adb_direct.c revision 1.31 1 /* $NetBSD: adb_direct.c,v 1.31 2005/06/05 18:49:49 nathanw Exp $ */
2
3 /* From: adb_direct.c 2.02 4/18/97 jpw */
4
5 /*
6 * Copyright (C) 1996, 1997 John P. Wittkoski
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by John P. Wittkoski.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*
36 * This code is rather messy, but I don't have time right now
37 * to clean it up as much as I would like.
38 * But it works, so I'm happy. :-) jpw
39 */
40
41 /*
42 * TO DO:
43 * - We could reduce the time spent in the adb_intr_* routines
44 * by having them save the incoming and outgoing data directly
45 * in the adbInbound and adbOutbound queues, as it would reduce
46 * the number of times we need to copy the data around. It
47 * would also make the code more readable and easier to follow.
48 * - (Related to above) Use the header part of adbCommand to
49 * reduce the number of copies we have to do of the data.
50 * - (Related to above) Actually implement the adbOutbound queue.
51 * This is fairly easy once you switch all the intr routines
52 * over to using adbCommand structs directly.
53 * - There is a bug in the state machine of adb_intr_cuda
54 * code that causes hangs, especially on 030 machines, probably
55 * because of some timing issues. Because I have been unable to
56 * determine the exact cause of this bug, I used the timeout function
57 * to check for and recover from this condition. If anyone finds
58 * the actual cause of this bug, the calls to timeout and the
59 * adb_cuda_tickle routine can be removed.
60 */
61
62 #include <sys/cdefs.h>
63 __KERNEL_RCSID(0, "$NetBSD: adb_direct.c,v 1.31 2005/06/05 18:49:49 nathanw Exp $");
64
65 #include <sys/param.h>
66 #include <sys/cdefs.h>
67 #include <sys/systm.h>
68 #include <sys/callout.h>
69 #include <sys/device.h>
70
71 #include <machine/param.h>
72 #include <machine/cpu.h>
73 #include <machine/adbsys.h>
74
75 #include <macppc/dev/viareg.h>
76 #include <macppc/dev/adbvar.h>
77 #include <macppc/dev/pm_direct.h>
78
79 #define printf_intr printf
80
81 #ifdef DEBUG
82 #ifndef ADB_DEBUG
83 #define ADB_DEBUG
84 #endif
85 #endif
86
87 /* some misc. leftovers */
88 #define vPB 0x0000
89 #define vPB3 0x08
90 #define vPB4 0x10
91 #define vPB5 0x20
92 #define vSR_INT 0x04
93 #define vSR_OUT 0x10
94
95 /* the type of ADB action that we are currently preforming */
96 #define ADB_ACTION_NOTREADY 0x1 /* has not been initialized yet */
97 #define ADB_ACTION_IDLE 0x2 /* the bus is currently idle */
98 #define ADB_ACTION_OUT 0x3 /* sending out a command */
99 #define ADB_ACTION_IN 0x4 /* receiving data */
100 #define ADB_ACTION_POLLING 0x5 /* polling - II only */
101
102 /*
103 * These describe the state of the ADB bus itself, although they
104 * don't necessarily correspond directly to ADB states.
105 * Note: these are not really used in the IIsi code.
106 */
107 #define ADB_BUS_UNKNOWN 0x1 /* we don't know yet - all models */
108 #define ADB_BUS_IDLE 0x2 /* bus is idle - all models */
109 #define ADB_BUS_CMD 0x3 /* starting a command - II models */
110 #define ADB_BUS_ODD 0x4 /* the "odd" state - II models */
111 #define ADB_BUS_EVEN 0x5 /* the "even" state - II models */
112 #define ADB_BUS_ACTIVE 0x6 /* active state - IIsi models */
113 #define ADB_BUS_ACK 0x7 /* currently ACKing - IIsi models */
114
115 /*
116 * Shortcuts for setting or testing the VIA bit states.
117 * Not all shortcuts are used for every type of ADB hardware.
118 */
119 #define ADB_SET_STATE_IDLE_CUDA() via_reg_or(VIA1, vBufB, (vPB4 | vPB5))
120 #define ADB_SET_STATE_TIP() via_reg_and(VIA1, vBufB, ~vPB5)
121 #define ADB_CLR_STATE_TIP() via_reg_or(VIA1, vBufB, vPB5)
122 #define ADB_TOGGLE_STATE_ACK_CUDA() via_reg_xor(VIA1, vBufB, vPB4)
123 #define ADB_SET_STATE_ACKOFF_CUDA() via_reg_or(VIA1, vBufB, vPB4)
124 #define ADB_SET_SR_INPUT() via_reg_and(VIA1, vACR, ~vSR_OUT)
125 #define ADB_SET_SR_OUTPUT() via_reg_or(VIA1, vACR, vSR_OUT)
126 #define ADB_SR() read_via_reg(VIA1, vSR)
127 #define ADB_VIA_INTR_ENABLE() write_via_reg(VIA1, vIER, 0x84)
128 #define ADB_VIA_INTR_DISABLE() write_via_reg(VIA1, vIER, 0x04)
129 #define ADB_INTR_IS_OFF (vPB3 == (read_via_reg(VIA1, vBufB) & vPB3))
130 #define ADB_INTR_IS_ON (0 == (read_via_reg(VIA1, vBufB) & vPB3))
131 #define ADB_SR_INTR_IS_OFF (0 == (read_via_reg(VIA1, vIFR) & vSR_INT))
132 #define ADB_SR_INTR_IS_ON (vSR_INT == (read_via_reg(VIA1, \
133 vIFR) & vSR_INT))
134
135 /*
136 * This is the delay that is required (in uS) between certain
137 * ADB transactions. The actual timing delay for for each uS is
138 * calculated at boot time to account for differences in machine speed.
139 */
140 #define ADB_DELAY 150
141
142 /*
143 * Maximum ADB message length; includes space for data, result, and
144 * device code - plus a little for safety.
145 */
146 #define ADB_MAX_MSG_LENGTH 16
147 #define ADB_MAX_HDR_LENGTH 8
148
149 #define ADB_QUEUE 32
150 #define ADB_TICKLE_TICKS 4
151
152 /*
153 * A structure for storing information about each ADB device.
154 */
155 struct ADBDevEntry {
156 void (*ServiceRtPtr) __P((void));
157 void *DataAreaAddr;
158 int devType;
159 int origAddr;
160 int currentAddr;
161 };
162
163 /*
164 * Used to hold ADB commands that are waiting to be sent out.
165 */
166 struct adbCmdHoldEntry {
167 u_char outBuf[ADB_MAX_MSG_LENGTH]; /* our message */
168 u_char *saveBuf; /* buffer to know where to save result */
169 u_char *compRout; /* completion routine pointer */
170 u_char *data; /* completion routine data pointer */
171 };
172
173 /*
174 * Eventually used for two separate queues, the queue between
175 * the upper and lower halves, and the outgoing packet queue.
176 * TO DO: adbCommand can replace all of adbCmdHoldEntry eventually
177 */
178 struct adbCommand {
179 u_char header[ADB_MAX_HDR_LENGTH]; /* not used yet */
180 u_char data[ADB_MAX_MSG_LENGTH]; /* packet data only */
181 u_char *saveBuf; /* where to save result */
182 u_char *compRout; /* completion routine pointer */
183 u_char *compData; /* completion routine data pointer */
184 u_int cmd; /* the original command for this data */
185 u_int unsol; /* 1 if packet was unsolicited */
186 u_int ack_only; /* 1 for no special processing */
187 };
188
189 /*
190 * A few variables that we need and their initial values.
