens.
752 * This routine simply transfers control over to the appropriate
753 * code for the machine we are running on.
754 */
755 void
756 adb_intr(void)
757 {
758 switch (adbHardware) {
759 case ADB_HW_II:
760 adb_intr_II();
761 break;
762
763 case ADB_HW_IISI:
764 adb_intr_IIsi();
765 break;
766
767 case ADB_HW_PB:
768 pm_intr();
769 break;
770
771 case ADB_HW_CUDA:
772 adb_intr_cuda();
773 break;
774
775 case ADB_HW_UNKNOWN:
776 break;
777 }
778 }
779
780
781 /*
782 * called when when an adb interrupt happens
783 *
784 * IIsi version of adb_intr
785 *
786 */
787 void
788 adb_intr_IIsi(void)
789 {
790 panic("adb_intr_IIsi");
791 }
792
793
794 /*****************************************************************************
795 * if the device is currently busy, and there is no data waiting to go out, then
796 * the data is "queued" in the outgoing buffer. If we are already waiting, then
797 * we return.
798 * in: if (in == 0) then the command string is built from command and buffer
799 * if (in != 0) then in is used as the command string
800 * buffer: additional data to be sent (used only if in == 0)
801 * this is also where return data is stored
802 * compRout: the completion routine that is called when then return value
803 * is received (if a return value is expected)
804 * data: a data pointer that can be used by the completion routine
805 * command: an ADB command to be sent (used only if in == 0)
806 *
807 */
808 int
809 send_adb_IIsi(u_char * in, u_char * buffer, void *compRout, void *data, int
810 command)
811 {
812 panic("send_adb_IIsi");
813 }
814
815
816 /*
817 * adb_pass_up is called by the interrupt-time routines.
818 * It takes the raw packet data that was received from the
819 * device and puts it into the queue that the upper half
820 * processes. It then signals for a soft ADB interrupt which
821 * will eventually call the upper half routine (adb_soft_intr).
822 *
823 * If in->unsol is 0, then this is either the notification
824 * that the packet was sent (on a LISTEN, for example), or the
825 * response from the device (on a TALK). The completion routine
826 * is called only if the user specified one.
827 *
828 * If in->unsol is 1, then this packet was unsolicited and
829 * so we look up the device in the ADB device table to determine
830 * what it's default service routine is.
831 *
832 * If in->ack_only is 1, then we really only need to call
833 * the completion routine, so don't do any other stuff.
834 *
835 * Note that in->data contains the packet header AND data,
836 * while adbInbound[]->data contains ONLY data.
837 *
838 * Note: Called only at interrupt time. Assumes this.
839 */
840 void
841 adb_pass_up(struct adbCommand *in)
842 {
843 int start = 0, len = 0, cmd = 0;
844 ADBDataBlock block;
845
846 /* temp for testing */
847 /*u_char *buffer = 0;*/
848 /*u_char *compdata = 0;*/
849 /*u_char *comprout = 0;*/
850
851 if (adbInCount >= ADB_QUEUE) {
852 #ifdef ADB_DEBUG
853 if (adb_debug)
854 printf_intr("adb: ring buffer overflow\n");
855 #endif
856 return;
857 }
858
859 if (in->ack_only) {
860 len = in->data[0];
861 cmd = in->cmd;
862 start = 0;
863 } else {
864 switch (adbHardware) {
865 case ADB_HW_II:
866 cmd = in->data[1];
867 if (in->data[0] < 2)
868 len = 0;
869 else
870 len = in->data[0]-1;
871 start = 1;
872 break;
873
874 case ADB_HW_IISI:
875 case ADB_HW_CUDA:
876 /* If it's unsolicited, accept only ADB data for now */
877 if (in->unsol)
878 if (0 != in->data[2])
879 return;
880 cmd = in->data[4];
881 if (in->data[0] < 5)
882 len = 0;
883 else
884 len = in->data[0]-4;
885 start = 4;
886 break;
887
888 case ADB_HW_PB:
889 cmd = in->data[1];
890 if (in->data[0] < 2)
891 len = 0;
892 else
893 len = in->data[0]-1;
894 start = 1;
895 break;
896
897 case ADB_HW_UNKNOWN:
898 return;
899 }
900
901 /* Make sure there is a valid device entry for this device */
902 if (in->unsol) {
903 /* ignore unsolicited data during adbreinit */
904 if (adbStarting)
905 return;
906 /* get device's comp. routine and data area */
907 if (-1 == get_adb_info(&block, ADB_CMDADDR(cmd)))
908 return;
909 }
910 }
911
912 /*
913 * If this is an unsolicited packet, we need to fill in
914 * some info so adb_soft_intr can process this packet
915 * properly. If it's not unsolicited, then use what
916 * the caller sent us.
917 */
918 if (in->unsol) {
919 adbInbound[adbInTail].compRout = (void *)block.dbServiceRtPtr;
920 adbInbound[adbInTail].compData = (void *)block.dbDataAreaAddr;
921 adbInbound[adbInTail].saveBuf = (void *)adbInbound[adbInTail].data;
922 } else {
923 adbInbound[adbInTail].compRout = (void *)in->compRout;
924 adbInbound[adbInTail].compData = (void *)in->compData;
925 adbInbound[adbInTail].saveBuf = (void *)in->saveBuf;
926 }
927
928 #ifdef ADB_DEBUG
929 if (adb_debug && in->data[1] == 2)
930 printf_intr("adb: caught error\n");
931 #endif
932
933 /* copy the packet data over */
934 /*
935 * TO DO: If the *_intr routines fed their incoming data
936 * directly into an adbCommand struct, which is passed to
937 * this routine, then we could eliminate this copy.
938 */
939 memcpy(adbInbound[adbInTail].data + 1, in->data + start + 1, len);
940 adbInbound[adbInTail].data[0] = len;
941 adbInbound[adbInTail].cmd = cmd;
942
943 adbInCount++;
944 if (++adbInTail >= ADB_QUEUE)
945 adbInTail = 0;
946
947 /*
948 * If the debugger is running, call upper half manually.
949 * Otherwise, trigger a soft interrupt to handle the rest later.
