adb_direct.c revision 1.30 1 /* $NetBSD: adb_direct.c,v 1.30 2005/02/01 03:08:16 briggs Exp $ */
2
3 /* From: adb_direct.c 2.02 4/18/97 jpw */
4
5 /*
6 * Copyright (C) 1996, 1997 John P. Wittkoski
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by John P. Wittkoski.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*
36 * This code is rather messy, but I don't have time right now
37 * to clean it up as much as I would like.
38 * But it works, so I'm happy. :-) jpw
39 */
40
41 /*
42 * TO DO:
43 * - We could reduce the time spent in the adb_intr_* routines
44 * by having them save the incoming and outgoing data directly
45 * in the adbInbound and adbOutbound queues, as it would reduce
46 * the number of times we need to copy the data around. It
47 * would also make the code more readable and easier to follow.
48 * - (Related to above) Use the header part of adbCommand to
49 * reduce the number of copies we have to do of the data.
50 * - (Related to above) Actually implement the adbOutbound queue.
51 * This is fairly easy once you switch all the intr routines
52 * over to using adbCommand structs directly.
53 * - There is a bug in the state machine of adb_intr_cuda
54 * code that causes hangs, especially on 030 machines, probably
55 * because of some timing issues. Because I have been unable to
56 * determine the exact cause of this bug, I used the timeout function
57 * to check for and recover from this condition. If anyone finds
58 * the actual cause of this bug, the calls to timeout and the
59 * adb_cuda_tickle routine can be removed.
60 */
61
62 #include <sys/cdefs.h>
63 __KERNEL_RCSID(0, "$NetBSD: adb_direct.c,v 1.30 2005/02/01 03:08:16 briggs Exp $");
64
65 #include <sys/param.h>
66 #include <sys/cdefs.h>
67 #include <sys/systm.h>
68 #include <sys/callout.h>
69 #include <sys/device.h>
70
71 #include <machine/param.h>
72 #include <machine/cpu.h>
73 #include <machine/adbsys.h>
74
75 #include <macppc/dev/viareg.h>
76 #include <macppc/dev/adbvar.h>
77 #include <macppc/dev/pm_direct.h>
78
79 #define printf_intr printf
80
81 #ifdef DEBUG
82 #ifndef ADB_DEBUG
83 #define ADB_DEBUG
84 #endif
85 #endif
86
87 /* some misc. leftovers */
88 #define vPB 0x0000
89 #define vPB3 0x08
90 #define vPB4 0x10
91 #define vPB5 0x20
92 #define vSR_INT 0x04
93 #define vSR_OUT 0x10
94
95 /* the type of ADB action that we are currently preforming */
96 #define ADB_ACTION_NOTREADY 0x1 /* has not been initialized yet */
97 #define ADB_ACTION_IDLE 0x2 /* the bus is currently idle */
98 #define ADB_ACTION_OUT 0x3 /* sending out a command */
99 #define ADB_ACTION_IN 0x4 /* receiving data */
100 #define ADB_ACTION_POLLING 0x5 /* polling - II only */
101
102 /*
103 * These describe the state of the ADB bus itself, although they
104 * don't necessarily correspond directly to ADB states.
105 * Note: these are not really used in the IIsi code.
106 */
107 #define ADB_BUS_UNKNOWN 0x1 /* we don't know yet - all models */
108 #define ADB_BUS_IDLE 0x2 /* bus is idle - all models */
109 #define ADB_BUS_CMD 0x3 /* starting a command - II models */
110 #define ADB_BUS_ODD 0x4 /* the "odd" state - II models */
111 #define ADB_BUS_EVEN 0x5 /* the "even" state - II models */
112 #define ADB_BUS_ACTIVE 0x6 /* active state - IIsi models */
113 #define ADB_BUS_ACK 0x7 /* currently ACKing - IIsi models */
114
115 /*
116 * Shortcuts for setting or testing the VIA bit states.
117 * Not all shortcuts are used for every type of ADB hardware.
118 */
119 #define ADB_SET_STATE_IDLE_II() via_reg_or(VIA1, vBufB, (vPB4 | vPB5))
120 #define ADB_SET_STATE_IDLE_IISI() via_reg_and(VIA1, vBufB, ~(vPB4 | vPB5))
121 #define ADB_SET_STATE_IDLE_CUDA() via_reg_or(VIA1, vBufB, (vPB4 | vPB5))
122 #define ADB_SET_STATE_CMD() via_reg_and(VIA1, vBufB, ~(vPB4 | vPB5))
123 #define ADB_SET_STATE_EVEN() write_via_reg(VIA1, vBufB, \
124 (read_via_reg(VIA1, vBufB) | vPB4) & ~vPB5)
125 #define ADB_SET_STATE_ODD() write_via_reg(VIA1, vBufB, \
126 (read_via_reg(VIA1, vBufB) | vPB5) & ~vPB4 )
127 #define ADB_SET_STATE_ACTIVE() via_reg_or(VIA1, vBufB, vPB5)
128 #define ADB_SET_STATE_INACTIVE() via_reg_and(VIA1, vBufB, ~vPB5)
129 #define ADB_SET_STATE_TIP() via_reg_and(VIA1, vBufB, ~vPB5)
130 #define ADB_CLR_STATE_TIP() via_reg_or(VIA1, vBufB, vPB5)
131 #define ADB_SET_STATE_ACKON() via_reg_or(VIA1, vBufB, vPB4)
132 #define ADB_SET_STATE_ACKOFF() via_reg_and(VIA1, vBufB, ~vPB4)
133 #define ADB_TOGGLE_STATE_ACK_CUDA() via_reg_xor(VIA1, vBufB, vPB4)
134 #define ADB_SET_STATE_ACKON_CUDA() via_reg_and(VIA1, vBufB, ~vPB4)
135 #define ADB_SET_STATE_ACKOFF_CUDA() via_reg_or(VIA1, vBufB, vPB4)
136 #define ADB_SET_SR_INPUT() via_reg_and(VIA1, vACR, ~vSR_OUT)
137 #define ADB_SET_SR_OUTPUT() via_reg_or(VIA1, vACR, vSR_OUT)
138 #define ADB_SR() read_via_reg(VIA1, vSR)
139 #define ADB_VIA_INTR_ENABLE() write_via_reg(VIA1, vIER, 0x84)
140 #define ADB_VIA_INTR_DISABLE() write_via_reg(VIA1, vIER, 0x04)
141 #define ADB_VIA_CLR_INTR() write_via_reg(VIA1, vIFR, 0x04)
142 #define ADB_INTR_IS_OFF (vPB3 == (read_via_reg(VIA1, vBufB) & vPB3))
143 #define ADB_INTR_IS_ON (0 == (read_via_reg(VIA1, vBufB) & vPB3))
144 #define ADB_SR_INTR_IS_OFF (0 == (read_via_reg(VIA1, vIFR) & vSR_INT))
145 #define ADB_SR_INTR_IS_ON (vSR_INT == (read_via_reg(VIA1, \
146 vIFR) & vSR_INT))
147
148 /*
149 * This is the delay that is required (in uS) between certain
150 * ADB transactions. The actual timing delay for for each uS is
151 * calculated at boot time to account for differences in machine speed.
152 */
153 #define ADB_DELAY 150
154
155 /*
156 * Maximum ADB message length; includes space for data, result, and
157 * device code - plus a little for safety.
158 */
159 #define ADB_MAX_MSG_LENGTH 16
160 #define ADB_MAX_HDR_LENGTH 8
161
162 #define ADB_QUEUE 32
163 #define ADB_TICKLE_TICKS 4
164
165 /*
166 * A structure for storing information about each ADB device.
167 */
168 struct ADBDevEntry {
169 void (*ServiceRtPtr) __P((void));
170 void *DataAreaAddr;
171 int devType;
172 int origAddr;
173 int currentAddr;
174 };
175
176 /*
177 * Used to hold ADB commands that are waiting to be sent out.
178 */
179 struct adbCmdHoldEntry {
180 u_char outBuf[ADB_MAX_MSG_LENGTH]; /* our message */
181 u_char *saveBuf; /* buffer to know where to save result */
182 u_char *compRout; /* completion routine pointer */
183 u_char *data; /* completion routine data pointer */
184 };
185
186 /*
187 * Eventually used for two separate queues, the queue between
188 * the upper and lower halves, and the outgoing packet queue.
189 * TO DO: adbCommand can replace all of adbCmdHoldEntry eventually
190 */
191 struct adbCommand {
192 u_char header[ADB_MAX_HDR_LENGTH]; /* not used yet */
193 u_char data[ADB_MAX_MSG_LENGTH]; /* packet data only */
194 u_char *saveBuf; /* where to save result */
195 u_char *compRout; /* completion routine pointer */
196 u_char *compData; /* completion routine data pointer */
197 u_int cmd; /* the original command for this data */
198 u_int unsol; /* 1 if packet was unsolicited */
199 u_int ack_only; /* 1 for no special processing */
200 };
201
202 /*
203 * A few variables that we need and their initial values.