191 */
192 int adbHardware = ADB_HW_UNKNOWN;
193 int adbActionState = ADB_ACTION_NOTREADY;
194 int adbWaiting = 0; /* waiting for return data from the device */
195 int adbWriteDelay = 0; /* working on (or waiting to do) a write */
196
197 int adbWaitingCmd = 0; /* ADB command we are waiting for */
198 u_char *adbBuffer = (long)0; /* pointer to user data area */
199 void *adbCompRout = (long)0; /* pointer to the completion routine */
200 void *adbCompData = (long)0; /* pointer to the completion routine data */
201 int adbStarting = 1; /* doing ADBReInit so do polling differently */
202
203 u_char adbInputBuffer[ADB_MAX_MSG_LENGTH]; /* data input buffer */
204 u_char adbOutputBuffer[ADB_MAX_MSG_LENGTH]; /* data output buffer */
205
206 int adbSentChars = 0; /* how many characters we have sent */
207
208 struct ADBDevEntry ADBDevTable[16]; /* our ADB device table */
209 int ADBNumDevices; /* num. of ADB devices found with ADBReInit */
210
211 struct adbCommand adbInbound[ADB_QUEUE]; /* incoming queue */
212 int adbInCount = 0; /* how many packets in in queue */
213 int adbInHead = 0; /* head of in queue */
214 int adbInTail = 0; /* tail of in queue */
215 struct adbCommand adbOutbound[ADB_QUEUE]; /* outgoing queue - not used yet */
216 int adbOutCount = 0; /* how many packets in out queue */
217 int adbOutHead = 0; /* head of out queue */
218 int adbOutTail = 0; /* tail of out queue */
219
220 int tickle_count = 0; /* how many tickles seen for this packet? */
221 int tickle_serial = 0; /* the last packet tickled */
222 int adb_cuda_serial = 0; /* the current packet */
223
224 struct callout adb_cuda_tickle_ch = CALLOUT_INITIALIZER;
225 struct callout adb_soft_intr_ch = CALLOUT_INITIALIZER;
226
227 volatile u_char *Via1Base;
228 extern int adb_polling; /* Are we polling? */
229
230 void pm_setup_adb __P((void));
231 void pm_check_adb_devices __P((int));
232 int pm_adb_op __P((u_char *, void *, void *, int));
233 void pm_init_adb_device __P((void));
234
235 /*
236 * The following are private routines.
237 */
238 #ifdef ADB_DEBUG
239 void print_single __P((u_char *));
240 #endif
241 void adb_soft_intr __P((void));
242 int send_adb_cuda __P((u_char *, u_char *, void *, void *, int));
243 void adb_intr_cuda_test __P((void));
244 void adb_cuda_tickle __P((void));
245 void adb_pass_up __P((struct adbCommand *));
246 void adb_op_comprout __P((caddr_t, caddr_t, int));
247 void adb_reinit __P((void));
248 int count_adbs __P((void));
249 int get_ind_adb_info __P((ADBDataBlock *, int));
250 int get_adb_info __P((ADBDataBlock *, int));
251 int set_adb_info __P((ADBSetInfoBlock *, int));
252 void adb_setup_hw_type __P((void));
253 int adb_op __P((Ptr, Ptr, Ptr, short));
254 int adb_op_sync __P((Ptr, Ptr, Ptr, short));
255 void adb_hw_setup __P((void));
256 int adb_cmd_result __P((u_char *));
257 int adb_cmd_extra __P((u_char *));
258 /* we should create this and it will be the public version */
259 int send_adb __P((u_char *, void *, void *));
260
261 int setsoftadb __P((void));
262
263 #ifdef ADB_DEBUG
264 /*
265 * print_single
266 * Diagnostic display routine. Displays the hex values of the
267 * specified elements of the u_char. The length of the "string"
268 * is in [0].
269 */
270 void
271 print_single(str)
272 u_char *str;
273 {
274 int x;
275
276 if (str == 0) {
277 printf_intr("no data - null pointer\n");
278 return;
279 }
280 if (*str == 0) {
281 printf_intr("nothing returned\n");
282 return;
283 }
284 if (*str > 20) {
285 printf_intr("ADB: ACK > 20 no way!\n");
286 *str = 20;
287 }
288 printf_intr("(length=0x%x):", *str);
289 for (x = 1; x <= *str; x++)
290 printf_intr(" 0x%02x", str[x]);
291 printf_intr("\n");
292 }
293 #endif
294
295 void
296 adb_cuda_tickle(void)
297 {
298 volatile int s;
299
300 if (adbActionState == ADB_ACTION_IN) {
301 if (tickle_serial == adb_cuda_serial) {
302 if (++tickle_count > 0) {
303 s = splhigh();
304 adbActionState = ADB_ACTION_IDLE;
305 adbInputBuffer[0] = 0;
306 ADB_SET_STATE_IDLE_CUDA();
307 splx(s);
308 }
309 } else {
310 tickle_serial = adb_cuda_serial;
311 tickle_count = 0;
312 }
313 } else {
314 tickle_serial = adb_cuda_serial;
315 tickle_count = 0;
316 }
317
318 callout_reset(&adb_cuda_tickle_ch, ADB_TICKLE_TICKS,
319 (void *)adb_cuda_tickle, NULL);
320 }
321
322 /*
323 * called when when an adb interrupt happens
324 *
325 * Cuda version of adb_intr
326 * TO DO: do we want to add some calls to intr_dispatch() here to
327 * grab serial interrupts?
328 */
329 int
330 adb_intr_cuda(void *arg)
331 {
332 volatile int i, ending;
333 volatile unsigned int s;
334 struct adbCommand packet;
335 uint8_t reg;
336
337 s = splhigh(); /* can't be too careful - might be called */
338 /* from a routine, NOT an interrupt */
339
340 reg = read_via_reg(VIA1, vIFR); /* Read the interrupts */
341 if ((reg & 0x80) == 0) {
342 splx(s);
343 return 0; /* No interrupts to process */
344 }
345
346 write_via_reg(VIA1, vIFR, reg & 0x7f); /* Clear 'em */
347
348 ADB_VIA_INTR_DISABLE(); /* disable ADB interrupt on IIs. */
349
350 switch_start:
351 switch (adbActionState) {
352 case ADB_ACTION_IDLE:
353 /*
354 * This is an unexpected packet, so grab the first (dummy)
355 * byte, set up the proper vars, and tell the chip we are
356 * starting to receive the packet by setting the TIP bit.
