Home | History | Annotate | Line # | Download | only in dev
adb_direct.c revision 1.30
      1 /*	$NetBSD: adb_direct.c,v 1.30 2005/02/01 03:08:16 briggs Exp $	*/
      2 
      3 /* From: adb_direct.c 2.02 4/18/97 jpw */
      4 
      5 /*
      6  * Copyright (C) 1996, 1997 John P. Wittkoski
      7  * All rights reserved.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *  This product includes software developed by John P. Wittkoski.
     20  * 4. The name of the author may not be used to endorse or promote products
     21  *    derived from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     32  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 /*
     36  * This code is rather messy, but I don't have time right now
     37  * to clean it up as much as I would like.
     38  * But it works, so I'm happy. :-) jpw
     39  */
     40 
     41 /*
     42  * TO DO:
     43  *  - We could reduce the time spent in the adb_intr_* routines
     44  *    by having them save the incoming and outgoing data directly
     45  *    in the adbInbound and adbOutbound queues, as it would reduce
     46  *    the number of times we need to copy the data around. It
     47  *    would also make the code more readable and easier to follow.
     48  *  - (Related to above) Use the header part of adbCommand to
     49  *    reduce the number of copies we have to do of the data.
     50  *  - (Related to above) Actually implement the adbOutbound queue.
     51  *    This is fairly easy once you switch all the intr routines
     52  *    over to using adbCommand structs directly.
     53  *  - There is a bug in the state machine of adb_intr_cuda
     54  *    code that causes hangs, especially on 030 machines, probably
     55  *    because of some timing issues. Because I have been unable to
     56  *    determine the exact cause of this bug, I used the timeout function
     57  *    to check for and recover from this condition. If anyone finds
     58  *    the actual cause of this bug, the calls to timeout and the
     59  *    adb_cuda_tickle routine can be removed.
     60  */
     61 
     62 #include <sys/cdefs.h>
     63 __KERNEL_RCSID(0, "$NetBSD: adb_direct.c,v 1.30 2005/02/01 03:08:16 briggs Exp $");
     64 
     65 #include <sys/param.h>
     66 #include <sys/cdefs.h>
     67 #include <sys/systm.h>
     68 #include <sys/callout.h>
     69 #include <sys/device.h>
     70 
     71 #include <machine/param.h>
     72 #include <machine/cpu.h>
     73 #include <machine/adbsys.h>
     74 
     75 #include <macppc/dev/viareg.h>
     76 #include <macppc/dev/adbvar.h>
     77 #include <macppc/dev/pm_direct.h>
     78 
     79 #define printf_intr printf
     80 
     81 #ifdef DEBUG
     82 #ifndef ADB_DEBUG
     83 #define ADB_DEBUG
     84 #endif
     85 #endif
     86 
     87 /* some misc. leftovers */
     88 #define vPB		0x0000
     89 #define vPB3		0x08
     90 #define vPB4		0x10
     91 #define vPB5		0x20
     92 #define vSR_INT		0x04
     93 #define vSR_OUT		0x10
     94 
     95 /* the type of ADB action that we are currently preforming */
     96 #define ADB_ACTION_NOTREADY	0x1	/* has not been initialized yet */
     97 #define ADB_ACTION_IDLE		0x2	/* the bus is currently idle */
     98 #define ADB_ACTION_OUT		0x3	/* sending out a command */
     99 #define ADB_ACTION_IN		0x4	/* receiving data */
    100 #define ADB_ACTION_POLLING	0x5	/* polling - II only */
    101 
    102 /*
    103  * These describe the state of the ADB bus itself, although they
    104  * don't necessarily correspond directly to ADB states.
    105  * Note: these are not really used in the IIsi code.
    106  */
    107 #define ADB_BUS_UNKNOWN		0x1	/* we don't know yet - all models */
    108 #define ADB_BUS_IDLE		0x2	/* bus is idle - all models */
    109 #define ADB_BUS_CMD		0x3	/* starting a command - II models */
    110 #define ADB_BUS_ODD		0x4	/* the "odd" state - II models */
    111 #define ADB_BUS_EVEN		0x5	/* the "even" state - II models */
    112 #define ADB_BUS_ACTIVE		0x6	/* active state - IIsi models */
    113 #define ADB_BUS_ACK		0x7	/* currently ACKing - IIsi models */
    114 
    115 /*
    116  * Shortcuts for setting or testing the VIA bit states.
    117  * Not all shortcuts are used for every type of ADB hardware.
    118  */
    119 #define ADB_SET_STATE_IDLE_II()     via_reg_or(VIA1, vBufB, (vPB4 | vPB5))
    120 #define ADB_SET_STATE_IDLE_IISI()   via_reg_and(VIA1, vBufB, ~(vPB4 | vPB5))
    121 #define ADB_SET_STATE_IDLE_CUDA()   via_reg_or(VIA1, vBufB, (vPB4 | vPB5))
    122 #define ADB_SET_STATE_CMD()         via_reg_and(VIA1, vBufB, ~(vPB4 | vPB5))
    123 #define ADB_SET_STATE_EVEN()        write_via_reg(VIA1, vBufB, \
    124                               (read_via_reg(VIA1, vBufB) | vPB4) & ~vPB5)
    125 #define ADB_SET_STATE_ODD()         write_via_reg(VIA1, vBufB, \
    126                               (read_via_reg(VIA1, vBufB) | vPB5) & ~vPB4 )
    127 #define ADB_SET_STATE_ACTIVE() 	    via_reg_or(VIA1, vBufB, vPB5)
    128 #define ADB_SET_STATE_INACTIVE()    via_reg_and(VIA1, vBufB, ~vPB5)
    129 #define ADB_SET_STATE_TIP()	    via_reg_and(VIA1, vBufB, ~vPB5)
    130 #define ADB_CLR_STATE_TIP() 	    via_reg_or(VIA1, vBufB, vPB5)
    131 #define ADB_SET_STATE_ACKON()	    via_reg_or(VIA1, vBufB, vPB4)
    132 #define ADB_SET_STATE_ACKOFF()	    via_reg_and(VIA1, vBufB, ~vPB4)
    133 #define ADB_TOGGLE_STATE_ACK_CUDA() via_reg_xor(VIA1, vBufB, vPB4)
    134 #define ADB_SET_STATE_ACKON_CUDA()  via_reg_and(VIA1, vBufB, ~vPB4)
    135 #define ADB_SET_STATE_ACKOFF_CUDA() via_reg_or(VIA1, vBufB, vPB4)
    136 #define ADB_SET_SR_INPUT()	    via_reg_and(VIA1, vACR, ~vSR_OUT)
    137 #define ADB_SET_SR_OUTPUT()	    via_reg_or(VIA1, vACR, vSR_OUT)
    138 #define ADB_SR()		    read_via_reg(VIA1, vSR)
    139 #define ADB_VIA_INTR_ENABLE()	    write_via_reg(VIA1, vIER, 0x84)
    140 #define ADB_VIA_INTR_DISABLE()	    write_via_reg(VIA1, vIER, 0x04)
    141 #define ADB_VIA_CLR_INTR()	    write_via_reg(VIA1, vIFR, 0x04)
    142 #define ADB_INTR_IS_OFF		   (vPB3 == (read_via_reg(VIA1, vBufB) & vPB3))
    143 #define ADB_INTR_IS_ON		   (0 == (read_via_reg(VIA1, vBufB) & vPB3))
    144 #define ADB_SR_INTR_IS_OFF	   (0 == (read_via_reg(VIA1, vIFR) & vSR_INT))
    145 #define ADB_SR_INTR_IS_ON	   (vSR_INT == (read_via_reg(VIA1, \
    146 						vIFR) & vSR_INT))
    147 
    148 /*
    149  * This is the delay that is required (in uS) between certain
    150  * ADB transactions. The actual timing delay for for each uS is
    151  * calculated at boot time to account for differences in machine speed.
    152  */
    153 #define ADB_DELAY	150
    154 
    155 /*
    156  * Maximum ADB message length; includes space for data, result, and
    157  * device code - plus a little for safety.
    158  */
    159 #define ADB_MAX_MSG_LENGTH	16
    160 #define ADB_MAX_HDR_LENGTH	8
    161 
    162 #define ADB_QUEUE		32
    163 #define ADB_TICKLE_TICKS	4
    164 
    165 /*
    166  * A structure for storing information about each ADB device.
    167  */
    168 struct ADBDevEntry {
    169 	void	(*ServiceRtPtr) __P((void));
    170 	void	*DataAreaAddr;
    171 	int	devType;
    172 	int	origAddr;
    173 	int	currentAddr;
    174 };
    175 
    176 /*
    177  * Used to hold ADB commands that are waiting to be sent out.
    178  */
    179 struct adbCmdHoldEntry {
    180 	u_char	outBuf[ADB_MAX_MSG_LENGTH];	/* our message */
    181 	u_char	*saveBuf;	/* buffer to know where to save result */
    182 	u_char	*compRout;	/* completion routine pointer */
    183 	u_char	*data;		/* completion routine data pointer */
    184 };
    185 
    186 /*
    187  * Eventually used for two separate queues, the queue between
    188  * the upper and lower halves, and the outgoing packet queue.
    189  * TO DO: adbCommand can replace all of adbCmdHoldEntry eventually
    190  */
    191 struct adbCommand {
    192 	u_char	header[ADB_MAX_HDR_LENGTH];	/* not used yet */
    193 	u_char	data[ADB_MAX_MSG_LENGTH];	/* packet data only */
    194 	u_char	*saveBuf;	/* where to save result */
    195 	u_char	*compRout;	/* completion routine pointer */
    196 	u_char	*compData;	/* completion routine data pointer */
    197 	u_int	cmd;		/* the original command for this data */
    198 	u_int	unsol;		/* 1 if packet was unsolicited */
    199 	u_int	ack_only;	/* 1 for no special processing */
    200 };
    201 
    202 /*
    203  * A few variables that we need and their initial values.