204 */
205 int adbHardware = ADB_HW_UNKNOWN;
206 int adbActionState = ADB_ACTION_NOTREADY;
207 int adbBusState = ADB_BUS_UNKNOWN;
208 int adbWaiting = 0; /* waiting for return data from the device */
209 int adbWriteDelay = 0; /* working on (or waiting to do) a write */
210 int adbOutQueueHasData = 0; /* something in the queue waiting to go out */
211 int adbNextEnd = 0; /* the next incoming bute is the last (II) */
212 int adbSoftPower = 0; /* machine supports soft power */
213
214 int adbWaitingCmd = 0; /* ADB command we are waiting for */
215 u_char *adbBuffer = (long)0; /* pointer to user data area */
216 void *adbCompRout = (long)0; /* pointer to the completion routine */
217 void *adbCompData = (long)0; /* pointer to the completion routine data */
218 long adbFakeInts = 0; /* keeps track of fake ADB interrupts for
219 * timeouts (II) */
220 int adbStarting = 1; /* doing ADBReInit so do polling differently */
221 int adbSendTalk = 0; /* the intr routine is sending the talk, not
222 * the user (II) */
223 int adbPolling = 0; /* we are polling for service request */
224 int adbPollCmd = 0; /* the last poll command we sent */
225
226 u_char adbInputBuffer[ADB_MAX_MSG_LENGTH]; /* data input buffer */
227 u_char adbOutputBuffer[ADB_MAX_MSG_LENGTH]; /* data output buffer */
228 struct adbCmdHoldEntry adbOutQueue; /* our 1 entry output queue */
229
230 int adbSentChars = 0; /* how many characters we have sent */
231 int adbLastDevice = 0; /* last ADB dev we heard from (II ONLY) */
232 int adbLastDevIndex = 0; /* last ADB dev loc in dev table (II ONLY) */
233 int adbLastCommand = 0; /* the last ADB command we sent (II) */
234
235 struct ADBDevEntry ADBDevTable[16]; /* our ADB device table */
236 int ADBNumDevices; /* num. of ADB devices found with ADBReInit */
237
238 struct adbCommand adbInbound[ADB_QUEUE]; /* incoming queue */
239 int adbInCount = 0; /* how many packets in in queue */
240 int adbInHead = 0; /* head of in queue */
241 int adbInTail = 0; /* tail of in queue */
242 struct adbCommand adbOutbound[ADB_QUEUE]; /* outgoing queue - not used yet */
243 int adbOutCount = 0; /* how many packets in out queue */
244 int adbOutHead = 0; /* head of out queue */
245 int adbOutTail = 0; /* tail of out queue */
246
247 int tickle_count = 0; /* how many tickles seen for this packet? */
248 int tickle_serial = 0; /* the last packet tickled */
249 int adb_cuda_serial = 0; /* the current packet */
250
251 struct callout adb_cuda_tickle_ch = CALLOUT_INITIALIZER;
252 struct callout adb_soft_intr_ch = CALLOUT_INITIALIZER;
253
254 volatile u_char *Via1Base;
255 extern int adb_polling; /* Are we polling? */
256
257 void pm_setup_adb __P((void));
258 void pm_check_adb_devices __P((int));
259 int pm_adb_op __P((u_char *, void *, void *, int));
260 void pm_init_adb_device __P((void));
261
262 /*
263 * The following are private routines.
264 */
265 #ifdef ADB_DEBUG
266 void print_single __P((u_char *));
267 #endif
268 void adb_intr_II __P((void));
269 void adb_intr_IIsi __P((void));
270 void adb_soft_intr __P((void));
271 int send_adb_II __P((u_char *, u_char *, void *, void *, int));
272 int send_adb_IIsi __P((u_char *, u_char *, void *, void *, int));
273 int send_adb_cuda __P((u_char *, u_char *, void *, void *, int));
274 void adb_intr_cuda_test __P((void));
275 void adb_cuda_tickle __P((void));
276 void adb_pass_up __P((struct adbCommand *));
277 void adb_op_comprout __P((caddr_t, caddr_t, int));
278 void adb_reinit __P((void));
279 int count_adbs __P((void));
280 int get_ind_adb_info __P((ADBDataBlock *, int));
281 int get_adb_info __P((ADBDataBlock *, int));
282 int set_adb_info __P((ADBSetInfoBlock *, int));
283 void adb_setup_hw_type __P((void));
284 int adb_op __P((Ptr, Ptr, Ptr, short));
285 int adb_op_sync __P((Ptr, Ptr, Ptr, short));
286 void adb_read_II __P((u_char *));
287 void adb_hw_setup __P((void));
288 void adb_hw_setup_IIsi __P((u_char *));
289 int adb_cmd_result __P((u_char *));
290 int adb_cmd_extra __P((u_char *));
291 int adb_guess_next_device __P((void));
292 int adb_prog_switch_enable __P((void));
293 int adb_prog_switch_disable __P((void));
294 /* we should create this and it will be the public version */
295 int send_adb __P((u_char *, void *, void *));
296
297 int setsoftadb __P((void));
298
299 #ifdef ADB_DEBUG
300 /*
301 * print_single
302 * Diagnostic display routine. Displays the hex values of the
303 * specified elements of the u_char. The length of the "string"
304 * is in [0].
305 */
306 void
307 print_single(str)
308 u_char *str;
309 {
310 int x;
311
312 if (str == 0) {
313 printf_intr("no data - null pointer\n");
314 return;
315 }
316 if (*str == 0) {
317 printf_intr("nothing returned\n");
318 return;
319 }
320 if (*str > 20) {
321 printf_intr("ADB: ACK > 20 no way!\n");
322 *str = 20;
323 }
324 printf_intr("(length=0x%x):", *str);
325 for (x = 1; x <= *str; x++)
326 printf_intr(" 0x%02x", str[x]);
327 printf_intr("\n");
328 }
329 #endif
330
331 void
332 adb_cuda_tickle(void)
333 {
334 volatile int s;
335
336 if (adbActionState == ADB_ACTION_IN) {
337 if (tickle_serial == adb_cuda_serial) {
338 if (++tickle_count > 0) {
339 s = splhigh();
340 adbActionState = ADB_ACTION_IDLE;
341 adbInputBuffer[0] = 0;
342 ADB_SET_STATE_IDLE_CUDA();
343 splx(s);
344 }
345 } else {
346 tickle_serial = adb_cuda_serial;
347 tickle_count = 0;
348 }
349 } else {
350 tickle_serial = adb_cuda_serial;
351 tickle_count = 0;
352 }
353
354 callout_reset(&adb_cuda_tickle_ch, ADB_TICKLE_TICKS,
355 (void *)adb_cuda_tickle, NULL);
356 }
357
358 /*
359 * called when when an adb interrupt happens
360 *
361 * Cuda version of adb_intr
362 * TO DO: do we want to add some calls to intr_dispatch() here to
363 * grab serial interrupts?
364 */
365 int
366 adb_intr_cuda(void *arg)
367 {
368 volatile int i, ending;
369 volatile unsigned int s;
370 struct adbCommand packet;
371 uint8_t reg;
372
373 s = splhigh(); /* can't be too careful - might be called */
374 /* from a routine, NOT an interrupt */
375
376 reg = read_via_reg(VIA1, vIFR); /* Read the interrupts */
377 if ((reg & 0x80) == 0) {
378 splx(s);
379 return 0; /* No interrupts to process */
380 }
381
382 write_via_reg(VIA1, vIFR, reg & 0x7f); /* Clear 'em */
383
384 ADB_VIA_INTR_DISABLE(); /* disable ADB interrupt on IIs. */
385
386 switch_start:
387 switch (adbActionState) {
388 case ADB_ACTION_IDLE:
389 /*
390 * This is an unexpected packet, so grab the first (dummy)
391 * byte, set up the proper vars, and tell the chip we are
392 * starting to receive the packet by setting the TIP bit.
393 */
394 adbInputBuffer[1] = ADB_SR();
395 adb_cuda_serial++;
396 if (ADB_INTR_IS_OFF) /* must have been a fake start */
397 break;
398
399 ADB_SET_SR_INPUT();
400 ADB_SET_STATE_TIP();
401
402 adbInputBuffer[0] = 1;
403 adbActionState = ADB_ACTION_IN;
404 #ifdef ADB_DEBUG
405 if (adb_debug)
406 printf_intr("idle 0x%02x ", adbInputBuffer[1]);
407 #endif
408 break;
409
410 case ADB_ACTION_IN:
411 adbInputBuffer[++adbInputBuffer[0]] = ADB_SR();
412 /* intr off means this is the last byte (end of frame) */
413 if (ADB_INTR_IS_OFF)
414 ending = 1;
415 else
416 ending = 0;
417
418 if (1 == ending) { /* end of message? */
419 #ifdef ADB_DEBUG
420 if (adb_debug) {
421 printf_intr("in end 0x%02x ",
422 adbInputBuffer[adbInputBuffer[0]]);
423 print_single(adbInputBuffer);
424 }
425 #endif
426
427 /*
428 * Are we waiting AND does this packet match what we
429 * are waiting for AND is it coming from either the
430 * ADB or RTC/PRAM sub-device? This section _should_
431 * recognize all ADB and RTC/PRAM type commands, but
432 * there may be more... NOTE: commands are always at
433 * [4], even for RTC/PRAM commands.
434 */
435 /* set up data for adb_pass_up */
436 memcpy(packet.data, adbInputBuffer, adbInputBuffer[0] + 1);
437
438 if ((adbWaiting == 1) &&
439 (adbInputBuffer[4] == adbWaitingCmd) &&
440 ((adbInputBuffer[2] == 0x00) ||
441 (adbInputBuffer[2] == 0x01))) {
442 packet.saveBuf = adbBuffer;
443 packet.compRout = adbCompRout;
444 packet.compData = adbCompData;
445 packet.unsol = 0;
446 packet.ack_only = 0;
447 adb_pass_up(&packet);
448
449 adbWaitingCmd = 0; /* reset "waiting" vars */
450 adbWaiting = 0;
451 adbBuffer = (long)0;
452 adbCompRout = (long)0;
453 adbCompData = (long)0;
454 } else {
455 packet.unsol = 1;
456 packet.ack_only = 0;
457 adb_pass_up(&packet);
458 }
459
460
461 /* reset vars and signal the end of this frame */
462 adbActionState = ADB_ACTION_IDLE;
463 adbInputBuffer[0] = 0;
464 ADB_SET_STATE_IDLE_CUDA();
465 /*ADB_SET_SR_INPUT();*/
466
467 /*
468 * If there is something waiting to be sent out,
469 * the set everything up and send the first byte.
