adb_direct.c revision 1.35 1 /* $NetBSD: adb_direct.c,v 1.35 2006/11/24 22:04:23 wiz Exp $ */
2
3 /* From: adb_direct.c 2.02 4/18/97 jpw */
4
5 /*
6 * Copyright (C) 1996, 1997 John P. Wittkoski
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by John P. Wittkoski.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*
36 * This code is rather messy, but I don't have time right now
37 * to clean it up as much as I would like.
38 * But it works, so I'm happy. :-) jpw
39 */
40
41 /*
42 * TO DO:
43 * - We could reduce the time spent in the adb_intr_* routines
44 * by having them save the incoming and outgoing data directly
45 * in the adbInbound and adbOutbound queues, as it would reduce
46 * the number of times we need to copy the data around. It
47 * would also make the code more readable and easier to follow.
48 * - (Related to above) Use the header part of adbCommand to
49 * reduce the number of copies we have to do of the data.
50 * - (Related to above) Actually implement the adbOutbound queue.
51 * This is fairly easy once you switch all the intr routines
52 * over to using adbCommand structs directly.
53 * - There is a bug in the state machine of adb_intr_cuda
54 * code that causes hangs, especially on 030 machines, probably
55 * because of some timing issues. Because I have been unable to
56 * determine the exact cause of this bug, I used the timeout function
57 * to check for and recover from this condition. If anyone finds
58 * the actual cause of this bug, the calls to timeout and the
59 * adb_cuda_tickle routine can be removed.
60 */
61
62 #include <sys/cdefs.h>
63 __KERNEL_RCSID(0, "$NetBSD: adb_direct.c,v 1.35 2006/11/24 22:04:23 wiz Exp $");
64
65 #include <sys/param.h>
66 #include <sys/cdefs.h>
67 #include <sys/systm.h>
68 #include <sys/callout.h>
69 #include <sys/device.h>
70
71 #include <machine/param.h>
72 #include <machine/cpu.h>
73 #include <machine/adbsys.h>
74
75 #include <macppc/dev/viareg.h>
76 #include <macppc/dev/adbvar.h>
77 #include <macppc/dev/pm_direct.h>
78
79 #define printf_intr printf
80
81 #ifdef DEBUG
82 #ifndef ADB_DEBUG
83 #define ADB_DEBUG
84 #endif
85 #endif
86
87 /* some misc. leftovers */
88 #define vPB 0x0000
89 #define vPB3 0x08
90 #define vPB4 0x10
91 #define vPB5 0x20
92 #define vSR_INT 0x04
93 #define vSR_OUT 0x10
94
95 /* the type of ADB action that we are currently preforming */
96 #define ADB_ACTION_NOTREADY 0x1 /* has not been initialized yet */
97 #define ADB_ACTION_IDLE 0x2 /* the bus is currently idle */
98 #define ADB_ACTION_OUT 0x3 /* sending out a command */
99 #define ADB_ACTION_IN 0x4 /* receiving data */
100 #define ADB_ACTION_POLLING 0x5 /* polling - II only */
101
102 /*
103 * These describe the state of the ADB bus itself, although they
104 * don't necessarily correspond directly to ADB states.
105 * Note: these are not really used in the IIsi code.
106 */
107 #define ADB_BUS_UNKNOWN 0x1 /* we don't know yet - all models */
108 #define ADB_BUS_IDLE 0x2 /* bus is idle - all models */
109 #define ADB_BUS_CMD 0x3 /* starting a command - II models */
110 #define ADB_BUS_ODD 0x4 /* the "odd" state - II models */
111 #define ADB_BUS_EVEN 0x5 /* the "even" state - II models */
112 #define ADB_BUS_ACTIVE 0x6 /* active state - IIsi models */
113 #define ADB_BUS_ACK 0x7 /* currently ACKing - IIsi models */
114
115 /*
116 * Shortcuts for setting or testing the VIA bit states.
117 * Not all shortcuts are used for every type of ADB hardware.
118 */
119 #define ADB_SET_STATE_IDLE_CUDA() via_reg_or(VIA1, vBufB, (vPB4 | vPB5))
120 #define ADB_SET_STATE_TIP() via_reg_and(VIA1, vBufB, ~vPB5)
121 #define ADB_CLR_STATE_TIP() via_reg_or(VIA1, vBufB, vPB5)
122 #define ADB_TOGGLE_STATE_ACK_CUDA() via_reg_xor(VIA1, vBufB, vPB4)
123 #define ADB_SET_STATE_ACKOFF_CUDA() via_reg_or(VIA1, vBufB, vPB4)
124 #define ADB_SET_SR_INPUT() via_reg_and(VIA1, vACR, ~vSR_OUT)
125 #define ADB_SET_SR_OUTPUT() via_reg_or(VIA1, vACR, vSR_OUT)
126 #define ADB_SR() read_via_reg(VIA1, vSR)
127 #define ADB_VIA_INTR_ENABLE() write_via_reg(VIA1, vIER, 0x84)
128 #define ADB_VIA_INTR_DISABLE() write_via_reg(VIA1, vIER, 0x04)
129 #define ADB_INTR_IS_OFF (vPB3 == (read_via_reg(VIA1, vBufB) & vPB3))
130 #define ADB_INTR_IS_ON (0 == (read_via_reg(VIA1, vBufB) & vPB3))
131 #define ADB_SR_INTR_IS_OFF (0 == (read_via_reg(VIA1, vIFR) & vSR_INT))
132 #define ADB_SR_INTR_IS_ON (vSR_INT == (read_via_reg(VIA1, \
133 vIFR) & vSR_INT))
134
135 /*
136 * This is the delay that is required (in uS) between certain
137 * ADB transactions. The actual timing delay for for each uS is
138 * calculated at boot time to account for differences in machine speed.
139 */
140 #define ADB_DELAY 150
141
142 /*
143 * Maximum ADB message length; includes space for data, result, and
144 * device code - plus a little for safety.
145 */
146 #define ADB_MAX_MSG_LENGTH 16
147 #define ADB_MAX_HDR_LENGTH 8
148
149 #define ADB_QUEUE 32
150 #define ADB_TICKLE_TICKS 4
151
152 /*
153 * A structure for storing information about each ADB device.
154 */
155 struct ADBDevEntry {
156 void (*ServiceRtPtr) __P((void));
157 void *DataAreaAddr;
158 int devType;
159 int origAddr;
160 int currentAddr;
161 };
162
163 /*
164 * Used to hold ADB commands that are waiting to be sent out.
165 */
166 struct adbCmdHoldEntry {
167 u_char outBuf[ADB_MAX_MSG_LENGTH]; /* our message */
168 u_char *saveBuf; /* buffer to know where to save result */
169 adbComp *compRout; /* completion routine pointer */
170 int *data; /* completion routine data pointer */
171 };
172
173 /*
174 * Eventually used for two separate queues, the queue between
175 * the upper and lower halves, and the outgoing packet queue.
176 * TO DO: adbCommand can replace all of adbCmdHoldEntry eventually
177 */
178 struct adbCommand {
179 u_char header[ADB_MAX_HDR_LENGTH]; /* not used yet */
180 u_char data[ADB_MAX_MSG_LENGTH]; /* packet data only */
181 u_char *saveBuf; /* where to save result */
182 adbComp *compRout; /* completion routine pointer */
183 volatile int *compData; /* completion routine data pointer */
184 u_int cmd; /* the original command for this data */
185 u_int unsol; /* 1 if packet was unsolicited */
186 u_int ack_only; /* 1 for no special processing */
187 };
188
189 /*
190 * A few variables that we need and their initial values.
