adb_direct.c revision 1.4 1 /* $NetBSD: adb_direct.c,v 1.4 1998/10/20 14:56:30 tsubai Exp $ */
2
3 /* From: adb_direct.c 2.02 4/18/97 jpw */
4
5 /*
6 * Copyright (C) 1996, 1997 John P. Wittkoski
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by John P. Wittkoski.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*
36 * This code is rather messy, but I don't have time right now
37 * to clean it up as much as I would like.
38 * But it works, so I'm happy. :-) jpw
39 */
40
41 /*
42 * TO DO:
43 * - We could reduce the time spent in the adb_intr_* routines
44 * by having them save the incoming and outgoing data directly
45 * in the adbInbound and adbOutbound queues, as it would reduce
46 * the number of times we need to copy the data around. It
47 * would also make the code more readable and easier to follow.
48 * - (Related to above) Use the header part of adbCommand to
49 * reduce the number of copies we have to do of the data.
50 * - (Related to above) Actually implement the adbOutbound queue.
51 * This is fairly easy once you switch all the intr routines
52 * over to using adbCommand structs directly.
53 * - There is a bug in the state machine of adb_intr_cuda
54 * code that causes hangs, especially on 030 machines, probably
55 * because of some timing issues. Because I have been unable to
56 * determine the exact cause of this bug, I used the timeout function
57 * to check for and recover from this condition. If anyone finds
58 * the actual cause of this bug, the calls to timeout and the
59 * adb_cuda_tickle routine can be removed.
60 */
61
62 #include <sys/param.h>
63 #include <sys/cdefs.h>
64 #include <sys/systm.h>
65 #include <sys/device.h>
66
67 #include <machine/param.h>
68 #include <machine/cpu.h>
69 #include <machine/adbsys.h>
70
71 #include <macppc/dev/viareg.h>
72 #include <macppc/dev/adbvar.h>
73 #include <macppc/dev/adb_direct.h>
74
75 #define printf_intr printf
76
77 /* some misc. leftovers */
78 #define vPB 0x0000
79 #define vPB3 0x08
80 #define vPB4 0x10
81 #define vPB5 0x20
82 #define vSR_INT 0x04
83 #define vSR_OUT 0x10
84
85 /* types of adb hardware that we (will eventually) support */
86 #define ADB_HW_UNKNOWN 0x01 /* don't know */
87 #define ADB_HW_II 0x02 /* Mac II series */
88 #define ADB_HW_IISI 0x03 /* Mac IIsi series */
89 #define ADB_HW_PB 0x04 /* PowerBook series */
90 #define ADB_HW_CUDA 0x05 /* Machines with a Cuda chip */
91
92 /* the type of ADB action that we are currently preforming */
93 #define ADB_ACTION_NOTREADY 0x01 /* has not been initialized yet */
94 #define ADB_ACTION_IDLE 0x02 /* the bus is currently idle */
95 #define ADB_ACTION_OUT 0x03 /* sending out a command */
96 #define ADB_ACTION_IN 0x04 /* receiving data */
97 #define ADB_ACTION_POLLING 0x05 /* polling - II only */
98
99 /*
100 * These describe the state of the ADB bus itself, although they
101 * don't necessarily correspond directly to ADB states.
102 * Note: these are not really used in the IIsi code.
103 */
104 #define ADB_BUS_UNKNOWN 0x01 /* we don't know yet - all models */
105 #define ADB_BUS_IDLE 0x02 /* bus is idle - all models */
106 #define ADB_BUS_CMD 0x03 /* starting a command - II models */
107 #define ADB_BUS_ODD 0x04 /* the "odd" state - II models */
108 #define ADB_BUS_EVEN 0x05 /* the "even" state - II models */
109 #define ADB_BUS_ACTIVE 0x06 /* active state - IIsi models */
110 #define ADB_BUS_ACK 0x07 /* currently ACKing - IIsi models */
111
112 /*
113 * Shortcuts for setting or testing the VIA bit states.
114 * Not all shortcuts are used for every type of ADB hardware.
115 */
116 #define ADB_SET_STATE_IDLE_II() via_reg_or(VIA1, vBufB, (vPB4 | vPB5))
117 #define ADB_SET_STATE_IDLE_IISI() via_reg_and(VIA1, vBufB, ~(vPB4 | vPB5))
118 #define ADB_SET_STATE_IDLE_CUDA() via_reg_or(VIA1, vBufB, (vPB4 | vPB5))
119 #define ADB_SET_STATE_CMD() via_reg_and(VIA1, vBufB, ~(vPB4 | vPB5))
120 #define ADB_SET_STATE_EVEN() write_via_reg(VIA1, vBufB, \
121 (read_via_reg(VIA1, vBufB) | vPB4) & ~vPB5)
122 #define ADB_SET_STATE_ODD() write_via_reg(VIA1, vBufB, \
123 (read_via_reg(VIA1, vBufB) | vPB5) & ~vPB4 )
124 #define ADB_SET_STATE_ACTIVE() via_reg_or(VIA1, vBufB, vPB5)
125 #define ADB_SET_STATE_INACTIVE() via_reg_and(VIA1, vBufB, ~vPB5)
126 #define ADB_SET_STATE_TIP() via_reg_and(VIA1, vBufB, ~vPB5)
127 #define ADB_CLR_STATE_TIP() via_reg_or(VIA1, vBufB, vPB5)
128 #define ADB_SET_STATE_ACKON() via_reg_or(VIA1, vBufB, vPB4)
129 #define ADB_SET_STATE_ACKOFF() via_reg_and(VIA1, vBufB, ~vPB4)
130 #define ADB_TOGGLE_STATE_ACK_CUDA() via_reg_xor(VIA1, vBufB, vPB4)
131 #define ADB_SET_STATE_ACKON_CUDA() via_reg_and(VIA1, vBufB, ~vPB4)
132 #define ADB_SET_STATE_ACKOFF_CUDA() via_reg_or(VIA1, vBufB, vPB4)
133 #define ADB_SET_SR_INPUT() via_reg_and(VIA1, vACR, ~vSR_OUT)
134 #define ADB_SET_SR_OUTPUT() via_reg_or(VIA1, vACR, vSR_OUT)
135 #define ADB_SR() read_via_reg(VIA1, vSR)
136 #define ADB_VIA_INTR_ENABLE() write_via_reg(VIA1, vIER, 0x84)
137 #define ADB_VIA_INTR_DISABLE() write_via_reg(VIA1, vIER, 0x04)
138 #define ADB_VIA_CLR_INTR() write_via_reg(VIA1, vIFR, 0x04)
139 #define ADB_INTR_IS_OFF (vPB3 == (read_via_reg(VIA1, vBufB) & vPB3))
140 #define ADB_INTR_IS_ON (0 == (read_via_reg(VIA1, vBufB) & vPB3))
141 #define ADB_SR_INTR_IS_OFF (0 == (read_via_reg(VIA1, vIFR) & vSR_INT))
142 #define ADB_SR_INTR_IS_ON (vSR_INT == (read_via_reg(VIA1, \
143 vIFR) & vSR_INT))
144
145 /*
146 * This is the delay that is required (in uS) between certain
147 * ADB transactions. The actual timing delay for for each uS is
148 * calculated at boot time to account for differences in machine speed.
149 */
150 /*#define ADB_DELAY 150*/
151 #define ADB_DELAY 1000
152
153 /*
154 * Maximum ADB message length; includes space for data, result, and
155 * device code - plus a little for safety.
156 */
157 #define ADB_MAX_MSG_LENGTH 16
158 #define ADB_MAX_HDR_LENGTH 8
159
160 #define ADB_QUEUE 32
161 #define ADB_TICKLE_TICKS 4
162
163 /*
164 * A structure for storing information about each ADB device.
165 */
166 struct ADBDevEntry {
167 void (*ServiceRtPtr) __P((void));
168 void *DataAreaAddr;
169 char devType;
170 char origAddr;
171 char currentAddr;
172 };
173
174 /*
175 * Used to hold ADB commands that are waiting to be sent out.
176 */
177 struct adbCmdHoldEntry {
178 u_char outBuf[ADB_MAX_MSG_LENGTH]; /* our message */
179 u_char *saveBuf; /* buffer to know where to save result */
180 u_char *compRout; /* completion routine pointer */
181 u_char *data; /* completion routine data pointer */
182 };
183
184 /*
185 * Eventually used for two separate queues, the queue between
186 * the upper and lower halves, and the outgoing packet queue.
187 * TO DO: adbCommand can replace all of adbCmdHoldEntry eventually
188 */
189 struct adbCommand {
190 u_char header[ADB_MAX_HDR_LENGTH]; /* not used yet */
191 u_char data[ADB_MAX_MSG_LENGTH]; /* packet data only */
192 u_char *saveBuf; /* where to save result */
193 u_char *compRout; /* completion routine pointer */
194 u_char *compData; /* completion routine data pointer */
195 u_int cmd; /* the original command for this data */
196 u_int unsol; /* 1 if packet was unsolicited */
197 u_int ack_only; /* 1 for no special processing */
198 };
199
200 /*
201 * A few variables that we need and their initial values.