357 */
358 adbInputBuffer[1] = ADB_SR();
359 adb_cuda_serial++;
360 if (ADB_INTR_IS_OFF) /* must have been a fake start */
361 break;
362
363 ADB_SET_SR_INPUT();
364 ADB_SET_STATE_TIP();
365
366 adbInputBuffer[0] = 1;
367 adbActionState = ADB_ACTION_IN;
368 #ifdef ADB_DEBUG
369 if (adb_debug)
370 printf_intr("idle 0x%02x ", adbInputBuffer[1]);
371 #endif
372 break;
373
374 case ADB_ACTION_IN:
375 adbInputBuffer[++adbInputBuffer[0]] = ADB_SR();
376 /* intr off means this is the last byte (end of frame) */
377 if (ADB_INTR_IS_OFF)
378 ending = 1;
379 else
380 ending = 0;
381
382 if (1 == ending) { /* end of message? */
383 #ifdef ADB_DEBUG
384 if (adb_debug) {
385 printf_intr("in end 0x%02x ",
386 adbInputBuffer[adbInputBuffer[0]]);
387 print_single(adbInputBuffer);
388 }
389 #endif
390
391 /*
392 * Are we waiting AND does this packet match what we
393 * are waiting for AND is it coming from either the
394 * ADB or RTC/PRAM sub-device? This section _should_
395 * recognize all ADB and RTC/PRAM type commands, but
396 * there may be more... NOTE: commands are always at
397 * [4], even for RTC/PRAM commands.
398 */
399 /* set up data for adb_pass_up */
400 memcpy(packet.data, adbInputBuffer, adbInputBuffer[0] + 1);
401
402 if ((adbWaiting == 1) &&
403 (adbInputBuffer[4] == adbWaitingCmd) &&
404 ((adbInputBuffer[2] == 0x00) ||
405 (adbInputBuffer[2] == 0x01))) {
406 packet.saveBuf = adbBuffer;
407 packet.compRout = adbCompRout;
408 packet.compData = adbCompData;
409 packet.unsol = 0;
410 packet.ack_only = 0;
411 adb_pass_up(&packet);
412
413 adbWaitingCmd = 0; /* reset "waiting" vars */
414 adbWaiting = 0;
415 adbBuffer = (long)0;
416 adbCompRout = (long)0;
417 adbCompData = (long)0;
418 } else {
419 packet.unsol = 1;
420 packet.ack_only = 0;
421 adb_pass_up(&packet);
422 }
423
424
425 /* reset vars and signal the end of this frame */
426 adbActionState = ADB_ACTION_IDLE;
427 adbInputBuffer[0] = 0;
428 ADB_SET_STATE_IDLE_CUDA();
429 /*ADB_SET_SR_INPUT();*/
430
431 /*
432 * If there is something waiting to be sent out,
433 * the set everything up and send the first byte.
434 */
435 if (adbWriteDelay == 1) {
436 delay(ADB_DELAY); /* required */
437 adbSentChars = 0;
438 adbActionState = ADB_ACTION_OUT;
439 /*
440 * If the interrupt is on, we were too slow
441 * and the chip has already started to send
442 * something to us, so back out of the write
443 * and start a read cycle.
444 */
445 if (ADB_INTR_IS_ON) {
446 ADB_SET_SR_INPUT();
447 ADB_SET_STATE_IDLE_CUDA();
448 adbSentChars = 0;
449 adbActionState = ADB_ACTION_IDLE;
450 adbInputBuffer[0] = 0;
451 break;
452 }
453 /*
454 * If we got here, it's ok to start sending
455 * so load the first byte and tell the chip
456 * we want to send.
457 */
458 ADB_SET_STATE_TIP();
459 ADB_SET_SR_OUTPUT();
460 write_via_reg(VIA1, vSR, adbOutputBuffer[adbSentChars + 1]);
461 }
462 } else {
463 ADB_TOGGLE_STATE_ACK_CUDA();
464 #ifdef ADB_DEBUG
465 if (adb_debug)
466 printf_intr("in 0x%02x ",
467 adbInputBuffer[adbInputBuffer[0]]);
468 #endif
469 }
470 break;
471
472 case ADB_ACTION_OUT:
473 i = ADB_SR(); /* reset SR-intr in IFR */
474 #ifdef ADB_DEBUG
475 if (adb_debug)
476 printf_intr("intr out 0x%02x ", i);
477 #endif
478
479 adbSentChars++;
480 if (ADB_INTR_IS_ON) { /* ADB intr low during write */
481 #ifdef ADB_DEBUG
482 if (adb_debug)
483 printf_intr("intr was on ");
484 #endif
485 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
486 ADB_SET_STATE_IDLE_CUDA();
487 adbSentChars = 0; /* must start all over */
488 adbActionState = ADB_ACTION_IDLE; /* new state */
489 adbInputBuffer[0] = 0;
490 adbWriteDelay = 1; /* must retry when done with
491 * read */
492 delay(ADB_DELAY);
493 goto switch_start; /* process next state right
494 * now */
495 break;
496 }
497 if (adbOutputBuffer[0] == adbSentChars) { /* check for done */
498 if (0 == adb_cmd_result(adbOutputBuffer)) { /* do we expect data
499 * back? */
500 adbWaiting = 1; /* signal waiting for return */
501 adbWaitingCmd = adbOutputBuffer[2]; /* save waiting command */
502 } else { /* no talk, so done */
503 /* set up stuff for adb_pass_up */
504 memcpy(packet.data, adbInputBuffer, adbInputBuffer[0] + 1);
505 packet.saveBuf = adbBuffer;
506 packet.compRout = adbCompRout;
507 packet.compData = adbCompData;
508 packet.cmd = adbWaitingCmd;
509 packet.unsol = 0;
510 packet.ack_only = 1;
511 adb_pass_up(&packet);
512
513 /* reset "waiting" vars, just in case */
514 adbWaitingCmd = 0;
515 adbBuffer = (long)0;
516 adbCompRout = (long)0;
517 adbCompData = (long)0;
518 }
519
520 adbWriteDelay = 0; /* done writing */
521 adbActionState = ADB_ACTION_IDLE; /* signal bus is idle */
522 ADB_SET_SR_INPUT();
523 ADB_SET_STATE_IDLE_CUDA();
524 #ifdef ADB_DEBUG
525 if (adb_debug)
526 printf_intr("write done ");
527 #endif
528 } else {
529 write_via_reg(VIA1, vSR, adbOutputBuffer[adbSentChars + 1]); /* send next byte */
530 ADB_TOGGLE_STATE_ACK_CUDA(); /* signal byte ready to
531 * shift */
532 #ifdef ADB_DEBUG
533 if (adb_debug)
534 printf_intr("toggle ");
535 #endif
536 }
537 break;
538
539 case ADB_ACTION_NOTREADY:
540 #ifdef ADB_DEBUG
541 if (adb_debug)
542 printf_intr("adb: not yet initialized\n");
543 #endif
544 break;
545
546 default:
547 #ifdef ADB_DEBUG
548 if (adb_debug)
549 printf_intr("intr: unknown ADB state\n");
550 #endif
551 break;
552 }
553
554 ADB_VIA_INTR_ENABLE(); /* enable ADB interrupt on IIs. */
555
556 splx(s); /* restore */
557
558 return 1;
559 } /* end adb_intr_cuda */
560
561
562 int
563 send_adb_cuda(u_char * in, u_char * buffer, void *compRout, void *data, int
564 command)
565 {
566 int s, len;
567
568 #ifdef ADB_DEBUG
569 if (adb_debug)
570 printf_intr("SEND\n");
571 #endif
572
573 if (adbActionState == ADB_ACTION_NOTREADY)
574 return 1;
575
576 /* Don't interrupt while we are messing with the ADB */
577 s = splhigh();
578
579 if ((adbActionState == ADB_ACTION_IDLE) && /* ADB available? */
580 (ADB_INTR_IS_OFF)) { /* and no incoming interrupt? */
581 } else
582 if (adbWriteDelay == 0) /* it's busy, but is anything waiting? */
583 adbWriteDelay = 1; /* if no, then we'll "queue"
584 * it up */
585 else {
586 splx(s);
587 return 1; /* really busy! */
588 }
589
590 #ifdef ADB_DEBUG
591 if (adb_debug)
592 printf_intr("QUEUE\n");
593 #endif
594 if ((long)in == (long)0) { /* need to convert? */
595 /*
596 * Don't need to use adb_cmd_extra here because this section
597 * will be called ONLY when it is an ADB command (no RTC or
598 * PRAM)
599 */
600 if ((command & 0x0c) == 0x08) /* copy addl data ONLY if
601 * doing a listen! */
602 len = buffer[0]; /* length of additional data */
603 else
604 len = 0;/* no additional data */
605
606 adbOutputBuffer[0] = 2 + len; /* dev. type + command + addl.