950 */
951 if (adb_polling)
952 adb_soft_intr();
953 else
954 setsoftadb();
955
956 return;
957 }
958
959
960 /*
961 * Called to process the packets after they have been
962 * placed in the incoming queue.
963 *
964 */
965 void
966 adb_soft_intr(void)
967 {
968 int s;
969 int cmd = 0;
970 u_char *buffer = 0;
971 u_char *comprout = 0;
972 u_char *compdata = 0;
973
974 #if 0
975 s = splhigh();
976 printf_intr("sr: %x\n", (s & 0x0700));
977 splx(s);
978 #endif
979
980 /*delay(2*ADB_DELAY);*/
981
982 while (adbInCount) {
983 #ifdef ADB_DEBUG
984 if (adb_debug & 0x80)
985 printf_intr("%x %x %x ",
986 adbInCount, adbInHead, adbInTail);
987 #endif
988 /* get the data we need from the queue */
989 buffer = adbInbound[adbInHead].saveBuf;
990 comprout = adbInbound[adbInHead].compRout;
991 compdata = adbInbound[adbInHead].compData;
992 cmd = adbInbound[adbInHead].cmd;
993
994 /* copy over data to data area if it's valid */
995 /*
996 * Note that for unsol packets we don't want to copy the
997 * data anywhere, so buffer was already set to 0.
998 * For ack_only buffer was set to 0, so don't copy.
999 */
1000 if (buffer)
1001 memcpy(buffer, adbInbound[adbInHead].data,
1002 adbInbound[adbInHead].data[0] + 1);
1003
1004 #ifdef ADB_DEBUG
1005 if (adb_debug & 0x80) {
1006 printf_intr("%p %p %p %x ",
1007 buffer, comprout, compdata, (short)cmd);
1008 printf_intr("buf: ");
1009 print_single(adbInbound[adbInHead].data);
1010 }
1011 #endif
1012 /* Remove the packet from the queue before calling
1013 * the completion routine, so that the completion
1014 * routine can reentrantly process the queue. For
1015 * example, this happens when polling is turned on
1016 * by entering the debuger by keystroke.
1017 */
1018 s = splhigh();
1019 adbInCount--;
1020 if (++adbInHead >= ADB_QUEUE)
1021 adbInHead = 0;
1022 splx(s);
1023
1024 /* call default completion routine if it's valid */
1025 if (comprout) {
1026 void (*f)(caddr_t, caddr_t, int) =
1027 (void (*)(caddr_t, caddr_t, int))comprout;
1028
1029 (*f)(buffer, compdata, cmd);
1030 }
1031 }
1032 return;
1033 }
1034
1035
1036 /*
1037 * This is my version of the ADBOp routine. It mainly just calls the
1038 * hardware-specific routine.
1039 *
1040 * data : pointer to data area to be used by compRout
1041 * compRout : completion routine
1042 * buffer : for LISTEN: points to data to send - MAX 8 data bytes,
1043 * byte 0 = # of bytes
1044 * : for TALK: points to place to save return data
1045 * command : the adb command to send
1046 * result : 0 = success
1047 * : -1 = could not complete
1048 */
1049 int
1050 adb_op(Ptr buffer, Ptr compRout, Ptr data, short command)
1051 {
1052 int result;
1053
1054 switch (adbHardware) {
1055 case ADB_HW_II:
1056 result = send_adb_II((u_char *)0, (u_char *)buffer,
1057 (void *)compRout, (void *)data, (int)command);
1058 if (result == 0)
1059 return 0;
1060 else
1061 return -1;
1062 break;
1063
1064 case ADB_HW_IISI:
1065 result = send_adb_IIsi((u_char *)0, (u_char *)buffer,
1066 (void *)compRout, (void *)data, (int)command);
1067 /*
1068 * I wish I knew why this delay is needed. It usually needs to
1069 * be here when several commands are sent in close succession,
1070 * especially early in device probes when doing collision
1071 * detection. It must be some race condition. Sigh. - jpw
1072 */
1073 delay(100);
1074 if (result == 0)
1075 return 0;
1076 else
1077 return -1;
1078 break;
1079
1080 case ADB_HW_PB:
1081 result = pm_adb_op((u_char *)buffer, (void *)compRout,
1082 (void *)data, (int)command);
1083
1084 if (result == 0)
1085 return 0;
1086 else
1087 return -1;
1088 break;
1089
1090 case ADB_HW_CUDA:
1091 result = send_adb_cuda((u_char *)0, (u_char *)buffer,
1092 (void *)compRout, (void *)data, (int)command);
1093 if (result == 0)
1094 return 0;
1095 else
1096 return -1;
1097 break;
1098
1099 case ADB_HW_UNKNOWN:
1100 default:
1101 return -1;
1102 }
1103 }
1104
1105
1106 /*
1107 * adb_hw_setup
1108 * This routine sets up the possible machine specific hardware
1109 * config (mainly VIA settings) for the various models.
1110 */
1111 void
1112 adb_hw_setup(void)
1113 {
1114 volatile int i;
1115 u_char send_string[ADB_MAX_MSG_LENGTH];
1116
1117 switch (adbHardware) {
1118 case ADB_HW_II:
1119 via_reg_or(VIA1, vDirB, 0x30); /* register B bits 4 and 5:
1120 * outputs */
1121 via_reg_and(VIA1, vDirB, 0xf7); /* register B bit 3: input */
1122 via_reg_and(VIA1, vACR, ~vSR_OUT); /* make sure SR is set
1123 * to IN (II, IIsi) */
1124 adbActionState = ADB_ACTION_IDLE; /* used by all types of
1125 * hardware (II, IIsi) */
1126 adbBusState = ADB_BUS_IDLE; /* this var. used in II-series
1127 * code only */
1128 write_via_reg(VIA1, vIER, 0x84);/* make sure VIA interrupts
1129 * are on (II, IIsi) */
1130 ADB_SET_STATE_IDLE_II(); /* set ADB bus state to idle */
1131
1132 ADB_VIA_CLR_INTR(); /* clear interrupt */
1133 break;
1134
1135 case ADB_HW_IISI:
1136 via_reg_or(VIA1, vDirB, 0x30); /* register B bits 4 and 5:
1137 * outputs */
1138 via_reg_and(VIA1, vDirB, 0xf7); /* register B bit 3: input */
1139 via_reg_and(VIA1, vACR, ~vSR_OUT); /* make sure SR is set
1140 * to IN (II, IIsi) */
1141 adbActionState = ADB_ACTION_IDLE; /* used by all types of
1142 * hardware (II, IIsi) */
1143 adbBusState = ADB_BUS_IDLE; /* this var. used in II-series
1144 * code only */
1145 write_via_reg(VIA1, vIER, 0x84);/* make sure VIA interrupts
1146 * are on (II, IIsi) */
1147 ADB_SET_STATE_IDLE_IISI(); /* set ADB bus state to idle */
1148
1149 /* get those pesky clock ticks we missed while booting */
1150 for (i = 0; i < 30; i++) {
1151 delay(ADB_DELAY);
1152 adb_hw_setup_IIsi(send_string);
1153 #ifdef ADB_DEBUG
1154 if (adb_debug) {
1155 printf_intr("adb: cleanup: ");
1156 print_single(send_string);
1157 }
1158 #endif
1159 delay(ADB_DELAY);
1160 if (ADB_INTR_IS_OFF)
1161 break;
1162 }
1163 break;
1164
1165 case ADB_HW_PB:
1166 /*
1167 * XXX - really PM_VIA_CLR_INTR - should we put it in
1168 * pm_direct.h?