202 */
203 int adbHardware = ADB_HW_UNKNOWN;
204 int adbActionState = ADB_ACTION_NOTREADY;
205 int adbBusState = ADB_BUS_UNKNOWN;
206 int adbWaiting = 0; /* waiting for return data from the device */
207 int adbWriteDelay = 0; /* working on (or waiting to do) a write */
208 int adbOutQueueHasData = 0; /* something in the queue waiting to go out */
209 int adbNextEnd = 0; /* the next incoming bute is the last (II) */
210 int adbSoftPower = 0; /* machine supports soft power */
211
212 int adbWaitingCmd = 0; /* ADB command we are waiting for */
213 u_char *adbBuffer = (long)0; /* pointer to user data area */
214 void *adbCompRout = (long)0; /* pointer to the completion routine */
215 void *adbCompData = (long)0; /* pointer to the completion routine data */
216 long adbFakeInts = 0; /* keeps track of fake ADB interrupts for
217 * timeouts (II) */
218 int adbStarting = 1; /* doing ADBReInit so do polling differently */
219 int adbSendTalk = 0; /* the intr routine is sending the talk, not
220 * the user (II) */
221 int adbPolling = 0; /* we are polling for service request */
222 int adbPollCmd = 0; /* the last poll command we sent */
223
224 u_char adbInputBuffer[ADB_MAX_MSG_LENGTH]; /* data input buffer */
225 u_char adbOutputBuffer[ADB_MAX_MSG_LENGTH]; /* data output buffer */
226 struct adbCmdHoldEntry adbOutQueue; /* our 1 entry output queue */
227
228 int adbSentChars = 0; /* how many characters we have sent */
229 int adbLastDevice = 0; /* last ADB dev we heard from (II ONLY) */
230 int adbLastDevIndex = 0; /* last ADB dev loc in dev table (II ONLY) */
231 int adbLastCommand = 0; /* the last ADB command we sent (II) */
232
233 struct ADBDevEntry ADBDevTable[16]; /* our ADB device table */
234 int ADBNumDevices; /* num. of ADB devices found with ADBReInit */
235
236 struct adbCommand adbInbound[ADB_QUEUE]; /* incoming queue */
237 int adbInCount = 0; /* how many packets in in queue */
238 int adbInHead = 0; /* head of in queue */
239 int adbInTail = 0; /* tail of in queue */
240 struct adbCommand adbOutbound[ADB_QUEUE]; /* outgoing queue - not used yet */
241 int adbOutCount = 0; /* how many packets in out queue */
242 int adbOutHead = 0; /* head of out queue */
243 int adbOutTail = 0; /* tail of out queue */
244
245 int tickle_count = 0; /* how many tickles seen for this packet? */
246 int tickle_serial = 0; /* the last packet tickled */
247 int adb_cuda_serial = 0; /* the current packet */
248
249 volatile u_char *Via1Base;
250 extern int adb_polling;
251
252 int zshard __P((int));
253
254 void pm_setup_adb __P((void));
255 void pm_check_adb_devices __P((int));
256 int pm_adb_op __P((u_char *, void *, void *, int));
257 void pm_init_adb_device __P((void));
258
259 /*
260 * The following are private routines.
261 */
262 void print_single __P((u_char *));
263 void adb_intr __P((void));
264 void adb_intr_II __P((void));
265 void adb_intr_IIsi __P((void));
266 void adb_intr_cuda __P((void));
267 void adb_soft_intr __P((void));
268 int send_adb_II __P((u_char *, u_char *, void *, void *, int));
269 int send_adb_IIsi __P((u_char *, u_char *, void *, void *, int));
270 int send_adb_cuda __P((u_char *, u_char *, void *, void *, int));
271 void adb_intr_cuda_test __P((void));
272 void adb_cuda_tickle __P((void));
273 void adb_pass_up __P((struct adbCommand *));
274 void adb_op_comprout __P((caddr_t, caddr_t, int));
275 void adb_reinit __P((void));
276 int count_adbs __P((void));
277 int get_ind_adb_info __P((ADBDataBlock *, int));
278 int get_adb_info __P((ADBDataBlock *, int));
279 int set_adb_info __P((ADBSetInfoBlock *, int));
280 void adb_setup_hw_type __P((void));
281 int adb_op __P((Ptr, Ptr, Ptr, short));
282 int adb_op_sync __P((Ptr, Ptr, Ptr, short));
283 void adb_read_II __P((u_char *));
284 void adb_hw_setup __P((void));
285 void adb_hw_setup_IIsi __P((u_char *));
286 void adb_comp_exec __P((void));
287 int adb_cmd_result __P((u_char *));
288 int adb_cmd_extra __P((u_char *));
289 int adb_guess_next_device __P((void));
290 int adb_prog_switch_enable __P((void));
291 int adb_prog_switch_disable __P((void));
292 /* we should create this and it will be the public version */
293 int send_adb __P((u_char *, void *, void *));
294
295 /*
296 * print_single
297 * Diagnostic display routine. Displays the hex values of the
298 * specified elements of the u_char. The length of the "string"
299 * is in [0].
300 */
301 void
302 print_single(thestring)
303 u_char *thestring;
304 {
305 int x;
306
307 if ((int)(thestring[0]) == 0) {
308 printf_intr("nothing returned\n");
309 return;
310 }
311 if (thestring == 0) {
312 printf_intr("no data - null pointer\n");
313 return;
314 }
315 if (thestring[0] > 20) {
316 printf_intr("ADB: ACK > 20 no way!\n");
317 thestring[0] = 20;
318 }
319 printf_intr("(length=0x%x):", thestring[0]);
320 for (x = 0; x < thestring[0]; x++)
321 printf_intr(" 0x%02x", thestring[x + 1]);
322 printf_intr("\n");
323 }
324
325 void
326 adb_cuda_tickle(void)
327 {
328 volatile int s;
329
330 if (adbActionState == ADB_ACTION_IN) {
331 if (tickle_serial == adb_cuda_serial) {
332 if (++tickle_count > 0) {
333 s = splhigh();
334 adbActionState = ADB_ACTION_IDLE;
335 adbInputBuffer[0] = 0;
336 ADB_SET_STATE_IDLE_CUDA();
337 splx(s);
338 }
339 } else {
340 tickle_serial = adb_cuda_serial;
341 tickle_count = 0;
342 }
343 } else {
344 tickle_serial = adb_cuda_serial;
345 tickle_count = 0;
346 }
347
348 timeout((void *)adb_cuda_tickle, 0, ADB_TICKLE_TICKS);
349 }
350
351 /*
352 * called when when an adb interrupt happens
353 *
354 * Cuda version of adb_intr
355 * TO DO: do we want to add some zshard calls in here?
356 */
357 void
358 adb_intr_cuda(void)
359 {
360 volatile int i, ending;
361 volatile unsigned int s;
362 struct adbCommand packet;
363
364 s = splhigh(); /* can't be too careful - might be called */
365 /* from a routine, NOT an interrupt */
366
367 ADB_VIA_CLR_INTR(); /* clear interrupt */
368 ADB_VIA_INTR_DISABLE(); /* disable ADB interrupt on IIs. */
369
370 switch_start:
371 switch (adbActionState) {
372 case ADB_ACTION_IDLE:
373 /*
374 * This is an unexpected packet, so grab the first (dummy)
375 * byte, set up the proper vars, and tell the chip we are
376 * starting to receive the packet by setting the TIP bit.
377 */
378 adbInputBuffer[1] = ADB_SR();
379 adb_cuda_serial++;
380 if (ADB_INTR_IS_OFF) /* must have been a fake start */
381 break;
382
383 ADB_SET_SR_INPUT();
384 ADB_SET_STATE_TIP();
385
386 adbInputBuffer[0] = 1;
387 adbActionState = ADB_ACTION_IN;
388 #ifdef ADB_DEBUG
389 if (adb_debug)
390 printf_intr("idle 0x%02x ", adbInputBuffer[1]);
391 #endif
392 break;
393
394 case ADB_ACTION_IN:
395 adbInputBuffer[++adbInputBuffer[0]] = ADB_SR();
396 /* intr off means this is the last byte (end of frame) */
397 if (ADB_INTR_IS_OFF)
398 ending = 1;
399 else
400 ending = 0;
401
402 if (1 == ending) { /* end of message? */
403 #ifdef ADB_DEBUG
404 if (adb_debug) {
405 printf_intr("in end 0x%02x ",
406 adbInputBuffer[adbInputBuffer[0]]);
407 print_single(adbInputBuffer);
408 }
409 #endif
410
411 /*
412 * Are we waiting AND does this packet match what we
413 * are waiting for AND is it coming from either the
414 * ADB or RTC/PRAM sub-device? This section _should_
415 * recognize all ADB and RTC/PRAM type commands, but
416 * there may be more... NOTE: commands are always at
417 * [4], even for RTC/PRAM commands.
418 */
419 /* set up data for adb_pass_up */
420 for (i = 0; i <= adbInputBuffer[0]; i++)
421 packet.data[i] = adbInputBuffer[i];
422
423 if ((adbWaiting == 1) &&
424 (adbInputBuffer[4] == adbWaitingCmd) &&
425 ((adbInputBuffer[2] == 0x00) ||
426 (adbInputBuffer[2] == 0x01))) {
427 packet.saveBuf = adbBuffer;
428 packet.compRout = adbCompRout;
429 packet.compData = adbCompData;
430 packet.unsol = 0;
431 packet.ack_only = 0;
432 adb_pass_up(&packet);
433
434 adbWaitingCmd = 0; /* reset "waiting" vars */
435 adbWaiting = 0;
436 adbBuffer = (long)0;
437 adbCompRout = (long)0;
438 adbCompData = (long)0;
439 } else {
440 packet.unsol = 1;
441 packet.ack_only = 0;
442 adb_pass_up(&packet);
443 }
444
445
446 /* reset vars and signal the end of this frame */
447 adbActionState = ADB_ACTION_IDLE;
448 adbInputBuffer[0] = 0;
449 ADB_SET_STATE_IDLE_CUDA();
450 /*ADB_SET_SR_INPUT();*/
451
452 /*
453 * If there is something waiting to be sent out,
454 * the set everything up and send the first byte.