470 */
471 if (adbWriteDelay == 1) {
472 delay(ADB_DELAY); /* required */
473 adbSentChars = 0;
474 adbActionState = ADB_ACTION_OUT;
475 /*
476 * If the interrupt is on, we were too slow
477 * and the chip has already started to send
478 * something to us, so back out of the write
479 * and start a read cycle.
480 */
481 if (ADB_INTR_IS_ON) {
482 ADB_SET_SR_INPUT();
483 ADB_SET_STATE_IDLE_CUDA();
484 adbSentChars = 0;
485 adbActionState = ADB_ACTION_IDLE;
486 adbInputBuffer[0] = 0;
487 break;
488 }
489 /*
490 * If we got here, it's ok to start sending
491 * so load the first byte and tell the chip
492 * we want to send.
493 */
494 ADB_SET_STATE_TIP();
495 ADB_SET_SR_OUTPUT();
496 write_via_reg(VIA1, vSR, adbOutputBuffer[adbSentChars + 1]);
497 }
498 } else {
499 ADB_TOGGLE_STATE_ACK_CUDA();
500 #ifdef ADB_DEBUG
501 if (adb_debug)
502 printf_intr("in 0x%02x ",
503 adbInputBuffer[adbInputBuffer[0]]);
504 #endif
505 }
506 break;
507
508 case ADB_ACTION_OUT:
509 i = ADB_SR(); /* reset SR-intr in IFR */
510 #ifdef ADB_DEBUG
511 if (adb_debug)
512 printf_intr("intr out 0x%02x ", i);
513 #endif
514
515 adbSentChars++;
516 if (ADB_INTR_IS_ON) { /* ADB intr low during write */
517 #ifdef ADB_DEBUG
518 if (adb_debug)
519 printf_intr("intr was on ");
520 #endif
521 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
522 ADB_SET_STATE_IDLE_CUDA();
523 adbSentChars = 0; /* must start all over */
524 adbActionState = ADB_ACTION_IDLE; /* new state */
525 adbInputBuffer[0] = 0;
526 adbWriteDelay = 1; /* must retry when done with
527 * read */
528 delay(ADB_DELAY);
529 goto switch_start; /* process next state right
530 * now */
531 break;
532 }
533 if (adbOutputBuffer[0] == adbSentChars) { /* check for done */
534 if (0 == adb_cmd_result(adbOutputBuffer)) { /* do we expect data
535 * back? */
536 adbWaiting = 1; /* signal waiting for return */
537 adbWaitingCmd = adbOutputBuffer[2]; /* save waiting command */
538 } else { /* no talk, so done */
539 /* set up stuff for adb_pass_up */
540 memcpy(packet.data, adbInputBuffer, adbInputBuffer[0] + 1);
541 packet.saveBuf = adbBuffer;
542 packet.compRout = adbCompRout;
543 packet.compData = adbCompData;
544 packet.cmd = adbWaitingCmd;
545 packet.unsol = 0;
546 packet.ack_only = 1;
547 adb_pass_up(&packet);
548
549 /* reset "waiting" vars, just in case */
550 adbWaitingCmd = 0;
551 adbBuffer = (long)0;
552 adbCompRout = (long)0;
553 adbCompData = (long)0;
554 }
555
556 adbWriteDelay = 0; /* done writing */
557 adbActionState = ADB_ACTION_IDLE; /* signal bus is idle */
558 ADB_SET_SR_INPUT();
559 ADB_SET_STATE_IDLE_CUDA();
560 #ifdef ADB_DEBUG
561 if (adb_debug)
562 printf_intr("write done ");
563 #endif
564 } else {
565 write_via_reg(VIA1, vSR, adbOutputBuffer[adbSentChars + 1]); /* send next byte */
566 ADB_TOGGLE_STATE_ACK_CUDA(); /* signal byte ready to
567 * shift */
568 #ifdef ADB_DEBUG
569 if (adb_debug)
570 printf_intr("toggle ");
571 #endif
572 }
573 break;
574
575 case ADB_ACTION_NOTREADY:
576 #ifdef ADB_DEBUG
577 if (adb_debug)
578 printf_intr("adb: not yet initialized\n");
579 #endif
580 break;
581
582 default:
583 #ifdef ADB_DEBUG
584 if (adb_debug)
585 printf_intr("intr: unknown ADB state\n");
586 #endif
587 break;
588 }
589
590 ADB_VIA_INTR_ENABLE(); /* enable ADB interrupt on IIs. */
591
592 splx(s); /* restore */
593
594 return 1;
595 } /* end adb_intr_cuda */
596
597
598 int
599 send_adb_cuda(u_char * in, u_char * buffer, void *compRout, void *data, int
600 command)
601 {
602 int s, len;
603
604 #ifdef ADB_DEBUG
605 if (adb_debug)
606 printf_intr("SEND\n");
607 #endif
608
609 if (adbActionState == ADB_ACTION_NOTREADY)
610 return 1;
611
612 /* Don't interrupt while we are messing with the ADB */
613 s = splhigh();
614
615 if ((adbActionState == ADB_ACTION_IDLE) && /* ADB available? */
616 (ADB_INTR_IS_OFF)) { /* and no incoming interrupt? */
617 } else
618 if (adbWriteDelay == 0) /* it's busy, but is anything waiting? */
619 adbWriteDelay = 1; /* if no, then we'll "queue"
620 * it up */
621 else {
622 splx(s);
623 return 1; /* really busy! */
624 }
625
626 #ifdef ADB_DEBUG
627 if (adb_debug)
628 printf_intr("QUEUE\n");
629 #endif
630 if ((long)in == (long)0) { /* need to convert? */
631 /*
632 * Don't need to use adb_cmd_extra here because this section
633 * will be called ONLY when it is an ADB command (no RTC or
634 * PRAM)
635 */
636 if ((command & 0x0c) == 0x08) /* copy addl data ONLY if
637 * doing a listen! */
638 len = buffer[0]; /* length of additional data */
639 else
640 len = 0;/* no additional data */
641
642 adbOutputBuffer[0] = 2 + len; /* dev. type + command + addl.
643 * data */
644 adbOutputBuffer[1] = 0x00; /* mark as an ADB command */
645 adbOutputBuffer[2] = (u_char)command; /* load command */
646
647 /* copy additional output data, if any */
648 memcpy(adbOutputBuffer + 3, buffer + 1, len);
649 } else
650 /* if data ready, just copy over */
651 memcpy(adbOutputBuffer, in, in[0] + 2);
652
653 adbSentChars = 0; /* nothing sent yet */
654 adbBuffer = buffer; /* save buffer to know where to save result */
655 adbCompRout = compRout; /* save completion routine pointer */
656 adbCompData = data; /* save completion routine data pointer */
657 adbWaitingCmd = adbOutputBuffer[2]; /* save wait command */
658
659 if (adbWriteDelay != 1) { /* start command now? */
660 #ifdef ADB_DEBUG
661 if (adb_debug)
662 printf_intr("out start NOW");
663 #endif
664 delay(ADB_DELAY);
665 adbActionState = ADB_ACTION_OUT; /* set next state */
666 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
667 write_via_reg(VIA1, vSR, adbOutputBuffer[adbSentChars + 1]); /* load byte for output */
668 ADB_SET_STATE_ACKOFF_CUDA();
669 ADB_SET_STATE_TIP(); /* tell ADB that we want to send */
670 }
671 adbWriteDelay = 1; /* something in the write "queue" */
672
673 splx(s);
674
675 if ((s & (1 << 18)) || adb_polling) /* XXX were VIA1 interrupts blocked ? */
676 /* poll until byte done */
677 while ((adbActionState != ADB_ACTION_IDLE) || (ADB_INTR_IS_ON)
678 || (adbWaiting == 1))
679 if (ADB_SR_INTR_IS_ON) { /* wait for "interrupt" */
680 adb_intr_cuda(NULL); /* process it */
681 adb_soft_intr();
682 }
683
684 return 0;
685 } /* send_adb_cuda */
686
687
688 void
689 adb_intr_II(void)
690 {
691 panic("adb_intr_II");
692 }
693
694
695 /*
696 * send_adb version for II series machines
697 */
698 int
699 send_adb_II(u_char * in, u_char * buffer, void *compRout, void *data, int command)
700 {
701 panic("send_adb_II");
702 }
703
704
705 /*
706 * This routine is called from the II series interrupt routine
707 * to determine what the "next" device is that should be polled.
708 */
709 int
710 adb_guess_next_device(void)
711 {
712 int last, i, dummy;
713
714 if (adbStarting) {
715 /*
716 * Start polling EVERY device, since we can't be sure there is
717 * anything in the device table yet
718 */
719 if (adbLastDevice < 1 || adbLastDevice > 15)
720 adbLastDevice = 1;
721 if (++adbLastDevice > 15) /* point to next one */
722 adbLastDevice = 1;
723 } else {
724 /* find the next device using the device table */
725 if (adbLastDevice < 1 || adbLastDevice > 15) /* let's be parinoid */
726 adbLastDevice = 2;
727 last = 1; /* default index location */
728
729 for (i = 1; i < 16; i++) /* find index entry */
730 if (ADBDevTable[i].currentAddr == adbLastDevice) { /* look for device */
731 last = i; /* found it */
732 break;
733 }
734 dummy = last; /* index to start at */
735 for (;;) { /* find next device in index */
736 if (++dummy > 15) /* wrap around if needed */
737 dummy = 1;
738 if (dummy == last) { /* didn't find any other
739 * device! This can happen if
740 * there are no devices on the
741 * bus */
742 dummy = 1;
743 break;
744 }
745 /* found the next device */
746 if (ADBDevTable[dummy].devType != 0)
747 break;
748 }
749 adbLastDevice = ADBDevTable[dummy].currentAddr;
750 }
751 return adbLastDevice;
752 }
753
754
755 int
756 adb_intr(void *arg)
757 {
758 switch (adbHardware) {
759 case ADB_HW_II:
760 adb_intr_II();
761 break;
762
763 case ADB_HW_IISI:
764 adb_intr_IIsi();
765 break;
766
767 case ADB_HW_PMU:
768 return pm_intr(arg);
769 break;
770
771 case ADB_HW_CUDA:
772 return adb_intr_cuda(arg);
773 break;
774
775 case ADB_HW_UNKNOWN:
776 break;
777 }
778 return 0;
779 }
780
781
782 /*
783 * called when when an adb interrupt happens
784 *
785 * IIsi version of adb_intr
786 *
787 */
788 void
789 adb_intr_IIsi(void)
790 {
791 panic("adb_intr_IIsi");
792 }
793
794
795 /*****************************************************************************
796 * if the device is currently busy, and there is no data waiting to go out, then
797 * the data is "queued" in the outgoing buffer. If we are already waiting, then
798 * we return.