191 */
192 int adbHardware = ADB_HW_UNKNOWN;
193 int adbActionState = ADB_ACTION_NOTREADY;
194 int adbWaiting = 0; /* waiting for return data from the device */
195 int adbWriteDelay = 0; /* working on (or waiting to do) a write */
196
197 int adbWaitingCmd = 0; /* ADB command we are waiting for */
198 u_char *adbBuffer = (long)0; /* pointer to user data area */
199 adbComp *adbCompRout = NULL; /* pointer to the completion routine */
200 volatile int *adbCompData = NULL; /* pointer to the completion routine data */
201 int adbStarting = 1; /* doing ADBReInit so do polling differently */
202
203 u_char adbInputBuffer[ADB_MAX_MSG_LENGTH]; /* data input buffer */
204 u_char adbOutputBuffer[ADB_MAX_MSG_LENGTH]; /* data output buffer */
205
206 int adbSentChars = 0; /* how many characters we have sent */
207
208 struct ADBDevEntry ADBDevTable[16]; /* our ADB device table */
209 int ADBNumDevices; /* num. of ADB devices found with ADBReInit */
210
211 struct adbCommand adbInbound[ADB_QUEUE]; /* incoming queue */
212 int adbInCount = 0; /* how many packets in in queue */
213 int adbInHead = 0; /* head of in queue */
214 int adbInTail = 0; /* tail of in queue */
215 struct adbCommand adbOutbound[ADB_QUEUE]; /* outgoing queue - not used yet */
216 int adbOutCount = 0; /* how many packets in out queue */
217 int adbOutHead = 0; /* head of out queue */
218 int adbOutTail = 0; /* tail of out queue */
219
220 int tickle_count = 0; /* how many tickles seen for this packet? */
221 int tickle_serial = 0; /* the last packet tickled */
222 int adb_cuda_serial = 0; /* the current packet */
223
224 struct callout adb_cuda_tickle_ch = CALLOUT_INITIALIZER;
225 struct callout adb_soft_intr_ch = CALLOUT_INITIALIZER;
226
227 volatile u_char *Via1Base;
228 extern int adb_polling; /* Are we polling? */
229
230 void pm_setup_adb __P((void));
231 void pm_check_adb_devices __P((int));
232 int pm_adb_op __P((u_char *, void *, volatile void *, int));
233 void pm_init_adb_device __P((void));
234
235 /*
236 * The following are private routines.
237 */
238 #ifdef ADB_DEBUG
239 void print_single __P((u_char *));
240 #endif
241 void adb_soft_intr __P((void));
242 int send_adb_cuda __P((u_char *, u_char *, adbComp *, volatile void *, int));
243 void adb_intr_cuda_test __P((void));
244 void adb_cuda_tickle __P((void));
245 void adb_pass_up __P((struct adbCommand *));
246 void adb_op_comprout __P((caddr_t, volatile int *, int));
247 void adb_reinit __P((void));
248 int count_adbs __P((void));
249 int get_ind_adb_info __P((ADBDataBlock *, int));
250 int get_adb_info __P((ADBDataBlock *, int));
251 int set_adb_info __P((ADBSetInfoBlock *, int));
252 void adb_setup_hw_type __P((void));
253 int adb_op (Ptr, adbComp *, volatile void *, short);
254 int adb_op_sync __P((Ptr, adbComp *, Ptr, short));
255 void adb_hw_setup __P((void));
256 int adb_cmd_result __P((u_char *));
257 int adb_cmd_extra __P((u_char *));
258 /* we should create this and it will be the public version */
259 int send_adb __P((u_char *, void *, void *));
260
261 int setsoftadb __P((void));
262
263 #ifdef ADB_DEBUG
264 /*
265 * print_single
266 * Diagnostic display routine. Displays the hex values of the
267 * specified elements of the u_char. The length of the "string"
268 * is in [0].
269 */
270 void
271 print_single(str)
272 u_char *str;
273 {
274 int x;
275
276 if (str == 0) {
277 printf_intr("no data - null pointer\n");
278 return;
279 }
280 if (*str == 0) {
281 printf_intr("nothing returned\n");
282 return;
283 }
284 if (*str > 20) {
285 printf_intr("ADB: ACK > 20 no way!\n");
286 *str = 20;
287 }
288 printf_intr("(length=0x%x):", *str);
289 for (x = 1; x <= *str; x++)
290 printf_intr(" 0x%02x", str[x]);
291 printf_intr("\n");
292 }
293 #endif
294
295 void
296 adb_cuda_tickle(void)
297 {
298 volatile int s;
299
300 if (adbActionState == ADB_ACTION_IN) {
301 if (tickle_serial == adb_cuda_serial) {
302 if (++tickle_count > 0) {
303 s = splhigh();
304 adbActionState = ADB_ACTION_IDLE;
305 adbInputBuffer[0] = 0;
306 ADB_SET_STATE_IDLE_CUDA();
307 splx(s);
308 }
309 } else {
310 tickle_serial = adb_cuda_serial;
311 tickle_count = 0;
312 }
313 } else {
314 tickle_serial = adb_cuda_serial;
315 tickle_count = 0;
316 }
317
318 callout_reset(&adb_cuda_tickle_ch, ADB_TICKLE_TICKS,
319 (void *)adb_cuda_tickle, NULL);
320 }
321
322 /*
323 * called when when an adb interrupt happens
324 *
325 * Cuda version of adb_intr
326 * TO DO: do we want to add some calls to intr_dispatch() here to
327 * grab serial interrupts?
328 */
329 int
330 adb_intr_cuda(void *arg)
331 {
332 volatile int i, ending;
333 volatile unsigned int s;
334 struct adbCommand packet;
335 uint8_t reg;
336
337 s = splhigh(); /* can't be too careful - might be called */
338 /* from a routine, NOT an interrupt */
339
340 reg = read_via_reg(VIA1, vIFR); /* Read the interrupts */
341 if ((reg & 0x80) == 0) {
342 splx(s);
343 return 0; /* No interrupts to process */
344 }
345
346 write_via_reg(VIA1, vIFR, reg & 0x7f); /* Clear 'em */
347
348 ADB_VIA_INTR_DISABLE(); /* disable ADB interrupt on IIs. */
349
350 switch_start:
351 switch (adbActionState) {
352 case ADB_ACTION_IDLE:
353 /*
354 * This is an unexpected packet, so grab the first (dummy)
355 * byte, set up the proper vars, and tell the chip we are
356 * starting to receive the packet by setting the TIP bit.