1169 */
1170 write_via_reg(VIA1, vIFR, 0x90); /* clear interrupt */
1171 break;
1172
1173 case ADB_HW_CUDA:
1174 via_reg_or(VIA1, vDirB, 0x30); /* register B bits 4 and 5:
1175 * outputs */
1176 via_reg_and(VIA1, vDirB, 0xf7); /* register B bit 3: input */
1177 via_reg_and(VIA1, vACR, ~vSR_OUT); /* make sure SR is set
1178 * to IN */
1179 write_via_reg(VIA1, vACR, (read_via_reg(VIA1, vACR) | 0x0c) & ~0x10);
1180 adbActionState = ADB_ACTION_IDLE; /* used by all types of
1181 * hardware */
1182 adbBusState = ADB_BUS_IDLE; /* this var. used in II-series
1183 * code only */
1184 write_via_reg(VIA1, vIER, 0x84);/* make sure VIA interrupts
1185 * are on */
1186 ADB_SET_STATE_IDLE_CUDA(); /* set ADB bus state to idle */
1187
1188 /* sort of a device reset */
1189 i = ADB_SR(); /* clear interrupt */
1190 ADB_VIA_INTR_DISABLE(); /* no interrupts while clearing */
1191 ADB_SET_STATE_IDLE_CUDA(); /* reset state to idle */
1192 delay(ADB_DELAY);
1193 ADB_SET_STATE_TIP(); /* signal start of frame */
1194 delay(ADB_DELAY);
1195 ADB_TOGGLE_STATE_ACK_CUDA();
1196 delay(ADB_DELAY);
1197 ADB_CLR_STATE_TIP();
1198 delay(ADB_DELAY);
1199 ADB_SET_STATE_IDLE_CUDA(); /* back to idle state */
1200 i = ADB_SR(); /* clear interrupt */
1201 ADB_VIA_INTR_ENABLE(); /* ints ok now */
1202 break;
1203
1204 case ADB_HW_UNKNOWN:
1205 default:
1206 write_via_reg(VIA1, vIER, 0x04);/* turn interrupts off - TO
1207 * DO: turn PB ints off? */
1208 return;
1209 break;
1210 }
1211 }
1212
1213
1214 /*
1215 * adb_hw_setup_IIsi
1216 * This is sort of a "read" routine that forces the adb hardware through a read cycle
1217 * if there is something waiting. This helps "clean up" any commands that may have gotten
1218 * stuck or stopped during the boot process.
1219 *
1220 */
1221 void
1222 adb_hw_setup_IIsi(u_char * buffer)
1223 {
1224 panic("adb_hw_setup_IIsi");
1225 }
1226
1227
1228 /*
1229 * adb_reinit sets up the adb stuff
1230 *
1231 */
1232 void
1233 adb_reinit(void)
1234 {
1235 u_char send_string[ADB_MAX_MSG_LENGTH];
1236 ADBDataBlock data; /* temp. holder for getting device info */
1237 volatile int i, x;
1238 int s;
1239 int command;
1240 int result;
1241 int saveptr; /* point to next free relocation address */
1242 int device;
1243 int nonewtimes; /* times thru loop w/o any new devices */
1244
1245 /* Make sure we are not interrupted while building the table. */
1246 if (adbHardware != ADB_HW_PB) /* ints must be on for PB? */
1247 s = splhigh();
1248
1249 ADBNumDevices = 0; /* no devices yet */
1250
1251 /* Let intr routines know we are running reinit */
1252 adbStarting = 1;
1253
1254 /*
1255 * Initialize the ADB table. For now, we'll always use the same table
1256 * that is defined at the beginning of this file - no mallocs.
1257 */
1258 for (i = 0; i < 16; i++)
1259 ADBDevTable[i].devType = 0;
1260
1261 adb_setup_hw_type(); /* setup hardware type */
1262
1263 adb_hw_setup(); /* init the VIA bits and hard reset ADB */
1264
1265 delay(1000);
1266
1267 /* send an ADB reset first */
1268 result = adb_op_sync((Ptr)0, (Ptr)0, (Ptr)0, (short)0x00);
1269 delay(200000);
1270
1271 #ifdef ADB_DEBUG
1272 if (result && adb_debug) {
1273 printf_intr("adb_reinit: failed to reset, result = %d\n",result);
1274 }
1275 #endif
1276
1277 /*
1278 * Probe for ADB devices. Probe devices 1-15 quickly to determine
1279 * which device addresses are in use and which are free. For each
1280 * address that is in use, move the device at that address to a higher
1281 * free address. Continue doing this at that address until no device
1282 * responds at that address. Then move the last device that was moved
1283 * back to the original address. Do this for the remaining addresses
1284 * that we determined were in use.
1285 *
1286 * When finished, do this entire process over again with the updated
1287 * list of in use addresses. Do this until no new devices have been
1288 * found in 20 passes though the in use address list. (This probably
1289 * seems long and complicated, but it's the best way to detect multiple
1290 * devices at the same address - sometimes it takes a couple of tries
1291 * before the collision is detected.)