    204  */
    205 int	adbHardware = ADB_HW_UNKNOWN;
    206 int	adbActionState = ADB_ACTION_NOTREADY;
    207 int	adbBusState = ADB_BUS_UNKNOWN;
    208 int	adbWaiting = 0;		/* waiting for return data from the device */
    209 int	adbWriteDelay = 0;	/* working on (or waiting to do) a write */
    210 int	adbOutQueueHasData = 0;	/* something in the queue waiting to go out */
    211 int	adbNextEnd = 0;		/* the next incoming bute is the last (II) */
    212 int	adbSoftPower = 0;	/* machine supports soft power */
    213 
    214 int	adbWaitingCmd = 0;	/* ADB command we are waiting for */
    215 u_char	*adbBuffer = (long)0;	/* pointer to user data area */
    216 void	*adbCompRout = (long)0;	/* pointer to the completion routine */
    217 void	*adbCompData = (long)0;	/* pointer to the completion routine data */
    218 long	adbFakeInts = 0;	/* keeps track of fake ADB interrupts for
    219 				 * timeouts (II) */
    220 int	adbStarting = 1;	/* doing ADBReInit so do polling differently */
    221 int	adbSendTalk = 0;	/* the intr routine is sending the talk, not
    222 				 * the user (II) */
    223 int	adbPolling = 0;		/* we are polling for service request */
    224 int	adbPollCmd = 0;		/* the last poll command we sent */
    225 
    226 u_char	adbInputBuffer[ADB_MAX_MSG_LENGTH];	/* data input buffer */
    227 u_char	adbOutputBuffer[ADB_MAX_MSG_LENGTH];	/* data output buffer */
    228 struct	adbCmdHoldEntry adbOutQueue;		/* our 1 entry output queue */
    229 
    230 int	adbSentChars = 0;	/* how many characters we have sent */
    231 int	adbLastDevice = 0;	/* last ADB dev we heard from (II ONLY) */
    232 int	adbLastDevIndex = 0;	/* last ADB dev loc in dev table (II ONLY) */
    233 int	adbLastCommand = 0;	/* the last ADB command we sent (II) */
    234 
    235 struct	ADBDevEntry ADBDevTable[16];	/* our ADB device table */
    236 int	ADBNumDevices;		/* num. of ADB devices found with ADBReInit */
    237 
    238 struct	adbCommand adbInbound[ADB_QUEUE];	/* incoming queue */
    239 int	adbInCount = 0;			/* how many packets in in queue */
    240 int	adbInHead = 0;			/* head of in queue */
    241 int	adbInTail = 0;			/* tail of in queue */
    242 struct	adbCommand adbOutbound[ADB_QUEUE]; /* outgoing queue - not used yet */
    243 int	adbOutCount = 0;		/* how many packets in out queue */
    244 int	adbOutHead = 0;			/* head of out queue */
    245 int	adbOutTail = 0;			/* tail of out queue */
    246 
    247 int	tickle_count = 0;		/* how many tickles seen for this packet? */
    248 int	tickle_serial = 0;		/* the last packet tickled */
    249 int	adb_cuda_serial = 0;		/* the current packet */
    250 
    251 struct callout adb_cuda_tickle_ch = CALLOUT_INITIALIZER;
    252 struct callout adb_soft_intr_ch = CALLOUT_INITIALIZER;
    253 
    254 volatile u_char *Via1Base;
    255 extern int adb_polling;			/* Are we polling? */
    256 
    257 void	pm_setup_adb __P((void));
    258 void	pm_check_adb_devices __P((int));
    259 int	pm_adb_op __P((u_char *, void *, void *, int));
    260 void	pm_init_adb_device __P((void));
    261 
    262 /*
    263  * The following are private routines.
    264  */
    265 #ifdef ADB_DEBUG
    266 void	print_single __P((u_char *));
    267 #endif
    268 void	adb_intr_II __P((void));
    269 void	adb_intr_IIsi __P((void));
    270 void	adb_soft_intr __P((void));
    271 int	send_adb_II __P((u_char *, u_char *, void *, void *, int));
    272 int	send_adb_IIsi __P((u_char *, u_char *, void *, void *, int));
    273 int	send_adb_cuda __P((u_char *, u_char *, void *, void *, int));
    274 void	adb_intr_cuda_test __P((void));
    275 void	adb_cuda_tickle __P((void));
    276 void	adb_pass_up __P((struct adbCommand *));
    277 void	adb_op_comprout __P((caddr_t, caddr_t, int));
    278 void	adb_reinit __P((void));
    279 int	count_adbs __P((void));
    280 int	get_ind_adb_info __P((ADBDataBlock *, int));
    281 int	get_adb_info __P((ADBDataBlock *, int));
    282 int	set_adb_info __P((ADBSetInfoBlock *, int));
    283 void	adb_setup_hw_type __P((void));
    284 int	adb_op __P((Ptr, Ptr, Ptr, short));
    285 int	adb_op_sync __P((Ptr, Ptr, Ptr, short));
    286 void	adb_read_II __P((u_char *));
    287 void	adb_hw_setup __P((void));
    288 void	adb_hw_setup_IIsi __P((u_char *));
    289 int	adb_cmd_result __P((u_char *));
    290 int	adb_cmd_extra __P((u_char *));
    291 int	adb_guess_next_device __P((void));
    292 int	adb_prog_switch_enable __P((void));
    293 int	adb_prog_switch_disable __P((void));
    294 /* we should create this and it will be the public version */
    295 int	send_adb __P((u_char *, void *, void *));
    296 
    297 int	setsoftadb __P((void));
    298 
    299 #ifdef ADB_DEBUG
    300 /*
    301  * print_single
    302  * Diagnostic display routine. Displays the hex values of the
    303  * specified elements of the u_char. The length of the "string"
    304  * is in [0].
    305  */
    306 void
    307 print_single(str)
    308 	u_char *str;
    309 {
    310 	int x;
    311 
    312 	if (str == 0) {
    313 		printf_intr("no data - null pointer\n");
    314 		return;
    315 	}
    316 	if (*str == 0) {
    317 		printf_intr("nothing returned\n");
    318 		return;
    319 	}
    320 	if (*str > 20) {
    321 		printf_intr("ADB: ACK > 20 no way!\n");
    322 		*str = 20;
    323 	}
    324 	printf_intr("(length=0x%x):", *str);
    325 	for (x = 1; x <= *str; x++)
    326 		printf_intr("  0x%02x", str[x]);
    327 	printf_intr("\n");
    328 }
    329 #endif
    330 
    331 void
    332 adb_cuda_tickle(void)
    333 {
    334 	volatile int s;
    335 
    336 	if (adbActionState == ADB_ACTION_IN) {
    337 		if (tickle_serial == adb_cuda_serial) {
    338 			if (++tickle_count > 0) {
    339 				s = splhigh();
    340 				adbActionState = ADB_ACTION_IDLE;
    341 				adbInputBuffer[0] = 0;
    342 				ADB_SET_STATE_IDLE_CUDA();
    343 				splx(s);
    344 			}
    345 		} else {
    346 			tickle_serial = adb_cuda_serial;
    347 			tickle_count = 0;
    348 		}
    349 	} else {
    350 		tickle_serial = adb_cuda_serial;
    351 		tickle_count = 0;
    352 	}
    353 
    354 	callout_reset(&adb_cuda_tickle_ch, ADB_TICKLE_TICKS,
    355 	    (void *)adb_cuda_tickle, NULL);
    356 }
    357 
    358 /*
    359  * called when when an adb interrupt happens
    360  *
    361  * Cuda version of adb_intr
    362  * TO DO: do we want to add some calls to intr_dispatch() here to
    363  * grab serial interrupts?
    364  */
    365 int
    366 adb_intr_cuda(void *arg)
    367 {
    368 	volatile int i, ending;
    369 	volatile unsigned int s;
    370 	struct adbCommand packet;
    371 	uint8_t reg;
    372 
    373 	s = splhigh();		/* can't be too careful - might be called */
    374 				/* from a routine, NOT an interrupt */
    375 
    376 	reg = read_via_reg(VIA1, vIFR);		/* Read the interrupts */
    377 	if ((reg & 0x80) == 0) {
    378 		splx(s);
    379 		return 0;			/* No interrupts to process */
    380 	}
    381 
    382 	write_via_reg(VIA1, vIFR, reg & 0x7f);	/* Clear 'em */
    383 
    384 	ADB_VIA_INTR_DISABLE();	/* disable ADB interrupt on IIs. */
    385 
    386 switch_start:
    387 	switch (adbActionState) {
    388 	case ADB_ACTION_IDLE:
    389 		/*
    390 		 * This is an unexpected packet, so grab the first (dummy)
    391 		 * byte, set up the proper vars, and tell the chip we are
    392 		 * starting to receive the packet by setting the TIP bit.
    393 		 */
    394 		adbInputBuffer[1] = ADB_SR();
    395 		adb_cuda_serial++;
    396 		if (ADB_INTR_IS_OFF)	/* must have been a fake start */
    397 			break;
    398 
    399 		ADB_SET_SR_INPUT();
    400 		ADB_SET_STATE_TIP();
    401 
    402 		adbInputBuffer[0] = 1;
    403 		adbActionState = ADB_ACTION_IN;
    404 #ifdef ADB_DEBUG
    405 		if (adb_debug)
    406 			printf_intr("idle 0x%02x ", adbInputBuffer[1]);
    407 #endif
    408 		break;
    409 
    410 	case ADB_ACTION_IN:
    411 		adbInputBuffer[++adbInputBuffer[0]] = ADB_SR();
    412 		/* intr off means this is the last byte (end of frame) */
    413 		if (ADB_INTR_IS_OFF)
    414 			ending = 1;
    415 		else
    416 			ending = 0;
    417 
    418 		if (1 == ending) {	/* end of message? */
    419 #ifdef ADB_DEBUG
    420 			if (adb_debug) {
    421 				printf_intr("in end 0x%02x ",
    422 				    adbInputBuffer[adbInputBuffer[0]]);
    423 				print_single(adbInputBuffer);
    424 			}
    425 #endif
    426 
    427 			/*
    428 			 * Are we waiting AND does this packet match what we
    429 			 * are waiting for AND is it coming from either the
    430 			 * ADB or RTC/PRAM sub-device? This section _should_
    431 			 * recognize all ADB and RTC/PRAM type commands, but
    432 			 * there may be more... NOTE: commands are always at
    433 			 * [4], even for RTC/PRAM commands.
    434 			 */
    435 			/* set up data for adb_pass_up */
    436 			memcpy(packet.data, adbInputBuffer, adbInputBuffer[0] + 1);
    437 
    438 			if ((adbWaiting == 1) &&
    439 			    (adbInputBuffer[4] == adbWaitingCmd) &&
    440 			    ((adbInputBuffer[2] == 0x00) ||
    441 			    (adbInputBuffer[2] == 0x01))) {
    442 				packet.saveBuf = adbBuffer;
    443 				packet.compRout = adbCompRout;
    444 				packet.compData = adbCompData;
    445 				packet.unsol = 0;
    446 				packet.ack_only = 0;
    447 				adb_pass_up(&packet);
    448 
    449 				adbWaitingCmd = 0;	/* reset "waiting" vars */
    450 				adbWaiting = 0;
    451 				adbBuffer = (long)0;
    452 				adbCompRout = (long)0;
    453 				adbCompData = (long)0;
    454 			} else {
    455 				packet.unsol = 1;
    456 				packet.ack_only = 0;
    457 				adb_pass_up(&packet);
    458 			}
    459 
    460 
    461 			/* reset vars and signal the end of this frame */
    462 			adbActionState = ADB_ACTION_IDLE;
    463 			adbInputBuffer[0] = 0;
    464 			ADB_SET_STATE_IDLE_CUDA();
    465 			/*ADB_SET_SR_INPUT();*/
    466 
    467 			/*
    468 			 * If there is something waiting to be sent out,
    469 			 * the set everything up and send the first byte.
    470 			 */
    471 			if (adbWriteDelay == 1) {
    472 				delay(ADB_DELAY);	/* required */
    473 				adbSentChars = 0;
    474 				adbActionState = ADB_ACTION_OUT;
    475 				/*
    476 				 * If the interrupt is on, we were too slow
    477 				 * and the chip has already started to send
    478 				 * something to us, so back out of the write
    479 				 * and start a read cycle.