455 */
456 if (adbWriteDelay == 1) {
457 delay(ADB_DELAY); /* required */
458 adbSentChars = 0;
459 adbActionState = ADB_ACTION_OUT;
460 /*
461 * If the interrupt is on, we were too slow
462 * and the chip has already started to send
463 * something to us, so back out of the write
464 * and start a read cycle.
465 */
466 if (ADB_INTR_IS_ON) {
467 ADB_SET_SR_INPUT();
468 ADB_SET_STATE_IDLE_CUDA();
469 adbSentChars = 0;
470 adbActionState = ADB_ACTION_IDLE;
471 adbInputBuffer[0] = 0;
472 break;
473 }
474 /*
475 * If we got here, it's ok to start sending
476 * so load the first byte and tell the chip
477 * we want to send.
478 */
479 ADB_SET_STATE_TIP();
480 ADB_SET_SR_OUTPUT();
481 write_via_reg(VIA1, vSR, adbOutputBuffer[adbSentChars + 1]);
482 }
483 } else {
484 ADB_TOGGLE_STATE_ACK_CUDA();
485 #ifdef ADB_DEBUG
486 if (adb_debug)
487 printf_intr("in 0x%02x ",
488 adbInputBuffer[adbInputBuffer[0]]);
489 #endif
490 }
491 break;
492
493 case ADB_ACTION_OUT:
494 i = ADB_SR(); /* reset SR-intr in IFR */
495 #ifdef ADB_DEBUG
496 if (adb_debug)
497 printf_intr("intr out 0x%02x ", i);
498 #endif
499
500 adbSentChars++;
501 if (ADB_INTR_IS_ON) { /* ADB intr low during write */
502 #ifdef ADB_DEBUG
503 if (adb_debug)
504 printf_intr("intr was on ");
505 #endif
506 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
507 ADB_SET_STATE_IDLE_CUDA();
508 adbSentChars = 0; /* must start all over */
509 adbActionState = ADB_ACTION_IDLE; /* new state */
510 adbInputBuffer[0] = 0;
511 adbWriteDelay = 1; /* must retry when done with
512 * read */
513 delay(ADB_DELAY);
514 goto switch_start; /* process next state right
515 * now */
516 break;
517 }
518 if (adbOutputBuffer[0] == adbSentChars) { /* check for done */
519 if (0 == adb_cmd_result(adbOutputBuffer)) { /* do we expect data
520 * back? */
521 adbWaiting = 1; /* signal waiting for return */
522 adbWaitingCmd = adbOutputBuffer[2]; /* save waiting command */
523 } else { /* no talk, so done */
524 /* set up stuff for adb_pass_up */
525 for (i = 0; i <= adbInputBuffer[0]; i++)
526 packet.data[i] = adbInputBuffer[i];
527 packet.saveBuf = adbBuffer;
528 packet.compRout = adbCompRout;
529 packet.compData = adbCompData;
530 packet.cmd = adbWaitingCmd;
531 packet.unsol = 0;
532 packet.ack_only = 1;
533 adb_pass_up(&packet);
534
535 /* reset "waiting" vars, just in case */
536 adbWaitingCmd = 0;
537 adbBuffer = (long)0;
538 adbCompRout = (long)0;
539 adbCompData = (long)0;
540 }
541
542 adbWriteDelay = 0; /* done writing */
543 adbActionState = ADB_ACTION_IDLE; /* signal bus is idle */
544 ADB_SET_SR_INPUT();
545 ADB_SET_STATE_IDLE_CUDA();
546 #ifdef ADB_DEBUG
547 if (adb_debug)
548 printf_intr("write done ");
549 #endif
550 } else {
551 write_via_reg(VIA1, vSR, adbOutputBuffer[adbSentChars + 1]); /* send next byte */
552 ADB_TOGGLE_STATE_ACK_CUDA(); /* signal byte ready to
553 * shift */
554 #ifdef ADB_DEBUG
555 if (adb_debug)
556 printf_intr("toggle ");
557 #endif
558 }
559 break;
560
561 case ADB_ACTION_NOTREADY:
562 printf_intr("adb: not yet initialized\n");
563 break;
564
565 default:
566 printf_intr("intr: unknown ADB state\n");
567 }
568
569 ADB_VIA_INTR_ENABLE(); /* enable ADB interrupt on IIs. */
570
571 splx(s); /* restore */
572
573 return;
574 } /* end adb_intr_cuda */
575
576
577 int
578 send_adb_cuda(u_char * in, u_char * buffer, void *compRout, void *data, int
579 command)
580 {
581 int i, s, len;
582
583 #ifdef ADB_DEBUG
584 if (adb_debug)
585 printf_intr("SEND\n");
586 #endif
587
588 if (adbActionState == ADB_ACTION_NOTREADY)
589 return 1;
590
591 /* Don't interrupt while we are messing with the ADB */
592 s = splhigh();
593
594 if ((adbActionState == ADB_ACTION_IDLE) && /* ADB available? */
595 (ADB_INTR_IS_OFF)) { /* and no incoming interrupt? */
596 } else
597 if (adbWriteDelay == 0) /* it's busy, but is anything waiting? */
598 adbWriteDelay = 1; /* if no, then we'll "queue"
599 * it up */
600 else {
601 splx(s);
602 return 1; /* really busy! */
603 }
604
605 #ifdef ADB_DEBUG
606 if (adb_debug)
607 printf_intr("QUEUE\n");
608 #endif
609 if ((long)in == (long)0) { /* need to convert? */
610 /*
611 * Don't need to use adb_cmd_extra here because this section
612 * will be called ONLY when it is an ADB command (no RTC or
613 * PRAM)
614 */
615 if ((command & 0x0c) == 0x08) /* copy addl data ONLY if
616 * doing a listen! */
617 len = buffer[0]; /* length of additional data */
618 else
619 len = 0;/* no additional data */
620
621 adbOutputBuffer[0] = 2 + len; /* dev. type + command + addl.
622 * data */
623 adbOutputBuffer[1] = 0x00; /* mark as an ADB command */
624 adbOutputBuffer[2] = (u_char)command; /* load command */
625
626 for (i = 1; i <= len; i++) /* copy additional output
627 * data, if any */
628 adbOutputBuffer[2 + i] = buffer[i];
629 } else
630 for (i = 0; i <= (in[0] + 1); i++)
631 adbOutputBuffer[i] = in[i];
632
633 adbSentChars = 0; /* nothing sent yet */
634 adbBuffer = buffer; /* save buffer to know where to save result */
635 adbCompRout = compRout; /* save completion routine pointer */
636 adbCompData = data; /* save completion routine data pointer */
637 adbWaitingCmd = adbOutputBuffer[2]; /* save wait command */
638
639 if (adbWriteDelay != 1) { /* start command now? */
640 #ifdef ADB_DEBUG
641 if (adb_debug)
642 printf_intr("out start NOW");
643 #endif
644 delay(ADB_DELAY);
645 adbActionState = ADB_ACTION_OUT; /* set next state */
646 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
647 write_via_reg(VIA1, vSR, adbOutputBuffer[adbSentChars + 1]); /* load byte for output */
648 ADB_SET_STATE_ACKOFF_CUDA();
649 ADB_SET_STATE_TIP(); /* tell ADB that we want to send */
650 }
651 adbWriteDelay = 1; /* something in the write "queue" */
652
653 splx(s);
654
655 if ((s & (1 << 18)) || adb_polling) /* XXX were VIA1 interrupts blocked ? */
656 /* poll until byte done */
657 while ((adbActionState != ADB_ACTION_IDLE) || (ADB_INTR_IS_ON)
658 || (adbWaiting == 1))
659 if (ADB_SR_INTR_IS_ON) { /* wait for "interrupt" */
660 adb_intr_cuda(); /* process it */
661 adb_soft_intr();
662 }
663
664 return 0;
665 } /* send_adb_cuda */
666
667
668 void
669 adb_intr_II(void)
670 {
671 panic("adb_intr_II");
672 }
673
674
675 /*
676 * send_adb version for II series machines
677 */
678 int
679 send_adb_II(u_char * in, u_char * buffer, void *compRout, void *data, int command)
680 {
681 panic("send_adb_II");
682 }
683
684
685 /*
686 * This routine is called from the II series interrupt routine
687 * to determine what the "next" device is that should be polled.
688 */
689 int
690 adb_guess_next_device(void)
691 {
692 int last, i, dummy;
693
694 if (adbStarting) {
695 /*
696 * Start polling EVERY device, since we can't be sure there is
697 * anything in the device table yet
698 */
699 if (adbLastDevice < 1 || adbLastDevice > 15)
700 adbLastDevice = 1;
701 if (++adbLastDevice > 15) /* point to next one */
702 adbLastDevice = 1;
703 } else {
704 /* find the next device using the device table */
705 if (adbLastDevice < 1 || adbLastDevice > 15) /* let's be parinoid */
706 adbLastDevice = 2;
707 last = 1; /* default index location */
708
709 for (i = 1; i < 16; i++) /* find index entry */
710 if (ADBDevTable[i].currentAddr == adbLastDevice) { /* look for device */
711 last = i; /* found it */
712 break;
713 }
714 dummy = last; /* index to start at */
715 for (;;) { /* find next device in index */
716 if (++dummy > 15) /* wrap around if needed */
717 dummy = 1;
718 if (dummy == last) { /* didn't find any other
719 * device! This can happen if
720 * there are no devices on the
721 * bus */
722 dummy = 2;
723 break;
724 }
725 /* found the next device */
726 if (ADBDevTable[dummy].devType != 0)
727 break;
728 }
729 adbLastDevice = ADBDevTable[dummy].currentAddr;
730 }
731 return adbLastDevice;
732 }
733
734
735 /*
736 * Called when when an adb interrupt happens.