1292 */
1293
1294 /* initial scan through the devices */
1295 for (i = 1; i < 16; i++) {
1296 send_string[0] = 0;
1297 command = ADBTALK(i, 3);
1298 result = adb_op_sync((Ptr)send_string, (Ptr)0,
1299 (Ptr)0, (short)command);
1300
1301 #ifdef ADB_DEBUG
1302 if (result && adb_debug) {
1303 printf_intr("adb_reinit: scan of device %d, result = %d, str = 0x%x\n",
1304 i,result,send_string[0]);
1305 }
1306 #endif
1307
1308 if (send_string[0] != 0) {
1309 /* check for valid device handler */
1310 switch (send_string[2]) {
1311 case 0:
1312 case 0xfd:
1313 case 0xfe:
1314 case 0xff:
1315 continue; /* invalid, skip */
1316 }
1317
1318 /* found a device */
1319 ++ADBNumDevices;
1320 KASSERT(ADBNumDevices < 16);
1321 ADBDevTable[ADBNumDevices].devType =
1322 (int)send_string[2];
1323 ADBDevTable[ADBNumDevices].origAddr = i;
1324 ADBDevTable[ADBNumDevices].currentAddr = i;
1325 ADBDevTable[ADBNumDevices].DataAreaAddr =
1326 (long)0;
1327 ADBDevTable[ADBNumDevices].ServiceRtPtr = (void *)0;
1328 pm_check_adb_devices(i); /* tell pm driver device
1329 * is here */
1330 }
1331 }
1332
1333 /* find highest unused address */
1334 for (saveptr = 15; saveptr > 0; saveptr--)
1335 if (-1 == get_adb_info(&data, saveptr))
1336 break;
1337
1338 #ifdef ADB_DEBUG
1339 if (adb_debug & 0x80) {
1340 printf_intr("first free is: 0x%02x\n", saveptr);
1341 printf_intr("devices: %i\n", ADBNumDevices);
1342 }
1343 #endif
1344
1345 nonewtimes = 0; /* no loops w/o new devices */
1346 while (saveptr > 0 && nonewtimes++ < 11) {
1347 for (i = 1; i <= ADBNumDevices; i++) {
1348 device = ADBDevTable[i].currentAddr;
1349 #ifdef ADB_DEBUG
1350 if (adb_debug & 0x80)
1351 printf_intr("moving device 0x%02x to 0x%02x "
1352 "(index 0x%02x) ", device, saveptr, i);
1353 #endif
1354
1355 /* send TALK R3 to address */
1356 command = ADBTALK(device, 3);
1357 adb_op_sync((Ptr)send_string, (Ptr)0,
1358 (Ptr)0, (short)command);
1359
1360 /* move device to higher address */
1361 command = ADBLISTEN(device, 3);
1362 send_string[0] = 2;
1363 send_string[1] = (u_char)(saveptr | 0x60);
1364 send_string[2] = 0xfe;
1365 adb_op_sync((Ptr)send_string, (Ptr)0,
1366 (Ptr)0, (short)command);
1367 delay(500);
1368
1369 /* send TALK R3 - anything at new address? */
1370 command = ADBTALK(saveptr, 3);
1371 adb_op_sync((Ptr)send_string, (Ptr)0,
1372 (Ptr)0, (short)command);
1373 delay(500);
1374
1375 if (send_string[0] == 0) {
1376 #ifdef ADB_DEBUG
1377 if (adb_debug & 0x80)
1378 printf_intr("failed, continuing\n");
1379 #endif
1380 continue;
1381 }
1382
1383 /* send TALK R3 - anything at old address? */
1384 command = ADBTALK(device, 3);
1385 result = adb_op_sync((Ptr)send_string, (Ptr)0,
1386 (Ptr)0, (short)command);
1387 if (send_string[0] != 0) {
1388 /* check for valid device handler */
1389 switch (send_string[2]) {
1390 case 0:
1391 case 0xfd:
1392 case 0xfe:
1393 case 0xff:
1394 continue; /* invalid, skip */
1395 }
1396
1397 /* new device found */
1398 /* update data for previously moved device */
1399 ADBDevTable[i].currentAddr = saveptr;
1400 #ifdef ADB_DEBUG
1401 if (adb_debug & 0x80)
1402 printf_intr("old device at index %i\n",i);
1403 #endif
1404 /* add new device in table */
1405 #ifdef ADB_DEBUG
1406 if (adb_debug & 0x80)
1407 printf_intr("new device found\n");
1408 #endif
1409 if (saveptr > ADBNumDevices) {
1410 ++ADBNumDevices;
1411 KASSERT(ADBNumDevices < 16);
1412 }
1413 ADBDevTable[ADBNumDevices].devType =
1414 (int)send_string[2];
1415 ADBDevTable[ADBNumDevices].origAddr = device;
1416 ADBDevTable[ADBNumDevices].currentAddr = device;
1417 /* These will be set correctly in adbsys.c */
1418 /* Until then, unsol. data will be ignored. */
1419 ADBDevTable[ADBNumDevices].DataAreaAddr =
1420 (long)0;
1421 ADBDevTable[ADBNumDevices].ServiceRtPtr =
1422 (void *)0;
1423 /* find next unused address */
1424 for (x = saveptr; x > 0; x--) {
1425 if (-1 == get_adb_info(&data, x)) {
1426 saveptr = x;
1427 break;
1428 }
1429 }
1430 if (x == 0)
1431 saveptr = 0;
1432 #ifdef ADB_DEBUG
1433 if (adb_debug & 0x80)
1434 printf_intr("new free is 0x%02x\n",
1435 saveptr);
1436 #endif
1437 nonewtimes = 0;
1438 /* tell pm driver device is here */
1439 pm_check_adb_devices(device);
1440 } else {
1441 #ifdef ADB_DEBUG
1442 if (adb_debug & 0x80)
1443 printf_intr("moving back...\n");
1444 #endif
1445 /* move old device back */
1446 command = ADBLISTEN(saveptr, 3);
1447 send_string[0] = 2;
1448 send_string[1] = (u_char)(device | 0x60);
1449 send_string[2] = 0xfe;
1450 adb_op_sync((Ptr)send_string, (Ptr)0,
1451 (Ptr)0, (short)command);
1452 delay(1000);
1453 }
1454 }
1455 }
1456
1457 #ifdef ADB_DEBUG
1458 if (adb_debug) {
1459 for (i = 1; i <= ADBNumDevices; i++) {
1460 x = get_ind_adb_info(&data, i);
1461 if (x != -1)
1462 printf_intr("index 0x%x, addr 0x%x, type 0x%x\n",
1463 i, x, data.devType);
1464 }
1465 }
1466 #endif
1467
1468 #ifndef MRG_ADB
1469 /* enable the programmer's switch, if we have one */
1470 adb_prog_switch_enable();
1471 #endif
1472
1473 #ifdef ADB_DEBUG
1474 if (adb_debug) {
1475 if (0 == ADBNumDevices) /* tell user if no devices found */
1476 printf_intr("adb: no devices found\n");
1477 }
1478 #endif
1479
1480 adbStarting = 0; /* not starting anymore */
1481 #ifdef ADB_DEBUG
1482 if (adb_debug)
1483 printf_intr("adb: ADBReInit complete\n");
1484 #endif
1485
1486 if (adbHardware == ADB_HW_CUDA)
1487 callout_reset(&adb_cuda_tickle_ch, ADB_TICKLE_TICKS,
1488 (void *)adb_cuda_tickle, NULL);
1489
1490 if (adbHardware != ADB_HW_PB) /* ints must be on for PB? */
1491 splx(s);
1492 }
1493
1494 /*
1495 * adb_cmd_result
1496 *
1497 * This routine lets the caller know whether the specified adb command string
1498 * should expect a returned result, such as a TALK command.