    480 				 */
    481 				if (ADB_INTR_IS_ON) {
    482 					ADB_SET_SR_INPUT();
    483 					ADB_SET_STATE_IDLE_CUDA();
    484 					adbSentChars = 0;
    485 					adbActionState = ADB_ACTION_IDLE;
    486 					adbInputBuffer[0] = 0;
    487 					break;
    488 				}
    489 				/*
    490 				 * If we got here, it's ok to start sending
    491 				 * so load the first byte and tell the chip
    492 				 * we want to send.
    493 				 */
    494 				ADB_SET_STATE_TIP();
    495 				ADB_SET_SR_OUTPUT();
    496 				write_via_reg(VIA1, vSR, adbOutputBuffer[adbSentChars + 1]);
    497 			}
    498 		} else {
    499 			ADB_TOGGLE_STATE_ACK_CUDA();
    500 #ifdef ADB_DEBUG
    501 			if (adb_debug)
    502 				printf_intr("in 0x%02x ",
    503 				    adbInputBuffer[adbInputBuffer[0]]);
    504 #endif
    505 		}
    506 		break;
    507 
    508 	case ADB_ACTION_OUT:
    509 		i = ADB_SR();	/* reset SR-intr in IFR */
    510 #ifdef ADB_DEBUG
    511 		if (adb_debug)
    512 			printf_intr("intr out 0x%02x ", i);
    513 #endif
    514 
    515 		adbSentChars++;
    516 		if (ADB_INTR_IS_ON) {	/* ADB intr low during write */
    517 #ifdef ADB_DEBUG
    518 			if (adb_debug)
    519 				printf_intr("intr was on ");
    520 #endif
    521 			ADB_SET_SR_INPUT();	/* make sure SR is set to IN */
    522 			ADB_SET_STATE_IDLE_CUDA();
    523 			adbSentChars = 0;	/* must start all over */
    524 			adbActionState = ADB_ACTION_IDLE;	/* new state */
    525 			adbInputBuffer[0] = 0;
    526 			adbWriteDelay = 1;	/* must retry when done with
    527 						 * read */
    528 			delay(ADB_DELAY);
    529 			goto switch_start;	/* process next state right
    530 						 * now */
    531 			break;
    532 		}
    533 		if (adbOutputBuffer[0] == adbSentChars) {	/* check for done */
    534 			if (0 == adb_cmd_result(adbOutputBuffer)) {	/* do we expect data
    535 									 * back? */
    536 				adbWaiting = 1;	/* signal waiting for return */
    537 				adbWaitingCmd = adbOutputBuffer[2];	/* save waiting command */
    538 			} else {	/* no talk, so done */
    539 				/* set up stuff for adb_pass_up */
    540 				memcpy(packet.data, adbInputBuffer, adbInputBuffer[0] + 1);
    541 				packet.saveBuf = adbBuffer;
    542 				packet.compRout = adbCompRout;
    543 				packet.compData = adbCompData;
    544 				packet.cmd = adbWaitingCmd;
    545 				packet.unsol = 0;
    546 				packet.ack_only = 1;
    547 				adb_pass_up(&packet);
    548 
    549 				/* reset "waiting" vars, just in case */
    550 				adbWaitingCmd = 0;
    551 				adbBuffer = (long)0;
    552 				adbCompRout = (long)0;
    553 				adbCompData = (long)0;
    554 			}
    555 
    556 			adbWriteDelay = 0;	/* done writing */
    557 			adbActionState = ADB_ACTION_IDLE;	/* signal bus is idle */
    558 			ADB_SET_SR_INPUT();
    559 			ADB_SET_STATE_IDLE_CUDA();
    560 #ifdef ADB_DEBUG
    561 			if (adb_debug)
    562 				printf_intr("write done ");
    563 #endif
    564 		} else {
    565 			write_via_reg(VIA1, vSR, adbOutputBuffer[adbSentChars + 1]);	/* send next byte */
    566 			ADB_TOGGLE_STATE_ACK_CUDA();	/* signal byte ready to
    567 							 * shift */
    568 #ifdef ADB_DEBUG
    569 			if (adb_debug)
    570 				printf_intr("toggle ");
    571 #endif
    572 		}
    573 		break;
    574 
    575 	case ADB_ACTION_NOTREADY:
    576 #ifdef ADB_DEBUG
    577 		if (adb_debug)
    578 			printf_intr("adb: not yet initialized\n");
    579 #endif
    580 		break;
    581 
    582 	default:
    583 #ifdef ADB_DEBUG
    584 		if (adb_debug)
    585 			printf_intr("intr: unknown ADB state\n");
    586 #endif
    587 		break;
    588 	}
    589 
    590 	ADB_VIA_INTR_ENABLE();	/* enable ADB interrupt on IIs. */
    591 
    592 	splx(s);		/* restore */
    593 
    594 	return 1;
    595 }				/* end adb_intr_cuda */
    596 
    597 
    598 int
    599 send_adb_cuda(u_char * in, u_char * buffer, void *compRout, void *data, int
    600 	command)
    601 {
    602 	int s, len;
    603 
    604 #ifdef ADB_DEBUG
    605 	if (adb_debug)
    606 		printf_intr("SEND\n");
    607 #endif
    608 
    609 	if (adbActionState == ADB_ACTION_NOTREADY)
    610 		return 1;
    611 
    612 	/* Don't interrupt while we are messing with the ADB */
    613 	s = splhigh();
    614 
    615 	if ((adbActionState == ADB_ACTION_IDLE) &&	/* ADB available? */
    616 	    (ADB_INTR_IS_OFF)) {	/* and no incoming interrupt? */
    617 	} else
    618 		if (adbWriteDelay == 0)	/* it's busy, but is anything waiting? */
    619 			adbWriteDelay = 1;	/* if no, then we'll "queue"
    620 						 * it up */
    621 		else {
    622 			splx(s);
    623 			return 1;	/* really busy! */
    624 		}
    625 
    626 #ifdef ADB_DEBUG
    627 	if (adb_debug)
    628 		printf_intr("QUEUE\n");
    629 #endif
    630 	if ((long)in == (long)0) {	/* need to convert? */
    631 		/*
    632 		 * Don't need to use adb_cmd_extra here because this section
    633 		 * will be called ONLY when it is an ADB command (no RTC or
    634 		 * PRAM)
    635 		 */
    636 		if ((command & 0x0c) == 0x08)	/* copy addl data ONLY if
    637 						 * doing a listen! */
    638 			len = buffer[0];	/* length of additional data */
    639 		else
    640 			len = 0;/* no additional data */
    641 
    642 		adbOutputBuffer[0] = 2 + len;	/* dev. type + command + addl.
    643 						 * data */
    644 		adbOutputBuffer[1] = 0x00;	/* mark as an ADB command */
    645 		adbOutputBuffer[2] = (u_char)command;	/* load command */
    646 
    647 		/* copy additional output data, if any */
    648 		memcpy(adbOutputBuffer + 3, buffer + 1, len);
    649 	} else
    650 		/* if data ready, just copy over */
    651 		memcpy(adbOutputBuffer, in, in[0] + 2);
    652 
    653 	adbSentChars = 0;	/* nothing sent yet */
    654 	adbBuffer = buffer;	/* save buffer to know where to save result */
    655 	adbCompRout = compRout;	/* save completion routine pointer */
    656 	adbCompData = data;	/* save completion routine data pointer */
    657 	adbWaitingCmd = adbOutputBuffer[2];	/* save wait command */
    658 
    659 	if (adbWriteDelay != 1) {	/* start command now? */
    660 #ifdef ADB_DEBUG
    661 		if (adb_debug)
    662 			printf_intr("out start NOW");
    663 #endif
    664 		delay(ADB_DELAY);
    665 		adbActionState = ADB_ACTION_OUT;	/* set next state */
    666 		ADB_SET_SR_OUTPUT();	/* set shift register for OUT */
    667 		write_via_reg(VIA1, vSR, adbOutputBuffer[adbSentChars + 1]);	/* load byte for output */
    668 		ADB_SET_STATE_ACKOFF_CUDA();
    669 		ADB_SET_STATE_TIP();	/* tell ADB that we want to send */
    670 	}
    671 	adbWriteDelay = 1;	/* something in the write "queue" */
    672 
    673 	splx(s);
    674 
    675 	if ((s & (1 << 18)) || adb_polling) /* XXX were VIA1 interrupts blocked ? */
    676 		/* poll until byte done */
    677 		while ((adbActionState != ADB_ACTION_IDLE) || (ADB_INTR_IS_ON)
    678 		    || (adbWaiting == 1))
    679 			if (ADB_SR_INTR_IS_ON) {	/* wait for "interrupt" */
    680 				adb_intr_cuda(NULL);	/* process it */
    681 				adb_soft_intr();
    682 			}
    683 
    684 	return 0;
    685 }				/* send_adb_cuda */
    686 
    687 
    688 void
    689 adb_intr_II(void)
    690 {
    691 	panic("adb_intr_II");
    692 }
    693 
    694 
    695 /*
    696  * send_adb version for II series machines
    697  */
    698 int
    699 send_adb_II(u_char * in, u_char * buffer, void *compRout, void *data, int command)
    700 {
    701 	panic("send_adb_II");
    702 }
    703 
    704 
    705 /*
    706  * This routine is called from the II series interrupt routine
    707  * to determine what the "next" device is that should be polled.
    708  */
    709 int
    710 adb_guess_next_device(void)
    711 {
    712 	int last, i, dummy;
    713 
    714 	if (adbStarting) {
    715 		/*
    716 		 * Start polling EVERY device, since we can't be sure there is
    717 		 * anything in the device table yet
    718 		 */
    719 		if (adbLastDevice < 1 || adbLastDevice > 15)
    720 			adbLastDevice = 1;
    721 		if (++adbLastDevice > 15)	/* point to next one */
    722 			adbLastDevice = 1;
    723 	} else {
    724 		/* find the next device using the device table */
    725 		if (adbLastDevice < 1 || adbLastDevice > 15)	/* let's be parinoid */
    726 			adbLastDevice = 2;
    727 		last = 1;	/* default index location */
    728 
    729 		for (i = 1; i < 16; i++)	/* find index entry */
    730 			if (ADBDevTable[i].currentAddr == adbLastDevice) {	/* look for device */
    731 				last = i;	/* found it */
    732 				break;
    733 			}
    734 		dummy = last;	/* index to start at */
    735 		for (;;) {	/* find next device in index */
    736 			if (++dummy > 15)	/* wrap around if needed */
    737 				dummy = 1;
    738 			if (dummy == last) {	/* didn't find any other
    739 						 * device! This can happen if
    740 						 * there are no devices on the
    741 						 * bus */
    742 				dummy = 1;
    743 				break;
    744 			}
    745 			/* found the next device */
    746 			if (ADBDevTable[dummy].devType != 0)
    747 				break;
    748 		}
    749 		adbLastDevice = ADBDevTable[dummy].currentAddr;
    750 	}
    751 	return adbLastDevice;
    752 }
    753 
    754 
    755 int
    756 adb_intr(void *arg)
    757 {
    758 	switch (adbHardware) {
    759 	case ADB_HW_II:
    760 		adb_intr_II();
    761 		break;
    762 
    763 	case ADB_HW_IISI:
    764 		adb_intr_IIsi();
    765 		break;
    766 
    767 	case ADB_HW_PMU:
    768 		return pm_intr(arg);
    769 		break;
    770 
    771 	case ADB_HW_CUDA:
    772 		return adb_intr_cuda(arg);
    773 		break;
    774 
    775 	case ADB_HW_UNKNOWN:
    776 		break;
    777 	}
    778 	return 0;
    779 }
    780 
    781 
    782 /*
    783  * called when when an adb interrupt happens
    784  *
    785  * IIsi version of adb_intr
    786  *
    787  */
    788 void
    789 adb_intr_IIsi(void)
    790 {
    791 	panic("adb_intr_IIsi");
    792 }
    793 
    794 
    795 /*****************************************************************************
    796  * if the device is currently busy, and there is no data waiting to go out, then
    797  * the data is "queued" in the outgoing buffer. If we are already waiting, then
    798  * we return.