357 */
358 adbInputBuffer[1] = ADB_SR();
359 adb_cuda_serial++;
360 if (ADB_INTR_IS_OFF) /* must have been a fake start */
361 break;
362
363 ADB_SET_SR_INPUT();
364 ADB_SET_STATE_TIP();
365
366 adbInputBuffer[0] = 1;
367 adbActionState = ADB_ACTION_IN;
368 #ifdef ADB_DEBUG
369 if (adb_debug)
370 printf_intr("idle 0x%02x ", adbInputBuffer[1]);
371 #endif
372 break;
373
374 case ADB_ACTION_IN:
375 adbInputBuffer[++adbInputBuffer[0]] = ADB_SR();
376 /* intr off means this is the last byte (end of frame) */
377 if (ADB_INTR_IS_OFF)
378 ending = 1;
379 else
380 ending = 0;
381
382 if (1 == ending) { /* end of message? */
383 #ifdef ADB_DEBUG
384 if (adb_debug) {
385 printf_intr("in end 0x%02x ",
386 adbInputBuffer[adbInputBuffer[0]]);
387 print_single(adbInputBuffer);
388 }
389 #endif
390
391 /*
392 * Are we waiting AND does this packet match what we
393 * are waiting for AND is it coming from either the
394 * ADB or RTC/PRAM sub-device? This section _should_
395 * recognize all ADB and RTC/PRAM type commands, but
396 * there may be more... NOTE: commands are always at
397 * [4], even for RTC/PRAM commands.
398 */
399 /* set up data for adb_pass_up */
400 memcpy(packet.data, adbInputBuffer, adbInputBuffer[0] + 1);
401
402 if ((adbWaiting == 1) &&
403 (adbInputBuffer[4] == adbWaitingCmd) &&
404 ((adbInputBuffer[2] == 0x00) ||
405 (adbInputBuffer[2] == 0x01))) {
406 packet.saveBuf = adbBuffer;
407 packet.compRout = adbCompRout;
408 packet.compData = adbCompData;
409 packet.unsol = 0;
410 packet.ack_only = 0;
411 adb_pass_up(&packet);
412
413 adbWaitingCmd = 0; /* reset "waiting" vars */
414 adbWaiting = 0;
415 adbBuffer = (long)0;
416 adbCompRout = (long)0;
417 adbCompData = (long)0;
418 } else {
419 packet.unsol = 1;
420 packet.ack_only = 0;
421 adb_pass_up(&packet);
422 }
423
424
425 /* reset vars and signal the end of this frame */
426 adbActionState = ADB_ACTION_IDLE;
427 adbInputBuffer[0] = 0;
428 ADB_SET_STATE_IDLE_CUDA();
429 /*ADB_SET_SR_INPUT();*/
430
431 /*
432 * If there is something waiting to be sent out,
433 * the set everything up and send the first byte.
434 */
435 if (adbWriteDelay == 1) {
436 delay(ADB_DELAY); /* required */
437 adbSentChars = 0;
438 adbActionState = ADB_ACTION_OUT;
439 /*
440 * If the interrupt is on, we were too slow
441 * and the chip has already started to send
442 * something to us, so back out of the write
443 * and start a read cycle.
444 */
445 if (ADB_INTR_IS_ON) {
446 ADB_SET_SR_INPUT();
447 ADB_SET_STATE_IDLE_CUDA();
448 adbSentChars = 0;
449 adbActionState = ADB_ACTION_IDLE;
450 adbInputBuffer[0] = 0;
451 break;
452 }
453 /*
454 * If we got here, it's ok to start sending
455 * so load the first byte and tell the chip
456 * we want to send.
457 */
458 ADB_SET_STATE_TIP();
459 ADB_SET_SR_OUTPUT();
460 write_via_reg(VIA1, vSR, adbOutputBuffer[adbSentChars + 1]);
461 }
462 } else {
463 ADB_TOGGLE_STATE_ACK_CUDA();
464 #ifdef ADB_DEBUG
465 if (adb_debug)
466 printf_intr("in 0x%02x ",
467 adbInputBuffer[adbInputBuffer[0]]);
468 #endif
469 }
470 break;
471
472 case ADB_ACTION_OUT:
473 i = ADB_SR(); /* reset SR-intr in IFR */
474 #ifdef ADB_DEBUG
475 if (adb_debug)
476 printf_intr("intr out 0x%02x ", i);
477 #endif
478
479 adbSentChars++;
480 if (ADB_INTR_IS_ON) { /* ADB intr low during write */
481 #ifdef ADB_DEBUG
482 if (adb_debug)
483 printf_intr("intr was on ");
484 #endif
485 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
486 ADB_SET_STATE_IDLE_CUDA();
487 adbSentChars = 0; /* must start all over */
488 adbActionState = ADB_ACTION_IDLE; /* new state */
489 adbInputBuffer[0] = 0;
490 adbWriteDelay = 1; /* must retry when done with
491 * read */
492 delay(ADB_DELAY);
493 goto switch_start; /* process next state right
494 * now */
495 break;
496 }
497 if (adbOutputBuffer[0] == adbSentChars) { /* check for done */
498 if (0 == adb_cmd_result(adbOutputBuffer)) { /* do we expect data
499 * back? */
500 adbWaiting = 1; /* signal waiting for return */
501 adbWaitingCmd = adbOutputBuffer[2]; /* save waiting command */
502 } else { /* no talk, so done */
503 /* set up stuff for adb_pass_up */
504 memcpy(packet.data, adbInputBuffer, adbInputBuffer[0] + 1);
505 packet.saveBuf = adbBuffer;
506 packet.compRout = adbCompRout;
507 packet.compData = adbCompData;
508 packet.cmd = adbWaitingCmd;
509 packet.unsol = 0;
510 packet.ack_only = 1;
511 adb_pass_up(&packet);
512
513 /* reset "waiting" vars, just in case */
514 adbWaitingCmd = 0;
515 adbBuffer = (long)0;
516 adbCompRout = NULL;
517 adbCompData = NULL;
518 }
519
520 adbWriteDelay = 0; /* done writing */
521 adbActionState = ADB_ACTION_IDLE; /* signal bus is idle */
522 ADB_SET_SR_INPUT();
523 ADB_SET_STATE_IDLE_CUDA();
524 #ifdef ADB_DEBUG
525 if (adb_debug)
526 printf_intr("write done ");
527 #endif
528 } else {
529 write_via_reg(VIA1, vSR, adbOutputBuffer[adbSentChars + 1]); /* send next byte */
530 ADB_TOGGLE_STATE_ACK_CUDA(); /* signal byte ready to
531 * shift */
532 #ifdef ADB_DEBUG
533 if (adb_debug)
534 printf_intr("toggle ");
535 #endif
536 }
537 break;
538
539 case ADB_ACTION_NOTREADY:
540 #ifdef ADB_DEBUG
541 if (adb_debug)
542 printf_intr("adb: not yet initialized\n");
543 #endif
544 break;
545
546 default:
547 #ifdef ADB_DEBUG
548 if (adb_debug)
549 printf_intr("intr: unknown ADB state\n");
550 #endif
551 break;
552 }
553
554 ADB_VIA_INTR_ENABLE(); /* enable ADB interrupt on IIs. */
555
556 splx(s); /* restore */
557
558 return 1;
559 } /* end adb_intr_cuda */
560
561
562 int
563 send_adb_cuda(u_char * in, u_char * buffer, adbComp *compRout,
564 volatile void *data, int command)
565 {
566 int s, len;
567
568 #ifdef ADB_DEBUG
569 if (adb_debug)
570 printf_intr("SEND\n");
571 #endif
572
573 if (adbActionState == ADB_ACTION_NOTREADY)
574 return 1;
575
576 /* Don't interrupt while we are messing with the ADB */
577 s = splhigh();
578
579 if ((adbActionState == ADB_ACTION_IDLE) && /* ADB available? */
580 (ADB_INTR_IS_OFF)) { /* and no incoming interrupt? */
581 } else
582 if (adbWriteDelay == 0) /* it's busy, but is anything waiting? */
583 adbWriteDelay = 1; /* if no, then we'll "queue"
584 * it up */
585 else {
586 splx(s);
587 return 1; /* really busy! */
588 }
589
590 #ifdef ADB_DEBUG
591 if (adb_debug)
592 printf_intr("QUEUE\n");
593 #endif
594 if ((long)in == (long)0) { /* need to convert? */
595 /*
596 * Don't need to use adb_cmd_extra here because this section
597 * will be called ONLY when it is an ADB command (no RTC or
598 * PRAM)
599 */
600 if ((command & 0x0c) == 0x08) /* copy addl data ONLY if
601 * doing a listen! */
602 len = buffer[0]; /* length of additional data */
603 else
604 len = 0;/* no additional data */
605
606 adbOutputBuffer[0] = 2 + len; /* dev. type + command + addl.