799 * in: if (in == 0) then the command string is built from command and buffer
800 * if (in != 0) then in is used as the command string
801 * buffer: additional data to be sent (used only if in == 0)
802 * this is also where return data is stored
803 * compRout: the completion routine that is called when then return value
804 * is received (if a return value is expected)
805 * data: a data pointer that can be used by the completion routine
806 * command: an ADB command to be sent (used only if in == 0)
807 *
808 */
809 int
810 send_adb_IIsi(u_char * in, u_char * buffer, void *compRout, void *data, int
811 command)
812 {
813 panic("send_adb_IIsi");
814 }
815
816
817 /*
818 * adb_pass_up is called by the interrupt-time routines.
819 * It takes the raw packet data that was received from the
820 * device and puts it into the queue that the upper half
821 * processes. It then signals for a soft ADB interrupt which
822 * will eventually call the upper half routine (adb_soft_intr).
823 *
824 * If in->unsol is 0, then this is either the notification
825 * that the packet was sent (on a LISTEN, for example), or the
826 * response from the device (on a TALK). The completion routine
827 * is called only if the user specified one.
828 *
829 * If in->unsol is 1, then this packet was unsolicited and
830 * so we look up the device in the ADB device table to determine
831 * what it's default service routine is.
832 *
833 * If in->ack_only is 1, then we really only need to call
834 * the completion routine, so don't do any other stuff.
835 *
836 * Note that in->data contains the packet header AND data,
837 * while adbInbound[]->data contains ONLY data.
838 *
839 * Note: Called only at interrupt time. Assumes this.
840 */
841 void
842 adb_pass_up(struct adbCommand *in)
843 {
844 int start = 0, len = 0, cmd = 0;
845 ADBDataBlock block;
846
847 /* temp for testing */
848 /*u_char *buffer = 0;*/
849 /*u_char *compdata = 0;*/
850 /*u_char *comprout = 0;*/
851
852 if (adbInCount >= ADB_QUEUE) {
853 #ifdef ADB_DEBUG
854 if (adb_debug)
855 printf_intr("adb: ring buffer overflow\n");
856 #endif
857 return;
858 }
859
860 if (in->ack_only) {
861 len = in->data[0];
862 cmd = in->cmd;
863 start = 0;
864 } else {
865 switch (adbHardware) {
866 case ADB_HW_II:
867 cmd = in->data[1];
868 if (in->data[0] < 2)
869 len = 0;
870 else
871 len = in->data[0]-1;
872 start = 1;
873 break;
874
875 case ADB_HW_IISI:
876 case ADB_HW_CUDA:
877 /* If it's unsolicited, accept only ADB data for now */
878 if (in->unsol)
879 if (0 != in->data[2])
880 return;
881 cmd = in->data[4];
882 if (in->data[0] < 5)
883 len = 0;
884 else
885 len = in->data[0]-4;
886 start = 4;
887 break;
888
889 case ADB_HW_PMU:
890 cmd = in->data[1];
891 if (in->data[0] < 2)
892 len = 0;
893 else
894 len = in->data[0]-1;
895 start = 1;
896 break;
897
898 case ADB_HW_UNKNOWN:
899 return;
900 }
901
902 /* Make sure there is a valid device entry for this device */
903 if (in->unsol) {
904 /* ignore unsolicited data during adbreinit */
905 if (adbStarting)
906 return;
907 /* get device's comp. routine and data area */
908 if (-1 == get_adb_info(&block, ADB_CMDADDR(cmd)))
909 return;
910 }
911 }
912
913 /*
914 * If this is an unsolicited packet, we need to fill in
915 * some info so adb_soft_intr can process this packet
916 * properly. If it's not unsolicited, then use what
917 * the caller sent us.
918 */
919 if (in->unsol) {
920 adbInbound[adbInTail].compRout = (void *)block.dbServiceRtPtr;
921 adbInbound[adbInTail].compData = (void *)block.dbDataAreaAddr;
922 adbInbound[adbInTail].saveBuf = (void *)adbInbound[adbInTail].data;
923 } else {
924 adbInbound[adbInTail].compRout = (void *)in->compRout;
925 adbInbound[adbInTail].compData = (void *)in->compData;
926 adbInbound[adbInTail].saveBuf = (void *)in->saveBuf;
927 }
928
929 #ifdef ADB_DEBUG
930 if (adb_debug && in->data[1] == 2)
931 printf_intr("adb: caught error\n");
932 #endif
933
934 /* copy the packet data over */
935 /*
936 * TO DO: If the *_intr routines fed their incoming data
937 * directly into an adbCommand struct, which is passed to
938 * this routine, then we could eliminate this copy.
939 */
940 memcpy(adbInbound[adbInTail].data + 1, in->data + start + 1, len);
941 adbInbound[adbInTail].data[0] = len;
942 adbInbound[adbInTail].cmd = cmd;
943
944 adbInCount++;
945 if (++adbInTail >= ADB_QUEUE)
946 adbInTail = 0;
947
948 /*
949 * If the debugger is running, call upper half manually.
950 * Otherwise, trigger a soft interrupt to handle the rest later.
951 */
952 if (adb_polling)
953 adb_soft_intr();
954 else
955 setsoftadb();
956
957 return;
958 }
959
960
961 /*
962 * Called to process the packets after they have been
963 * placed in the incoming queue.
964 *
965 */
966 void
967 adb_soft_intr(void)
968 {
969 int s;
970 int cmd = 0;
971 u_char *buffer = 0;
972 u_char *comprout = 0;
973 u_char *compdata = 0;
974
975 #if 0
976 s = splhigh();
977 printf_intr("sr: %x\n", (s & 0x0700));
978 splx(s);
979 #endif
980
981 /*delay(2*ADB_DELAY);*/
982
983 while (adbInCount) {
984 #ifdef ADB_DEBUG
985 if (adb_debug & 0x80)
986 printf_intr("%x %x %x ",
987 adbInCount, adbInHead, adbInTail);
988 #endif
989 /* get the data we need from the queue */
990 buffer = adbInbound[adbInHead].saveBuf;
991 comprout = adbInbound[adbInHead].compRout;
992 compdata = adbInbound[adbInHead].compData;
993 cmd = adbInbound[adbInHead].cmd;
994
995 /* copy over data to data area if it's valid */
996 /*
997 * Note that for unsol packets we don't want to copy the
998 * data anywhere, so buffer was already set to 0.
999 * For ack_only buffer was set to 0, so don't copy.
1000 */
1001 if (buffer)
1002 memcpy(buffer, adbInbound[adbInHead].data,
1003 adbInbound[adbInHead].data[0] + 1);
1004
1005 #ifdef ADB_DEBUG
1006 if (adb_debug & 0x80) {
1007 printf_intr("%p %p %p %x ",
1008 buffer, comprout, compdata, (short)cmd);
1009 printf_intr("buf: ");
1010 print_single(adbInbound[adbInHead].data);
1011 }
1012 #endif
1013 /* Remove the packet from the queue before calling
1014 * the completion routine, so that the completion
1015 * routine can reentrantly process the queue. For
1016 * example, this happens when polling is turned on
1017 * by entering the debuger by keystroke.
1018 */
1019 s = splhigh();
1020 adbInCount--;
1021 if (++adbInHead >= ADB_QUEUE)
1022 adbInHead = 0;
1023 splx(s);
1024
1025 /* call default completion routine if it's valid */
1026 if (comprout) {
1027 void (*f)(caddr_t, caddr_t, int) =
1028 (void (*)(caddr_t, caddr_t, int))comprout;
1029
1030 (*f)(buffer, compdata, cmd);
1031 }
1032 }
1033 return;
1034 }
1035
1036
1037 /*
1038 * This is my version of the ADBOp routine. It mainly just calls the
1039 * hardware-specific routine.
1040 *
1041 * data : pointer to data area to be used by compRout
1042 * compRout : completion routine
1043 * buffer : for LISTEN: points to data to send - MAX 8 data bytes,
1044 * byte 0 = # of bytes
1045 * : for TALK: points to place to save return data
1046 * command : the adb command to send
1047 * result : 0 = success
1048 * : -1 = could not complete
1049 */
1050 int
1051 adb_op(Ptr buffer, Ptr compRout, Ptr data, short command)
1052 {
1053 int result;
1054
1055 switch (adbHardware) {
1056 case ADB_HW_II:
1057 result = send_adb_II((u_char *)0, (u_char *)buffer,
1058 (void *)compRout, (void *)data, (int)command);
1059 if (result == 0)
1060 return 0;
1061 else
1062 return -1;
1063 break;
1064
1065 case ADB_HW_IISI:
1066 result = send_adb_IIsi((u_char *)0, (u_char *)buffer,
1067 (void *)compRout, (void *)data, (int)command);
1068 /*
1069 * I wish I knew why this delay is needed. It usually needs to
1070 * be here when several commands are sent in close succession,
1071 * especially early in device probes when doing collision
1072 * detection. It must be some race condition. Sigh. - jpw
1073 */
1074 delay(100);
1075 if (result == 0)
1076 return 0;
1077 else
1078 return -1;
1079 break;
1080
1081 case ADB_HW_PMU:
1082 result = pm_adb_op((u_char *)buffer, (void *)compRout,
1083 (void *)data, (int)command);
1084
1085 if (result == 0)
1086 return 0;
1087 else
1088 return -1;
1089 break;
1090
1091 case ADB_HW_CUDA:
1092 result = send_adb_cuda((u_char *)0, (u_char *)buffer,
1093 (void *)compRout, (void *)data, (int)command);
1094 if (result == 0)
1095 return 0;
1096 else
1097 return -1;
1098 break;
1099
1100 case ADB_HW_UNKNOWN:
1101 default:
1102 return -1;
1103 }
1104 }
1105
1106
1107 /*
1108 * adb_hw_setup
1109 * This routine sets up the possible machine specific hardware
1110 * config (mainly VIA settings) for the various models.