    799  * in: if (in == 0) then the command string is built from command and buffer
    800  *     if (in != 0) then in is used as the command string
    801  * buffer: additional data to be sent (used only if in == 0)
    802  *         this is also where return data is stored
    803  * compRout: the completion routine that is called when then return value
    804  *	     is received (if a return value is expected)
    805  * data: a data pointer that can be used by the completion routine
    806  * command: an ADB command to be sent (used only if in == 0)
    807  *
    808  */
    809 int
    810 send_adb_IIsi(u_char * in, u_char * buffer, void *compRout, void *data, int
    811 	command)
    812 {
    813 	panic("send_adb_IIsi");
    814 }
    815 
    816 
    817 /*
    818  * adb_pass_up is called by the interrupt-time routines.
    819  * It takes the raw packet data that was received from the
    820  * device and puts it into the queue that the upper half
    821  * processes. It then signals for a soft ADB interrupt which
    822  * will eventually call the upper half routine (adb_soft_intr).
    823  *
    824  * If in->unsol is 0, then this is either the notification
    825  * that the packet was sent (on a LISTEN, for example), or the
    826  * response from the device (on a TALK). The completion routine
    827  * is called only if the user specified one.
    828  *
    829  * If in->unsol is 1, then this packet was unsolicited and
    830  * so we look up the device in the ADB device table to determine
    831  * what it's default service routine is.
    832  *
    833  * If in->ack_only is 1, then we really only need to call
    834  * the completion routine, so don't do any other stuff.
    835  *
    836  * Note that in->data contains the packet header AND data,
    837  * while adbInbound[]->data contains ONLY data.
    838  *
    839  * Note: Called only at interrupt time. Assumes this.
    840  */
    841 void
    842 adb_pass_up(struct adbCommand *in)
    843 {
    844 	int start = 0, len = 0, cmd = 0;
    845 	ADBDataBlock block;
    846 
    847 	/* temp for testing */
    848 	/*u_char *buffer = 0;*/
    849 	/*u_char *compdata = 0;*/
    850 	/*u_char *comprout = 0;*/
    851 
    852 	if (adbInCount >= ADB_QUEUE) {
    853 #ifdef ADB_DEBUG
    854 		if (adb_debug)
    855 			printf_intr("adb: ring buffer overflow\n");
    856 #endif
    857 		return;
    858 	}
    859 
    860 	if (in->ack_only) {
    861 		len = in->data[0];
    862 		cmd = in->cmd;
    863 		start = 0;
    864 	} else {
    865 		switch (adbHardware) {
    866 		case ADB_HW_II:
    867 			cmd = in->data[1];
    868 			if (in->data[0] < 2)
    869 				len = 0;
    870 			else
    871 				len = in->data[0]-1;
    872 			start = 1;
    873 			break;
    874 
    875 		case ADB_HW_IISI:
    876 		case ADB_HW_CUDA:
    877 			/* If it's unsolicited, accept only ADB data for now */
    878 			if (in->unsol)
    879 				if (0 != in->data[2])
    880 					return;
    881 			cmd = in->data[4];
    882 			if (in->data[0] < 5)
    883 				len = 0;
    884 			else
    885 				len = in->data[0]-4;
    886 			start = 4;
    887 			break;
    888 
    889 		case ADB_HW_PMU:
    890 			cmd = in->data[1];
    891 			if (in->data[0] < 2)
    892 				len = 0;
    893 			else
    894 				len = in->data[0]-1;
    895 			start = 1;
    896 			break;
    897 
    898 		case ADB_HW_UNKNOWN:
    899 			return;
    900 		}
    901 
    902 		/* Make sure there is a valid device entry for this device */
    903 		if (in->unsol) {
    904 			/* ignore unsolicited data during adbreinit */
    905 			if (adbStarting)
    906 				return;
    907 			/* get device's comp. routine and data area */
    908 			if (-1 == get_adb_info(&block, ADB_CMDADDR(cmd)))
    909 				return;
    910 		}
    911 	}
    912 
    913 	/*
    914  	 * If this is an unsolicited packet, we need to fill in
    915  	 * some info so adb_soft_intr can process this packet
    916  	 * properly. If it's not unsolicited, then use what
    917  	 * the caller sent us.
    918  	 */
    919 	if (in->unsol) {
    920 		adbInbound[adbInTail].compRout = (void *)block.dbServiceRtPtr;
    921 		adbInbound[adbInTail].compData = (void *)block.dbDataAreaAddr;
    922 		adbInbound[adbInTail].saveBuf = (void *)adbInbound[adbInTail].data;
    923 	} else {
    924 		adbInbound[adbInTail].compRout = (void *)in->compRout;
    925 		adbInbound[adbInTail].compData = (void *)in->compData;
    926 		adbInbound[adbInTail].saveBuf = (void *)in->saveBuf;
    927 	}
    928 
    929 #ifdef ADB_DEBUG
    930 	if (adb_debug && in->data[1] == 2)
    931 		printf_intr("adb: caught error\n");
    932 #endif
    933 
    934 	/* copy the packet data over */
    935 	/*
    936 	 * TO DO: If the *_intr routines fed their incoming data
    937 	 * directly into an adbCommand struct, which is passed to
    938 	 * this routine, then we could eliminate this copy.
    939 	 */
    940 	memcpy(adbInbound[adbInTail].data + 1, in->data + start + 1, len);
    941 	adbInbound[adbInTail].data[0] = len;
    942 	adbInbound[adbInTail].cmd = cmd;
    943 
    944 	adbInCount++;
    945 	if (++adbInTail >= ADB_QUEUE)
    946 		adbInTail = 0;
    947 
    948 	/*
    949 	 * If the debugger is running, call upper half manually.
    950 	 * Otherwise, trigger a soft interrupt to handle the rest later.
    951 	 */
    952 	if (adb_polling)
    953 		adb_soft_intr();
    954 	else
    955 		setsoftadb();
    956 
    957 	return;
    958 }
    959 
    960 
    961 /*
    962  * Called to process the packets after they have been
    963  * placed in the incoming queue.
    964  *
    965  */
    966 void
    967 adb_soft_intr(void)
    968 {
    969 	int s;
    970 	int cmd = 0;
    971 	u_char *buffer = 0;
    972 	u_char *comprout = 0;
    973 	u_char *compdata = 0;
    974 
    975 #if 0
    976 	s = splhigh();
    977 	printf_intr("sr: %x\n", (s & 0x0700));
    978 	splx(s);
    979 #endif
    980 
    981 /*delay(2*ADB_DELAY);*/
    982 
    983 	while (adbInCount) {
    984 #ifdef ADB_DEBUG
    985 		if (adb_debug & 0x80)
    986 			printf_intr("%x %x %x ",
    987 			    adbInCount, adbInHead, adbInTail);
    988 #endif
    989 		/* get the data we need from the queue */
    990 		buffer = adbInbound[adbInHead].saveBuf;
    991 		comprout = adbInbound[adbInHead].compRout;
    992 		compdata = adbInbound[adbInHead].compData;
    993 		cmd = adbInbound[adbInHead].cmd;
    994 
    995 		/* copy over data to data area if it's valid */
    996 		/*
    997 		 * Note that for unsol packets we don't want to copy the
    998 		 * data anywhere, so buffer was already set to 0.
    999 		 * For ack_only buffer was set to 0, so don't copy.
   1000 		 */
   1001 		if (buffer)
   1002 			memcpy(buffer, adbInbound[adbInHead].data,
   1003 			    adbInbound[adbInHead].data[0] + 1);
   1004 
   1005 #ifdef ADB_DEBUG
   1006 			if (adb_debug & 0x80) {
   1007 				printf_intr("%p %p %p %x ",
   1008 				    buffer, comprout, compdata, (short)cmd);
   1009 				printf_intr("buf: ");
   1010 				print_single(adbInbound[adbInHead].data);
   1011 			}
   1012 #endif
   1013 		/* Remove the packet from the queue before calling
   1014 		 * the completion routine, so that the completion
   1015 		 * routine can reentrantly process the queue.  For
   1016 		 * example, this happens when polling is turned on
   1017 		 * by entering the debuger by keystroke.
   1018 		 */
   1019 		s = splhigh();
   1020 		adbInCount--;
   1021 		if (++adbInHead >= ADB_QUEUE)
   1022 			adbInHead = 0;
   1023 		splx(s);
   1024 
   1025 		/* call default completion routine if it's valid */
   1026 		if (comprout) {
   1027 			void (*f)(caddr_t, caddr_t, int) =
   1028 			    (void (*)(caddr_t, caddr_t, int))comprout;
   1029 
   1030 			(*f)(buffer, compdata, cmd);
   1031 		}
   1032 	}
   1033 	return;
   1034 }
   1035 
   1036 
   1037 /*
   1038  * This is my version of the ADBOp routine. It mainly just calls the
   1039  * hardware-specific routine.
   1040  *
   1041  *   data 	: pointer to data area to be used by compRout
   1042  *   compRout	: completion routine
   1043  *   buffer	: for LISTEN: points to data to send - MAX 8 data bytes,
   1044  *		  byte 0 = # of bytes
   1045  *		: for TALK: points to place to save return data
   1046  *   command	: the adb command to send
   1047  *   result	: 0 = success
   1048  *		: -1 = could not complete
   1049  */
   1050 int
   1051 adb_op(Ptr buffer, Ptr compRout, Ptr data, short command)
   1052 {
   1053 	int result;
   1054 
   1055 	switch (adbHardware) {
   1056 	case ADB_HW_II:
   1057 		result = send_adb_II((u_char *)0, (u_char *)buffer,
   1058 		    (void *)compRout, (void *)data, (int)command);
   1059 		if (result == 0)
   1060 			return 0;
   1061 		else
   1062 			return -1;
   1063 		break;
   1064 
   1065 	case ADB_HW_IISI:
   1066 		result = send_adb_IIsi((u_char *)0, (u_char *)buffer,
   1067 		    (void *)compRout, (void *)data, (int)command);
   1068 		/*
   1069 		 * I wish I knew why this delay is needed. It usually needs to
   1070 		 * be here when several commands are sent in close succession,
   1071 		 * especially early in device probes when doing collision
   1072 		 * detection. It must be some race condition. Sigh. - jpw
   1073 		 */
   1074 		delay(100);
   1075 		if (result == 0)
   1076 			return 0;
   1077 		else
   1078 			return -1;
   1079 		break;
   1080 
   1081 	case ADB_HW_PMU:
   1082 		result = pm_adb_op((u_char *)buffer, (void *)compRout,
   1083 		    (void *)data, (int)command);
   1084 
   1085 		if (result == 0)
   1086 			return 0;
   1087 		else
   1088 			return -1;
   1089 		break;
   1090 
   1091 	case ADB_HW_CUDA:
   1092 		result = send_adb_cuda((u_char *)0, (u_char *)buffer,
   1093 		    (void *)compRout, (void *)data, (int)command);
   1094 		if (result == 0)
   1095 			return 0;
   1096 		else
   1097 			return -1;
   1098 		break;
   1099 
   1100 	case ADB_HW_UNKNOWN:
   1101 	default:
   1102 		return -1;
   1103 	}
   1104 }
   1105 
   1106 
   1107 /*
   1108  * adb_hw_setup
   1109  * This routine sets up the possible machine specific hardware
   1110  * config (mainly VIA settings) for the various models.