607 * data */
608 adbOutputBuffer[1] = 0x00; /* mark as an ADB command */
609 adbOutputBuffer[2] = (u_char)command; /* load command */
610
611 /* copy additional output data, if any */
612 memcpy(adbOutputBuffer + 3, buffer + 1, len);
613 } else
614 /* if data ready, just copy over */
615 memcpy(adbOutputBuffer, in, in[0] + 2);
616
617 adbSentChars = 0; /* nothing sent yet */
618 adbBuffer = buffer; /* save buffer to know where to save result */
619 adbCompRout = compRout; /* save completion routine pointer */
620 adbCompData = data; /* save completion routine data pointer */
621 adbWaitingCmd = adbOutputBuffer[2]; /* save wait command */
622
623 if (adbWriteDelay != 1) { /* start command now? */
624 #ifdef ADB_DEBUG
625 if (adb_debug)
626 printf_intr("out start NOW");
627 #endif
628 delay(ADB_DELAY);
629 adbActionState = ADB_ACTION_OUT; /* set next state */
630 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
631 write_via_reg(VIA1, vSR, adbOutputBuffer[adbSentChars + 1]); /* load byte for output */
632 ADB_SET_STATE_ACKOFF_CUDA();
633 ADB_SET_STATE_TIP(); /* tell ADB that we want to send */
634 }
635 adbWriteDelay = 1; /* something in the write "queue" */
636
637 splx(s);
638
639 if ((s & (1 << 18)) || adb_polling) /* XXX were VIA1 interrupts blocked ? */
640 /* poll until byte done */
641 while ((adbActionState != ADB_ACTION_IDLE) || (ADB_INTR_IS_ON)
642 || (adbWaiting == 1))
643 if (ADB_SR_INTR_IS_ON) { /* wait for "interrupt" */
644 adb_intr_cuda(NULL); /* process it */
645 adb_soft_intr();
646 }
647
648 return 0;
649 } /* send_adb_cuda */
650
651 int
652 adb_intr(void *arg)
653 {
654 switch (adbHardware) {
655 case ADB_HW_PMU:
656 return pm_intr(arg);
657 break;
658
659 case ADB_HW_CUDA:
660 return adb_intr_cuda(arg);
661 break;
662
663 case ADB_HW_UNKNOWN:
664 break;
665 }
666 return 0;
667 }
668
669
670 /*
671 * adb_pass_up is called by the interrupt-time routines.
672 * It takes the raw packet data that was received from the
673 * device and puts it into the queue that the upper half
674 * processes. It then signals for a soft ADB interrupt which
675 * will eventually call the upper half routine (adb_soft_intr).
676 *
677 * If in->unsol is 0, then this is either the notification
678 * that the packet was sent (on a LISTEN, for example), or the
679 * response from the device (on a TALK). The completion routine
680 * is called only if the user specified one.
681 *
682 * If in->unsol is 1, then this packet was unsolicited and
683 * so we look up the device in the ADB device table to determine
684 * what it's default service routine is.
685 *
686 * If in->ack_only is 1, then we really only need to call
687 * the completion routine, so don't do any other stuff.
688 *
689 * Note that in->data contains the packet header AND data,
690 * while adbInbound[]->data contains ONLY data.
691 *
692 * Note: Called only at interrupt time. Assumes this.
693 */
694 void
695 adb_pass_up(struct adbCommand *in)
696 {
697 int start = 0, len = 0, cmd = 0;
698 ADBDataBlock block;
699
700 /* temp for testing */
701 /*u_char *buffer = 0;*/
702 /*u_char *compdata = 0;*/
703 /*u_char *comprout = 0;*/
704
705 if (adbInCount >= ADB_QUEUE) {
706 #ifdef ADB_DEBUG
707 if (adb_debug)
708 printf_intr("adb: ring buffer overflow\n");
709 #endif
710 return;
711 }
712
713 if (in->ack_only) {
714 len = in->data[0];
715 cmd = in->cmd;
716 start = 0;
717 } else {
718 switch (adbHardware) {
719 case ADB_HW_CUDA:
720 /* If it's unsolicited, accept only ADB data for now */
721 if (in->unsol)
722 if (0 != in->data[2])
723 return;
724 cmd = in->data[4];
725 if (in->data[0] < 5)
726 len = 0;
727 else
728 len = in->data[0]-4;
729 start = 4;
730 break;
731
732 case ADB_HW_PMU:
733 cmd = in->data[1];
734 if (in->data[0] < 2)
735 len = 0;
736 else
737 len = in->data[0]-1;
738 start = 1;
739 break;
740
741 case ADB_HW_UNKNOWN:
742 return;
743 }
744
745 /* Make sure there is a valid device entry for this device */
746 if (in->unsol) {
747 /* ignore unsolicited data during adbreinit */
748 if (adbStarting)
749 return;
750 /* get device's comp. routine and data area */
751 if (-1 == get_adb_info(&block, ADB_CMDADDR(cmd)))
752 return;
753 }
754 }
755
756 /*
757 * If this is an unsolicited packet, we need to fill in
758 * some info so adb_soft_intr can process this packet
759 * properly. If it's not unsolicited, then use what
760 * the caller sent us.
761 */
762 if (in->unsol) {
763 adbInbound[adbInTail].compRout = (void *)block.dbServiceRtPtr;
764 adbInbound[adbInTail].compData = (void *)block.dbDataAreaAddr;
765 adbInbound[adbInTail].saveBuf = (void *)adbInbound[adbInTail].data;
766 } else {
767 adbInbound[adbInTail].compRout = (void *)in->compRout;
768 adbInbound[adbInTail].compData = (void *)in->compData;
769 adbInbound[adbInTail].saveBuf = (void *)in->saveBuf;
770 }
771
772 #ifdef ADB_DEBUG
773 if (adb_debug && in->data[1] == 2)
774 printf_intr("adb: caught error\n");
775 #endif
776
777 /* copy the packet data over */
778 /*
779 * TO DO: If the *_intr routines fed their incoming data
780 * directly into an adbCommand struct, which is passed to
781 * this routine, then we could eliminate this copy.
782 */
783 memcpy(adbInbound[adbInTail].data + 1, in->data + start + 1, len);
784 adbInbound[adbInTail].data[0] = len;
785 adbInbound[adbInTail].cmd = cmd;
786
787 adbInCount++;
788 if (++adbInTail >= ADB_QUEUE)
789 adbInTail = 0;
790
791 /*
792 * If the debugger is running, call upper half manually.