1499 *
1500 * returns: 0 if a result should be expected
1501 * 1 if a result should NOT be expected
1502 */
1503 int
1504 adb_cmd_result(u_char *in)
1505 {
1506 switch (adbHardware) {
1507 case ADB_HW_II:
1508 /* was it an ADB talk command? */
1509 if ((in[1] & 0x0c) == 0x0c)
1510 return 0;
1511 return 1;
1512
1513 case ADB_HW_IISI:
1514 case ADB_HW_CUDA:
1515 /* was it an ADB talk command? */
1516 if ((in[1] == 0x00) && ((in[2] & 0x0c) == 0x0c))
1517 return 0;
1518 /* was it an RTC/PRAM read date/time? */
1519 if ((in[1] == 0x01) && (in[2] == 0x03))
1520 return 0;
1521 return 1;
1522
1523 case ADB_HW_PB:
1524 return 1;
1525
1526 case ADB_HW_UNKNOWN:
1527 default:
1528 return 1;
1529 }
1530 }
1531
1532
1533 /*
1534 * adb_cmd_extra
1535 *
1536 * This routine lets the caller know whether the specified adb command string
1537 * may have extra data appended to the end of it, such as a LISTEN command.
1538 *
1539 * returns: 0 if extra data is allowed
1540 * 1 if extra data is NOT allowed
1541 */
1542 int
1543 adb_cmd_extra(u_char *in)
1544 {
1545 switch (adbHardware) {
1546 case ADB_HW_II:
1547 if ((in[1] & 0x0c) == 0x08) /* was it a listen command? */
1548 return 0;
1549 return 1;
1550
1551 case ADB_HW_IISI:
1552 case ADB_HW_CUDA:
1553 /*
1554 * TO DO: support needs to be added to recognize RTC and PRAM
1555 * commands
1556 */
1557 if ((in[2] & 0x0c) == 0x08) /* was it a listen command? */
1558 return 0;
1559 /* add others later */
1560 return 1;
1561
1562 case ADB_HW_PB:
1563 return 1;
1564
1565 case ADB_HW_UNKNOWN:
1566 default:
1567 return 1;
1568 }
1569 }
1570
1571 /*
1572 * adb_op_sync
1573 *
1574 * This routine does exactly what the adb_op routine does, except that after
1575 * the adb_op is called, it waits until the return value is present before
1576 * returning.
1577 *
1578 * NOTE: The user specified compRout is ignored, since this routine specifies
1579 * it's own to adb_op, which is why you really called this in the first place
1580 * anyway.
1581 */
1582 int
1583 adb_op_sync(Ptr buffer, Ptr compRout, Ptr data, short command)
1584 {
1585 int tmout;
1586 int result;
1587 volatile int flag = 0;
1588
1589 result = adb_op(buffer, (void *)adb_op_comprout,
1590 (void *)&flag, command); /* send command */
1591 if (result == 0) { /* send ok? */
1592 /*
1593 * Total time to wait is calculated as follows:
1594 * - Tlt (stop to start time): 260 usec
1595 * - start bit: 100 usec
1596 * - up to 8 data bytes: 64 * 100 usec = 6400 usec
1597 * - stop bit (with SRQ): 140 usec
1598 * Total: 6900 usec
1599 *
1600 * This is the total time allowed by the specification. Any
1601 * device that doesn't conform to this will fail to operate
1602 * properly on some Apple systems. In spite of this we
1603 * double the time to wait; some Cuda-based apparently
1604 * queues some commands and allows the main CPU to continue
1605 * processing (radical concept, eh?). To be safe, allow
1606 * time for two complete ADB transactions to occur.
1607 */
1608 for (tmout = 13800; !flag && tmout >= 10; tmout -= 10)
1609 delay(10);
1610 if (!flag && tmout > 0)
1611 delay(tmout);
1612
1613 if (!flag)
1614 result = -2;
1615 }
1616
1617 return result;
1618 }
1619
1620 /*
1621 * adb_op_comprout
1622 *
1623 * This function is used by the adb_op_sync routine so it knows when the
1624 * function is done.
1625 */
1626 void
1627 adb_op_comprout(buffer, compdata, cmd)
1628 caddr_t buffer, compdata;
1629 int cmd;
1630 {
1631 short *p = (short *)compdata;
1632
1633 *p = 1;
1634 }
1635
1636 void
1637 adb_setup_hw_type(void)
1638 {
1639 switch (adbHardware) {
1640 case ADB_HW_CUDA:
1641 adbSoftPower = 1;
1642 return;
1643
1644 case ADB_HW_PB:
1645 adbSoftPower = 1;
1646 pm_setup_adb();
1647 return;
1648
1649 default:
1650 panic("unknown adb hardware");
1651 }
1652 #if 0
1653 response = 0; /*mac68k_machine.machineid;*/
1654
1655 /*
1656 * Determine what type of ADB hardware we are running on.