607 * data */
608 adbOutputBuffer[1] = 0x00; /* mark as an ADB command */
609 adbOutputBuffer[2] = (u_char)command; /* load command */
610
611 /* copy additional output data, if any */
612 memcpy(adbOutputBuffer + 3, buffer + 1, len);
613 } else
614 /* if data ready, just copy over */
615 memcpy(adbOutputBuffer, in, in[0] + 2);
616
617 adbSentChars = 0; /* nothing sent yet */
618 adbBuffer = buffer; /* save buffer to know where to save result */
619 adbCompRout = compRout; /* save completion routine pointer */
620 adbCompData = data; /* save completion routine data pointer */
621 adbWaitingCmd = adbOutputBuffer[2]; /* save wait command */
622
623 if (adbWriteDelay != 1) { /* start command now? */
624 #ifdef ADB_DEBUG
625 if (adb_debug)
626 printf_intr("out start NOW");
627 #endif
628 delay(ADB_DELAY);
629 adbActionState = ADB_ACTION_OUT; /* set next state */
630 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
631 write_via_reg(VIA1, vSR, adbOutputBuffer[adbSentChars + 1]); /* load byte for output */
632 ADB_SET_STATE_ACKOFF_CUDA();
633 ADB_SET_STATE_TIP(); /* tell ADB that we want to send */
634 }
635 adbWriteDelay = 1; /* something in the write "queue" */
636
637 splx(s);
638
639 if ((s & (1 << 18)) || adb_polling) /* XXX were VIA1 interrupts blocked ? */
640 /* poll until byte done */
641 while ((adbActionState != ADB_ACTION_IDLE) || (ADB_INTR_IS_ON)
642 || (adbWaiting == 1))
643 if (ADB_SR_INTR_IS_ON) { /* wait for "interrupt" */
644 adb_intr_cuda(NULL); /* process it */
645 adb_soft_intr();
646 }
647
648 return 0;
649 } /* send_adb_cuda */
650
651 int
652 adb_intr(void *arg)
653 {
654 switch (adbHardware) {
655 case ADB_HW_PMU:
656 return pm_intr(arg);
657 break;
658
659 case ADB_HW_CUDA:
660 return adb_intr_cuda(arg);
661 break;
662
663 case ADB_HW_UNKNOWN:
664 break;
665 }
666 return 0;
667 }
668
669
670 /*
671 * adb_pass_up is called by the interrupt-time routines.
672 * It takes the raw packet data that was received from the
673 * device and puts it into the queue that the upper half
674 * processes. It then signals for a soft ADB interrupt which
675 * will eventually call the upper half routine (adb_soft_intr).
676 *
677 * If in->unsol is 0, then this is either the notification
678 * that the packet was sent (on a LISTEN, for example), or the
679 * response from the device (on a TALK). The completion routine
680 * is called only if the user specified one.
681 *
682 * If in->unsol is 1, then this packet was unsolicited and
683 * so we look up the device in the ADB device table to determine
684 * what it's default service routine is.
685 *
686 * If in->ack_only is 1, then we really only need to call
687 * the completion routine, so don't do any other stuff.
688 *
689 * Note that in->data contains the packet header AND data,
690 * while adbInbound[]->data contains ONLY data.
691 *
692 * Note: Called only at interrupt time. Assumes this.
693 */
694 void
695 adb_pass_up(struct adbCommand *in)
696 {
697 int start = 0, len = 0, cmd = 0;
698 ADBDataBlock block;
699
700 /* temp for testing */
701 /*u_char *buffer = 0;*/
702 /*u_char *compdata = 0;*/
703 /*u_char *comprout = 0;*/
704
705 if (adbInCount >= ADB_QUEUE) {
706 #ifdef ADB_DEBUG
707 if (adb_debug)
708 printf_intr("adb: ring buffer overflow\n");
709 #endif
710 return;
711 }
712
713 if (in->ack_only) {
714 len = in->data[0];
715 cmd = in->cmd;
716 start = 0;
717 } else {
718 switch (adbHardware) {
719 case ADB_HW_CUDA:
720 /* If it's unsolicited, accept only ADB data for now */
721 if (in->unsol)
722 if (0 != in->data[2])
723 return;
724 cmd = in->data[4];
725 if (in->data[0] < 5)
726 len = 0;
727 else
728 len = in->data[0]-4;
729 start = 4;
730 break;
731
732 case ADB_HW_PMU:
733 cmd = in->data[1];
734 if (in->data[0] < 2)
735 len = 0;
736 else
737 len = in->data[0]-1;
738 start = 1;
739 break;
740
741 case ADB_HW_UNKNOWN:
742 return;
743 }
744
745 /* Make sure there is a valid device entry for this device */
746 if (in->unsol) {
747 /* ignore unsolicited data during adbreinit */
748 if (adbStarting)
749 return;
750 /* get device's comp. routine and data area */
751 if (-1 == get_adb_info(&block, ADB_CMDADDR(cmd)))
752 return;
753 }
754 }
755
756 /*
757 * If this is an unsolicited packet, we need to fill in
758 * some info so adb_soft_intr can process this packet
759 * properly. If it's not unsolicited, then use what
760 * the caller sent us.
761 */
762 if (in->unsol) {
763 adbInbound[adbInTail].compRout = (void *)block.dbServiceRtPtr;
764 adbInbound[adbInTail].compData = (void *)block.dbDataAreaAddr;
765 adbInbound[adbInTail].saveBuf = (void *)adbInbound[adbInTail].data;
766 } else {
767 adbInbound[adbInTail].compRout = in->compRout;
768 adbInbound[adbInTail].compData = in->compData;
769 adbInbound[adbInTail].saveBuf = in->saveBuf;
770 }
771
772 #ifdef ADB_DEBUG
773 if (adb_debug && in->data[1] == 2)
774 printf_intr("adb: caught error\n");
775 #endif
776
777 /* copy the packet data over */
778 /*
779 * TO DO: If the *_intr routines fed their incoming data
780 * directly into an adbCommand struct, which is passed to
781 * this routine, then we could eliminate this copy.