793 * Otherwise, trigger a soft interrupt to handle the rest later.
794 */
795 if (adb_polling)
796 adb_soft_intr();
797 else
798 setsoftadb();
799
800 return;
801 }
802
803
804 /*
805 * Called to process the packets after they have been
806 * placed in the incoming queue.
807 *
808 */
809 void
810 adb_soft_intr(void)
811 {
812 int s;
813 int cmd = 0;
814 u_char *buffer = 0;
815 u_char *comprout = 0;
816 u_char *compdata = 0;
817
818 #if 0
819 s = splhigh();
820 printf_intr("sr: %x\n", (s & 0x0700));
821 splx(s);
822 #endif
823
824 /*delay(2*ADB_DELAY);*/
825
826 while (adbInCount) {
827 #ifdef ADB_DEBUG
828 if (adb_debug & 0x80)
829 printf_intr("%x %x %x ",
830 adbInCount, adbInHead, adbInTail);
831 #endif
832 /* get the data we need from the queue */
833 buffer = adbInbound[adbInHead].saveBuf;
834 comprout = adbInbound[adbInHead].compRout;
835 compdata = adbInbound[adbInHead].compData;
836 cmd = adbInbound[adbInHead].cmd;
837
838 /* copy over data to data area if it's valid */
839 /*
840 * Note that for unsol packets we don't want to copy the
841 * data anywhere, so buffer was already set to 0.
842 * For ack_only buffer was set to 0, so don't copy.
843 */
844 if (buffer)
845 memcpy(buffer, adbInbound[adbInHead].data,
846 adbInbound[adbInHead].data[0] + 1);
847
848 #ifdef ADB_DEBUG
849 if (adb_debug & 0x80) {
850 printf_intr("%p %p %p %x ",
851 buffer, comprout, compdata, (short)cmd);
852 printf_intr("buf: ");
853 print_single(adbInbound[adbInHead].data);
854 }
855 #endif
856 /* Remove the packet from the queue before calling
857 * the completion routine, so that the completion
858 * routine can reentrantly process the queue. For
859 * example, this happens when polling is turned on
860 * by entering the debuger by keystroke.
861 */
862 s = splhigh();
863 adbInCount--;
864 if (++adbInHead >= ADB_QUEUE)
865 adbInHead = 0;
866 splx(s);
867
868 /* call default completion routine if it's valid */
869 if (comprout) {
870 void (*f)(caddr_t, caddr_t, int) =
871 (void (*)(caddr_t, caddr_t, int))comprout;
872
873 (*f)(buffer, compdata, cmd);
874 }
875 }
876 return;
877 }
878
879
880 /*
881 * This is my version of the ADBOp routine. It mainly just calls the
882 * hardware-specific routine.
883 *
884 * data : pointer to data area to be used by compRout
885 * compRout : completion routine
886 * buffer : for LISTEN: points to data to send - MAX 8 data bytes,
887 * byte 0 = # of bytes
888 * : for TALK: points to place to save return data
889 * command : the adb command to send
890 * result : 0 = success
891 * : -1 = could not complete
892 */
893 int
894 adb_op(Ptr buffer, Ptr compRout, Ptr data, short command)
895 {
896 int result;
897
898 switch (adbHardware) {
899 case ADB_HW_PMU:
900 result = pm_adb_op((u_char *)buffer, (void *)compRout,
901 (void *)data, (int)command);
902
903 if (result == 0)
904 return 0;
905 else
906 return -1;
907 break;
908
909 case ADB_HW_CUDA:
910 result = send_adb_cuda((u_char *)0, (u_char *)buffer,
911 (void *)compRout, (void *)data, (int)command);
912 if (result == 0)
913 return 0;
914 else
915 return -1;
916 break;
917
918 case ADB_HW_UNKNOWN:
919 default:
920 return -1;
921 }
922 }
923
924
925 /*
926 * adb_hw_setup
927 * This routine sets up the possible machine specific hardware
928 * config (mainly VIA settings) for the various models.
929 */
930 void
931 adb_hw_setup(void)
932 {
933 volatile int i;
934
935 switch (adbHardware) {
936 case ADB_HW_PMU:
937 /*
938 * XXX - really PM_VIA_CLR_INTR - should we put it in
939 * pm_direct.h?
940 */
941 write_via_reg(VIA1, vIFR, 0x90); /* clear interrupt */
942 break;
943
944 case ADB_HW_CUDA:
945 via_reg_or(VIA1, vDirB, 0x30); /* register B bits 4 and 5:
946 * outputs */
947 via_reg_and(VIA1, vDirB, 0xf7); /* register B bit 3: input */
948 via_reg_and(VIA1, vACR, ~vSR_OUT); /* make sure SR is set
949 * to IN */
950 write_via_reg(VIA1, vACR, (read_via_reg(VIA1, vACR) | 0x0c) & ~0x10);
951 adbActionState = ADB_ACTION_IDLE; /* used by all types of
952 * hardware */
953 write_via_reg(VIA1, vIER, 0x84);/* make sure VIA interrupts
954 * are on */
955 ADB_SET_STATE_IDLE_CUDA(); /* set ADB bus state to idle */
956
957 /* sort of a device reset */
958 i = ADB_SR(); /* clear interrupt */
959 ADB_VIA_INTR_DISABLE(); /* no interrupts while clearing */
960 ADB_SET_STATE_IDLE_CUDA(); /* reset state to idle */
961 delay(ADB_DELAY);
962 ADB_SET_STATE_TIP(); /* signal start of frame */
963 delay(ADB_DELAY);
964 ADB_TOGGLE_STATE_ACK_CUDA();
965 delay(ADB_DELAY);
966 ADB_CLR_STATE_TIP();
967 delay(ADB_DELAY);
968 ADB_SET_STATE_IDLE_CUDA(); /* back to idle state */
969 i = ADB_SR(); /* clear interrupt */
970 ADB_VIA_INTR_ENABLE(); /* ints ok now */
971 break;
972
973 case ADB_HW_UNKNOWN:
974 default:
975 write_via_reg(VIA1, vIER, 0x04);/* turn interrupts off - TO
976 * DO: turn PB ints off? */
977 return;
978 break;
979 }
980 }
981
982 /*
983 * adb_reinit sets up the adb stuff
984 *
985 */
986 void
987 adb_reinit(void)
988 {
989 u_char send_string[ADB_MAX_MSG_LENGTH];
990 ADBDataBlock data; /* temp. holder for getting device info */
991 volatile int i, x;
992 int s = 0; /* XXX: gcc */
993 int command;
994 int result;
995 int saveptr; /* point to next free relocation address */
996 int device;
997 int nonewtimes; /* times thru loop w/o any new devices */
998
999 /* Make sure we are not interrupted while building the table. */
1000 if (adbHardware != ADB_HW_PMU) /* ints must be on for PMU? */
1001 s = splhigh();
1002
1003 ADBNumDevices = 0; /* no devices yet */
1004
1005 /* Let intr routines know we are running reinit */
1006 adbStarting = 1;
1007
1008 /*
1009 * Initialize the ADB table. For now, we'll always use the same table
1010 * that is defined at the beginning of this file - no mallocs.