737 * This routine simply transfers control over to the appropriate
738 * code for the machine we are running on.
739 */
740 void
741 adb_intr(void)
742 {
743 switch (adbHardware) {
744 case ADB_HW_II:
745 adb_intr_II();
746 break;
747
748 case ADB_HW_IISI:
749 adb_intr_IIsi();
750 break;
751
752 case ADB_HW_PB:
753 pm_intr();
754 break;
755
756 case ADB_HW_CUDA:
757 adb_intr_cuda();
758 break;
759
760 case ADB_HW_UNKNOWN:
761 break;
762 }
763 }
764
765
766 /*
767 * called when when an adb interrupt happens
768 *
769 * IIsi version of adb_intr
770 *
771 */
772 void
773 adb_intr_IIsi(void)
774 {
775 panic("adb_intr_IIsi");
776 }
777
778
779 /*****************************************************************************
780 * if the device is currently busy, and there is no data waiting to go out, then
781 * the data is "queued" in the outgoing buffer. If we are already waiting, then
782 * we return.
783 * in: if (in == 0) then the command string is built from command and buffer
784 * if (in != 0) then in is used as the command string
785 * buffer: additional data to be sent (used only if in == 0)
786 * this is also where return data is stored
787 * compRout: the completion routine that is called when then return value
788 * is received (if a return value is expected)
789 * data: a data pointer that can be used by the completion routine
790 * command: an ADB command to be sent (used only if in == 0)
791 *
792 */
793 int
794 send_adb_IIsi(u_char * in, u_char * buffer, void *compRout, void *data, int
795 command)
796 {
797 panic("send_adb_IIsi");
798 }
799
800
801 /*
802 * adb_pass_up is called by the interrupt-time routines.
803 * It takes the raw packet data that was received from the
804 * device and puts it into the queue that the upper half
805 * processes. It then signals for a soft ADB interrupt which
806 * will eventually call the upper half routine (adb_soft_intr).
807 *
808 * If in->unsol is 0, then this is either the notification
809 * that the packet was sent (on a LISTEN, for example), or the
810 * response from the device (on a TALK). The completion routine
811 * is called only if the user specified one.
812 *
813 * If in->unsol is 1, then this packet was unsolicited and
814 * so we look up the device in the ADB device table to determine
815 * what it's default service routine is.
816 *
817 * If in->ack_only is 1, then we really only need to call
818 * the completion routine, so don't do any other stuff.
819 *
820 * Note that in->data contains the packet header AND data,
821 * while adbInbound[]->data contains ONLY data.
822 *
823 * Note: Called only at interrupt time. Assumes this.
824 */
825 void
826 adb_pass_up(struct adbCommand *in)
827 {
828 int i, start = 0, len = 0, cmd = 0;
829 ADBDataBlock block;
830
831 /* temp for testing */
832 /*u_char *buffer = 0;*/
833 /*u_char *compdata = 0;*/
834 /*u_char *comprout = 0;*/
835
836 if (adbInCount >= ADB_QUEUE) {
837 printf_intr("adb: ring buffer overflow\n");
838 return;
839 }
840
841 if (in->ack_only) {
842 len = in->data[0];
843 cmd = in->cmd;
844 start = 0;
845 } else {
846 switch (adbHardware) {
847 case ADB_HW_II:
848 cmd = in->data[1];
849 if (in->data[0] < 2)
850 len = 0;
851 else
852 len = in->data[0]-1;
853 start = 1;
854 break;
855
856 case ADB_HW_IISI:
857 case ADB_HW_CUDA:
858 /* If it's unsolicited, accept only ADB data for now */
859 if (in->unsol)
860 if (0 != in->data[2])
861 return;
862 cmd = in->data[4];
863 if (in->data[0] < 5)
864 len = 0;
865 else
866 len = in->data[0]-4;
867 start = 4;
868 break;
869
870 case ADB_HW_PB:
871 cmd = in->data[1];
872 if (in->data[0] < 2)
873 len = 0;
874 else
875 len = in->data[0]-1;
876 start = 1;
877 break;
878
879 case ADB_HW_UNKNOWN:
880 return;
881 }
882
883 /* Make sure there is a valid device entry for this device */
884 if (in->unsol) {
885 /* ignore unsolicited data during adbreinit */
886 if (adbStarting)
887 return;
888 /* get device's comp. routine and data area */
889 if (-1 == get_adb_info(&block, ((cmd & 0xf0) >> 4)))
890 return;
891 }
892 }
893
894 /*
895 * If this is an unsolicited packet, we need to fill in
896 * some info so adb_soft_intr can process this packet
897 * properly. If it's not unsolicited, then use what
898 * the caller sent us.
899 */
900 if (in->unsol) {
901 adbInbound[adbInTail].compRout = (void *)block.dbServiceRtPtr;
902 adbInbound[adbInTail].compData = (void *)block.dbDataAreaAddr;
903 adbInbound[adbInTail].saveBuf = (void *)adbInbound[adbInTail].data;
904 } else {
905 adbInbound[adbInTail].compRout = (void *)in->compRout;
906 adbInbound[adbInTail].compData = (void *)in->compData;
907 adbInbound[adbInTail].saveBuf = (void *)in->saveBuf;
908 }
909
910 #ifdef ADB_DEBUG
911 if (adb_debug && in->data[1] == 2)
912 printf_intr("adb: caught error\n");
913 #endif
914
915 /* copy the packet data over */
916 /*
917 * TO DO: If the *_intr routines fed their incoming data
918 * directly into an adbCommand struct, which is passed to
919 * this routine, then we could eliminate this copy.
920 */
921 for (i = 1; i <= len; i++)
922 adbInbound[adbInTail].data[i] = in->data[start+i];
923
924 adbInbound[adbInTail].data[0] = len;
925 adbInbound[adbInTail].cmd = cmd;
926
927 adbInCount++;
928 if (++adbInTail >= ADB_QUEUE)
929 adbInTail = 0;
930
931 /*
932 * If the debugger is running, call upper half manually.
933 * Otherwise, trigger a soft interrupt to handle the rest later.
934 */
935 if (adb_polling)
936 adb_soft_intr();
937 else
938 setsoftadb();
939
940 return;
941 }
942
943
944 /*
945 * Called to process the packets after they have been
946 * placed in the incoming queue.
947 *
948 */
949 void
950 adb_soft_intr(void)
951 {
952 int s, i;
953 int cmd = 0;
954 u_char *buffer = 0;
955 u_char *comprout = 0;
956 u_char *compdata = 0;
957
958 #if 0
959 s = splhigh();
960 printf_intr("sr: %x\n", (s & 0x0700));
961 splx(s);
962 #endif
963
964 /*delay(2*ADB_DELAY);*/
965
966 while (adbInCount) {
967 #ifdef ADB_DEBUG
968 if (adb_debug & 0x80)
969 printf_intr("%x %x %x ",
970 adbInCount, adbInHead, adbInTail);
971 #endif
972 /* get the data we need from the queue */
973 buffer = adbInbound[adbInHead].saveBuf;
974 comprout = adbInbound[adbInHead].compRout;
975 compdata = adbInbound[adbInHead].compData;
976 cmd = adbInbound[adbInHead].cmd;
977
978 /* copy over data to data area if it's valid */
979 /*
980 * Note that for unsol packets we don't want to copy the
981 * data anywhere, so buffer was already set to 0.
982 * For ack_only buffer was set to 0, so don't copy.
983 */
984 if (buffer)
985 for (i = 0; i <= adbInbound[adbInHead].data[0]; i++)
986 *(buffer+i) = adbInbound[adbInHead].data[i];
987
988 #ifdef ADB_DEBUG
989 if (adb_debug & 0x80) {
990 printf_intr("%p %p %p %x ",
991 buffer, comprout, compdata, (short)cmd);
992 printf_intr("buf: ");
993 print_single(adbInbound[adbInHead].data);
994 }
995 #endif
996
997 /* call default completion routine if it's valid */
998 if (comprout) {
999 int (*f)() = (void *)comprout;
1000
1001 (*f)(buffer, compdata, cmd);
1002 #if 0
1003 #ifdef __NetBSD__
1004 asm(" movml #0xffff,sp@- | save all registers
1005 movl %0,a2 | compdata
1006 movl %1,a1 | comprout
1007 movl %2,a0 | buffer
1008 movl %3,d0 | cmd
1009 jbsr a1@ | go call the routine
1010 movml sp@+,#0xffff | restore all registers"
1011 :
1012 : "g"(compdata), "g"(comprout),
1013 "g"(buffer), "g"(cmd)
1014 : "d0", "a0", "a1", "a2");
1015 #else /* for macos based testing */
1016 asm
1017 {
1018 movem.l a0/a1/a2/d0, -(a7)
1019 move.l compdata, a2
1020 move.l comprout, a1
1021 move.l buffer, a0
1022 move.w cmd, d0
1023 jsr(a1)
1024 movem.l(a7)+, d0/a2/a1/a0
1025 }
1026 #endif
1027 #endif
1028 }
1029
1030 s = splhigh();
1031 adbInCount--;
1032 if (++adbInHead >= ADB_QUEUE)
1033 adbInHead = 0;
1034 splx(s);
1035
1036 }
1037 return;
1038 }
1039
1040
1041 /*
1042 * This is my version of the ADBOp routine. It mainly just calls the
1043 * hardware-specific routine.