   1111  */
   1112 void
   1113 adb_hw_setup(void)
   1114 {
   1115 	volatile int i;
   1116 	u_char send_string[ADB_MAX_MSG_LENGTH];
   1117 
   1118 	switch (adbHardware) {
   1119 	case ADB_HW_II:
   1120 		via_reg_or(VIA1, vDirB, 0x30);	/* register B bits 4 and 5:
   1121 						 * outputs */
   1122 		via_reg_and(VIA1, vDirB, 0xf7);	/* register B bit 3: input */
   1123 		via_reg_and(VIA1, vACR, ~vSR_OUT);	/* make sure SR is set
   1124 							 * to IN (II, IIsi) */
   1125 		adbActionState = ADB_ACTION_IDLE;	/* used by all types of
   1126 							 * hardware (II, IIsi) */
   1127 		adbBusState = ADB_BUS_IDLE;	/* this var. used in II-series
   1128 						 * code only */
   1129 		write_via_reg(VIA1, vIER, 0x84);/* make sure VIA interrupts
   1130 						 * are on (II, IIsi) */
   1131 		ADB_SET_STATE_IDLE_II();	/* set ADB bus state to idle */
   1132 
   1133 		ADB_VIA_CLR_INTR();	/* clear interrupt */
   1134 		break;
   1135 
   1136 	case ADB_HW_IISI:
   1137 		via_reg_or(VIA1, vDirB, 0x30);	/* register B bits 4 and 5:
   1138 						 * outputs */
   1139 		via_reg_and(VIA1, vDirB, 0xf7);	/* register B bit 3: input */
   1140 		via_reg_and(VIA1, vACR, ~vSR_OUT);	/* make sure SR is set
   1141 							 * to IN (II, IIsi) */
   1142 		adbActionState = ADB_ACTION_IDLE;	/* used by all types of
   1143 							 * hardware (II, IIsi) */
   1144 		adbBusState = ADB_BUS_IDLE;	/* this var. used in II-series
   1145 						 * code only */
   1146 		write_via_reg(VIA1, vIER, 0x84);/* make sure VIA interrupts
   1147 						 * are on (II, IIsi) */
   1148 		ADB_SET_STATE_IDLE_IISI();	/* set ADB bus state to idle */
   1149 
   1150 		/* get those pesky clock ticks we missed while booting */
   1151 		for (i = 0; i < 30; i++) {
   1152 			delay(ADB_DELAY);
   1153 			adb_hw_setup_IIsi(send_string);
   1154 #ifdef ADB_DEBUG
   1155 			if (adb_debug) {
   1156 				printf_intr("adb: cleanup: ");
   1157 				print_single(send_string);
   1158 			}
   1159 #endif
   1160 			delay(ADB_DELAY);
   1161 			if (ADB_INTR_IS_OFF)
   1162 				break;
   1163 		}
   1164 		break;
   1165 
   1166 	case ADB_HW_PMU:
   1167 		/*
   1168 		 * XXX - really PM_VIA_CLR_INTR - should we put it in
   1169 		 * pm_direct.h?
   1170 		 */
   1171 		write_via_reg(VIA1, vIFR, 0x90);	/* clear interrupt */
   1172 		break;
   1173 
   1174 	case ADB_HW_CUDA:
   1175 		via_reg_or(VIA1, vDirB, 0x30);	/* register B bits 4 and 5:
   1176 						 * outputs */
   1177 		via_reg_and(VIA1, vDirB, 0xf7);	/* register B bit 3: input */
   1178 		via_reg_and(VIA1, vACR, ~vSR_OUT);	/* make sure SR is set
   1179 							 * to IN */
   1180 		write_via_reg(VIA1, vACR, (read_via_reg(VIA1, vACR) | 0x0c) & ~0x10);
   1181 		adbActionState = ADB_ACTION_IDLE;	/* used by all types of
   1182 							 * hardware */
   1183 		adbBusState = ADB_BUS_IDLE;	/* this var. used in II-series
   1184 						 * code only */
   1185 		write_via_reg(VIA1, vIER, 0x84);/* make sure VIA interrupts
   1186 						 * are on */
   1187 		ADB_SET_STATE_IDLE_CUDA();	/* set ADB bus state to idle */
   1188 
   1189 		/* sort of a device reset */
   1190 		i = ADB_SR();	/* clear interrupt */
   1191 		ADB_VIA_INTR_DISABLE();	/* no interrupts while clearing */
   1192 		ADB_SET_STATE_IDLE_CUDA();	/* reset state to idle */
   1193 		delay(ADB_DELAY);
   1194 		ADB_SET_STATE_TIP();	/* signal start of frame */
   1195 		delay(ADB_DELAY);
   1196 		ADB_TOGGLE_STATE_ACK_CUDA();
   1197 		delay(ADB_DELAY);
   1198 		ADB_CLR_STATE_TIP();
   1199 		delay(ADB_DELAY);
   1200 		ADB_SET_STATE_IDLE_CUDA();	/* back to idle state */
   1201 		i = ADB_SR();	/* clear interrupt */
   1202 		ADB_VIA_INTR_ENABLE();	/* ints ok now */
   1203 		break;
   1204 
   1205 	case ADB_HW_UNKNOWN:
   1206 	default:
   1207 		write_via_reg(VIA1, vIER, 0x04);/* turn interrupts off - TO
   1208 						 * DO: turn PB ints off? */
   1209 		return;
   1210 		break;
   1211 	}
   1212 }
   1213 
   1214 
   1215 /*
   1216  * adb_hw_setup_IIsi
   1217  * This is sort of a "read" routine that forces the adb hardware through a read cycle
   1218  * if there is something waiting. This helps "clean up" any commands that may have gotten
   1219  * stuck or stopped during the boot process.
   1220  *
   1221  */
   1222 void
   1223 adb_hw_setup_IIsi(u_char * buffer)
   1224 {
   1225 	panic("adb_hw_setup_IIsi");
   1226 }
   1227 
   1228 
   1229 /*
   1230  * adb_reinit sets up the adb stuff
   1231  *
   1232  */
   1233 void
   1234 adb_reinit(void)
   1235 {
   1236 	u_char send_string[ADB_MAX_MSG_LENGTH];
   1237 	ADBDataBlock data;	/* temp. holder for getting device info */
   1238 	volatile int i, x;
   1239 	int s = 0;		/* XXX: gcc */
   1240 	int command;
   1241 	int result;
   1242 	int saveptr;		/* point to next free relocation address */
   1243 	int device;
   1244 	int nonewtimes;		/* times thru loop w/o any new devices */
   1245 
   1246 	/* Make sure we are not interrupted while building the table. */
   1247 	if (adbHardware != ADB_HW_PMU)	/* ints must be on for PMU? */
   1248 		s = splhigh();
   1249 
   1250 	ADBNumDevices = 0;	/* no devices yet */
   1251 
   1252 	/* Let intr routines know we are running reinit */
   1253 	adbStarting = 1;
   1254 
   1255 	/*
   1256 	 * Initialize the ADB table.  For now, we'll always use the same table
   1257 	 * that is defined at the beginning of this file - no mallocs.
   1258 	 */
   1259 	for (i = 0; i < 16; i++)
   1260 		ADBDevTable[i].devType = 0;
   1261 
   1262 	adb_setup_hw_type();	/* setup hardware type */
   1263 
   1264 	adb_hw_setup();		/* init the VIA bits and hard reset ADB */
   1265 
   1266 	delay(1000);
   1267 
   1268 	/* send an ADB reset first */
   1269 	result = adb_op_sync((Ptr)0, (Ptr)0, (Ptr)0, (short)0x00);
   1270 	delay(200000);
   1271 
   1272 #ifdef ADB_DEBUG
   1273 	if (result && adb_debug) {
   1274 		printf_intr("adb_reinit: failed to reset, result = %d\n",result);
   1275 	}
   1276 #endif
   1277 
   1278 	/*
   1279 	 * Probe for ADB devices. Probe devices 1-15 quickly to determine
   1280 	 * which device addresses are in use and which are free. For each
   1281 	 * address that is in use, move the device at that address to a higher
   1282 	 * free address. Continue doing this at that address until no device
   1283 	 * responds at that address. Then move the last device that was moved
   1284 	 * back to the original address. Do this for the remaining addresses
   1285 	 * that we determined were in use.
   1286 	 *
   1287 	 * When finished, do this entire process over again with the updated
   1288 	 * list of in use addresses. Do this until no new devices have been
   1289 	 * found in 20 passes though the in use address list. (This probably
   1290 	 * seems long and complicated, but it's the best way to detect multiple
   1291 	 * devices at the same address - sometimes it takes a couple of tries
   1292 	 * before the collision is detected.)