1657 */
1658 switch (response) {
1659 case MACH_MACC610: /* Centris 610 */
1660 case MACH_MACC650: /* Centris 650 */
1661 case MACH_MACII: /* II */
1662 case MACH_MACIICI: /* IIci */
1663 case MACH_MACIICX: /* IIcx */
1664 case MACH_MACIIX: /* IIx */
1665 case MACH_MACQ610: /* Quadra 610 */
1666 case MACH_MACQ650: /* Quadra 650 */
1667 case MACH_MACQ700: /* Quadra 700 */
1668 case MACH_MACQ800: /* Quadra 800 */
1669 case MACH_MACSE30: /* SE/30 */
1670 adbHardware = ADB_HW_II;
1671 #ifdef ADB_DEBUG
1672 if (adb_debug)
1673 printf_intr("adb: using II series hardware support\n");
1674 #endif
1675 break;
1676
1677 case MACH_MACCLASSICII: /* Classic II */
1678 case MACH_MACLCII: /* LC II, Performa 400/405/430 */
1679 case MACH_MACLCIII: /* LC III, Performa 450 */
1680 case MACH_MACIISI: /* IIsi */
1681 case MACH_MACIIVI: /* IIvi */
1682 case MACH_MACIIVX: /* IIvx */
1683 case MACH_MACP460: /* Performa 460/465/467 */
1684 case MACH_MACP600: /* Performa 600 */
1685 adbHardware = ADB_HW_IISI;
1686 #ifdef ADB_DEBUG
1687 if (adb_debug)
1688 printf_intr("adb: using IIsi series hardware support\n");
1689 #endif
1690 break;
1691
1692 case MACH_MACPB140: /* PowerBook 140 */
1693 case MACH_MACPB145: /* PowerBook 145 */
1694 case MACH_MACPB150: /* PowerBook 150 */
1695 case MACH_MACPB160: /* PowerBook 160 */
1696 case MACH_MACPB165: /* PowerBook 165 */
1697 case MACH_MACPB165C: /* PowerBook 165c */
1698 case MACH_MACPB170: /* PowerBook 170 */
1699 case MACH_MACPB180: /* PowerBook 180 */
1700 case MACH_MACPB180C: /* PowerBook 180c */
1701 adbHardware = ADB_HW_PB;
1702 pm_setup_adb();
1703 #ifdef ADB_DEBUG
1704 if (adb_debug)
1705 printf_intr("adb: using PowerBook 100-series hardware support\n");
1706 #endif
1707 break;
1708
1709 case MACH_MACPB210: /* PowerBook Duo 210 */
1710 case MACH_MACPB230: /* PowerBook Duo 230 */
1711 case MACH_MACPB250: /* PowerBook Duo 250 */
1712 case MACH_MACPB270: /* PowerBook Duo 270 */
1713 case MACH_MACPB280: /* PowerBook Duo 280 */
1714 case MACH_MACPB280C: /* PowerBook Duo 280c */
1715 case MACH_MACPB500: /* PowerBook 500 series */
1716 adbHardware = ADB_HW_PB;
1717 pm_setup_adb();
1718 #ifdef ADB_DEBUG
1719 if (adb_debug)
1720 printf_intr("adb: using PowerBook Duo-series and PowerBook 500-series hardware support\n");
1721 #endif
1722 break;
1723
1724 case MACH_MACC660AV: /* Centris 660AV */
1725 case MACH_MACCCLASSIC: /* Color Classic */
1726 case MACH_MACCCLASSICII: /* Color Classic II */
1727 case MACH_MACLC475: /* LC 475, Performa 475/476 */
1728 case MACH_MACLC475_33: /* Clock-chipped 47x */
1729 case MACH_MACLC520: /* LC 520 */
1730 case MACH_MACLC575: /* LC 575, Performa 575/577/578 */
1731 case MACH_MACP550: /* LC 550, Performa 550 */
1732 case MACH_MACP580: /* Performa 580/588 */
1733 case MACH_MACQ605: /* Quadra 605 */
1734 case MACH_MACQ605_33: /* Clock-chipped Quadra 605 */
1735 case MACH_MACQ630: /* LC 630, Performa 630, Quadra 630 */
1736 case MACH_MACQ840AV: /* Quadra 840AV */
1737 adbHardware = ADB_HW_CUDA;
1738 #ifdef ADB_DEBUG
1739 if (adb_debug)
1740 printf_intr("adb: using Cuda series hardware support\n");
1741 #endif
1742 break;
1743 default:
1744 adbHardware = ADB_HW_UNKNOWN;
1745 #ifdef ADB_DEBUG
1746 if (adb_debug) {
1747 printf_intr("adb: hardware type unknown for this machine\n");
1748 printf_intr("adb: ADB support is disabled\n");
1749 }
1750 #endif
1751 break;
1752 }
1753
1754 /*
1755 * Determine whether this machine has ADB based soft power.