1044 *
1045 * data : pointer to data area to be used by compRout
1046 * compRout : completion routine
1047 * buffer : for LISTEN: points to data to send - MAX 8 data bytes,
1048 * byte 0 = # of bytes
1049 * : for TALK: points to place to save return data
1050 * command : the adb command to send
1051 * result : 0 = success
1052 * : -1 = could not complete
1053 */
1054 int
1055 adb_op(Ptr buffer, Ptr compRout, Ptr data, short command)
1056 {
1057 int result;
1058
1059 switch (adbHardware) {
1060 case ADB_HW_II:
1061 result = send_adb_II((u_char *)0, (u_char *)buffer,
1062 (void *)compRout, (void *)data, (int)command);
1063 if (result == 0)
1064 return 0;
1065 else
1066 return -1;
1067 break;
1068
1069 case ADB_HW_IISI:
1070 result = send_adb_IIsi((u_char *)0, (u_char *)buffer,
1071 (void *)compRout, (void *)data, (int)command);
1072 /*
1073 * I wish I knew why this delay is needed. It usually needs to
1074 * be here when several commands are sent in close succession,
1075 * especially early in device probes when doing collision
1076 * detection. It must be some race condition. Sigh. - jpw
1077 */
1078 delay(100);
1079 if (result == 0)
1080 return 0;
1081 else
1082 return -1;
1083 break;
1084
1085 case ADB_HW_PB:
1086 result = pm_adb_op((u_char *)buffer, (void *)compRout,
1087 (void *)data, (int)command);
1088
1089 if (result == 0)
1090 return 0;
1091 else
1092 return -1;
1093 break;
1094
1095 case ADB_HW_CUDA:
1096 result = send_adb_cuda((u_char *)0, (u_char *)buffer,
1097 (void *)compRout, (void *)data, (int)command);
1098 if (result == 0)
1099 return 0;
1100 else
1101 return -1;
1102 break;
1103
1104 case ADB_HW_UNKNOWN:
1105 default:
1106 return -1;
1107 }
1108 }
1109
1110
1111 /*
1112 * adb_hw_setup
1113 * This routine sets up the possible machine specific hardware
1114 * config (mainly VIA settings) for the various models.
1115 */
1116 void
1117 adb_hw_setup(void)
1118 {
1119 volatile int i;
1120 u_char send_string[ADB_MAX_MSG_LENGTH];
1121
1122 switch (adbHardware) {
1123 case ADB_HW_II:
1124 via_reg_or(VIA1, vDirB, 0x30); /* register B bits 4 and 5:
1125 * outputs */
1126 via_reg_and(VIA1, vDirB, 0xf7); /* register B bit 3: input */
1127 via_reg_and(VIA1, vACR, ~vSR_OUT); /* make sure SR is set
1128 * to IN (II, IIsi) */
1129 adbActionState = ADB_ACTION_IDLE; /* used by all types of
1130 * hardware (II, IIsi) */
1131 adbBusState = ADB_BUS_IDLE; /* this var. used in II-series
1132 * code only */
1133 write_via_reg(VIA1, vIER, 0x84);/* make sure VIA interrupts
1134 * are on (II, IIsi) */
1135 ADB_SET_STATE_IDLE_II(); /* set ADB bus state to idle */
1136
1137 ADB_VIA_CLR_INTR(); /* clear interrupt */
1138 break;
1139
1140 case ADB_HW_IISI:
1141 via_reg_or(VIA1, vDirB, 0x30); /* register B bits 4 and 5:
1142 * outputs */
1143 via_reg_and(VIA1, vDirB, 0xf7); /* register B bit 3: input */
1144 via_reg_and(VIA1, vACR, ~vSR_OUT); /* make sure SR is set
1145 * to IN (II, IIsi) */
1146 adbActionState = ADB_ACTION_IDLE; /* used by all types of
1147 * hardware (II, IIsi) */
1148 adbBusState = ADB_BUS_IDLE; /* this var. used in II-series
1149 * code only */
1150 write_via_reg(VIA1, vIER, 0x84);/* make sure VIA interrupts
1151 * are on (II, IIsi) */
1152 ADB_SET_STATE_IDLE_IISI(); /* set ADB bus state to idle */
1153
1154 /* get those pesky clock ticks we missed while booting */
1155 for (i = 0; i < 30; i++) {
1156 delay(ADB_DELAY);
1157 adb_hw_setup_IIsi(send_string);
1158 printf_intr("adb: cleanup: ");
1159 print_single(send_string);
1160 delay(ADB_DELAY);
1161 if (ADB_INTR_IS_OFF)
1162 break;
1163 }
1164 break;
1165
1166 case ADB_HW_PB:
1167 /*
1168 * XXX - really PM_VIA_CLR_INTR - should we put it in
1169 * pm_direct.h?
1170 */
1171 write_via_reg(VIA1, vIFR, 0x90); /* clear interrupt */
1172 break;
1173
1174 case ADB_HW_CUDA:
1175 via_reg_or(VIA1, vDirB, 0x30); /* register B bits 4 and 5:
1176 * outputs */
1177 via_reg_and(VIA1, vDirB, 0xf7); /* register B bit 3: input */
1178 via_reg_and(VIA1, vACR, ~vSR_OUT); /* make sure SR is set
1179 * to IN */
1180 write_via_reg(VIA1, vACR, (read_via_reg(VIA1, vACR) | 0x0c) & ~0x10);
1181 adbActionState = ADB_ACTION_IDLE; /* used by all types of
1182 * hardware */
1183 adbBusState = ADB_BUS_IDLE; /* this var. used in II-series
1184 * code only */
1185 write_via_reg(VIA1, vIER, 0x84);/* make sure VIA interrupts
1186 * are on */
1187 ADB_SET_STATE_IDLE_CUDA(); /* set ADB bus state to idle */
1188
1189 /* sort of a device reset */
1190 i = ADB_SR(); /* clear interrupt */
1191 ADB_VIA_INTR_DISABLE(); /* no interrupts while clearing */
1192 ADB_SET_STATE_IDLE_CUDA(); /* reset state to idle */
1193 delay(ADB_DELAY);
1194 ADB_SET_STATE_TIP(); /* signal start of frame */
1195 delay(ADB_DELAY);
1196 ADB_TOGGLE_STATE_ACK_CUDA();
1197 delay(ADB_DELAY);
1198 ADB_CLR_STATE_TIP();
1199 delay(ADB_DELAY);
1200 ADB_SET_STATE_IDLE_CUDA(); /* back to idle state */
1201 i = ADB_SR(); /* clear interrupt */
1202 ADB_VIA_INTR_ENABLE(); /* ints ok now */
1203 break;
1204
1205 case ADB_HW_UNKNOWN:
1206 default:
1207 write_via_reg(VIA1, vIER, 0x04);/* turn interrupts off - TO
1208 * DO: turn PB ints off? */
1209 return;
1210 break;
1211 }
1212 }
1213
1214
1215 /*
1216 * adb_hw_setup_IIsi
1217 * This is sort of a "read" routine that forces the adb hardware through a read cycle
1218 * if there is something waiting. This helps "clean up" any commands that may have gotten
1219 * stuck or stopped during the boot process.
1220 *
1221 */
1222 void
1223 adb_hw_setup_IIsi(u_char * buffer)
1224 {
1225 panic("adb_hw_setup_IIsi");
1226 }
1227
1228
1229
1230 /*
1231 * adb_reinit sets up the adb stuff
1232 *
1233 */
1234 void
1235 adb_reinit(void)
1236 {
1237 u_char send_string[ADB_MAX_MSG_LENGTH];
1238 int s = 0;
1239 volatile int i, x;
1240 int command;
1241 int result;
1242 int saveptr; /* point to next free relocation address */
1243 int device;
1244 int nonewtimes; /* times thru loop w/o any new devices */
1245 ADBDataBlock data; /* temp. holder for getting device info */
1246
1247 (void)(&s); /* work around lame GCC bug */
1248
1249 /* Make sure we are not interrupted while building the table. */
1250 if (adbHardware != ADB_HW_PB) /* ints must be on for PB? */
1251 s = splhigh();
1252
1253 ADBNumDevices = 0; /* no devices yet */
1254
1255 /* Let intr routines know we are running reinit */
1256 adbStarting = 1;
1257
1258 /*
1259 * Initialize the ADB table. For now, we'll always use the same table
1260 * that is defined at the beginning of this file - no mallocs.
1261 */
1262 for (i = 0; i < 16; i++)
1263 ADBDevTable[i].devType = 0;
1264
1265 adb_setup_hw_type(); /* setup hardware type */
1266
1267 adb_hw_setup(); /* init the VIA bits and hard reset ADB */
1268
1269 DELAY(1000);
1270
1271 /* send an ADB reset first */
1272 adb_op_sync((Ptr)0, (Ptr)0, (Ptr)0, (short)0x00);
1273
1274 /*
1275 * Probe for ADB devices. Probe devices 1-15 quickly to determine
1276 * which device addresses are in use and which are free. For each
1277 * address that is in use, move the device at that address to a higher
1278 * free address. Continue doing this at that address until no device
1279 * responds at that address. Then move the last device that was moved
1280 * back to the original address. Do this for the remaining addresses
1281 * that we determined were in use.