1111 */
1112 void
1113 adb_hw_setup(void)
1114 {
1115 volatile int i;
1116 u_char send_string[ADB_MAX_MSG_LENGTH];
1117
1118 switch (adbHardware) {
1119 case ADB_HW_II:
1120 via_reg_or(VIA1, vDirB, 0x30); /* register B bits 4 and 5:
1121 * outputs */
1122 via_reg_and(VIA1, vDirB, 0xf7); /* register B bit 3: input */
1123 via_reg_and(VIA1, vACR, ~vSR_OUT); /* make sure SR is set
1124 * to IN (II, IIsi) */
1125 adbActionState = ADB_ACTION_IDLE; /* used by all types of
1126 * hardware (II, IIsi) */
1127 adbBusState = ADB_BUS_IDLE; /* this var. used in II-series
1128 * code only */
1129 write_via_reg(VIA1, vIER, 0x84);/* make sure VIA interrupts
1130 * are on (II, IIsi) */
1131 ADB_SET_STATE_IDLE_II(); /* set ADB bus state to idle */
1132
1133 ADB_VIA_CLR_INTR(); /* clear interrupt */
1134 break;
1135
1136 case ADB_HW_IISI:
1137 via_reg_or(VIA1, vDirB, 0x30); /* register B bits 4 and 5:
1138 * outputs */
1139 via_reg_and(VIA1, vDirB, 0xf7); /* register B bit 3: input */
1140 via_reg_and(VIA1, vACR, ~vSR_OUT); /* make sure SR is set
1141 * to IN (II, IIsi) */
1142 adbActionState = ADB_ACTION_IDLE; /* used by all types of
1143 * hardware (II, IIsi) */
1144 adbBusState = ADB_BUS_IDLE; /* this var. used in II-series
1145 * code only */
1146 write_via_reg(VIA1, vIER, 0x84);/* make sure VIA interrupts
1147 * are on (II, IIsi) */
1148 ADB_SET_STATE_IDLE_IISI(); /* set ADB bus state to idle */
1149
1150 /* get those pesky clock ticks we missed while booting */
1151 for (i = 0; i < 30; i++) {
1152 delay(ADB_DELAY);
1153 adb_hw_setup_IIsi(send_string);
1154 #ifdef ADB_DEBUG
1155 if (adb_debug) {
1156 printf_intr("adb: cleanup: ");
1157 print_single(send_string);
1158 }
1159 #endif
1160 delay(ADB_DELAY);
1161 if (ADB_INTR_IS_OFF)
1162 break;
1163 }
1164 break;
1165
1166 case ADB_HW_PMU:
1167 /*
1168 * XXX - really PM_VIA_CLR_INTR - should we put it in
1169 * pm_direct.h?
1170 */
1171 write_via_reg(VIA1, vIFR, 0x90); /* clear interrupt */
1172 break;
1173
1174 case ADB_HW_CUDA:
1175 via_reg_or(VIA1, vDirB, 0x30); /* register B bits 4 and 5:
1176 * outputs */
1177 via_reg_and(VIA1, vDirB, 0xf7); /* register B bit 3: input */
1178 via_reg_and(VIA1, vACR, ~vSR_OUT); /* make sure SR is set
1179 * to IN */
1180 write_via_reg(VIA1, vACR, (read_via_reg(VIA1, vACR) | 0x0c) & ~0x10);
1181 adbActionState = ADB_ACTION_IDLE; /* used by all types of
1182 * hardware */
1183 adbBusState = ADB_BUS_IDLE; /* this var. used in II-series
1184 * code only */
1185 write_via_reg(VIA1, vIER, 0x84);/* make sure VIA interrupts
1186 * are on */
1187 ADB_SET_STATE_IDLE_CUDA(); /* set ADB bus state to idle */
1188
1189 /* sort of a device reset */
1190 i = ADB_SR(); /* clear interrupt */
1191 ADB_VIA_INTR_DISABLE(); /* no interrupts while clearing */
1192 ADB_SET_STATE_IDLE_CUDA(); /* reset state to idle */
1193 delay(ADB_DELAY);
1194 ADB_SET_STATE_TIP(); /* signal start of frame */
1195 delay(ADB_DELAY);
1196 ADB_TOGGLE_STATE_ACK_CUDA();
1197 delay(ADB_DELAY);
1198 ADB_CLR_STATE_TIP();
1199 delay(ADB_DELAY);
1200 ADB_SET_STATE_IDLE_CUDA(); /* back to idle state */
1201 i = ADB_SR(); /* clear interrupt */
1202 ADB_VIA_INTR_ENABLE(); /* ints ok now */
1203 break;
1204
1205 case ADB_HW_UNKNOWN:
1206 default:
1207 write_via_reg(VIA1, vIER, 0x04);/* turn interrupts off - TO
1208 * DO: turn PB ints off? */
1209 return;
1210 break;
1211 }
1212 }
1213
1214
1215 /*
1216 * adb_hw_setup_IIsi
1217 * This is sort of a "read" routine that forces the adb hardware through a read cycle
1218 * if there is something waiting. This helps "clean up" any commands that may have gotten
1219 * stuck or stopped during the boot process.
1220 *
1221 */
1222 void
1223 adb_hw_setup_IIsi(u_char * buffer)
1224 {
1225 panic("adb_hw_setup_IIsi");
1226 }
1227
1228
1229 /*
1230 * adb_reinit sets up the adb stuff
1231 *
1232 */
1233 void
1234 adb_reinit(void)
1235 {
1236 u_char send_string[ADB_MAX_MSG_LENGTH];
1237 ADBDataBlock data; /* temp. holder for getting device info */
1238 volatile int i, x;
1239 int s = 0; /* XXX: gcc */
1240 int command;
1241 int result;
1242 int saveptr; /* point to next free relocation address */
1243 int device;
1244 int nonewtimes; /* times thru loop w/o any new devices */
1245
1246 /* Make sure we are not interrupted while building the table. */
1247 if (adbHardware != ADB_HW_PMU) /* ints must be on for PMU? */
1248 s = splhigh();
1249
1250 ADBNumDevices = 0; /* no devices yet */
1251
1252 /* Let intr routines know we are running reinit */
1253 adbStarting = 1;
1254
1255 /*
1256 * Initialize the ADB table. For now, we'll always use the same table
1257 * that is defined at the beginning of this file - no mallocs.
1258 */
1259 for (i = 0; i < 16; i++)
1260 ADBDevTable[i].devType = 0;
1261
1262 adb_setup_hw_type(); /* setup hardware type */
1263
1264 adb_hw_setup(); /* init the VIA bits and hard reset ADB */
1265
1266 delay(1000);
1267
1268 /* send an ADB reset first */
1269 result = adb_op_sync((Ptr)0, (Ptr)0, (Ptr)0, (short)0x00);
1270 delay(200000);
1271
1272 #ifdef ADB_DEBUG
1273 if (result && adb_debug) {
1274 printf_intr("adb_reinit: failed to reset, result = %d\n",result);
1275 }
1276 #endif
1277
1278 /*
1279 * Probe for ADB devices. Probe devices 1-15 quickly to determine
1280 * which device addresses are in use and which are free. For each
1281 * address that is in use, move the device at that address to a higher
1282 * free address. Continue doing this at that address until no device
1283 * responds at that address. Then move the last device that was moved
1284 * back to the original address. Do this for the remaining addresses
1285 * that we determined were in use.
1286 *
1287 * When finished, do this entire process over again with the updated
1288 * list of in use addresses. Do this until no new devices have been
1289 * found in 20 passes though the in use address list. (This probably
1290 * seems long and complicated, but it's the best way to detect multiple
1291 * devices at the same address - sometimes it takes a couple of tries
1292 * before the collision is detected.)