782 */
783 memcpy(adbInbound[adbInTail].data + 1, in->data + start + 1, len);
784 adbInbound[adbInTail].data[0] = len;
785 adbInbound[adbInTail].cmd = cmd;
786
787 adbInCount++;
788 if (++adbInTail >= ADB_QUEUE)
789 adbInTail = 0;
790
791 /*
792 * If the debugger is running, call upper half manually.
793 * Otherwise, trigger a soft interrupt to handle the rest later.
794 */
795 if (adb_polling)
796 adb_soft_intr();
797 else
798 setsoftadb();
799
800 return;
801 }
802
803
804 /*
805 * Called to process the packets after they have been
806 * placed in the incoming queue.
807 *
808 */
809 void
810 adb_soft_intr(void)
811 {
812 int s;
813 int cmd = 0;
814 u_char *buffer = 0;
815 adbComp *comprout = NULL;
816 volatile int *compdata = 0;
817
818 #if 0
819 s = splhigh();
820 printf_intr("sr: %x\n", (s & 0x0700));
821 splx(s);
822 #endif
823
824 /*delay(2*ADB_DELAY);*/
825
826 while (adbInCount) {
827 #ifdef ADB_DEBUG
828 if (adb_debug & 0x80)
829 printf_intr("%x %x %x ",
830 adbInCount, adbInHead, adbInTail);
831 #endif
832 /* get the data we need from the queue */
833 buffer = adbInbound[adbInHead].saveBuf;
834 comprout = adbInbound[adbInHead].compRout;
835 compdata = adbInbound[adbInHead].compData;
836 cmd = adbInbound[adbInHead].cmd;
837
838 /* copy over data to data area if it's valid */
839 /*
840 * Note that for unsol packets we don't want to copy the
841 * data anywhere, so buffer was already set to 0.
842 * For ack_only buffer was set to 0, so don't copy.
843 */
844 if (buffer)
845 memcpy(buffer, adbInbound[adbInHead].data,
846 adbInbound[adbInHead].data[0] + 1);
847
848 #ifdef ADB_DEBUG
849 if (adb_debug & 0x80) {
850 printf_intr("%p %p %p %x ",
851 buffer, comprout, compdata, (short)cmd);
852 printf_intr("buf: ");
853 print_single(adbInbound[adbInHead].data);
854 }
855 #endif
856 /* Remove the packet from the queue before calling
857 * the completion routine, so that the completion
858 * routine can reentrantly process the queue. For
859 * example, this happens when polling is turned on
860 * by entering the debuger by keystroke.
861 */
862 s = splhigh();
863 adbInCount--;
864 if (++adbInHead >= ADB_QUEUE)
865 adbInHead = 0;
866 splx(s);
867
868 /* call default completion routine if it's valid */
869 if (comprout)
870 (*comprout)(buffer, compdata, cmd);
871 }
872 return;
873 }
874
875
876 /*
877 * This is my version of the ADBOp routine. It mainly just calls the
878 * hardware-specific routine.
879 *
880 * data : pointer to data area to be used by compRout
881 * compRout : completion routine
882 * buffer : for LISTEN: points to data to send - MAX 8 data bytes,
883 * byte 0 = # of bytes
884 * : for TALK: points to place to save return data
885 * command : the adb command to send
886 * result : 0 = success
887 * : -1 = could not complete
888 */
889 int
890 adb_op(Ptr buffer, adbComp *compRout, volatile void *data, short command)
891 {
892 int result;
893
894 switch (adbHardware) {
895 case ADB_HW_PMU:
896 result = pm_adb_op((u_char *)buffer, compRout,
897 data, (int)command);
898
899 if (result == 0)
900 return 0;
901 else
902 return -1;
903 break;
904
905 case ADB_HW_CUDA:
906 result = send_adb_cuda((u_char *)0, (u_char *)buffer,
907 compRout, data, (int)command);
908 if (result == 0)
909 return 0;
910 else
911 return -1;
912 break;
913
914 case ADB_HW_UNKNOWN:
915 default:
916 return -1;
917 }
918 }
919
920
921 /*
922 * adb_hw_setup
923 * This routine sets up the possible machine specific hardware
924 * config (mainly VIA settings) for the various models.
925 */
926 void
927 adb_hw_setup(void)
928 {
929 volatile int i;
930
931 switch (adbHardware) {
932 case ADB_HW_PMU:
933 /*
934 * XXX - really PM_VIA_CLR_INTR - should we put it in
935 * pm_direct.h?
936 */
937 write_via_reg(VIA1, vIFR, 0x90); /* clear interrupt */
938 break;
939
940 case ADB_HW_CUDA:
941 via_reg_or(VIA1, vDirB, 0x30); /* register B bits 4 and 5:
942 * outputs */
943 via_reg_and(VIA1, vDirB, 0xf7); /* register B bit 3: input */
944 via_reg_and(VIA1, vACR, ~vSR_OUT); /* make sure SR is set
945 * to IN */
946 write_via_reg(VIA1, vACR, (read_via_reg(VIA1, vACR) | 0x0c) & ~0x10);
947 adbActionState = ADB_ACTION_IDLE; /* used by all types of
948 * hardware */
949 write_via_reg(VIA1, vIER, 0x84);/* make sure VIA interrupts
950 * are on */
951 ADB_SET_STATE_IDLE_CUDA(); /* set ADB bus state to idle */
952
953 /* sort of a device reset */
954 i = ADB_SR(); /* clear interrupt */
955 ADB_VIA_INTR_DISABLE(); /* no interrupts while clearing */
956 ADB_SET_STATE_IDLE_CUDA(); /* reset state to idle */
957 delay(ADB_DELAY);
958 ADB_SET_STATE_TIP(); /* signal start of frame */
959 delay(ADB_DELAY);
960 ADB_TOGGLE_STATE_ACK_CUDA();
961 delay(ADB_DELAY);
962 ADB_CLR_STATE_TIP();
963 delay(ADB_DELAY);
964 ADB_SET_STATE_IDLE_CUDA(); /* back to idle state */
965 i = ADB_SR(); /* clear interrupt */
966 ADB_VIA_INTR_ENABLE(); /* ints ok now */
967 break;
968
969 case ADB_HW_UNKNOWN:
970 default:
971 write_via_reg(VIA1, vIER, 0x04);/* turn interrupts off - TO
972 * DO: turn PB ints off? */
973 return;
974 break;
975 }
976 }
977
978 /*
979 * adb_reinit sets up the adb stuff
980 *
981 */
982 void
983 adb_reinit(void)
984 {
985 u_char send_string[ADB_MAX_MSG_LENGTH];
986 ADBDataBlock data; /* temp. holder for getting device info */
987 volatile int i, x;
988 int s = 0; /* XXX: gcc */
989 int command;
990 int result;
991 int saveptr; /* point to next free relocation address */
992 int device;
993 int nonewtimes; /* times thru loop w/o any new devices */
994
995 /* Make sure we are not interrupted while building the table. */
996 if (adbHardware != ADB_HW_PMU) /* ints must be on for PMU? */
997 s = splhigh();
998
999 ADBNumDevices = 0; /* no devices yet */
1000
1001 /* Let intr routines know we are running reinit */
1002 adbStarting = 1;
1003
1004 /*
1005 * Initialize the ADB table. For now, we'll always use the same table
1006 * that is defined at the beginning of this file - no mallocs.