1282 *
1283 * When finished, do this entire process over again with the updated
1284 * list of in use addresses. Do this until no new devices have been
1285 * found in 20 passes though the in use address list. (This probably
1286 * seems long and complicated, but it's the best way to detect multiple
1287 * devices at the same address - sometimes it takes a couple of tries
1288 * before the collision is detected.)
1289 */
1290
1291 /* initial scan through the devices */
1292 for (i = 1; i < 16; i++) {
1293 command = (int)(0x0f | ((int)(i & 0x000f) << 4)); /* talk R3 */
1294 result = adb_op_sync((Ptr)send_string, (Ptr)0,
1295 (Ptr)0, (short)command);
1296 if (0x00 != send_string[0]) { /* anything come back ?? */
1297 ADBDevTable[++ADBNumDevices].devType =
1298 (u_char)send_string[2];
1299 ADBDevTable[ADBNumDevices].origAddr = i;
1300 ADBDevTable[ADBNumDevices].currentAddr = i;
1301 ADBDevTable[ADBNumDevices].DataAreaAddr =
1302 (long)0;
1303 ADBDevTable[ADBNumDevices].ServiceRtPtr = (void *)0;
1304 pm_check_adb_devices(i); /* tell pm driver device
1305 * is here */
1306 }
1307 }
1308
1309 /* find highest unused address */
1310 for (saveptr = 15; saveptr > 0; saveptr--)
1311 if (-1 == get_adb_info(&data, saveptr))
1312 break;
1313
1314 if (saveptr == 0) /* no free addresses??? */
1315 saveptr = 15;
1316
1317 #ifdef ADB_DEBUG
1318 if (adb_debug & 0x80) {
1319 printf_intr("first free is: 0x%02x\n", saveptr);
1320 printf_intr("devices: %i\n", ADBNumDevices);
1321 }
1322 #endif
1323
1324 nonewtimes = 0; /* no loops w/o new devices */
1325 while (nonewtimes++ < 11) {
1326 for (i = 1; i <= ADBNumDevices; i++) {
1327 device = ADBDevTable[i].currentAddr;
1328 #ifdef ADB_DEBUG
1329 if (adb_debug & 0x80)
1330 printf_intr("moving device 0x%02x to 0x%02x "
1331 "(index 0x%02x) ", device, saveptr, i);
1332 #endif
1333
1334 /* send TALK R3 to address */
1335 command = (int)(0x0f | ((int)(device & 0x000f) << 4));
1336 adb_op_sync((Ptr)send_string, (Ptr)0,
1337 (Ptr)0, (short)command);
1338
1339 /* move device to higher address */
1340 command = (int)(0x0b | ((int)(device & 0x000f) << 4));
1341 send_string[0] = 2;
1342 send_string[1] = (u_char)(saveptr | 0x60);
1343 send_string[2] = 0xfe;
1344 adb_op_sync((Ptr)send_string, (Ptr)0,
1345 (Ptr)0, (short)command);
1346
1347 /* send TALK R3 - anything at old address? */
1348 command = (int)(0x0f | ((int)(device & 0x000f) << 4));
1349 result = adb_op_sync((Ptr)send_string, (Ptr)0,
1350 (Ptr)0, (short)command);
1351 if (send_string[0] != 0) {
1352 /* new device found */
1353 /* update data for previously moved device */
1354 ADBDevTable[i].currentAddr = saveptr;
1355 #ifdef ADB_DEBUG
1356 if (adb_debug & 0x80)
1357 printf_intr("old device at index %i\n",i);
1358 #endif
1359 /* add new device in table */
1360 #ifdef ADB_DEBUG
1361 if (adb_debug & 0x80)
1362 printf_intr("new device found\n");
1363 #endif
1364 ADBDevTable[++ADBNumDevices].devType =
1365 (u_char)send_string[2];
1366 ADBDevTable[ADBNumDevices].origAddr = device;
1367 ADBDevTable[ADBNumDevices].currentAddr = device;
1368 /* These will be set correctly in adbsys.c */
1369 /* Until then, unsol. data will be ignored. */
1370 ADBDevTable[ADBNumDevices].DataAreaAddr =
1371 (long)0;
1372 ADBDevTable[ADBNumDevices].ServiceRtPtr =
1373 (void *)0;
1374 /* find next unused address */
1375 for (x = saveptr; x > 0; x--)
1376 if (-1 == get_adb_info(&data, x)) {
1377 saveptr = x;
1378 break;
1379 }
1380 #ifdef ADB_DEBUG
1381 if (adb_debug & 0x80)
1382 printf_intr("new free is 0x%02x\n",
1383 saveptr);
1384 #endif
1385 nonewtimes = 0;
1386 /* tell pm driver device is here */
1387 pm_check_adb_devices(device);
1388 } else {
1389 #ifdef ADB_DEBUG
1390 if (adb_debug & 0x80)
1391 printf_intr("moving back...\n");
1392 #endif
1393 /* move old device back */
1394 command = (int)(0x0b | ((int)(saveptr & 0x000f) << 4));
1395 send_string[0] = 2;
1396 send_string[1] = (u_char)(device | 0x60);
1397 send_string[2] = 0xfe;
1398 adb_op_sync((Ptr)send_string, (Ptr)0,
1399 (Ptr)0, (short)command);
1400 }
1401 }
1402 }
1403
1404 #ifdef ADB_DEBUG
1405 if (adb_debug) {
1406 for (i = 1; i <= ADBNumDevices; i++) {
1407 x = get_ind_adb_info(&data, i);
1408 if (x != -1)
1409 printf_intr("index 0x%x, addr 0x%x, type 0x%x\n",
1410 i, x, data.devType);
1411 }
1412 }
1413 #endif
1414
1415 /* enable the programmer's switch, if we have one */
1416 adb_prog_switch_enable();
1417
1418 if (0 == ADBNumDevices) /* tell user if no devices found */
1419 printf_intr("adb: no devices found\n");
1420
1421 adbStarting = 0; /* not starting anymore */
1422 #ifdef ADB_DEBUG
1423 printf_intr("adb: ADBReInit complete\n");
1424 #endif
1425
1426 if (adbHardware == ADB_HW_CUDA)
1427 timeout((void *)adb_cuda_tickle, 0, ADB_TICKLE_TICKS);
1428
1429 if (adbHardware != ADB_HW_PB) /* ints must be on for PB? */
1430 splx(s);
1431 return;
1432 }
1433
1434
1435 #if 0
1436 /*
1437 * adb_comp_exec
1438 * This is a general routine that calls the completion routine if there is one.
1439 * NOTE: This routine is now only used by pm_direct.c
1440 * All the code in this file (adb_direct.c) uses
1441 * the adb_pass_up routine now.
1442 */
1443 void
1444 adb_comp_exec(void)
1445 {
1446 if ((long)0 != adbCompRout) /* don't call if empty return location */
1447 #ifdef __NetBSD__
1448 asm(" movml #0xffff,sp@- | save all registers
1449 movl %0,a2 | adbCompData
1450 movl %1,a1 | adbCompRout
1451 movl %2,a0 | adbBuffer
1452 movl %3,d0 | adbWaitingCmd
1453 jbsr a1@ | go call the routine
1454 movml sp@+,#0xffff | restore all registers"
1455 :
1456 : "g"(adbCompData), "g"(adbCompRout),
1457 "g"(adbBuffer), "g"(adbWaitingCmd)
1458 : "d0", "a0", "a1", "a2");
1459 #else /* for Mac OS-based testing */
1460 asm {
1461 movem.l a0/a1/a2/d0, -(a7)
1462 move.l adbCompData, a2
1463 move.l adbCompRout, a1
1464 move.l adbBuffer, a0
1465 move.w adbWaitingCmd, d0
1466 jsr(a1)
1467 movem.l(a7) +, d0/a2/a1/a0
1468 }
1469 #endif
1470 }
1471 #endif
1472
1473
1474 /*
1475 * adb_cmd_result
1476 *
1477 * This routine lets the caller know whether the specified adb command string
1478 * should expect a returned result, such as a TALK command.
1479 *
1480 * returns: 0 if a result should be expected
1481 * 1 if a result should NOT be expected
1482 */
1483 int
1484 adb_cmd_result(u_char *in)
1485 {
1486 switch (adbHardware) {
1487 case ADB_HW_II:
1488 /* was it an ADB talk command? */
1489 if ((in[1] & 0x0c) == 0x0c)
1490 return 0;
1491 return 1;
1492
1493 case ADB_HW_IISI:
1494 case ADB_HW_CUDA:
1495 /* was it an ADB talk command? */
1496 if ((in[1] == 0x00) && ((in[2] & 0x0c) == 0x0c))
1497 return 0;
1498 /* was it an RTC/PRAM read date/time? */
1499 if ((in[1] == 0x01) && (in[2] == 0x03))
1500 return 0;
1501 return 1;
1502
1503 case ADB_HW_PB:
1504 return 1;
1505
1506 case ADB_HW_UNKNOWN:
1507 default:
1508 return 1;
1509 }
1510 }
1511
1512
1513 /*
1514 * adb_cmd_extra
1515 *
1516 * This routine lets the caller know whether the specified adb command string
1517 * may have extra data appended to the end of it, such as a LISTEN command.