1011 */
1012 for (i = 0; i < 16; i++)
1013 ADBDevTable[i].devType = 0;
1014
1015 adb_setup_hw_type(); /* setup hardware type */
1016
1017 adb_hw_setup(); /* init the VIA bits and hard reset ADB */
1018
1019 delay(1000);
1020
1021 /* send an ADB reset first */
1022 result = adb_op_sync((Ptr)0, (Ptr)0, (Ptr)0, (short)0x00);
1023 delay(200000);
1024
1025 #ifdef ADB_DEBUG
1026 if (result && adb_debug) {
1027 printf_intr("adb_reinit: failed to reset, result = %d\n",result);
1028 }
1029 #endif
1030
1031 /*
1032 * Probe for ADB devices. Probe devices 1-15 quickly to determine
1033 * which device addresses are in use and which are free. For each
1034 * address that is in use, move the device at that address to a higher
1035 * free address. Continue doing this at that address until no device
1036 * responds at that address. Then move the last device that was moved
1037 * back to the original address. Do this for the remaining addresses
1038 * that we determined were in use.
1039 *
1040 * When finished, do this entire process over again with the updated
1041 * list of in use addresses. Do this until no new devices have been
1042 * found in 20 passes though the in use address list. (This probably
1043 * seems long and complicated, but it's the best way to detect multiple
1044 * devices at the same address - sometimes it takes a couple of tries
1045 * before the collision is detected.)
1046 */
1047
1048 /* initial scan through the devices */
1049 for (i = 1; i < 16; i++) {
1050 send_string[0] = 0;
1051 command = ADBTALK(i, 3);
1052 result = adb_op_sync((Ptr)send_string, (Ptr)0,
1053 (Ptr)0, (short)command);
1054
1055 #ifdef ADB_DEBUG
1056 if (result && adb_debug) {
1057 printf_intr("adb_reinit: scan of device %d, result = %d, str = 0x%x\n",
1058 i,result,send_string[0]);
1059 }
1060 #endif
1061
1062 if (send_string[0] != 0) {
1063 /* check for valid device handler */
1064 switch (send_string[2]) {
1065 case 0:
1066 case 0xfd:
1067 case 0xfe:
1068 case 0xff:
1069 continue; /* invalid, skip */
1070 }
1071
1072 /* found a device */
1073 ++ADBNumDevices;
1074 KASSERT(ADBNumDevices < 16);
1075 ADBDevTable[ADBNumDevices].devType =
1076 (int)send_string[2];
1077 ADBDevTable[ADBNumDevices].origAddr = i;
1078 ADBDevTable[ADBNumDevices].currentAddr = i;
1079 ADBDevTable[ADBNumDevices].DataAreaAddr =
1080 (long)0;
1081 ADBDevTable[ADBNumDevices].ServiceRtPtr = (void *)0;
1082 pm_check_adb_devices(i); /* tell pm driver device
1083 * is here */
1084 }
1085 }
1086
1087 /* find highest unused address */
1088 for (saveptr = 15; saveptr > 0; saveptr--)
1089 if (-1 == get_adb_info(&data, saveptr))
1090 break;
1091
1092 #ifdef ADB_DEBUG
1093 if (adb_debug & 0x80) {
1094 printf_intr("first free is: 0x%02x\n", saveptr);
1095 printf_intr("devices: %i\n", ADBNumDevices);
1096 }
1097 #endif
1098
1099 nonewtimes = 0; /* no loops w/o new devices */
1100 while (saveptr > 0 && nonewtimes++ < 11) {
1101 for (i = 1; i <= ADBNumDevices; i++) {
1102 device = ADBDevTable[i].currentAddr;
1103 #ifdef ADB_DEBUG
1104 if (adb_debug & 0x80)
1105 printf_intr("moving device 0x%02x to 0x%02x "
1106 "(index 0x%02x) ", device, saveptr, i);
1107 #endif
1108
1109 /* send TALK R3 to address */
1110 command = ADBTALK(device, 3);
1111 adb_op_sync((Ptr)send_string, (Ptr)0,
1112 (Ptr)0, (short)command);
1113
1114 /* move device to higher address */
1115 command = ADBLISTEN(device, 3);
1116 send_string[0] = 2;
1117 send_string[1] = (u_char)(saveptr | 0x60);
1118 send_string[2] = 0xfe;
1119 adb_op_sync((Ptr)send_string, (Ptr)0,
1120 (Ptr)0, (short)command);
1121 delay(500);
1122
1123 /* send TALK R3 - anything at new address? */
1124 command = ADBTALK(saveptr, 3);
1125 adb_op_sync((Ptr)send_string, (Ptr)0,
1126 (Ptr)0, (short)command);
1127 delay(500);
1128
1129 if (send_string[0] == 0) {
1130 #ifdef ADB_DEBUG
1131 if (adb_debug & 0x80)
1132 printf_intr("failed, continuing\n");
1133 #endif
1134 continue;
1135 }
1136
1137 /* send TALK R3 - anything at old address? */
1138 command = ADBTALK(device, 3);
1139 result = adb_op_sync((Ptr)send_string, (Ptr)0,
1140 (Ptr)0, (short)command);
1141 if (send_string[0] != 0) {
1142 /* check for valid device handler */
1143 switch (send_string[2]) {
1144 case 0:
1145 case 0xfd:
1146 case 0xfe:
1147 case 0xff:
1148 continue; /* invalid, skip */
1149 }
1150
1151 /* new device found */
1152 /* update data for previously moved device */
1153 ADBDevTable[i].currentAddr = saveptr;
1154 #ifdef ADB_DEBUG
1155 if (adb_debug & 0x80)
1156 printf_intr("old device at index %i\n",i);
1157 #endif
1158 /* add new device in table */
1159 #ifdef ADB_DEBUG
1160 if (adb_debug & 0x80)
1161 printf_intr("new device found\n");
1162 #endif
1163 if (saveptr > ADBNumDevices) {
1164 ++ADBNumDevices;
1165 KASSERT(ADBNumDevices < 16);
1166 }
1167 ADBDevTable[ADBNumDevices].devType =
1168 (int)send_string[2];
1169 ADBDevTable[ADBNumDevices].origAddr = device;
1170 ADBDevTable[ADBNumDevices].currentAddr = device;
1171 /* These will be set correctly in adbsys.c */
1172 /* Until then, unsol. data will be ignored. */
1173 ADBDevTable[ADBNumDevices].DataAreaAddr =
1174 (long)0;
1175 ADBDevTable[ADBNumDevices].ServiceRtPtr =
1176 (void *)0;
1177 /* find next unused address */
1178 for (x = saveptr; x > 0; x--) {
1179 if (-1 == get_adb_info(&data, x)) {
1180 saveptr = x;
1181 break;
1182 }
1183 }
1184 if (x == 0)
1185 saveptr = 0;
1186 #ifdef ADB_DEBUG
1187 if (adb_debug & 0x80)
1188 printf_intr("new free is 0x%02x\n",
1189 saveptr);
1190 #endif
1191 nonewtimes = 0;
1192 /* tell pm driver device is here */
1193 pm_check_adb_devices(device);
1194 } else {
1195 #ifdef ADB_DEBUG
1196 if (adb_debug & 0x80)
1197 printf_intr("moving back...\n");
1198 #endif
1199 /* move old device back */
1200 command = ADBLISTEN(saveptr, 3);
1201 send_string[0] = 2;
1202 send_string[1] = (u_char)(device | 0x60);
1203 send_string[2] = 0xfe;
1204 adb_op_sync((Ptr)send_string, (Ptr)0,
1205 (Ptr)0, (short)command);
1206 delay(1000);
1207 }
1208 }
1209 }
1210
1211 #ifdef ADB_DEBUG
1212 if (adb_debug) {
1213 for (i = 1; i <= ADBNumDevices; i++) {
1214 x = get_ind_adb_info(&data, i);
1215 if (x != -1)
1216 printf_intr("index 0x%x, addr 0x%x, type 0x%x\n",
1217 i, x, data.devType);
1218 }
1219 }
1220 #endif
1221
1222 #ifdef ADB_DEBUG
1223 if (adb_debug) {
1224 if (0 == ADBNumDevices) /* tell user if no devices found */
1225 printf_intr("adb: no devices found\n");
1226 }
1227 #endif
1228
1229 adbStarting = 0; /* not starting anymore */
1230 #ifdef ADB_DEBUG
1231 if (adb_debug)
1232 printf_intr("adb: ADBReInit complete\n");
1233 #endif
1234
1235 if (adbHardware == ADB_HW_CUDA)
1236 callout_reset(&adb_cuda_tickle_ch, ADB_TICKLE_TICKS,
1237 (void *)adb_cuda_tickle, NULL);
1238
1239 if (adbHardware != ADB_HW_PMU) /* ints must be on for PMU? */
1240 splx(s);
1241 }
1242
1243 /*
1244 * adb_cmd_result
1245 *
1246 * This routine lets the caller know whether the specified adb command string
1247 * should expect a returned result, such as a TALK command.