1293 */
1294
1295 /* initial scan through the devices */
1296 for (i = 1; i < 16; i++) {
1297 send_string[0] = 0;
1298 command = ADBTALK(i, 3);
1299 result = adb_op_sync((Ptr)send_string, (Ptr)0,
1300 (Ptr)0, (short)command);
1301
1302 #ifdef ADB_DEBUG
1303 if (result && adb_debug) {
1304 printf_intr("adb_reinit: scan of device %d, result = %d, str = 0x%x\n",
1305 i,result,send_string[0]);
1306 }
1307 #endif
1308
1309 if (send_string[0] != 0) {
1310 /* check for valid device handler */
1311 switch (send_string[2]) {
1312 case 0:
1313 case 0xfd:
1314 case 0xfe:
1315 case 0xff:
1316 continue; /* invalid, skip */
1317 }
1318
1319 /* found a device */
1320 ++ADBNumDevices;
1321 KASSERT(ADBNumDevices < 16);
1322 ADBDevTable[ADBNumDevices].devType =
1323 (int)send_string[2];
1324 ADBDevTable[ADBNumDevices].origAddr = i;
1325 ADBDevTable[ADBNumDevices].currentAddr = i;
1326 ADBDevTable[ADBNumDevices].DataAreaAddr =
1327 (long)0;
1328 ADBDevTable[ADBNumDevices].ServiceRtPtr = (void *)0;
1329 pm_check_adb_devices(i); /* tell pm driver device
1330 * is here */
1331 }
1332 }
1333
1334 /* find highest unused address */
1335 for (saveptr = 15; saveptr > 0; saveptr--)
1336 if (-1 == get_adb_info(&data, saveptr))
1337 break;
1338
1339 #ifdef ADB_DEBUG
1340 if (adb_debug & 0x80) {
1341 printf_intr("first free is: 0x%02x\n", saveptr);
1342 printf_intr("devices: %i\n", ADBNumDevices);
1343 }
1344 #endif
1345
1346 nonewtimes = 0; /* no loops w/o new devices */
1347 while (saveptr > 0 && nonewtimes++ < 11) {
1348 for (i = 1; i <= ADBNumDevices; i++) {
1349 device = ADBDevTable[i].currentAddr;
1350 #ifdef ADB_DEBUG
1351 if (adb_debug & 0x80)
1352 printf_intr("moving device 0x%02x to 0x%02x "
1353 "(index 0x%02x) ", device, saveptr, i);
1354 #endif
1355
1356 /* send TALK R3 to address */
1357 command = ADBTALK(device, 3);
1358 adb_op_sync((Ptr)send_string, (Ptr)0,
1359 (Ptr)0, (short)command);
1360
1361 /* move device to higher address */
1362 command = ADBLISTEN(device, 3);
1363 send_string[0] = 2;
1364 send_string[1] = (u_char)(saveptr | 0x60);
1365 send_string[2] = 0xfe;
1366 adb_op_sync((Ptr)send_string, (Ptr)0,
1367 (Ptr)0, (short)command);
1368 delay(500);
1369
1370 /* send TALK R3 - anything at new address? */
1371 command = ADBTALK(saveptr, 3);
1372 adb_op_sync((Ptr)send_string, (Ptr)0,
1373 (Ptr)0, (short)command);
1374 delay(500);
1375
1376 if (send_string[0] == 0) {
1377 #ifdef ADB_DEBUG
1378 if (adb_debug & 0x80)
1379 printf_intr("failed, continuing\n");
1380 #endif
1381 continue;
1382 }
1383
1384 /* send TALK R3 - anything at old address? */
1385 command = ADBTALK(device, 3);
1386 result = adb_op_sync((Ptr)send_string, (Ptr)0,
1387 (Ptr)0, (short)command);
1388 if (send_string[0] != 0) {
1389 /* check for valid device handler */
1390 switch (send_string[2]) {
1391 case 0:
1392 case 0xfd:
1393 case 0xfe:
1394 case 0xff:
1395 continue; /* invalid, skip */
1396 }
1397
1398 /* new device found */
1399 /* update data for previously moved device */
1400 ADBDevTable[i].currentAddr = saveptr;
1401 #ifdef ADB_DEBUG
1402 if (adb_debug & 0x80)
1403 printf_intr("old device at index %i\n",i);
1404 #endif
1405 /* add new device in table */
1406 #ifdef ADB_DEBUG
1407 if (adb_debug & 0x80)
1408 printf_intr("new device found\n");
1409 #endif
1410 if (saveptr > ADBNumDevices) {
1411 ++ADBNumDevices;
1412 KASSERT(ADBNumDevices < 16);
1413 }
1414 ADBDevTable[ADBNumDevices].devType =
1415 (int)send_string[2];
1416 ADBDevTable[ADBNumDevices].origAddr = device;
1417 ADBDevTable[ADBNumDevices].currentAddr = device;
1418 /* These will be set correctly in adbsys.c */
1419 /* Until then, unsol. data will be ignored. */
1420 ADBDevTable[ADBNumDevices].DataAreaAddr =
1421 (long)0;
1422 ADBDevTable[ADBNumDevices].ServiceRtPtr =
1423 (void *)0;
1424 /* find next unused address */
1425 for (x = saveptr; x > 0; x--) {
1426 if (-1 == get_adb_info(&data, x)) {
1427 saveptr = x;
1428 break;
1429 }
1430 }
1431 if (x == 0)
1432 saveptr = 0;
1433 #ifdef ADB_DEBUG
1434 if (adb_debug & 0x80)
1435 printf_intr("new free is 0x%02x\n",
1436 saveptr);
1437 #endif
1438 nonewtimes = 0;
1439 /* tell pm driver device is here */
1440 pm_check_adb_devices(device);
1441 } else {
1442 #ifdef ADB_DEBUG
1443 if (adb_debug & 0x80)
1444 printf_intr("moving back...\n");
1445 #endif
1446 /* move old device back */
1447 command = ADBLISTEN(saveptr, 3);
1448 send_string[0] = 2;
1449 send_string[1] = (u_char)(device | 0x60);
1450 send_string[2] = 0xfe;
1451 adb_op_sync((Ptr)send_string, (Ptr)0,
1452 (Ptr)0, (short)command);
1453 delay(1000);
1454 }
1455 }
1456 }
1457
1458 #ifdef ADB_DEBUG
1459 if (adb_debug) {
1460 for (i = 1; i <= ADBNumDevices; i++) {
1461 x = get_ind_adb_info(&data, i);
1462 if (x != -1)
1463 printf_intr("index 0x%x, addr 0x%x, type 0x%x\n",
1464 i, x, data.devType);
1465 }
1466 }
1467 #endif
1468
1469 #ifndef MRG_ADB
1470 /* enable the programmer's switch, if we have one */
1471 adb_prog_switch_enable();
1472 #endif
1473
1474 #ifdef ADB_DEBUG
1475 if (adb_debug) {
1476 if (0 == ADBNumDevices) /* tell user if no devices found */
1477 printf_intr("adb: no devices found\n");
1478 }
1479 #endif
1480
1481 adbStarting = 0; /* not starting anymore */
1482 #ifdef ADB_DEBUG
1483 if (adb_debug)
1484 printf_intr("adb: ADBReInit complete\n");
1485 #endif
1486
1487 if (adbHardware == ADB_HW_CUDA)
1488 callout_reset(&adb_cuda_tickle_ch, ADB_TICKLE_TICKS,
1489 (void *)adb_cuda_tickle, NULL);
1490
1491 if (adbHardware != ADB_HW_PMU) /* ints must be on for PMU? */
1492 splx(s);
1493 }
1494
1495 /*
1496 * adb_cmd_result
1497 *
1498 * This routine lets the caller know whether the specified adb command string
1499 * should expect a returned result, such as a TALK command.
1500 *
1501 * returns: 0 if a result should be expected
1502 * 1 if a result should NOT be expected
1503 */
1504 int
1505 adb_cmd_result(u_char *in)
1506 {
1507 switch (adbHardware) {
1508 case ADB_HW_II:
1509 /* was it an ADB talk command? */
1510 if ((in[1] & 0x0c) == 0x0c)
1511 return 0;
1512 return 1;
1513
1514 case ADB_HW_IISI:
1515 case ADB_HW_CUDA:
1516 /* was it an ADB talk command? */
1517 if ((in[1] == 0x00) && ((in[2] & 0x0c) == 0x0c))
1518 return 0;
1519 /* was it an RTC/PRAM read date/time? */
1520 if ((in[1] == 0x01) && (in[2] == 0x03))
1521 return 0;
1522 return 1;
1523
1524 case ADB_HW_PMU:
1525 return 1;
1526
1527 case ADB_HW_UNKNOWN:
1528 default:
1529 return 1;
1530 }
1531 }
1532
1533
1534 /*
1535 * adb_cmd_extra
1536 *
1537 * This routine lets the caller know whether the specified adb command string
1538 * may have extra data appended to the end of it, such as a LISTEN command.
1539 *
1540 * returns: 0 if extra data is allowed
1541 * 1 if extra data is NOT allowed
1542 */
1543 int
1544 adb_cmd_extra(u_char *in)
1545 {
1546 switch (adbHardware) {
1547 case ADB_HW_II:
1548 if ((in[1] & 0x0c) == 0x08) /* was it a listen command? */
1549 return 0;
1550 return 1;
1551
1552 case ADB_HW_IISI:
1553 case ADB_HW_CUDA:
1554 /*
1555 * TO DO: support needs to be added to recognize RTC and PRAM
1556 * commands
1557 */
1558 if ((in[2] & 0x0c) == 0x08) /* was it a listen command? */
1559 return 0;
1560 /* add others later */
1561 return 1;
1562
1563 case ADB_HW_PMU:
1564 return 1;
1565
1566 case ADB_HW_UNKNOWN:
1567 default:
1568 return 1;
1569 }
1570 }
1571
1572 /*
1573 * adb_op_sync
1574 *
1575 * This routine does exactly what the adb_op routine does, except that after
1576 * the adb_op is called, it waits until the return value is present before
1577 * returning.
1578 *
1579 * NOTE: The user specified compRout is ignored, since this routine specifies
1580 * it's own to adb_op, which is why you really called this in the first place
1581 * anyway.
1582 */
1583 int
1584 adb_op_sync(Ptr buffer, Ptr compRout, Ptr data, short command)
1585 {
1586 int tmout;
1587 int result;
1588 volatile int flag = 0;
1589
1590 result = adb_op(buffer, (void *)adb_op_comprout,
1591 (void *)&flag, command); /* send command */
1592 if (result == 0) { /* send ok? */
1593 /*
1594 * Total time to wait is calculated as follows:
1595 * - Tlt (stop to start time): 260 usec
1596 * - start bit: 100 usec
1597 * - up to 8 data bytes: 64 * 100 usec = 6400 usec
1598 * - stop bit (with SRQ): 140 usec
1599 * Total: 6900 usec
1600 *
1601 * This is the total time allowed by the specification. Any
1602 * device that doesn't conform to this will fail to operate
1603 * properly on some Apple systems. In spite of this we
1604 * double the time to wait; some Cuda-based apparently
1605 * queues some commands and allows the main CPU to continue
1606 * processing (radical concept, eh?). To be safe, allow
1607 * time for two complete ADB transactions to occur.