1518 *
1519 * returns: 0 if extra data is allowed
1520 * 1 if extra data is NOT allowed
1521 */
1522 int
1523 adb_cmd_extra(u_char *in)
1524 {
1525 switch (adbHardware) {
1526 case ADB_HW_II:
1527 if ((in[1] & 0x0c) == 0x08) /* was it a listen command? */
1528 return 0;
1529 return 1;
1530
1531 case ADB_HW_IISI:
1532 case ADB_HW_CUDA:
1533 /*
1534 * TO DO: support needs to be added to recognize RTC and PRAM
1535 * commands
1536 */
1537 if ((in[2] & 0x0c) == 0x08) /* was it a listen command? */
1538 return 0;
1539 /* add others later */
1540 return 1;
1541
1542 case ADB_HW_PB:
1543 return 1;
1544
1545 case ADB_HW_UNKNOWN:
1546 default:
1547 return 1;
1548 }
1549 }
1550
1551
1552 /*
1553 * adb_op_sync
1554 *
1555 * This routine does exactly what the adb_op routine does, except that after
1556 * the adb_op is called, it waits until the return value is present before
1557 * returning.
1558 *
1559 * NOTE: The user specified compRout is ignored, since this routine specifies
1560 * it's own to adb_op, which is why you really called this in the first place
1561 * anyway.
1562 */
1563 int
1564 adb_op_sync(Ptr buffer, Ptr compRout, Ptr data, short command)
1565 {
1566 int result;
1567 volatile int flag = 0;
1568
1569 result = adb_op(buffer, (void *)adb_op_comprout,
1570 (void *)&flag, command); /* send command */
1571 if (result == 0) /* send ok? */
1572 while (0 == flag)
1573 /* wait for compl. routine */;
1574
1575 return result;
1576 }
1577
1578
1579 /*
1580 * adb_op_comprout
1581 *
1582 * This function is used by the adb_op_sync routine so it knows when the
1583 * function is done.
1584 */
1585 void
1586 adb_op_comprout(buffer, compdata, cmd)
1587 caddr_t buffer, compdata;
1588 int cmd;
1589 {
1590 short *p = (short *)compdata;
1591
1592 *p = 1;
1593 }
1594
1595 void
1596 adb_setup_hw_type(void)
1597 {
1598 long response;
1599
1600 if (adbHardware == ADB_HW_CUDA)
1601 return;
1602
1603 if (adbHardware == ADB_HW_PB) {
1604 pm_setup_adb();
1605 return;
1606 }
1607 panic("unknown adb hardware");
1608
1609 response = 0; /*mac68k_machine.machineid;*/
1610
1611 /*
1612 * Determine what type of ADB hardware we are running on.
1613 */
1614 switch (response) {
1615 case 6: /* II */
1616 case 7: /* IIx */
1617 case 8: /* IIcx */
1618 case 9: /* SE/30 */
1619 case 11: /* IIci */
1620 case 22: /* Quadra 700 */
1621 case 30: /* Centris 650 */
1622 case 35: /* Quadra 800 */
1623 case 36: /* Quadra 650 */
1624 case 52: /* Centris 610 */
1625 case 53: /* Quadra 610 */
1626 adbHardware = ADB_HW_II;
1627 printf_intr("adb: using II series hardware support\n");
1628 break;
1629 case 18: /* IIsi */
1630 case 20: /* Quadra 900 - not sure if IIsi or not */
1631 case 23: /* Classic II */
1632 case 26: /* Quadra 950 - not sure if IIsi or not */
1633 case 27: /* LC III, Performa 450 */
1634 case 37: /* LC II, Performa 400/405/430 */
1635 case 44: /* IIvi */
1636 case 45: /* Performa 600 */
1637 case 48: /* IIvx */
1638 case 62: /* Performa 460/465/467 */
1639 adbHardware = ADB_HW_IISI;
1640 printf_intr("adb: using IIsi series hardware support\n");
1641 break;
1642 case 21: /* PowerBook 170 */
1643 case 25: /* PowerBook 140 */
1644 case 54: /* PowerBook 145 */
1645 case 34: /* PowerBook 160 */
1646 case 84: /* PowerBook 165 */
1647 case 50: /* PowerBook 165c */
1648 case 33: /* PowerBook 180 */
1649 case 71: /* PowerBook 180c */
1650 case 115: /* PowerBook 150 */
1651 adbHardware = ADB_HW_PB;
1652 pm_setup_adb();
1653 printf_intr("adb: using PowerBook 100-series hardware support\n");
1654 break;
1655 case 29: /* PowerBook Duo 210 */
1656 case 32: /* PowerBook Duo 230 */
1657 case 38: /* PowerBook Duo 250 */
1658 case 72: /* PowerBook 500 series */
1659 case 77: /* PowerBook Duo 270 */
1660 case 102: /* PowerBook Duo 280 */
1661 case 103: /* PowerBook Duo 280c */
1662 adbHardware = ADB_HW_PB;
1663 pm_setup_adb();
1664 printf_intr("adb: using PowerBook Duo-series and PowerBook 500-series hardware support\n");
1665 break;
1666 case 49: /* Color Classic */
1667 case 56: /* LC 520 */
1668 case 60: /* Centris 660AV */
1669 case 78: /* Quadra 840AV */
1670 case 80: /* LC 550, Performa 550 */
1671 case 83: /* Color Classic II */
1672 case 89: /* LC 475, Performa 475/476 */
1673 case 92: /* LC 575, Performa 575/577/578 */
1674 case 94: /* Quadra 605 */
1675 case 98: /* LC 630, Performa 630, Quadra 630 */
1676 case 99: /* Performa 580(?)/588 */
1677 adbHardware = ADB_HW_CUDA;
1678 printf_intr("adb: using Cuda series hardware support\n");
1679 break;
1680 default:
1681 adbHardware = ADB_HW_UNKNOWN;
1682 printf_intr("adb: hardware type unknown for this machine\n");
1683 printf_intr("adb: ADB support is disabled\n");
1684 break;
1685 }
1686
1687 /*
1688 * Determine whether this machine has ADB based soft power.
1689 */
1690 switch (response) {
1691 case 18: /* IIsi */
1692 case 20: /* Quadra 900 - not sure if IIsi or not */
1693 case 26: /* Quadra 950 - not sure if IIsi or not */
1694 case 44: /* IIvi */
1695 case 45: /* Performa 600 */
1696 case 48: /* IIvx */
1697 case 49: /* Color Classic */
1698 case 83: /* Color Classic II */
1699 case 56: /* LC 520 */
1700 case 78: /* Quadra 840AV */
1701 case 80: /* LC 550, Performa 550 */
1702 case 92: /* LC 575, Performa 575/577/578 */
1703 case 98: /* LC 630, Performa 630, Quadra 630 */
1704 adbSoftPower = 1;
1705 break;
1706 }
1707 }
1708
1709 int
1710 count_adbs(void)
1711 {
1712 int i;
1713 int found;
1714
1715 found = 0;
1716
1717 for (i = 1; i < 16; i++)
1718 if (0 != ADBDevTable[i].devType)
1719 found++;
1720
1721 return found;
1722 }
1723
1724 int
1725 get_ind_adb_info(ADBDataBlock * info, int index)
1726 {
1727 if ((index < 1) || (index > 15)) /* check range 1-15 */
1728 return (-1);
1729
1730 #ifdef ADB_DEBUG
1731 if (adb_debug & 0x80)
1732 printf_intr("index 0x%x devType is: 0x%x\n", index,
1733 ADBDevTable[index].devType);
1734 #endif
1735 if (0 == ADBDevTable[index].devType) /* make sure it's a valid entry */
1736 return (-1);
1737
1738 info->devType = ADBDevTable[index].devType;
1739 info->origADBAddr = ADBDevTable[index].origAddr;
1740 info->dbServiceRtPtr = (Ptr)ADBDevTable[index].ServiceRtPtr;
1741 info->dbDataAreaAddr = (Ptr)ADBDevTable[index].DataAreaAddr;
1742
1743 return (ADBDevTable[index].currentAddr);
1744 }
1745
1746 int
1747 get_adb_info(ADBDataBlock * info, int adbAddr)
1748 {
1749 int i;
1750
1751 if ((adbAddr < 1) || (adbAddr > 15)) /* check range 1-15 */
1752 return (-1);
1753
1754 for (i = 1; i < 15; i++)
1755 if (ADBDevTable[i].currentAddr == adbAddr) {
1756 info->devType = ADBDevTable[i].devType;
1757 info->origADBAddr = ADBDevTable[i].origAddr;
1758 info->dbServiceRtPtr = (Ptr)ADBDevTable[i].ServiceRtPtr;
1759 info->dbDataAreaAddr = ADBDevTable[i].DataAreaAddr;
1760 return 0; /* found */
1761 }
1762
1763 return (-1); /* not found */
1764 }
1765
1766 int
1767 set_adb_info(ADBSetInfoBlock * info, int adbAddr)
1768 {
1769 int i;
1770
1771 if ((adbAddr < 1) || (adbAddr > 15)) /* check range 1-15 */
1772 return (-1);
1773
1774 for (i = 1; i < 15; i++)
1775 if (ADBDevTable[i].currentAddr == adbAddr) {
1776 ADBDevTable[i].ServiceRtPtr =
1777 (void *)(info->siServiceRtPtr);
1778 ADBDevTable[i].DataAreaAddr = info->siDataAreaAddr;
1779 return 0; /* found */
1780 }
1781
1782 return (-1); /* not found */
1783
1784 }
1785
1786 /* caller should really use machine-independant version: getPramTime */