1248 *
1249 * returns: 0 if a result should be expected
1250 * 1 if a result should NOT be expected
1251 */
1252 int
1253 adb_cmd_result(u_char *in)
1254 {
1255 switch (adbHardware) {
1256 case ADB_HW_CUDA:
1257 /* was it an ADB talk command? */
1258 if ((in[1] == 0x00) && ((in[2] & 0x0c) == 0x0c))
1259 return 0;
1260 /* was it an RTC/PRAM read date/time? */
1261 if ((in[1] == 0x01) && (in[2] == 0x03))
1262 return 0;
1263 return 1;
1264
1265 case ADB_HW_PMU:
1266 return 1;
1267
1268 case ADB_HW_UNKNOWN:
1269 default:
1270 return 1;
1271 }
1272 }
1273
1274
1275 /*
1276 * adb_cmd_extra
1277 *
1278 * This routine lets the caller know whether the specified adb command string
1279 * may have extra data appended to the end of it, such as a LISTEN command.
1280 *
1281 * returns: 0 if extra data is allowed
1282 * 1 if extra data is NOT allowed
1283 */
1284 int
1285 adb_cmd_extra(u_char *in)
1286 {
1287 switch (adbHardware) {
1288 case ADB_HW_CUDA:
1289 /*
1290 * TO DO: support needs to be added to recognize RTC and PRAM
1291 * commands
1292 */
1293 if ((in[2] & 0x0c) == 0x08) /* was it a listen command? */
1294 return 0;
1295 /* add others later */
1296 return 1;
1297
1298 case ADB_HW_PMU:
1299 return 1;
1300
1301 case ADB_HW_UNKNOWN:
1302 default:
1303 return 1;
1304 }
1305 }
1306
1307 /*
1308 * adb_op_sync
1309 *
1310 * This routine does exactly what the adb_op routine does, except that after
1311 * the adb_op is called, it waits until the return value is present before
1312 * returning.
1313 *
1314 * NOTE: The user specified compRout is ignored, since this routine specifies
1315 * it's own to adb_op, which is why you really called this in the first place
1316 * anyway.
1317 */
1318 int
1319 adb_op_sync(Ptr buffer, Ptr compRout, Ptr data, short command)
1320 {
1321 int tmout;
1322 int result;
1323 volatile int flag = 0;
1324
1325 result = adb_op(buffer, (void *)adb_op_comprout,
1326 (void *)&flag, command); /* send command */
1327 if (result == 0) { /* send ok? */
1328 /*
1329 * Total time to wait is calculated as follows:
1330 * - Tlt (stop to start time): 260 usec
1331 * - start bit: 100 usec
1332 * - up to 8 data bytes: 64 * 100 usec = 6400 usec
1333 * - stop bit (with SRQ): 140 usec
1334 * Total: 6900 usec
1335 *
1336 * This is the total time allowed by the specification. Any
1337 * device that doesn't conform to this will fail to operate
1338 * properly on some Apple systems. In spite of this we
1339 * double the time to wait; some Cuda-based apparently
1340 * queues some commands and allows the main CPU to continue
1341 * processing (radical concept, eh?). To be safe, allow
1342 * time for two complete ADB transactions to occur.
1343 */
1344 for (tmout = 13800; !flag && tmout >= 10; tmout -= 10)
1345 delay(10);
1346 if (!flag && tmout > 0)
1347 delay(tmout);
1348
1349 if (!flag)
1350 result = -2;
1351 }
1352
1353 return result;
1354 }
1355
1356 /*
1357 * adb_op_comprout
1358 *
1359 * This function is used by the adb_op_sync routine so it knows when the
1360 * function is done.