1007 */
1008 for (i = 0; i < 16; i++)
1009 ADBDevTable[i].devType = 0;
1010
1011 adb_setup_hw_type(); /* setup hardware type */
1012
1013 adb_hw_setup(); /* init the VIA bits and hard reset ADB */
1014
1015 delay(1000);
1016
1017 /* send an ADB reset first */
1018 result = adb_op_sync((Ptr)0, NULL, (Ptr)0, (short)0x00);
1019 delay(200000);
1020
1021 #ifdef ADB_DEBUG
1022 if (result && adb_debug) {
1023 printf_intr("adb_reinit: failed to reset, result = %d\n",result);
1024 }
1025 #endif
1026
1027 /*
1028 * Probe for ADB devices. Probe devices 1-15 quickly to determine
1029 * which device addresses are in use and which are free. For each
1030 * address that is in use, move the device at that address to a higher
1031 * free address. Continue doing this at that address until no device
1032 * responds at that address. Then move the last device that was moved
1033 * back to the original address. Do this for the remaining addresses
1034 * that we determined were in use.
1035 *
1036 * When finished, do this entire process over again with the updated
1037 * list of in use addresses. Do this until no new devices have been
1038 * found in 20 passes though the in use address list. (This probably
1039 * seems long and complicated, but it's the best way to detect multiple
1040 * devices at the same address - sometimes it takes a couple of tries
1041 * before the collision is detected.)
1042 */
1043
1044 /* initial scan through the devices */
1045 for (i = 1; i < 16; i++) {
1046 send_string[0] = 0;
1047 command = ADBTALK(i, 3);
1048 result = adb_op_sync((Ptr)send_string, NULL,
1049 (Ptr)0, (short)command);
1050
1051 #ifdef ADB_DEBUG
1052 if (result && adb_debug) {
1053 printf_intr("adb_reinit: scan of device %d, result = %d, str = 0x%x\n",
1054 i,result,send_string[0]);
1055 }
1056 #endif
1057
1058 if (send_string[0] != 0) {
1059 /* check for valid device handler */
1060 switch (send_string[2]) {
1061 case 0:
1062 case 0xfd:
1063 case 0xfe:
1064 case 0xff:
1065 continue; /* invalid, skip */
1066 }
1067
1068 /* found a device */
1069 ++ADBNumDevices;
1070 KASSERT(ADBNumDevices < 16);
1071 ADBDevTable[ADBNumDevices].devType =
1072 (int)send_string[2];
1073 ADBDevTable[ADBNumDevices].origAddr = i;
1074 ADBDevTable[ADBNumDevices].currentAddr = i;
1075 ADBDevTable[ADBNumDevices].DataAreaAddr =
1076 (long)0;
1077 ADBDevTable[ADBNumDevices].ServiceRtPtr = (void *)0;
1078 pm_check_adb_devices(i); /* tell pm driver device
1079 * is here */
1080 }
1081 }
1082
1083 /* find highest unused address */
1084 for (saveptr = 15; saveptr > 0; saveptr--)
1085 if (-1 == get_adb_info(&data, saveptr))
1086 break;
1087
1088 #ifdef ADB_DEBUG
1089 if (adb_debug & 0x80) {
1090 printf_intr("first free is: 0x%02x\n", saveptr);
1091 printf_intr("devices: %i\n", ADBNumDevices);
1092 }
1093 #endif
1094
1095 nonewtimes = 0; /* no loops w/o new devices */
1096 while (saveptr > 0 && nonewtimes++ < 11) {
1097 for (i = 1; i <= ADBNumDevices; i++) {
1098 device = ADBDevTable[i].currentAddr;
1099 #ifdef ADB_DEBUG
1100 if (adb_debug & 0x80)
1101 printf_intr("moving device 0x%02x to 0x%02x "
1102 "(index 0x%02x) ", device, saveptr, i);
1103 #endif
1104
1105 /* send TALK R3 to address */
1106 command = ADBTALK(device, 3);
1107 adb_op_sync((Ptr)send_string, NULL,
1108 (Ptr)0, (short)command);
1109
1110 /* move device to higher address */
1111 command = ADBLISTEN(device, 3);
1112 send_string[0] = 2;
1113 send_string[1] = (u_char)(saveptr | 0x60);
1114 send_string[2] = 0xfe;
1115 adb_op_sync((Ptr)send_string, NULL,
1116 (Ptr)0, (short)command);
1117 delay(500);
1118
1119 /* send TALK R3 - anything at new address? */
1120 command = ADBTALK(saveptr, 3);
1121 adb_op_sync((Ptr)send_string, NULL,
1122 (Ptr)0, (short)command);
1123 delay(500);
1124
1125 if (send_string[0] == 0) {
1126 #ifdef ADB_DEBUG
1127 if (adb_debug & 0x80)
1128 printf_intr("failed, continuing\n");
1129 #endif
1130 continue;
1131 }
1132
1133 /* send TALK R3 - anything at old address? */
1134 command = ADBTALK(device, 3);
1135 result = adb_op_sync((Ptr)send_string, NULL,
1136 (Ptr)0, (short)command);
1137 if (send_string[0] != 0) {
1138 /* check for valid device handler */
1139 switch (send_string[2]) {
1140 case 0:
1141 case 0xfd:
1142 case 0xfe:
1143 case 0xff:
1144 continue; /* invalid, skip */
1145 }
1146
1147 /* new device found */
1148 /* update data for previously moved device */
1149 ADBDevTable[i].currentAddr = saveptr;
1150 #ifdef ADB_DEBUG
1151 if (adb_debug & 0x80)
1152 printf_intr("old device at index %i\n",i);
1153 #endif
1154 /* add new device in table */
1155 #ifdef ADB_DEBUG
1156 if (adb_debug & 0x80)
1157 printf_intr("new device found\n");
1158 #endif
1159 if (saveptr > ADBNumDevices) {
1160 ++ADBNumDevices;
1161 KASSERT(ADBNumDevices < 16);
1162 }
1163 ADBDevTable[ADBNumDevices].devType =
1164 (int)send_string[2];
1165 ADBDevTable[ADBNumDevices].origAddr = device;
1166 ADBDevTable[ADBNumDevices].currentAddr = device;
1167 /* These will be set correctly in adbsys.c */
1168 /* Until then, unsol. data will be ignored. */
1169 ADBDevTable[ADBNumDevices].DataAreaAddr =
1170 (long)0;
1171 ADBDevTable[ADBNumDevices].ServiceRtPtr =
1172 (void *)0;
1173 /* find next unused address */
1174 for (x = saveptr; x > 0; x--) {
1175 if (-1 == get_adb_info(&data, x)) {
1176 saveptr = x;
1177 break;
1178 }
1179 }
1180 if (x == 0)
1181 saveptr = 0;
1182 #ifdef ADB_DEBUG
1183 if (adb_debug & 0x80)
1184 printf_intr("new free is 0x%02x\n",
1185 saveptr);
1186 #endif
1187 nonewtimes = 0;
1188 /* tell pm driver device is here */
1189 pm_check_adb_devices(device);
1190 } else {
1191 #ifdef ADB_DEBUG
1192 if (adb_debug & 0x80)
1193 printf_intr("moving back...\n");
1194 #endif
1195 /* move old device back */
1196 command = ADBLISTEN(saveptr, 3);
1197 send_string[0] = 2;
1198 send_string[1] = (u_char)(device | 0x60);
1199 send_string[2] = 0xfe;
1200 adb_op_sync((Ptr)send_string, NULL,
1201 (Ptr)0, (short)command);
1202 delay(1000);
1203 }
1204 }
1205 }
1206
1207 #ifdef ADB_DEBUG
1208 if (adb_debug) {
1209 for (i = 1; i <= ADBNumDevices; i++) {
1210 x = get_ind_adb_info(&data, i);
1211 if (x != -1)
1212 printf_intr("index 0x%x, addr 0x%x, type 0x%x\n",
1213 i, x, data.devType);
1214 }
1215 }
1216 #endif
1217
1218 #ifdef ADB_DEBUG
1219 if (adb_debug) {
1220 if (0 == ADBNumDevices) /* tell user if no devices found */
1221 printf_intr("adb: no devices found\n");
1222 }
1223 #endif
1224
1225 adbStarting = 0; /* not starting anymore */
1226 #ifdef ADB_DEBUG
1227 if (adb_debug)
1228 printf_intr("adb: ADBReInit complete\n");
1229 #endif
1230
1231 if (adbHardware == ADB_HW_CUDA)
1232 callout_reset(&adb_cuda_tickle_ch, ADB_TICKLE_TICKS,
1233 (void *)adb_cuda_tickle, NULL);
1234
1235 if (adbHardware != ADB_HW_PMU) /* ints must be on for PMU? */
1236 splx(s);
1237 }
1238
1239 /*
1240 * adb_cmd_result
1241 *
1242 * This routine lets the caller know whether the specified adb command string
1243 * should expect a returned result, such as a TALK command.