   1293 	 */
   1294 
   1295 	/* initial scan through the devices */
   1296 	for (i = 1; i < 16; i++) {
   1297 		send_string[0] = 0;
   1298 		command = ADBTALK(i, 3);
   1299 		result = adb_op_sync((Ptr)send_string, (Ptr)0,
   1300 		    (Ptr)0, (short)command);
   1301 
   1302 #ifdef ADB_DEBUG
   1303 		if (result && adb_debug) {
   1304 			printf_intr("adb_reinit: scan of device %d, result = %d, str = 0x%x\n",
   1305 					i,result,send_string[0]);
   1306 		}
   1307 #endif
   1308 
   1309 		if (send_string[0] != 0) {
   1310 			/* check for valid device handler */
   1311 			switch (send_string[2]) {
   1312 			case 0:
   1313 			case 0xfd:
   1314 			case 0xfe:
   1315 			case 0xff:
   1316 				continue;	/* invalid, skip */
   1317 			}
   1318 
   1319 			/* found a device */
   1320 			++ADBNumDevices;
   1321 			KASSERT(ADBNumDevices < 16);
   1322 			ADBDevTable[ADBNumDevices].devType =
   1323 				(int)send_string[2];
   1324 			ADBDevTable[ADBNumDevices].origAddr = i;
   1325 			ADBDevTable[ADBNumDevices].currentAddr = i;
   1326 			ADBDevTable[ADBNumDevices].DataAreaAddr =
   1327 			    (long)0;
   1328 			ADBDevTable[ADBNumDevices].ServiceRtPtr = (void *)0;
   1329 			pm_check_adb_devices(i);	/* tell pm driver device
   1330 							 * is here */
   1331 		}
   1332 	}
   1333 
   1334 	/* find highest unused address */
   1335 	for (saveptr = 15; saveptr > 0; saveptr--)
   1336 		if (-1 == get_adb_info(&data, saveptr))
   1337 			break;
   1338 
   1339 #ifdef ADB_DEBUG
   1340 	if (adb_debug & 0x80) {
   1341 		printf_intr("first free is: 0x%02x\n", saveptr);
   1342 		printf_intr("devices: %i\n", ADBNumDevices);
   1343 	}
   1344 #endif
   1345 
   1346 	nonewtimes = 0;		/* no loops w/o new devices */
   1347 	while (saveptr > 0 && nonewtimes++ < 11) {
   1348 		for (i = 1; i <= ADBNumDevices; i++) {
   1349 			device = ADBDevTable[i].currentAddr;
   1350 #ifdef ADB_DEBUG
   1351 			if (adb_debug & 0x80)
   1352 				printf_intr("moving device 0x%02x to 0x%02x "
   1353 				    "(index 0x%02x)  ", device, saveptr, i);
   1354 #endif
   1355 
   1356 			/* send TALK R3 to address */
   1357 			command = ADBTALK(device, 3);
   1358 			adb_op_sync((Ptr)send_string, (Ptr)0,
   1359 			    (Ptr)0, (short)command);
   1360 
   1361 			/* move device to higher address */
   1362 			command = ADBLISTEN(device, 3);
   1363 			send_string[0] = 2;
   1364 			send_string[1] = (u_char)(saveptr | 0x60);
   1365 			send_string[2] = 0xfe;
   1366 			adb_op_sync((Ptr)send_string, (Ptr)0,
   1367 			    (Ptr)0, (short)command);
   1368 			delay(500);
   1369 
   1370 			/* send TALK R3 - anything at new address? */
   1371 			command = ADBTALK(saveptr, 3);
   1372 			adb_op_sync((Ptr)send_string, (Ptr)0,
   1373 			    (Ptr)0, (short)command);
   1374 			delay(500);
   1375 
   1376 			if (send_string[0] == 0) {
   1377 #ifdef ADB_DEBUG
   1378 				if (adb_debug & 0x80)
   1379 					printf_intr("failed, continuing\n");
   1380 #endif
   1381 				continue;
   1382 			}
   1383 
   1384 			/* send TALK R3 - anything at old address? */
   1385 			command = ADBTALK(device, 3);
   1386 			result = adb_op_sync((Ptr)send_string, (Ptr)0,
   1387 			    (Ptr)0, (short)command);
   1388 			if (send_string[0] != 0) {
   1389 				/* check for valid device handler */
   1390 				switch (send_string[2]) {
   1391 				case 0:
   1392 				case 0xfd:
   1393 				case 0xfe:
   1394 				case 0xff:
   1395 					continue;	/* invalid, skip */
   1396 				}
   1397 
   1398 				/* new device found */
   1399 				/* update data for previously moved device */
   1400 				ADBDevTable[i].currentAddr = saveptr;
   1401 #ifdef ADB_DEBUG
   1402 				if (adb_debug & 0x80)
   1403 					printf_intr("old device at index %i\n",i);
   1404 #endif
   1405 				/* add new device in table */
   1406 #ifdef ADB_DEBUG
   1407 				if (adb_debug & 0x80)
   1408 					printf_intr("new device found\n");
   1409 #endif
   1410 				if (saveptr > ADBNumDevices) {
   1411 					++ADBNumDevices;
   1412 					KASSERT(ADBNumDevices < 16);
   1413 				}
   1414 				ADBDevTable[ADBNumDevices].devType =
   1415 					(int)send_string[2];
   1416 				ADBDevTable[ADBNumDevices].origAddr = device;
   1417 				ADBDevTable[ADBNumDevices].currentAddr = device;
   1418 				/* These will be set correctly in adbsys.c */
   1419 				/* Until then, unsol. data will be ignored. */
   1420 				ADBDevTable[ADBNumDevices].DataAreaAddr =
   1421 				    (long)0;
   1422 				ADBDevTable[ADBNumDevices].ServiceRtPtr =
   1423 				    (void *)0;
   1424 				/* find next unused address */
   1425 				for (x = saveptr; x > 0; x--) {
   1426 					if (-1 == get_adb_info(&data, x)) {
   1427 						saveptr = x;
   1428 						break;
   1429 					}
   1430 				}
   1431 				if (x == 0)
   1432 					saveptr = 0;
   1433 #ifdef ADB_DEBUG
   1434 				if (adb_debug & 0x80)
   1435 					printf_intr("new free is 0x%02x\n",
   1436 					    saveptr);
   1437 #endif
   1438 				nonewtimes = 0;
   1439 				/* tell pm driver device is here */
   1440 				pm_check_adb_devices(device);
   1441 			} else {
   1442 #ifdef ADB_DEBUG
   1443 				if (adb_debug & 0x80)
   1444 					printf_intr("moving back...\n");
   1445 #endif
   1446 				/* move old device back */
   1447 				command = ADBLISTEN(saveptr, 3);
   1448 				send_string[0] = 2;
   1449 				send_string[1] = (u_char)(device | 0x60);
   1450 				send_string[2] = 0xfe;
   1451 				adb_op_sync((Ptr)send_string, (Ptr)0,
   1452 				    (Ptr)0, (short)command);
   1453 				delay(1000);
   1454 			}
   1455 		}
   1456 	}
   1457 
   1458 #ifdef ADB_DEBUG
   1459 	if (adb_debug) {
   1460 		for (i = 1; i <= ADBNumDevices; i++) {
   1461 			x = get_ind_adb_info(&data, i);
   1462 			if (x != -1)
   1463 				printf_intr("index 0x%x, addr 0x%x, type 0x%x\n",
   1464 				    i, x, data.devType);
   1465 		}
   1466 	}
   1467 #endif
   1468 
   1469 #ifndef MRG_ADB
   1470 	/* enable the programmer's switch, if we have one */
   1471 	adb_prog_switch_enable();
   1472 #endif
   1473 
   1474 #ifdef ADB_DEBUG
   1475 	if (adb_debug) {
   1476 		if (0 == ADBNumDevices)	/* tell user if no devices found */
   1477 			printf_intr("adb: no devices found\n");
   1478 	}
   1479 #endif
   1480 
   1481 	adbStarting = 0;	/* not starting anymore */
   1482 #ifdef ADB_DEBUG
   1483 	if (adb_debug)
   1484 		printf_intr("adb: ADBReInit complete\n");
   1485 #endif
   1486 
   1487 	if (adbHardware == ADB_HW_CUDA)
   1488 		callout_reset(&adb_cuda_tickle_ch, ADB_TICKLE_TICKS,
   1489 		    (void *)adb_cuda_tickle, NULL);
   1490 
   1491 	if (adbHardware != ADB_HW_PMU)	/* ints must be on for PMU? */
   1492 		splx(s);
   1493 }
   1494 
   1495 /*
   1496  * adb_cmd_result
   1497  *
   1498  * This routine lets the caller know whether the specified adb command string
   1499  * should expect a returned result, such as a TALK command.
   1500  *
   1501  * returns: 0 if a result should be expected
   1502  *          1 if a result should NOT be expected
   1503  */
   1504 int
   1505 adb_cmd_result(u_char *in)
   1506 {
   1507 	switch (adbHardware) {
   1508 	case ADB_HW_II:
   1509 		/* was it an ADB talk command? */
   1510 		if ((in[1] & 0x0c) == 0x0c)
   1511 			return 0;
   1512 		return 1;
   1513 
   1514 	case ADB_HW_IISI:
   1515 	case ADB_HW_CUDA:
   1516 		/* was it an ADB talk command? */
   1517 		if ((in[1] == 0x00) && ((in[2] & 0x0c) == 0x0c))
   1518 			return 0;
   1519 		/* was it an RTC/PRAM read date/time? */
   1520 		if ((in[1] == 0x01) && (in[2] == 0x03))
   1521 			return 0;
   1522 		return 1;
   1523 
   1524 	case ADB_HW_PMU:
   1525 		return 1;
   1526 
   1527 	case ADB_HW_UNKNOWN:
   1528 	default:
   1529 		return 1;
   1530 	}
   1531 }
   1532 
   1533 
   1534 /*
   1535  * adb_cmd_extra
   1536  *
   1537  * This routine lets the caller know whether the specified adb command string
   1538  * may have extra data appended to the end of it, such as a LISTEN command.
   1539  *
   1540  * returns: 0 if extra data is allowed
   1541  *          1 if extra data is NOT allowed
   1542  */
   1543 int
   1544 adb_cmd_extra(u_char *in)
   1545 {
   1546 	switch (adbHardware) {
   1547 		case ADB_HW_II:
   1548 		if ((in[1] & 0x0c) == 0x08)	/* was it a listen command? */
   1549 			return 0;
   1550 		return 1;
   1551 
   1552 	case ADB_HW_IISI:
   1553 	case ADB_HW_CUDA:
   1554 		/*
   1555 		 * TO DO: support needs to be added to recognize RTC and PRAM
   1556 		 * commands
   1557 		 */
   1558 		if ((in[2] & 0x0c) == 0x08)	/* was it a listen command? */
   1559 			return 0;
   1560 		/* add others later */
   1561 		return 1;
   1562 
   1563 	case ADB_HW_PMU:
   1564 		return 1;
   1565 
   1566 	case ADB_HW_UNKNOWN:
   1567 	default:
   1568 		return 1;
   1569 	}
   1570 }
   1571 
   1572 /*
   1573  * adb_op_sync
   1574  *
   1575  * This routine does exactly what the adb_op routine does, except that after
   1576  * the adb_op is called, it waits until the return value is present before
   1577  * returning.
   1578  *
   1579  * NOTE: The user specified compRout is ignored, since this routine specifies
   1580  * it's own to adb_op, which is why you really called this in the first place
   1581  * anyway.
   1582  */
   1583 int
   1584 adb_op_sync(Ptr buffer, Ptr compRout, Ptr data, short command)
   1585 {
   1586 	int tmout;
   1587 	int result;
   1588 	volatile int flag = 0;
   1589 
   1590 	result = adb_op(buffer, (void *)adb_op_comprout,
   1591 	    (void *)&flag, command);	/* send command */
   1592 	if (result == 0) {		/* send ok? */
   1593 		/*
   1594 		 * Total time to wait is calculated as follows:
   1595 		 *  - Tlt (stop to start time): 260 usec
   1596 		 *  - start bit: 100 usec
   1597 		 *  - up to 8 data bytes: 64 * 100 usec = 6400 usec
   1598 		 *  - stop bit (with SRQ): 140 usec
   1599 		 * Total: 6900 usec
   1600 		 *
   1601 		 * This is the total time allowed by the specification.  Any
   1602 		 * device that doesn't conform to this will fail to operate
   1603 		 * properly on some Apple systems.  In spite of this we
   1604 		 * double the time to wait; some Cuda-based apparently
   1605 		 * queues some commands and allows the main CPU to continue
   1606 		 * processing (radical concept, eh?).  To be safe, allow
   1607 		 * time for two complete ADB transactions to occur.