1361 */
1362 void
1363 adb_op_comprout(buffer, compdata, cmd)
1364 caddr_t buffer, compdata;
1365 int cmd;
1366 {
1367 short *p = (short *)compdata;
1368
1369 *p = 1;
1370 }
1371
1372 void
1373 adb_setup_hw_type(void)
1374 {
1375 switch (adbHardware) {
1376 case ADB_HW_CUDA:
1377 return;
1378
1379 case ADB_HW_PMU:
1380 pm_setup_adb();
1381 return;
1382
1383 default:
1384 panic("unknown adb hardware");
1385 }
1386 }
1387
1388 int
1389 count_adbs(void)
1390 {
1391 int i;
1392 int found;
1393
1394 found = 0;
1395
1396 for (i = 1; i < 16; i++)
1397 if (0 != ADBDevTable[i].devType)
1398 found++;
1399
1400 return found;
1401 }
1402
1403 int
1404 get_ind_adb_info(ADBDataBlock * info, int index)
1405 {
1406 if ((index < 1) || (index > 15)) /* check range 1-15 */
1407 return (-1);
1408
1409 #ifdef ADB_DEBUG
1410 if (adb_debug & 0x80)
1411 printf_intr("index 0x%x devType is: 0x%x\n", index,
1412 ADBDevTable[index].devType);
1413 #endif
1414 if (0 == ADBDevTable[index].devType) /* make sure it's a valid entry */
1415 return (-1);
1416
1417 info->devType = ADBDevTable[index].devType;
1418 info->origADBAddr = ADBDevTable[index].origAddr;
1419 info->dbServiceRtPtr = (Ptr)ADBDevTable[index].ServiceRtPtr;
1420 info->dbDataAreaAddr = (Ptr)ADBDevTable[index].DataAreaAddr;
1421
1422 return (ADBDevTable[index].currentAddr);
1423 }
1424
1425 int
1426 get_adb_info(ADBDataBlock * info, int adbAddr)
1427 {
1428 int i;
1429
1430 if ((adbAddr < 1) || (adbAddr > 15)) /* check range 1-15 */
1431 return (-1);
1432
1433 for (i = 1; i < 15; i++)
1434 if (ADBDevTable[i].currentAddr == adbAddr) {
1435 info->devType = ADBDevTable[i].devType;
1436 info->origADBAddr = ADBDevTable[i].origAddr;
1437 info->dbServiceRtPtr = (Ptr)ADBDevTable[i].ServiceRtPtr;
1438 info->dbDataAreaAddr = ADBDevTable[i].DataAreaAddr;
1439 return 0; /* found */
1440 }
1441
1442 return (-1); /* not found */
1443 }
1444
1445 int
1446 set_adb_info(ADBSetInfoBlock * info, int adbAddr)
1447 {
1448 int i;
1449
1450 if ((adbAddr < 1) || (adbAddr > 15)) /* check range 1-15 */
1451 return (-1);
1452
1453 for (i = 1; i < 15; i++)
1454 if (ADBDevTable[i].currentAddr == adbAddr) {
1455 ADBDevTable[i].ServiceRtPtr =
1456 (void *)(info->siServiceRtPtr);
1457 ADBDevTable[i].DataAreaAddr = info->siDataAreaAddr;
1458 return 0; /* found */
1459 }
1460
1461 return (-1); /* not found */
1462
1463 }
1464
1465 #ifndef MRG_ADB
1466
1467 /* caller should really use machine-independant version: getPramTime */
1468 /* this version does pseudo-adb access only */
1469 int
1470 adb_read_date_time(unsigned long *time)
1471 {
1472 u_char output[ADB_MAX_MSG_LENGTH];
1473 int result;
1474 volatile int flag = 0;
1475
1476 switch (adbHardware) {
1477 case ADB_HW_PMU:
1478 pm_read_date_time(time);
1479 return 0;
1480
1481 case ADB_HW_CUDA:
1482 output[0] = 0x02; /* 2 byte message */
1483 output[1] = 0x01; /* to pram/rtc device */
1484 output[2] = 0x03; /* read date/time */
1485 result = send_adb_cuda((u_char *)output, (u_char *)output,
1486 (void *)adb_op_comprout, (void *)&flag, (int)0);
1487 if (result != 0) /* exit if not sent */
1488 return -1;
1489
1490 while (0 == flag) /* wait for result */
1491 ;
1492
1493 memcpy(time, output + 1, 4);
1494 return 0;
1495
1496 case ADB_HW_UNKNOWN:
1497 default:
1498 return -1;
1499 }
1500 }
1501
1502 /* caller should really use machine-independant version: setPramTime */
1503 /* this version does pseudo-adb access only */
1504 int
1505 adb_set_date_time(unsigned long time)
1506 {
1507 u_char output[ADB_MAX_MSG_LENGTH];
1508 int result;
1509 volatile int flag = 0;
1510
1511 switch (adbHardware) {
1512
1513 case ADB_HW_CUDA:
1514 output[0] = 0x06; /* 6 byte message */
1515 output[1] = 0x01; /* to pram/rtc device */
1516 output[2] = 0x09; /* set date/time */
1517 output[3] = (u_char)(time >> 24);
1518 output[4] = (u_char)(time >> 16);
1519 output[5] = (u_char)(time >> 8);
1520 output[6] = (u_char)(time);
1521 result = send_adb_cuda((u_char *)output, (u_char *)0,
1522 (void *)adb_op_comprout, (void *)&flag, (int)0);
1523 if (result != 0) /* exit if not sent */
1524 return -1;
1525
1526 while (0 == flag) /* wait for send to finish */
1527 ;
1528
1529 return 0;
1530
1531 case ADB_HW_PMU:
1532 pm_set_date_time(time);
1533 return 0;
1534
1535 case ADB_HW_UNKNOWN:
1536 default:
1537 return -1;
1538 }
1539 }
1540
1541
1542 int
1543 adb_poweroff(void)
1544 {
1545 u_char output[ADB_MAX_MSG_LENGTH];
1546 int result;
1547
1548 adb_polling = 1;
1549
1550 switch (adbHardware) {
1551 case ADB_HW_PMU:
1552 pm_adb_poweroff();
1553
1554 for (;;); /* wait for power off */
1555
1556 return 0;
1557
1558 case ADB_HW_CUDA:
1559 output[0] = 0x02; /* 2 byte message */
1560 output[1] = 0x01; /* to pram/rtc/soft-power device */
1561 output[2] = 0x0a; /* set date/time */
1562 result = send_adb_cuda((u_char *)output, (u_char *)0,
1563 (void *)0, (void *)0, (int)0);
1564 if (result != 0) /* exit if not sent */
1565 return -1;
1566
1567 for (;;); /* wait for power off */
1568
1569 return 0;
1570
1571 case ADB_HW_UNKNOWN:
1572 default:
1573 return -1;
1574 }
1575 }
1576
1577 int
1578 CountADBs(void)
1579 {
1580 return (count_adbs());
1581 }
1582
1583 void
1584 ADBReInit(void)
1585 {
1586 adb_reinit();
1587 }
1588
1589 int
1590 GetIndADB(ADBDataBlock * info, int index)
1591 {
1592 return (get_ind_adb_info(info, index));
1593 }
1594
1595 int
1596 GetADBInfo(ADBDataBlock * info, int adbAddr)
1597 {
1598 return (get_adb_info(info, adbAddr));
1599 }
1600
1601 int
1602 SetADBInfo(ADBSetInfoBlock * info, int adbAddr)
1603 {
1604 return (set_adb_info(info, adbAddr));
1605 }
1606
1607 int
1608 ADBOp(Ptr buffer, Ptr compRout, Ptr data, short commandNum)
1609 {
1610 return (adb_op(buffer, compRout, data, commandNum));
1611 }
1612
1613 #endif
1614
1615 int
1616 setsoftadb()
1617 {
1618 callout_reset(&adb_soft_intr_ch, 1, (void *)adb_soft_intr, NULL);
1619 return 0;
1620 }
1621
1622 void
1623 adb_cuda_autopoll()
1624 {
1625 volatile int flag = 0;
1626 int result;
1627 u_char output[16];
1628
1629 output[0] = 0x03; /* 3-byte message */
1630 output[1] = 0x01; /* to pram/rtc device */
1631 output[2] = 0x01; /* cuda autopoll */
1632 output[3] = 0x01;
1633 result = send_adb_cuda(output, output, adb_op_comprout, (void *)&flag,
1634 0);
1635 if (result != 0) /* exit if not sent */
1636 return;
1637
1638 while (flag == 0); /* wait for result */
1639 }
1640
1641 void
1642 adb_restart(void)
1643 {
1644 int result;
1645 u_char output[16];
1646
1647 adb_polling = 1;
1648
1649 switch (adbHardware) {
1650 case ADB_HW_CUDA:
1651 output[0] = 0x02; /* 2 byte message */
1652 output[1] = 0x01; /* to pram/rtc/soft-power device */
1653 output[2] = 0x11; /* restart */
1654 result = send_adb_cuda(output, NULL, NULL, NULL, 0);
1655 if (result != 0) /* exit if not sent */
1656 return;
1657 while (1); /* not return */
1658
1659 case ADB_HW_PMU:
1660 pm_adb_restart();
1661 while (1); /* not return */
1662 }
1663 }
1664