1756 */
1757 switch (response) {
1758 case MACH_MACCCLASSIC: /* Color Classic */
1759 case MACH_MACCCLASSICII: /* Color Classic II */
1760 case MACH_MACIISI: /* IIsi */
1761 case MACH_MACIIVI: /* IIvi */
1762 case MACH_MACIIVX: /* IIvx */
1763 case MACH_MACLC520: /* LC 520 */
1764 case MACH_MACLC575: /* LC 575, Performa 575/577/578 */
1765 case MACH_MACP550: /* LC 550, Performa 550 */
1766 case MACH_MACP600: /* Performa 600 */
1767 case MACH_MACQ630: /* LC 630, Performa 630, Quadra 630 */
1768 case MACH_MACQ840AV: /* Quadra 840AV */
1769 adbSoftPower = 1;
1770 break;
1771 }
1772 #endif
1773 }
1774
1775 int
1776 count_adbs(void)
1777 {
1778 int i;
1779 int found;
1780
1781 found = 0;
1782
1783 for (i = 1; i < 16; i++)
1784 if (0 != ADBDevTable[i].devType)
1785 found++;
1786
1787 return found;
1788 }
1789
1790 int
1791 get_ind_adb_info(ADBDataBlock * info, int index)
1792 {
1793 if ((index < 1) || (index > 15)) /* check range 1-15 */
1794 return (-1);
1795
1796 #ifdef ADB_DEBUG
1797 if (adb_debug & 0x80)
1798 printf_intr("index 0x%x devType is: 0x%x\n", index,
1799 ADBDevTable[index].devType);
1800 #endif
1801 if (0 == ADBDevTable[index].devType) /* make sure it's a valid entry */
1802 return (-1);
1803
1804 info->devType = ADBDevTable[index].devType;
1805 info->origADBAddr = ADBDevTable[index].origAddr;
1806 info->dbServiceRtPtr = (Ptr)ADBDevTable[index].ServiceRtPtr;
1807 info->dbDataAreaAddr = (Ptr)ADBDevTable[index].DataAreaAddr;
1808
1809 return (ADBDevTable[index].currentAddr);
1810 }
1811
1812 int
1813 get_adb_info(ADBDataBlock * info, int adbAddr)
1814 {
1815 int i;
1816
1817 if ((adbAddr < 1) || (adbAddr > 15)) /* check range 1-15 */
1818 return (-1);
1819
1820 for (i = 1; i < 15; i++)
1821 if (ADBDevTable[i].currentAddr == adbAddr) {
1822 info->devType = ADBDevTable[i].devType;
1823 info->origADBAddr = ADBDevTable[i].origAddr;
1824 info->dbServiceRtPtr = (Ptr)ADBDevTable[i].ServiceRtPtr;
1825 info->dbDataAreaAddr = ADBDevTable[i].DataAreaAddr;
1826 return 0; /* found */
1827 }
1828
1829 return (-1); /* not found */
1830 }
1831
1832 int
1833 set_adb_info(ADBSetInfoBlock * info, int adbAddr)
1834 {
1835 int i;
1836
1837 if ((adbAddr < 1) || (adbAddr > 15)) /* check range 1-15 */
1838 return (-1);
1839
1840 for (i = 1; i < 15; i++)
1841 if (ADBDevTable[i].currentAddr == adbAddr) {
1842 ADBDevTable[i].ServiceRtPtr =
1843 (void *)(info->siServiceRtPtr);
1844 ADBDevTable[i].DataAreaAddr = info->siDataAreaAddr;
1845 return 0; /* found */
1846 }
1847
1848 return (-1); /* not found */
1849
1850 }
1851
1852 #ifndef MRG_ADB
1853
1854 /* caller should really use machine-independant version: getPramTime */
1855 /* this version does pseudo-adb access only */
1856 int
1857 adb_read_date_time(unsigned long *time)
1858 {
1859 u_char output[ADB_MAX_MSG_LENGTH];
1860 int result;
1861 volatile int flag = 0;
1862
1863 switch (adbHardware) {
1864 case ADB_HW_II:
1865 return -1;
1866
1867 case ADB_HW_IISI:
1868 output[0] = 0x02; /* 2 byte message */
1869 output[1] = 0x01; /* to pram/rtc device */
1870 output[2] = 0x03; /* read date/time */
1871 result = send_adb_IIsi((u_char *)output, (u_char *)output,
1872 (void *)adb_op_comprout, (int *)&flag, (int)0);
1873 if (result != 0) /* exit if not sent */
1874 return -1;
1875
1876 while (0 == flag) /* wait for result */
1877 ;
1878
1879 *time = (long)(*(long *)(output + 1));
1880 return 0;
1881
1882 case ADB_HW_PB:
1883 pm_read_date_time(time);
1884 return 0;
1885
1886 case ADB_HW_CUDA:
1887 output[0] = 0x02; /* 2 byte message */
1888 output[1] = 0x01; /* to pram/rtc device */
1889 output[2] = 0x03; /* read date/time */
1890 result = send_adb_cuda((u_char *)output, (u_char *)output,
1891 (void *)adb_op_comprout, (void *)&flag, (int)0);
1892 if (result != 0) /* exit if not sent */
1893 return -1;
1894
1895 while (0 == flag) /* wait for result */
1896 ;
1897
1898 /* XXX to avoid wrong reordering by gcc 2.95.x with -fgcse */
1899 __asm volatile ("" ::: "memory");
1900
1901 memcpy(time, output + 1, 4);
1902 return 0;
1903
1904 case ADB_HW_UNKNOWN:
1905 default:
1906 return -1;
1907 }
1908 }
1909
1910 /* caller should really use machine-independant version: setPramTime */
1911 /* this version does pseudo-adb access only */
1912 int
1913 adb_set_date_time(unsigned long time)
1914 {
1915 u_char output[ADB_MAX_MSG_LENGTH];
1916 int result;
1917 volatile int flag = 0;
1918
1919 switch (adbHardware) {
1920
1921 case ADB_HW_CUDA:
1922 output[0] = 0x06; /* 6 byte message */
1923 output[1] = 0x01; /* to pram/rtc device */
1924 output[2] = 0x09; /* set date/time */
1925 output[3] = (u_char)(time >> 24);
1926 output[4] = (u_char)(time >> 16);
1927 output[5] = (u_char)(time >> 8);
1928 output[6] = (u_char)(time);
1929 result = send_adb_cuda((u_char *)output, (u_char *)0,
1930 (void *)adb_op_comprout, (void *)&flag, (int)0);
1931 if (result != 0) /* exit if not sent */
1932 return -1;
1933
1934 while (0 == flag) /* wait for send to finish */
1935 ;
1936
1937 return 0;
1938
1939 case ADB_HW_PB:
1940 pm_set_date_time(time);