1608 */
1609 for (tmout = 13800; !flag && tmout >= 10; tmout -= 10)
1610 delay(10);
1611 if (!flag && tmout > 0)
1612 delay(tmout);
1613
1614 if (!flag)
1615 result = -2;
1616 }
1617
1618 return result;
1619 }
1620
1621 /*
1622 * adb_op_comprout
1623 *
1624 * This function is used by the adb_op_sync routine so it knows when the
1625 * function is done.
1626 */
1627 void
1628 adb_op_comprout(buffer, compdata, cmd)
1629 caddr_t buffer, compdata;
1630 int cmd;
1631 {
1632 short *p = (short *)compdata;
1633
1634 *p = 1;
1635 }
1636
1637 void
1638 adb_setup_hw_type(void)
1639 {
1640 switch (adbHardware) {
1641 case ADB_HW_CUDA:
1642 adbSoftPower = 1;
1643 return;
1644
1645 case ADB_HW_PMU:
1646 adbSoftPower = 1;
1647 pm_setup_adb();
1648 return;
1649
1650 default:
1651 panic("unknown adb hardware");
1652 }
1653 #if 0
1654 response = 0; /*mac68k_machine.machineid;*/
1655
1656 /*
1657 * Determine what type of ADB hardware we are running on.
1658 */
1659 switch (response) {
1660 case MACH_MACC610: /* Centris 610 */
1661 case MACH_MACC650: /* Centris 650 */
1662 case MACH_MACII: /* II */
1663 case MACH_MACIICI: /* IIci */
1664 case MACH_MACIICX: /* IIcx */
1665 case MACH_MACIIX: /* IIx */
1666 case MACH_MACQ610: /* Quadra 610 */
1667 case MACH_MACQ650: /* Quadra 650 */
1668 case MACH_MACQ700: /* Quadra 700 */
1669 case MACH_MACQ800: /* Quadra 800 */
1670 case MACH_MACSE30: /* SE/30 */
1671 adbHardware = ADB_HW_II;
1672 #ifdef ADB_DEBUG
1673 if (adb_debug)
1674 printf_intr("adb: using II series hardware support\n");
1675 #endif
1676 break;
1677
1678 case MACH_MACCLASSICII: /* Classic II */
1679 case MACH_MACLCII: /* LC II, Performa 400/405/430 */
1680 case MACH_MACLCIII: /* LC III, Performa 450 */
1681 case MACH_MACIISI: /* IIsi */
1682 case MACH_MACIIVI: /* IIvi */
1683 case MACH_MACIIVX: /* IIvx */
1684 case MACH_MACP460: /* Performa 460/465/467 */
1685 case MACH_MACP600: /* Performa 600 */
1686 adbHardware = ADB_HW_IISI;
1687 #ifdef ADB_DEBUG
1688 if (adb_debug)
1689 printf_intr("adb: using IIsi series hardware support\n");
1690 #endif
1691 break;
1692
1693 case MACH_MACPB140: /* PowerBook 140 */
1694 case MACH_MACPB145: /* PowerBook 145 */
1695 case MACH_MACPB150: /* PowerBook 150 */
1696 case MACH_MACPB160: /* PowerBook 160 */
1697 case MACH_MACPB165: /* PowerBook 165 */
1698 case MACH_MACPB165C: /* PowerBook 165c */
1699 case MACH_MACPB170: /* PowerBook 170 */
1700 case MACH_MACPB180: /* PowerBook 180 */
1701 case MACH_MACPB180C: /* PowerBook 180c */
1702 adbHardware = ADB_HW_PMU;
1703 pm_setup_adb();
1704 #ifdef ADB_DEBUG
1705 if (adb_debug)
1706 printf_intr("adb: using PowerBook 100-series hardware support\n");
1707 #endif
1708 break;
1709
1710 case MACH_MACPB210: /* PowerBook Duo 210 */
1711 case MACH_MACPB230: /* PowerBook Duo 230 */
1712 case MACH_MACPB250: /* PowerBook Duo 250 */
1713 case MACH_MACPB270: /* PowerBook Duo 270 */
1714 case MACH_MACPB280: /* PowerBook Duo 280 */
1715 case MACH_MACPB280C: /* PowerBook Duo 280c */
1716 case MACH_MACPB500: /* PowerBook 500 series */
1717 adbHardware = ADB_HW_PMU;
1718 pm_setup_adb();
1719 #ifdef ADB_DEBUG
1720 if (adb_debug)
1721 printf_intr("adb: using PowerBook Duo-series and PowerBook 500-series hardware support\n");
1722 #endif
1723 break;
1724
1725 case MACH_MACC660AV: /* Centris 660AV */
1726 case MACH_MACCCLASSIC: /* Color Classic */
1727 case MACH_MACCCLASSICII: /* Color Classic II */
1728 case MACH_MACLC475: /* LC 475, Performa 475/476 */
1729 case MACH_MACLC475_33: /* Clock-chipped 47x */
1730 case MACH_MACLC520: /* LC 520 */
1731 case MACH_MACLC575: /* LC 575, Performa 575/577/578 */
1732 case MACH_MACP550: /* LC 550, Performa 550 */
1733 case MACH_MACP580: /* Performa 580/588 */
1734 case MACH_MACQ605: /* Quadra 605 */
1735 case MACH_MACQ605_33: /* Clock-chipped Quadra 605 */
1736 case MACH_MACQ630: /* LC 630, Performa 630, Quadra 630 */
1737 case MACH_MACQ840AV: /* Quadra 840AV */
1738 adbHardware = ADB_HW_CUDA;
1739 #ifdef ADB_DEBUG
1740 if (adb_debug)
1741 printf_intr("adb: using Cuda series hardware support\n");
1742 #endif
1743 break;
1744 default:
1745 adbHardware = ADB_HW_UNKNOWN;
1746 #ifdef ADB_DEBUG
1747 if (adb_debug) {
1748 printf_intr("adb: hardware type unknown for this machine\n");
1749 printf_intr("adb: ADB support is disabled\n");
1750 }
1751 #endif
1752 break;
1753 }
1754
1755 /*
1756 * Determine whether this machine has ADB based soft power.
1757 */
1758 switch (response) {
1759 case MACH_MACCCLASSIC: /* Color Classic */
1760 case MACH_MACCCLASSICII: /* Color Classic II */
1761 case MACH_MACIISI: /* IIsi */
1762 case MACH_MACIIVI: /* IIvi */
1763 case MACH_MACIIVX: /* IIvx */
1764 case MACH_MACLC520: /* LC 520 */
1765 case MACH_MACLC575: /* LC 575, Performa 575/577/578 */
1766 case MACH_MACP550: /* LC 550, Performa 550 */
1767 case MACH_MACP600: /* Performa 600 */
1768 case MACH_MACQ630: /* LC 630, Performa 630, Quadra 630 */
1769 case MACH_MACQ840AV: /* Quadra 840AV */
1770 adbSoftPower = 1;
1771 break;
1772 }
1773 #endif
1774 }
1775
1776 int
1777 count_adbs(void)
1778 {
1779 int i;
1780 int found;
1781
1782 found = 0;
1783
1784 for (i = 1; i < 16; i++)
1785 if (0 != ADBDevTable[i].devType)
1786 found++;
1787
1788 return found;
1789 }
1790
1791 int
1792 get_ind_adb_info(ADBDataBlock * info, int index)
1793 {
1794 if ((index < 1) || (index > 15)) /* check range 1-15 */
1795 return (-1);
1796
1797 #ifdef ADB_DEBUG
1798 if (adb_debug & 0x80)
1799 printf_intr("index 0x%x devType is: 0x%x\n", index,
1800 ADBDevTable[index].devType);
1801 #endif
1802 if (0 == ADBDevTable[index].devType) /* make sure it's a valid entry */
1803 return (-1);
1804
1805 info->devType = ADBDevTable[index].devType;
1806 info->origADBAddr = ADBDevTable[index].origAddr;
1807 info->dbServiceRtPtr = (Ptr)ADBDevTable[index].ServiceRtPtr;
1808 info->dbDataAreaAddr = (Ptr)ADBDevTable[index].DataAreaAddr;
1809
1810 return (ADBDevTable[index].currentAddr);
1811 }
1812
1813 int
1814 get_adb_info(ADBDataBlock * info, int adbAddr)
1815 {
1816 int i;
1817
1818 if ((adbAddr < 1) || (adbAddr > 15)) /* check range 1-15 */
1819 return (-1);
1820
1821 for (i = 1; i < 15; i++)
1822 if (ADBDevTable[i].currentAddr == adbAddr) {
1823 info->devType = ADBDevTable[i].devType;
1824 info->origADBAddr = ADBDevTable[i].origAddr;
1825 info->dbServiceRtPtr = (Ptr)ADBDevTable[i].ServiceRtPtr;
1826 info->dbDataAreaAddr = ADBDevTable[i].DataAreaAddr;
1827 return 0; /* found */
1828 }
1829
1830 return (-1); /* not found */
1831 }
1832
1833 int
1834 set_adb_info(ADBSetInfoBlock * info, int adbAddr)
1835 {
1836 int i;
1837
1838 if ((adbAddr < 1) || (adbAddr > 15)) /* check range 1-15 */
1839 return (-1);
1840
1841 for (i = 1; i < 15; i++)
1842 if (ADBDevTable[i].currentAddr == adbAddr) {
1843 ADBDevTable[i].ServiceRtPtr =
1844 (void *)(info->siServiceRtPtr);
1845 ADBDevTable[i].DataAreaAddr = info->siDataAreaAddr;
1846 return 0; /* found */
1847 }
1848
1849 return (-1); /* not found */
1850
1851 }
1852
1853 #ifndef MRG_ADB
1854
1855 /* caller should really use machine-independant version: getPramTime */
1856 /* this version does pseudo-adb access only */
1857 int
1858 adb_read_date_time(unsigned long *time)
1859 {