   1608 		 */
   1609 		for (tmout = 13800; !flag && tmout >= 10; tmout -= 10)
   1610 			delay(10);
   1611 		if (!flag && tmout > 0)
   1612 			delay(tmout);
   1613 
   1614 		if (!flag)
   1615 			result = -2;
   1616 	}
   1617 
   1618 	return result;
   1619 }
   1620 
   1621 /*
   1622  * adb_op_comprout
   1623  *
   1624  * This function is used by the adb_op_sync routine so it knows when the
   1625  * function is done.
   1626  */
   1627 void
   1628 adb_op_comprout(buffer, compdata, cmd)
   1629 	caddr_t buffer, compdata;
   1630 	int cmd;
   1631 {
   1632 	short *p = (short *)compdata;
   1633 
   1634 	*p = 1;
   1635 }
   1636 
   1637 void
   1638 adb_setup_hw_type(void)
   1639 {
   1640 	switch (adbHardware) {
   1641 	case ADB_HW_CUDA:
   1642 		adbSoftPower = 1;
   1643 		return;
   1644 
   1645 	case ADB_HW_PMU:
   1646 		adbSoftPower = 1;
   1647 		pm_setup_adb();
   1648 		return;
   1649 
   1650 	default:
   1651 		panic("unknown adb hardware");
   1652 	}
   1653 #if 0
   1654 	response = 0; /*mac68k_machine.machineid;*/
   1655 
   1656 	/*
   1657 	 * Determine what type of ADB hardware we are running on.
   1658 	 */
   1659 	switch (response) {
   1660 	case MACH_MACC610:		/* Centris 610 */
   1661 	case MACH_MACC650:		/* Centris 650 */
   1662 	case MACH_MACII:		/* II */
   1663 	case MACH_MACIICI:		/* IIci */
   1664 	case MACH_MACIICX:		/* IIcx */
   1665 	case MACH_MACIIX:		/* IIx */
   1666 	case MACH_MACQ610:		/* Quadra 610 */
   1667 	case MACH_MACQ650:		/* Quadra 650 */
   1668 	case MACH_MACQ700:		/* Quadra 700 */
   1669 	case MACH_MACQ800:		/* Quadra 800 */
   1670 	case MACH_MACSE30:		/* SE/30 */
   1671 		adbHardware = ADB_HW_II;
   1672 #ifdef ADB_DEBUG
   1673 		if (adb_debug)
   1674 			printf_intr("adb: using II series hardware support\n");
   1675 #endif
   1676 		break;
   1677 
   1678 	case MACH_MACCLASSICII:		/* Classic II */
   1679 	case MACH_MACLCII:		/* LC II, Performa 400/405/430 */
   1680 	case MACH_MACLCIII:		/* LC III, Performa 450 */
   1681 	case MACH_MACIISI:		/* IIsi */
   1682 	case MACH_MACIIVI:		/* IIvi */
   1683 	case MACH_MACIIVX:		/* IIvx */
   1684 	case MACH_MACP460:		/* Performa 460/465/467 */
   1685 	case MACH_MACP600:		/* Performa 600 */
   1686 		adbHardware = ADB_HW_IISI;
   1687 #ifdef ADB_DEBUG
   1688 		if (adb_debug)
   1689 			printf_intr("adb: using IIsi series hardware support\n");
   1690 #endif
   1691 		break;
   1692 
   1693 	case MACH_MACPB140:		/* PowerBook 140 */
   1694 	case MACH_MACPB145:		/* PowerBook 145 */
   1695 	case MACH_MACPB150:		/* PowerBook 150 */
   1696 	case MACH_MACPB160:		/* PowerBook 160 */
   1697 	case MACH_MACPB165:		/* PowerBook 165 */
   1698 	case MACH_MACPB165C:		/* PowerBook 165c */
   1699 	case MACH_MACPB170:		/* PowerBook 170 */
   1700 	case MACH_MACPB180:		/* PowerBook 180 */
   1701 	case MACH_MACPB180C:		/* PowerBook 180c */
   1702 		adbHardware = ADB_HW_PMU;
   1703 		pm_setup_adb();
   1704 #ifdef ADB_DEBUG
   1705 		if (adb_debug)
   1706 			printf_intr("adb: using PowerBook 100-series hardware support\n");
   1707 #endif
   1708 		break;
   1709 
   1710 	case MACH_MACPB210:		/* PowerBook Duo 210 */
   1711 	case MACH_MACPB230:		/* PowerBook Duo 230 */
   1712 	case MACH_MACPB250:		/* PowerBook Duo 250 */
   1713 	case MACH_MACPB270:		/* PowerBook Duo 270 */
   1714 	case MACH_MACPB280:		/* PowerBook Duo 280 */
   1715 	case MACH_MACPB280C:		/* PowerBook Duo 280c */
   1716 	case MACH_MACPB500:		/* PowerBook 500 series */
   1717 		adbHardware = ADB_HW_PMU;
   1718 		pm_setup_adb();
   1719 #ifdef ADB_DEBUG
   1720 		if (adb_debug)
   1721 			printf_intr("adb: using PowerBook Duo-series and PowerBook 500-series hardware support\n");
   1722 #endif
   1723 		break;
   1724 
   1725 	case MACH_MACC660AV:		/* Centris 660AV */
   1726 	case MACH_MACCCLASSIC:		/* Color Classic */
   1727 	case MACH_MACCCLASSICII:	/* Color Classic II */
   1728 	case MACH_MACLC475:		/* LC 475, Performa 475/476 */
   1729 	case MACH_MACLC475_33:		/* Clock-chipped 47x */
   1730 	case MACH_MACLC520:		/* LC 520 */
   1731 	case MACH_MACLC575:		/* LC 575, Performa 575/577/578 */
   1732 	case MACH_MACP550:		/* LC 550, Performa 550 */
   1733 	case MACH_MACP580:		/* Performa 580/588 */
   1734 	case MACH_MACQ605:		/* Quadra 605 */
   1735 	case MACH_MACQ605_33:		/* Clock-chipped Quadra 605 */
   1736 	case MACH_MACQ630:		/* LC 630, Performa 630, Quadra 630 */
   1737 	case MACH_MACQ840AV:		/* Quadra 840AV */
   1738 		adbHardware = ADB_HW_CUDA;
   1739 #ifdef ADB_DEBUG
   1740 		if (adb_debug)
   1741 			printf_intr("adb: using Cuda series hardware support\n");
   1742 #endif
   1743 		break;
   1744 	default:
   1745 		adbHardware = ADB_HW_UNKNOWN;
   1746 #ifdef ADB_DEBUG
   1747 		if (adb_debug) {
   1748 			printf_intr("adb: hardware type unknown for this machine\n");
   1749 			printf_intr("adb: ADB support is disabled\n");
   1750 		}
   1751 #endif
   1752 		break;
   1753 	}
   1754 
   1755 	/*
   1756 	 * Determine whether this machine has ADB based soft power.
   1757 	 */
   1758 	switch (response) {
   1759 	case MACH_MACCCLASSIC:		/* Color Classic */
   1760 	case MACH_MACCCLASSICII:	/* Color Classic II */
   1761 	case MACH_MACIISI:		/* IIsi */
   1762 	case MACH_MACIIVI:		/* IIvi */
   1763 	case MACH_MACIIVX:		/* IIvx */
   1764 	case MACH_MACLC520:		/* LC 520 */
   1765 	case MACH_MACLC575:		/* LC 575, Performa 575/577/578 */
   1766 	case MACH_MACP550:		/* LC 550, Performa 550 */
   1767 	case MACH_MACP600:		/* Performa 600 */
   1768 	case MACH_MACQ630:		/* LC 630, Performa 630, Quadra 630 */
   1769 	case MACH_MACQ840AV:		/* Quadra 840AV */
   1770 		adbSoftPower = 1;
   1771 		break;
   1772 	}
   1773 #endif
   1774 }
   1775 
   1776 int
   1777 count_adbs(void)
   1778 {
   1779 	int i;
   1780 	int found;
   1781 
   1782 	found = 0;
   1783 
   1784 	for (i = 1; i < 16; i++)
   1785 		if (0 != ADBDevTable[i].devType)
   1786 			found++;
   1787 
   1788 	return found;
   1789 }
   1790 
   1791 int
   1792 get_ind_adb_info(ADBDataBlock * info, int index)
   1793 {
   1794 	if ((index < 1) || (index > 15))	/* check range 1-15 */
   1795 		return (-1);
   1796 
   1797 #ifdef ADB_DEBUG
   1798 	if (adb_debug & 0x80)
   1799 		printf_intr("index 0x%x devType is: 0x%x\n", index,
   1800 		    ADBDevTable[index].devType);
   1801 #endif
   1802 	if (0 == ADBDevTable[index].devType)	/* make sure it's a valid entry */
   1803 		return (-1);
   1804 
   1805 	info->devType = ADBDevTable[index].devType;
   1806 	info->origADBAddr = ADBDevTable[index].origAddr;
   1807 	info->dbServiceRtPtr = (Ptr)ADBDevTable[index].ServiceRtPtr;
   1808 	info->dbDataAreaAddr = (Ptr)ADBDevTable[index].DataAreaAddr;
   1809 
   1810 	return (ADBDevTable[index].currentAddr);
   1811 }
   1812 
   1813 int
   1814 get_adb_info(ADBDataBlock * info, int adbAddr)
   1815 {
   1816 	int i;
   1817 
   1818 	if ((adbAddr < 1) || (adbAddr > 15))	/* check range 1-15 */
   1819 		return (-1);
   1820 
   1821 	for (i = 1; i < 15; i++)
   1822 		if (ADBDevTable[i].currentAddr == adbAddr) {
   1823 			info->devType = ADBDevTable[i].devType;
   1824 			info->origADBAddr = ADBDevTable[i].origAddr;
   1825 			info->dbServiceRtPtr = (Ptr)ADBDevTable[i].ServiceRtPtr;
   1826 			info->dbDataAreaAddr = ADBDevTable[i].DataAreaAddr;
   1827 			return 0;	/* found */
   1828 		}
   1829 
   1830 	return (-1);		/* not found */
   1831 }
   1832 
   1833 int
   1834 set_adb_info(ADBSetInfoBlock * info, int adbAddr)
   1835 {
   1836 	int i;
   1837 
   1838 	if ((adbAddr < 1) || (adbAddr > 15))	/* check range 1-15 */
   1839 		return (-1);
   1840 
   1841 	for (i = 1; i < 15; i++)
   1842 		if (ADBDevTable[i].currentAddr == adbAddr) {
   1843 			ADBDevTable[i].ServiceRtPtr =
   1844 			    (void *)(info->siServiceRtPtr);
   1845 			ADBDevTable[i].DataAreaAddr = info->siDataAreaAddr;
   1846 			return 0;	/* found */
   1847 		}
   1848 
   1849 	return (-1);		/* not found */
   1850 
   1851 }
   1852 
   1853 #ifndef MRG_ADB
   1854 
   1855 /* caller should really use machine-independant version: getPramTime */
   1856 /* this version does pseudo-adb access only */
   1857 int
   1858 adb_read_date_time(unsigned long *time)
   1859 {
   1860 	u_char output[ADB_MAX_MSG_LENGTH];
   1861 	int result;
   1862 	volatile int flag = 0;