1941 return 0;
1942
1943 case ADB_HW_II:
1944 case ADB_HW_IISI:
1945 case ADB_HW_UNKNOWN:
1946 default:
1947 return -1;
1948 }
1949 }
1950
1951
1952 int
1953 adb_poweroff(void)
1954 {
1955 u_char output[ADB_MAX_MSG_LENGTH];
1956 int result;
1957
1958 if (!adbSoftPower)
1959 return -1;
1960
1961 adb_polling = 1;
1962
1963 switch (adbHardware) {
1964 case ADB_HW_IISI:
1965 output[0] = 0x02; /* 2 byte message */
1966 output[1] = 0x01; /* to pram/rtc/soft-power device */
1967 output[2] = 0x0a; /* set date/time */
1968 result = send_adb_IIsi((u_char *)output, (u_char *)0,
1969 (void *)0, (void *)0, (int)0);
1970 if (result != 0) /* exit if not sent */
1971 return -1;
1972
1973 for (;;); /* wait for power off */
1974
1975 return 0;
1976
1977 case ADB_HW_PB:
1978 pm_adb_poweroff();
1979
1980 for (;;); /* wait for power off */
1981
1982 return 0;
1983
1984 case ADB_HW_CUDA:
1985 output[0] = 0x02; /* 2 byte message */
1986 output[1] = 0x01; /* to pram/rtc/soft-power device */
1987 output[2] = 0x0a; /* set date/time */
1988 result = send_adb_cuda((u_char *)output, (u_char *)0,
1989 (void *)0, (void *)0, (int)0);
1990 if (result != 0) /* exit if not sent */
1991 return -1;
1992
1993 for (;;); /* wait for power off */
1994
1995 return 0;
1996
1997 case ADB_HW_II: /* II models don't do ADB soft power */
1998 case ADB_HW_UNKNOWN:
1999 default:
2000 return -1;
2001 }
2002 }
2003
2004 int
2005 adb_prog_switch_enable(void)
2006 {
2007 u_char output[ADB_MAX_MSG_LENGTH];
2008 int result;
2009 volatile int flag = 0;
2010
2011 switch (adbHardware) {
2012 case ADB_HW_IISI:
2013 output[0] = 0x03; /* 3 byte message */
2014 output[1] = 0x01; /* to pram/rtc/soft-power device */
2015 output[2] = 0x1c; /* prog. switch control */
2016 output[3] = 0x01; /* enable */
2017 result = send_adb_IIsi((u_char *)output, (u_char *)0,
2018 (void *)adb_op_comprout, (void *)&flag, (int)0);
2019 if (result != 0) /* exit if not sent */
2020 return -1;
2021
2022 while (0 == flag) /* wait for send to finish */
2023 ;
2024
2025 return 0;
2026
2027 case ADB_HW_PB:
2028 return -1;
2029
2030 case ADB_HW_II: /* II models don't do prog. switch */
2031 case ADB_HW_CUDA: /* cuda doesn't do prog. switch TO DO: verify this */
2032 case ADB_HW_UNKNOWN:
2033 default:
2034 return -1;
2035 }
2036 }
2037
2038 int
2039 adb_prog_switch_disable(void)
2040 {
2041 u_char output[ADB_MAX_MSG_LENGTH];
2042 int result;
2043 volatile int flag = 0;
2044
2045 switch (adbHardware) {
2046 case ADB_HW_IISI:
2047 output[0] = 0x03; /* 3 byte message */
2048 output[1] = 0x01; /* to pram/rtc/soft-power device */
2049 output[2] = 0x1c; /* prog. switch control */
2050 output[3] = 0x01; /* disable */
2051 result = send_adb_IIsi((u_char *)output, (u_char *)0,
2052 (void *)adb_op_comprout, (void *)&flag, (int)0);
2053 if (result != 0) /* exit if not sent */
2054 return -1;
2055
2056 while (0 == flag) /* wait for send to finish */
2057 ;
2058
2059 return 0;
2060
2061 case ADB_HW_PB:
2062 return -1;
2063
2064 case ADB_HW_II: /* II models don't do prog. switch */
2065 case ADB_HW_CUDA: /* cuda doesn't do prog. switch */
2066 case ADB_HW_UNKNOWN:
2067 default:
2068 return -1;
2069 }
2070 }
2071
2072 int
2073 CountADBs(void)
2074 {
2075 return (count_adbs());
2076 }
2077
2078 void
2079 ADBReInit(void)
2080 {
2081 adb_reinit();
2082 }
2083
2084 int
2085 GetIndADB(ADBDataBlock * info, int index)
2086 {
2087 return (get_ind_adb_info(info, index));
2088 }
2089
2090 int
2091 GetADBInfo(ADBDataBlock * info, int adbAddr)
2092 {
2093 return (get_adb_info(info, adbAddr));
2094 }
2095
2096 int
2097 SetADBInfo(ADBSetInfoBlock * info, int adbAddr)
2098 {
2099 return (set_adb_info(info, adbAddr));
2100 }
2101
2102 int
2103 ADBOp(Ptr buffer, Ptr compRout, Ptr data, short commandNum)
2104 {
2105 return (adb_op(buffer, compRout, data, commandNum));
2106 }
2107
2108 #endif
2109
2110 int
2111 setsoftadb()
2112 {
2113 callout_reset(&adb_soft_intr_ch, 1, (void *)adb_soft_intr, NULL);
2114 return 0;
2115 }
2116
2117 void
2118 adb_cuda_autopoll()
2119 {
2120 volatile int flag = 0;
2121 int result;
2122 u_char output[16];
2123
2124 output[0] = 0x03; /* 3-byte message */
2125 output[1] = 0x01; /* to pram/rtc device */
2126 output[2] = 0x01; /* cuda autopoll */
2127 output[3] = 0x01;
2128 result = send_adb_cuda(output, output, adb_op_comprout, (void *)&flag,
2129 0);
2130 if (result != 0) /* exit if not sent */
2131 return;
2132
2133 while (flag == 0); /* wait for result */
2134 }
2135
2136 void
2137 adb_restart(void)
2138 {
2139 int result;
2140 u_char output[16];
2141
2142 adb_polling = 1;
2143
2144 switch (adbHardware) {
2145 case ADB_HW_CUDA:
2146 output[0] = 0x02; /* 2 byte message */
2147 output[1] = 0x01; /* to pram/rtc/soft-power device */
2148 output[2] = 0x11; /* restart */
2149 result = send_adb_cuda(output, NULL, NULL, NULL, 0);
2150 if (result != 0) /* exit if not sent */
2151 return;
2152 while (1); /* not return */
2153
2154 case ADB_HW_PB:
2155 pm_adb_restart();
2156 while (1); /* not return */
2157 }
2158 }
2159