1860 u_char output[ADB_MAX_MSG_LENGTH];
1861 int result;
1862 volatile int flag = 0;
1863
1864 switch (adbHardware) {
1865 case ADB_HW_II:
1866 return -1;
1867
1868 case ADB_HW_IISI:
1869 output[0] = 0x02; /* 2 byte message */
1870 output[1] = 0x01; /* to pram/rtc device */
1871 output[2] = 0x03; /* read date/time */
1872 result = send_adb_IIsi((u_char *)output, (u_char *)output,
1873 (void *)adb_op_comprout, (int *)&flag, (int)0);
1874 if (result != 0) /* exit if not sent */
1875 return -1;
1876
1877 while (0 == flag) /* wait for result */
1878 ;
1879
1880 *time = (long)(*(long *)(output + 1));
1881 return 0;
1882
1883 case ADB_HW_PMU:
1884 pm_read_date_time(time);
1885 return 0;
1886
1887 case ADB_HW_CUDA:
1888 output[0] = 0x02; /* 2 byte message */
1889 output[1] = 0x01; /* to pram/rtc device */
1890 output[2] = 0x03; /* read date/time */
1891 result = send_adb_cuda((u_char *)output, (u_char *)output,
1892 (void *)adb_op_comprout, (void *)&flag, (int)0);
1893 if (result != 0) /* exit if not sent */
1894 return -1;
1895
1896 while (0 == flag) /* wait for result */
1897 ;
1898
1899 memcpy(time, output + 1, 4);
1900 return 0;
1901
1902 case ADB_HW_UNKNOWN:
1903 default:
1904 return -1;
1905 }
1906 }
1907
1908 /* caller should really use machine-independant version: setPramTime */
1909 /* this version does pseudo-adb access only */
1910 int
1911 adb_set_date_time(unsigned long time)
1912 {
1913 u_char output[ADB_MAX_MSG_LENGTH];
1914 int result;
1915 volatile int flag = 0;
1916
1917 switch (adbHardware) {
1918
1919 case ADB_HW_CUDA:
1920 output[0] = 0x06; /* 6 byte message */
1921 output[1] = 0x01; /* to pram/rtc device */
1922 output[2] = 0x09; /* set date/time */
1923 output[3] = (u_char)(time >> 24);
1924 output[4] = (u_char)(time >> 16);
1925 output[5] = (u_char)(time >> 8);
1926 output[6] = (u_char)(time);
1927 result = send_adb_cuda((u_char *)output, (u_char *)0,
1928 (void *)adb_op_comprout, (void *)&flag, (int)0);
1929 if (result != 0) /* exit if not sent */
1930 return -1;
1931
1932 while (0 == flag) /* wait for send to finish */
1933 ;
1934
1935 return 0;
1936
1937 case ADB_HW_PMU:
1938 pm_set_date_time(time);
1939 return 0;
1940
1941 case ADB_HW_II:
1942 case ADB_HW_IISI:
1943 case ADB_HW_UNKNOWN:
1944 default:
1945 return -1;
1946 }
1947 }
1948
1949
1950 int
1951 adb_poweroff(void)
1952 {
1953 u_char output[ADB_MAX_MSG_LENGTH];
1954 int result;
1955
1956 if (!adbSoftPower)
1957 return -1;
1958
1959 adb_polling = 1;
1960
1961 switch (adbHardware) {
1962 case ADB_HW_IISI:
1963 output[0] = 0x02; /* 2 byte message */
1964 output[1] = 0x01; /* to pram/rtc/soft-power device */
1965 output[2] = 0x0a; /* set date/time */
1966 result = send_adb_IIsi((u_char *)output, (u_char *)0,
1967 (void *)0, (void *)0, (int)0);
1968 if (result != 0) /* exit if not sent */
1969 return -1;
1970
1971 for (;;); /* wait for power off */
1972
1973 return 0;
1974
1975 case ADB_HW_PMU:
1976 pm_adb_poweroff();
1977
1978 for (;;); /* wait for power off */
1979
1980 return 0;
1981
1982 case ADB_HW_CUDA:
1983 output[0] = 0x02; /* 2 byte message */
1984 output[1] = 0x01; /* to pram/rtc/soft-power device */
1985 output[2] = 0x0a; /* set date/time */
1986 result = send_adb_cuda((u_char *)output, (u_char *)0,
1987 (void *)0, (void *)0, (int)0);
1988 if (result != 0) /* exit if not sent */
1989 return -1;
1990
1991 for (;;); /* wait for power off */
1992
1993 return 0;
1994
1995 case ADB_HW_II: /* II models don't do ADB soft power */
1996 case ADB_HW_UNKNOWN:
1997 default:
1998 return -1;
1999 }
2000 }
2001
2002 int
2003 adb_prog_switch_enable(void)
2004 {
2005 u_char output[ADB_MAX_MSG_LENGTH];
2006 int result;
2007 volatile int flag = 0;
2008
2009 switch (adbHardware) {
2010 case ADB_HW_IISI:
2011 output[0] = 0x03; /* 3 byte message */
2012 output[1] = 0x01; /* to pram/rtc/soft-power device */
2013 output[2] = 0x1c; /* prog. switch control */
2014 output[3] = 0x01; /* enable */
2015 result = send_adb_IIsi((u_char *)output, (u_char *)0,
2016 (void *)adb_op_comprout, (void *)&flag, (int)0);
2017 if (result != 0) /* exit if not sent */
2018 return -1;
2019
2020 while (0 == flag) /* wait for send to finish */
2021 ;
2022
2023 return 0;
2024
2025 case ADB_HW_PMU:
2026 return -1;
2027
2028 case ADB_HW_II: /* II models don't do prog. switch */
2029 case ADB_HW_CUDA: /* cuda doesn't do prog. switch TO DO: verify this */
2030 case ADB_HW_UNKNOWN:
2031 default:
2032 return -1;
2033 }
2034 }
2035
2036 int
2037 adb_prog_switch_disable(void)
2038 {
2039 u_char output[ADB_MAX_MSG_LENGTH];
2040 int result;
2041 volatile int flag = 0;
2042
2043 switch (adbHardware) {
2044 case ADB_HW_IISI:
2045 output[0] = 0x03; /* 3 byte message */
2046 output[1] = 0x01; /* to pram/rtc/soft-power device */
2047 output[2] = 0x1c; /* prog. switch control */
2048 output[3] = 0x01; /* disable */
2049 result = send_adb_IIsi((u_char *)output, (u_char *)0,
2050 (void *)adb_op_comprout, (void *)&flag, (int)0);
2051 if (result != 0) /* exit if not sent */
2052 return -1;
2053
2054 while (0 == flag) /* wait for send to finish */
2055 ;
2056
2057 return 0;
2058
2059 case ADB_HW_PMU:
2060 return -1;
2061
2062 case ADB_HW_II: /* II models don't do prog. switch */
2063 case ADB_HW_CUDA: /* cuda doesn't do prog. switch */
2064 case ADB_HW_UNKNOWN:
2065 default:
2066 return -1;
2067 }
2068 }
2069
2070 int
2071 CountADBs(void)
2072 {
2073 return (count_adbs());
2074 }
2075
2076 void
2077 ADBReInit(void)
2078 {
2079 adb_reinit();
2080 }
2081
2082 int
2083 GetIndADB(ADBDataBlock * info, int index)
2084 {
2085 return (get_ind_adb_info(info, index));
2086 }
2087
2088 int
2089 GetADBInfo(ADBDataBlock * info, int adbAddr)
2090 {
2091 return (get_adb_info(info, adbAddr));
2092 }
2093
2094 int
2095 SetADBInfo(ADBSetInfoBlock * info, int adbAddr)
2096 {
2097 return (set_adb_info(info, adbAddr));
2098 }
2099
2100 int
2101 ADBOp(Ptr buffer, Ptr compRout, Ptr data, short commandNum)
2102 {
2103 return (adb_op(buffer, compRout, data, commandNum));
2104 }
2105
2106 #endif
2107
2108 int
2109 setsoftadb()
2110 {
2111 callout_reset(&adb_soft_intr_ch, 1, (void *)adb_soft_intr, NULL);
2112 return 0;
2113 }
2114
2115 void
2116 adb_cuda_autopoll()
2117 {
2118 volatile int flag = 0;
2119 int result;
2120 u_char output[16];
2121
2122 output[0] = 0x03; /* 3-byte message */
2123 output[1] = 0x01; /* to pram/rtc device */
2124 output[2] = 0x01; /* cuda autopoll */
2125 output[3] = 0x01;
2126 result = send_adb_cuda(output, output, adb_op_comprout, (void *)&flag,
2127 0);
2128 if (result != 0) /* exit if not sent */
2129 return;
2130
2131 while (flag == 0); /* wait for result */
2132 }
2133
2134 void
2135 adb_restart(void)
2136 {
2137 int result;
2138 u_char output[16];
2139
2140 adb_polling = 1;
2141
2142 switch (adbHardware) {
2143 case ADB_HW_CUDA:
2144 output[0] = 0x02; /* 2 byte message */
2145 output[1] = 0x01; /* to pram/rtc/soft-power device */
2146 output[2] = 0x11; /* restart */
2147 result = send_adb_cuda(output, NULL, NULL, NULL, 0);
2148 if (result != 0) /* exit if not sent */
2149 return;
2150 while (1); /* not return */
2151
2152 case ADB_HW_PMU:
2153 pm_adb_restart();
2154 while (1); /* not return */
2155 }
2156 }
2157