   1863 
   1864 	switch (adbHardware) {
   1865 	case ADB_HW_II:
   1866 		return -1;
   1867 
   1868 	case ADB_HW_IISI:
   1869 		output[0] = 0x02;	/* 2 byte message */
   1870 		output[1] = 0x01;	/* to pram/rtc device */
   1871 		output[2] = 0x03;	/* read date/time */
   1872 		result = send_adb_IIsi((u_char *)output, (u_char *)output,
   1873 		    (void *)adb_op_comprout, (int *)&flag, (int)0);
   1874 		if (result != 0)	/* exit if not sent */
   1875 			return -1;
   1876 
   1877 		while (0 == flag)	/* wait for result */
   1878 			;
   1879 
   1880 		*time = (long)(*(long *)(output + 1));
   1881 		return 0;
   1882 
   1883 	case ADB_HW_PMU:
   1884 		pm_read_date_time(time);
   1885 		return 0;
   1886 
   1887 	case ADB_HW_CUDA:
   1888 		output[0] = 0x02;	/* 2 byte message */
   1889 		output[1] = 0x01;	/* to pram/rtc device */
   1890 		output[2] = 0x03;	/* read date/time */
   1891 		result = send_adb_cuda((u_char *)output, (u_char *)output,
   1892 		    (void *)adb_op_comprout, (void *)&flag, (int)0);
   1893 		if (result != 0)	/* exit if not sent */
   1894 			return -1;
   1895 
   1896 		while (0 == flag)	/* wait for result */
   1897 			;
   1898 
   1899 		memcpy(time, output + 1, 4);
   1900 		return 0;
   1901 
   1902 	case ADB_HW_UNKNOWN:
   1903 	default:
   1904 		return -1;
   1905 	}
   1906 }
   1907 
   1908 /* caller should really use machine-independant version: setPramTime */
   1909 /* this version does pseudo-adb access only */
   1910 int
   1911 adb_set_date_time(unsigned long time)
   1912 {
   1913 	u_char output[ADB_MAX_MSG_LENGTH];
   1914 	int result;
   1915 	volatile int flag = 0;
   1916 
   1917 	switch (adbHardware) {
   1918 
   1919 	case ADB_HW_CUDA:
   1920 		output[0] = 0x06;	/* 6 byte message */
   1921 		output[1] = 0x01;	/* to pram/rtc device */
   1922 		output[2] = 0x09;	/* set date/time */
   1923 		output[3] = (u_char)(time >> 24);
   1924 		output[4] = (u_char)(time >> 16);
   1925 		output[5] = (u_char)(time >> 8);
   1926 		output[6] = (u_char)(time);
   1927 		result = send_adb_cuda((u_char *)output, (u_char *)0,
   1928 		    (void *)adb_op_comprout, (void *)&flag, (int)0);
   1929 		if (result != 0)	/* exit if not sent */
   1930 			return -1;
   1931 
   1932 		while (0 == flag)	/* wait for send to finish */
   1933 			;
   1934 
   1935 		return 0;
   1936 
   1937 	case ADB_HW_PMU:
   1938 		pm_set_date_time(time);
   1939 		return 0;
   1940 
   1941 	case ADB_HW_II:
   1942 	case ADB_HW_IISI:
   1943 	case ADB_HW_UNKNOWN:
   1944 	default:
   1945 		return -1;
   1946 	}
   1947 }
   1948 
   1949 
   1950 int
   1951 adb_poweroff(void)
   1952 {
   1953 	u_char output[ADB_MAX_MSG_LENGTH];
   1954 	int result;
   1955 
   1956 	if (!adbSoftPower)
   1957 		return -1;
   1958 
   1959 	adb_polling = 1;
   1960 
   1961 	switch (adbHardware) {
   1962 	case ADB_HW_IISI:
   1963 		output[0] = 0x02;	/* 2 byte message */
   1964 		output[1] = 0x01;	/* to pram/rtc/soft-power device */
   1965 		output[2] = 0x0a;	/* set date/time */
   1966 		result = send_adb_IIsi((u_char *)output, (u_char *)0,
   1967 		    (void *)0, (void *)0, (int)0);
   1968 		if (result != 0)	/* exit if not sent */
   1969 			return -1;
   1970 
   1971 		for (;;);		/* wait for power off */
   1972 
   1973 		return 0;
   1974 
   1975 	case ADB_HW_PMU:
   1976 		pm_adb_poweroff();
   1977 
   1978 		for (;;);		/* wait for power off */
   1979 
   1980 		return 0;
   1981 
   1982 	case ADB_HW_CUDA:
   1983 		output[0] = 0x02;	/* 2 byte message */
   1984 		output[1] = 0x01;	/* to pram/rtc/soft-power device */
   1985 		output[2] = 0x0a;	/* set date/time */
   1986 		result = send_adb_cuda((u_char *)output, (u_char *)0,
   1987 		    (void *)0, (void *)0, (int)0);
   1988 		if (result != 0)	/* exit if not sent */
   1989 			return -1;
   1990 
   1991 		for (;;);		/* wait for power off */
   1992 
   1993 		return 0;
   1994 
   1995 	case ADB_HW_II:			/* II models don't do ADB soft power */
   1996 	case ADB_HW_UNKNOWN:
   1997 	default:
   1998 		return -1;
   1999 	}
   2000 }
   2001 
   2002 int
   2003 adb_prog_switch_enable(void)
   2004 {
   2005 	u_char output[ADB_MAX_MSG_LENGTH];
   2006 	int result;
   2007 	volatile int flag = 0;
   2008 
   2009 	switch (adbHardware) {
   2010 	case ADB_HW_IISI:
   2011 		output[0] = 0x03;	/* 3 byte message */
   2012 		output[1] = 0x01;	/* to pram/rtc/soft-power device */
   2013 		output[2] = 0x1c;	/* prog. switch control */
   2014 		output[3] = 0x01;	/* enable */
   2015 		result = send_adb_IIsi((u_char *)output, (u_char *)0,
   2016 		    (void *)adb_op_comprout, (void *)&flag, (int)0);
   2017 		if (result != 0)	/* exit if not sent */
   2018 			return -1;
   2019 
   2020 		while (0 == flag)	/* wait for send to finish */
   2021 			;
   2022 
   2023 		return 0;
   2024 
   2025 	case ADB_HW_PMU:
   2026 		return -1;
   2027 
   2028 	case ADB_HW_II:		/* II models don't do prog. switch */
   2029 	case ADB_HW_CUDA:	/* cuda doesn't do prog. switch TO DO: verify this */
   2030 	case ADB_HW_UNKNOWN:
   2031 	default:
   2032 		return -1;
   2033 	}
   2034 }
   2035 
   2036 int
   2037 adb_prog_switch_disable(void)
   2038 {
   2039 	u_char output[ADB_MAX_MSG_LENGTH];
   2040 	int result;
   2041 	volatile int flag = 0;
   2042 
   2043 	switch (adbHardware) {
   2044 	case ADB_HW_IISI:
   2045 		output[0] = 0x03;	/* 3 byte message */
   2046 		output[1] = 0x01;	/* to pram/rtc/soft-power device */
   2047 		output[2] = 0x1c;	/* prog. switch control */
   2048 		output[3] = 0x01;	/* disable */
   2049 		result = send_adb_IIsi((u_char *)output, (u_char *)0,
   2050 			(void *)adb_op_comprout, (void *)&flag, (int)0);
   2051 		if (result != 0)	/* exit if not sent */
   2052 			return -1;
   2053 
   2054 		while (0 == flag)	/* wait for send to finish */
   2055 			;
   2056 
   2057 		return 0;
   2058 
   2059 	case ADB_HW_PMU:
   2060 		return -1;
   2061 
   2062 	case ADB_HW_II:		/* II models don't do prog. switch */
   2063 	case ADB_HW_CUDA:	/* cuda doesn't do prog. switch */
   2064 	case ADB_HW_UNKNOWN:
   2065 	default:
   2066 		return -1;
   2067 	}
   2068 }
   2069 
   2070 int
   2071 CountADBs(void)
   2072 {
   2073 	return (count_adbs());
   2074 }
   2075 
   2076 void
   2077 ADBReInit(void)
   2078 {
   2079 	adb_reinit();
   2080 }
   2081 
   2082 int
   2083 GetIndADB(ADBDataBlock * info, int index)
   2084 {
   2085 	return (get_ind_adb_info(info, index));
   2086 }
   2087 
   2088 int
   2089 GetADBInfo(ADBDataBlock * info, int adbAddr)
   2090 {
   2091 	return (get_adb_info(info, adbAddr));
   2092 }
   2093 
   2094 int
   2095 SetADBInfo(ADBSetInfoBlock * info, int adbAddr)
   2096 {
   2097 	return (set_adb_info(info, adbAddr));
   2098 }
   2099 
   2100 int
   2101 ADBOp(Ptr buffer, Ptr compRout, Ptr data, short commandNum)
   2102 {
   2103 	return (adb_op(buffer, compRout, data, commandNum));
   2104 }
   2105 
   2106 #endif
   2107 
   2108 int
   2109 setsoftadb()
   2110 {
   2111 	callout_reset(&adb_soft_intr_ch, 1, (void *)adb_soft_intr, NULL);
   2112 	return 0;
   2113 }
   2114 
   2115 void
   2116 adb_cuda_autopoll()
   2117 {
   2118 	volatile int flag = 0;
   2119 	int result;
   2120 	u_char output[16];
   2121 
   2122 	output[0] = 0x03;	/* 3-byte message */
   2123 	output[1] = 0x01;	/* to pram/rtc device */
   2124 	output[2] = 0x01;	/* cuda autopoll */
   2125 	output[3] = 0x01;
   2126 	result = send_adb_cuda(output, output, adb_op_comprout, (void *)&flag,
   2127 			       0);
   2128 	if (result != 0)	/* exit if not sent */
   2129 		return;
   2130 
   2131 	while (flag == 0);	/* wait for result */
   2132 }
   2133 
   2134 void
   2135 adb_restart(void)
   2136 {
   2137 	int result;
   2138 	u_char output[16];
   2139 
   2140 	adb_polling = 1;
   2141 
   2142 	switch (adbHardware) {
   2143 	case ADB_HW_CUDA:
   2144 		output[0] = 0x02;	/* 2 byte message */
   2145 		output[1] = 0x01;	/* to pram/rtc/soft-power device */
   2146 		output[2] = 0x11;	/* restart */
   2147 		result = send_adb_cuda(output, NULL, NULL, NULL, 0);
   2148 		if (result != 0)	/* exit if not sent */
   2149 			return;
   2150 		while (1);		/* not return */
   2151 
   2152 	case ADB_HW_PMU:
   2153 		pm_adb_restart();
   2154 		while (1);		/* not return */
   2155 	}
   2156 }
   2157