1244 *
1245 * returns: 0 if a result should be expected
1246 * 1 if a result should NOT be expected
1247 */
1248 int
1249 adb_cmd_result(u_char *in)
1250 {
1251 switch (adbHardware) {
1252 case ADB_HW_CUDA:
1253 /* was it an ADB talk command? */
1254 if ((in[1] == 0x00) && ((in[2] & 0x0c) == 0x0c))
1255 return 0;
1256 /* was it an RTC/PRAM read date/time? */
1257 if ((in[1] == 0x01) && (in[2] == 0x03))
1258 return 0;
1259 return 1;
1260
1261 case ADB_HW_PMU:
1262 return 1;
1263
1264 case ADB_HW_UNKNOWN:
1265 default:
1266 return 1;
1267 }
1268 }
1269
1270
1271 /*
1272 * adb_cmd_extra
1273 *
1274 * This routine lets the caller know whether the specified adb command string
1275 * may have extra data appended to the end of it, such as a LISTEN command.
1276 *
1277 * returns: 0 if extra data is allowed
1278 * 1 if extra data is NOT allowed
1279 */
1280 int
1281 adb_cmd_extra(u_char *in)
1282 {
1283 switch (adbHardware) {
1284 case ADB_HW_CUDA:
1285 /*
1286 * TO DO: support needs to be added to recognize RTC and PRAM
1287 * commands
1288 */
1289 if ((in[2] & 0x0c) == 0x08) /* was it a listen command? */
1290 return 0;
1291 /* add others later */
1292 return 1;
1293
1294 case ADB_HW_PMU:
1295 return 1;
1296
1297 case ADB_HW_UNKNOWN:
1298 default:
1299 return 1;
1300 }
1301 }
1302
1303 /*
1304 * adb_op_sync
1305 *
1306 * This routine does exactly what the adb_op routine does, except that after
1307 * the adb_op is called, it waits until the return value is present before
1308 * returning.
1309 *
1310 * NOTE: The user specified compRout is ignored, since this routine specifies
1311 * it's own to adb_op, which is why you really called this in the first place
1312 * anyway.
1313 */
1314 int
1315 adb_op_sync(Ptr buffer, adbComp *compRout, Ptr data, short command)
1316 {
1317 int tmout;
1318 int result;
1319 volatile int flag = 0;
1320
1321 result = adb_op(buffer, adb_op_comprout,
1322 &flag, command); /* send command */
1323 if (result == 0) { /* send ok? */
1324 /*
1325 * Total time to wait is calculated as follows:
1326 * - Tlt (stop to start time): 260 usec
1327 * - start bit: 100 usec
1328 * - up to 8 data bytes: 64 * 100 usec = 6400 usec
1329 * - stop bit (with SRQ): 140 usec
1330 * Total: 6900 usec
1331 *
1332 * This is the total time allowed by the specification. Any
1333 * device that doesn't conform to this will fail to operate
1334 * properly on some Apple systems. In spite of this we
1335 * double the time to wait; some Cuda-based apparently
1336 * queues some commands and allows the main CPU to continue
1337 * processing (radical concept, eh?). To be safe, allow
1338 * time for two complete ADB transactions to occur.
1339 */
1340 for (tmout = 13800; !flag && tmout >= 10; tmout -= 10)
1341 delay(10);
1342 if (!flag && tmout > 0)
1343 delay(tmout);
1344
1345 if (!flag)
1346 result = -2;
1347 }
1348
1349 return result;
1350 }
1351
1352 /*
1353 * adb_op_comprout
1354 *
1355 * This function is used by the adb_op_sync routine so it knows when the
1356 * function is done.