1787 /* this version does pseudo-adb access only */
1788 int
1789 adb_read_date_time(unsigned long *time)
1790 {
1791 u_char output[ADB_MAX_MSG_LENGTH];
1792 int result;
1793 volatile int flag = 0;
1794
1795 switch (adbHardware) {
1796 case ADB_HW_II:
1797 return -1;
1798
1799 case ADB_HW_IISI:
1800 output[0] = 0x02; /* 2 byte message */
1801 output[1] = 0x01; /* to pram/rtc device */
1802 output[2] = 0x03; /* read date/time */
1803 result = send_adb_IIsi((u_char *)output, (u_char *)output,
1804 (void *)adb_op_comprout, (int *)&flag, (int)0);
1805 if (result != 0) /* exit if not sent */
1806 return -1;
1807
1808 while (0 == flag) /* wait for result */
1809 ;
1810
1811 *time = (long)(*(long *)(output + 1));
1812 return 0;
1813
1814 case ADB_HW_PB:
1815 return -1;
1816
1817 case ADB_HW_CUDA:
1818 output[0] = 0x02; /* 2 byte message */
1819 output[1] = 0x01; /* to pram/rtc device */
1820 output[2] = 0x03; /* read date/time */
1821 result = send_adb_cuda((u_char *)output, (u_char *)output,
1822 (void *)adb_op_comprout, (void *)&flag, (int)0);
1823 if (result != 0) /* exit if not sent */
1824 return -1;
1825
1826 while (0 == flag) /* wait for result */
1827 ;
1828
1829 /* *time = (long)(*(long *)(output + 1)) - 2082844800; */
1830 bcopy(output + 1, time, 4);
1831 *time -= 2082844800;
1832 return 0;
1833
1834 case ADB_HW_UNKNOWN:
1835 default:
1836 return -1;
1837 }
1838 }
1839
1840 /* caller should really use machine-independant version: setPramTime */
1841 /* this version does pseudo-adb access only */
1842 int
1843 adb_set_date_time(unsigned long time)
1844 {
1845 u_char output[ADB_MAX_MSG_LENGTH];
1846 int result;
1847 volatile int flag = 0;
1848
1849 time += 2082844800;
1850
1851 switch (adbHardware) {
1852
1853 case ADB_HW_CUDA:
1854 output[0] = 0x06; /* 6 byte message */
1855 output[1] = 0x01; /* to pram/rtc device */
1856 output[2] = 0x09; /* set date/time */
1857 output[3] = (u_char)(time >> 24);
1858 output[4] = (u_char)(time >> 16);
1859 output[5] = (u_char)(time >> 8);
1860 output[6] = (u_char)(time);
1861 result = send_adb_cuda((u_char *)output, (u_char *)0,
1862 (void *)adb_op_comprout, (void *)&flag, (int)0);
1863 if (result != 0) /* exit if not sent */
1864 return -1;
1865
1866 while (0 == flag) /* wait for send to finish */
1867 ;
1868
1869 return 0;
1870
1871 case ADB_HW_II:
1872 case ADB_HW_IISI:
1873 case ADB_HW_PB:
1874 case ADB_HW_UNKNOWN:
1875 default:
1876 return -1;
1877 }
1878 }
1879
1880
1881 int
1882 adb_poweroff(void)
1883 {
1884 u_char output[ADB_MAX_MSG_LENGTH];
1885 int result;
1886
1887 if (!adbSoftPower)
1888 return -1;
1889
1890 switch (adbHardware) {
1891 case ADB_HW_IISI:
1892 output[0] = 0x02; /* 2 byte message */
1893 output[1] = 0x01; /* to pram/rtc/soft-power device */
1894 output[2] = 0x0a; /* set date/time */
1895 result = send_adb_IIsi((u_char *)output, (u_char *)0,
1896 (void *)0, (void *)0, (int)0);
1897 if (result != 0) /* exit if not sent */
1898 return -1;
1899
1900 for (;;); /* wait for power off */
1901
1902 return 0;
1903
1904 case ADB_HW_PB:
1905 return -1;
1906
1907 case ADB_HW_CUDA:
1908 output[0] = 0x02; /* 2 byte message */
1909 output[1] = 0x01; /* to pram/rtc/soft-power device */
1910 output[2] = 0x0a; /* set date/time */
1911 result = send_adb_cuda((u_char *)output, (u_char *)0,
1912 (void *)0, (void *)0, (int)0);
1913 if (result != 0) /* exit if not sent */
1914 return -1;
1915
1916 for (;;); /* wait for power off */
1917
1918 return 0;
1919
1920 case ADB_HW_II: /* II models don't do ADB soft power */
1921 case ADB_HW_UNKNOWN:
1922 default:
1923 return -1;
1924 }
1925 }
1926
1927 int
1928 adb_prog_switch_enable(void)
1929 {
1930 u_char output[ADB_MAX_MSG_LENGTH];
1931 int result;
1932 volatile int flag = 0;
1933
1934 switch (adbHardware) {
1935 case ADB_HW_IISI:
1936 output[0] = 0x03; /* 3 byte message */
1937 output[1] = 0x01; /* to pram/rtc/soft-power device */
1938 output[2] = 0x1c; /* prog. switch control */
1939 output[3] = 0x01; /* enable */
1940 result = send_adb_IIsi((u_char *)output, (u_char *)0,
1941 (void *)adb_op_comprout, (void *)&flag, (int)0);
1942 if (result != 0) /* exit if not sent */
1943 return -1;
1944
1945 while (0 == flag) /* wait for send to finish */
1946 ;
1947
1948 return 0;
1949
1950 case ADB_HW_PB:
1951 return -1;
1952
1953 case ADB_HW_II: /* II models don't do prog. switch */
1954 case ADB_HW_CUDA: /* cuda doesn't do prog. switch TO DO: verify this */
1955 case ADB_HW_UNKNOWN:
1956 default:
1957 return -1;
1958 }
1959 }
1960
1961 int
1962 adb_prog_switch_disable(void)
1963 {
1964 u_char output[ADB_MAX_MSG_LENGTH];
1965 int result;
1966 volatile int flag = 0;
1967
1968 switch (adbHardware) {
1969 case ADB_HW_IISI:
1970 output[0] = 0x03; /* 3 byte message */
1971 output[1] = 0x01; /* to pram/rtc/soft-power device */
1972 output[2] = 0x1c; /* prog. switch control */
1973 output[3] = 0x01; /* disable */
1974 result = send_adb_IIsi((u_char *)output, (u_char *)0,
1975 (void *)adb_op_comprout, (void *)&flag, (int)0);
1976 if (result != 0) /* exit if not sent */
1977 return -1;
1978
1979 while (0 == flag) /* wait for send to finish */
1980 ;
1981
1982 return 0;
1983
1984 case ADB_HW_PB:
1985 return -1;
1986
1987 case ADB_HW_II: /* II models don't do prog. switch */
1988 case ADB_HW_CUDA: /* cuda doesn't do prog. switch */
1989 case ADB_HW_UNKNOWN:
1990 default:
1991 return -1;
1992 }
1993 }
1994
1995 #ifndef MRG_ADB
1996
1997 int
1998 CountADBs(void)
1999 {
2000 return (count_adbs());
2001 }
2002
2003 void
2004 ADBReInit(void)
2005 {
2006 adb_reinit();
2007 }
2008
2009 int
2010 GetIndADB(ADBDataBlock * info, int index)
2011 {
2012 return (get_ind_adb_info(info, index));
2013 }
2014
2015 int
2016 GetADBInfo(ADBDataBlock * info, int adbAddr)
2017 {
2018 return (get_adb_info(info, adbAddr));
2019 }
2020
2021 int
2022 SetADBInfo(ADBSetInfoBlock * info, int adbAddr)
2023 {
2024 return (set_adb_info(info, adbAddr));
2025 }
2026
2027 int
2028 ADBOp(Ptr buffer, Ptr compRout, Ptr data, short commandNum)
2029 {
2030 return (adb_op(buffer, compRout, data, commandNum));
2031 }
2032
2033 #endif
2034
2035
2036 int
2037 setsoftadb()
2038 {
2039 timeout((void *)adb_soft_intr, NULL, 1);
2040 return 0;
2041 }
2042
2043 void
2044 adb_cuda_autopoll()
2045 {
2046 volatile int flag = 0;
2047 int result;
2048 u_char output[16];
2049 extern void adb_op_comprout();
2050
2051 output[0] = 0x03; /* 3-byte message */
2052 output[1] = 0x01; /* to pram/rtc device */
2053 output[2] = 0x01; /* cuda autopoll */
2054 output[3] = 0x01;
2055 result = send_adb_cuda(output, output, adb_op_comprout,
2056 (void *)&flag, 0);
2057 if (result != 0) /* exit if not sent */
2058 return;
2059
2060 while (flag == 0); /* wait for result */
2061 }
2062
2063 void
2064 powermac_restart()
2065 {
2066 volatile int flag = 0;
2067 int result;
2068 u_char output[16];
2069
2070 switch (adbHardware) {
2071 case ADB_HW_CUDA:
2072 output[0] = 0x02; /* 2 byte message */
2073 output[1] = 0x01; /* to pram/rtc/soft-power device */
2074 output[2] = 0x11; /* restart */
2075 result = send_adb_cuda((u_char *)output, (u_char *)0,
2076 (void *)0, (void *)0, (int)0);
2077 if (result != 0) /* exit if not sent */
2078 return;
2079 while (1); /* not return */
2080
2081 case ADB_HW_PB:
2082 pm_adb_restart();
2083 return;
2084 }
2085 }
2086
2087 void
2088 powermac_powerdown()
2089 {
2090 adb_poweroff();
2091 }
2092