1357 */
1358 void
1359 adb_op_comprout(caddr_t buffer, volatile int *compdata, int cmd)
1360 {
1361 volatile int *p = compdata;
1362
1363 *p = 1;
1364 }
1365
1366 void
1367 adb_setup_hw_type(void)
1368 {
1369 switch (adbHardware) {
1370 case ADB_HW_CUDA:
1371 return;
1372
1373 case ADB_HW_PMU:
1374 pm_setup_adb();
1375 return;
1376
1377 default:
1378 panic("unknown adb hardware");
1379 }
1380 }
1381
1382 int
1383 count_adbs(void)
1384 {
1385 int i;
1386 int found;
1387
1388 found = 0;
1389
1390 for (i = 1; i < 16; i++)
1391 if (0 != ADBDevTable[i].devType)
1392 found++;
1393
1394 return found;
1395 }
1396
1397 int
1398 get_ind_adb_info(ADBDataBlock * info, int index)
1399 {
1400 if ((index < 1) || (index > 15)) /* check range 1-15 */
1401 return (-1);
1402
1403 #ifdef ADB_DEBUG
1404 if (adb_debug & 0x80)
1405 printf_intr("index 0x%x devType is: 0x%x\n", index,
1406 ADBDevTable[index].devType);
1407 #endif
1408 if (0 == ADBDevTable[index].devType) /* make sure it's a valid entry */
1409 return (-1);
1410
1411 info->devType = ADBDevTable[index].devType;
1412 info->origADBAddr = ADBDevTable[index].origAddr;
1413 info->dbServiceRtPtr = (Ptr)ADBDevTable[index].ServiceRtPtr;
1414 info->dbDataAreaAddr = (Ptr)ADBDevTable[index].DataAreaAddr;
1415
1416 return (ADBDevTable[index].currentAddr);
1417 }
1418
1419 int
1420 get_adb_info(ADBDataBlock * info, int adbAddr)
1421 {
1422 int i;
1423
1424 if ((adbAddr < 1) || (adbAddr > 15)) /* check range 1-15 */
1425 return (-1);
1426
1427 for (i = 1; i < 15; i++)
1428 if (ADBDevTable[i].currentAddr == adbAddr) {
1429 info->devType = ADBDevTable[i].devType;
1430 info->origADBAddr = ADBDevTable[i].origAddr;
1431 info->dbServiceRtPtr = (Ptr)ADBDevTable[i].ServiceRtPtr;
1432 info->dbDataAreaAddr = ADBDevTable[i].DataAreaAddr;
1433 return 0; /* found */
1434 }
1435
1436 return (-1); /* not found */
1437 }
1438
1439 int
1440 set_adb_info(ADBSetInfoBlock * info, int adbAddr)
1441 {
1442 int i;
1443
1444 if ((adbAddr < 1) || (adbAddr > 15)) /* check range 1-15 */
1445 return (-1);
1446
1447 for (i = 1; i < 15; i++)
1448 if (ADBDevTable[i].currentAddr == adbAddr) {
1449 ADBDevTable[i].ServiceRtPtr =
1450 (void *)(info->siServiceRtPtr);
1451 ADBDevTable[i].DataAreaAddr = info->siDataAreaAddr;
1452 return 0; /* found */
1453 }
1454
1455 return (-1); /* not found */
1456
1457 }
1458
1459 #ifndef MRG_ADB
1460
1461 /* caller should really use machine-independent version: getPramTime */
1462 /* this version does pseudo-adb access only */
1463 int
1464 adb_read_date_time(unsigned long *t)
1465 {
1466 u_char output[ADB_MAX_MSG_LENGTH];
1467 int result;
1468 volatile int flag = 0;
1469
1470 switch (adbHardware) {
1471 case ADB_HW_PMU:
1472 pm_read_date_time(t);
1473 return 0;
1474
1475 case ADB_HW_CUDA:
1476 output[0] = 0x02; /* 2 byte message */
1477 output[1] = 0x01; /* to pram/rtc device */
1478 output[2] = 0x03; /* read date/time */
1479 result = send_adb_cuda((u_char *)output, (u_char *)output,
1480 adb_op_comprout, &flag, (int)0);
1481 if (result != 0) /* exit if not sent */
1482 return -1;
1483
1484 while (0 == flag) /* wait for result */
1485 ;
1486
1487 memcpy(t, output + 1, 4);
1488 return 0;
1489
1490 case ADB_HW_UNKNOWN:
1491 default:
1492 return -1;
1493 }
1494 }
1495
1496 /* caller should really use machine-independent version: setPramTime */
1497 /* this version does pseudo-adb access only */
1498 int
1499 adb_set_date_time(unsigned long t)
1500 {
1501 u_char output[ADB_MAX_MSG_LENGTH];
1502 int result;
1503 volatile int flag = 0;
1504
1505 switch (adbHardware) {
1506
1507 case ADB_HW_CUDA:
1508 output[0] = 0x06; /* 6 byte message */
1509 output[1] = 0x01; /* to pram/rtc device */
1510 output[2] = 0x09; /* set date/time */
1511 output[3] = (u_char)(t >> 24);
1512 output[4] = (u_char)(t >> 16);
1513 output[5] = (u_char)(t >> 8);
1514 output[6] = (u_char)(t);
1515 result = send_adb_cuda((u_char *)output, (u_char *)0,
1516 adb_op_comprout, &flag, (int)0);
1517 if (result != 0) /* exit if not sent */
1518 return -1;
1519
1520 while (0 == flag) /* wait for send to finish */
1521 ;
1522
1523 return 0;
1524
1525 case ADB_HW_PMU:
1526 pm_set_date_time(t);
1527 return 0;
1528
1529 case ADB_HW_UNKNOWN:
1530 default:
1531 return -1;
1532 }
1533 }
1534
1535
1536 int
1537 adb_poweroff(void)
1538 {
1539 u_char output[ADB_MAX_MSG_LENGTH];
1540 int result;
1541
1542 adb_polling = 1;
1543
1544 switch (adbHardware) {
1545 case ADB_HW_PMU:
1546 pm_adb_poweroff();
1547
1548 for (;;); /* wait for power off */
1549
1550 return 0;
1551
1552 case ADB_HW_CUDA:
1553 output[0] = 0x02; /* 2 byte message */
1554 output[1] = 0x01; /* to pram/rtc/soft-power device */
1555 output[2] = 0x0a; /* set date/time */
1556 result = send_adb_cuda((u_char *)output, (u_char *)0,
1557 (void *)0, (void *)0, (int)0);
1558 if (result != 0) /* exit if not sent */
1559 return -1;
1560
1561 for (;;); /* wait for power off */
1562
1563 return 0;
1564
1565 case ADB_HW_UNKNOWN:
1566 default:
1567 return -1;
1568 }
1569 }
1570
1571 int
1572 CountADBs(void)
1573 {
1574 return (count_adbs());
1575 }
1576
1577 void
1578 ADBReInit(void)
1579 {
1580 adb_reinit();
1581 }
1582
1583 int
1584 GetIndADB(ADBDataBlock * info, int index)
1585 {
1586 return (get_ind_adb_info(info, index));
1587 }
1588
1589 int
1590 GetADBInfo(ADBDataBlock * info, int adbAddr)
1591 {
1592 return (get_adb_info(info, adbAddr));
1593 }
1594
1595 int
1596 SetADBInfo(ADBSetInfoBlock * info, int adbAddr)
1597 {
1598 return (set_adb_info(info, adbAddr));
1599 }
1600
1601 int
1602 ADBOp(Ptr buffer, adbComp *compRout, Ptr data, short commandNum)
1603 {
1604 return (adb_op(buffer, compRout, data, commandNum));
1605 }
1606
1607 #endif
1608
1609 int
1610 setsoftadb()
1611 {
1612 callout_reset(&adb_soft_intr_ch, 1, (void *)adb_soft_intr, NULL);
1613 return 0;
1614 }
1615
1616 void
1617 adb_cuda_autopoll()
1618 {
1619 volatile int flag = 0;
1620 int result;
1621 u_char output[16];
1622
1623 output[0] = 0x03; /* 3-byte message */
1624 output[1] = 0x01; /* to pram/rtc device */
1625 output[2] = 0x01; /* cuda autopoll */
1626 output[3] = 0x01;
1627 result = send_adb_cuda(output, output, adb_op_comprout,
1628 &flag, 0);
1629 if (result != 0) /* exit if not sent */
1630 return;
1631
1632 while (flag == 0); /* wait for result */
1633 }
1634
1635 void
1636 adb_restart(void)
1637 {
1638 int result;
1639 u_char output[16];
1640
1641 adb_polling = 1;
1642
1643 switch (adbHardware) {
1644 case ADB_HW_CUDA:
1645 output[0] = 0x02; /* 2 byte message */
1646 output[1] = 0x01; /* to pram/rtc/soft-power device */
1647 output[2] = 0x11; /* restart */
1648 result = send_adb_cuda(output, NULL, NULL, NULL, 0);
1649 if (result != 0) /* exit if not sent */
1650 return;
1651 while (1); /* not return */
1652
1653 case ADB_HW_PMU:
1654 pm_adb_restart();
1655 while (1); /* not return */
1656 }
1657 }
1658