adb_direct.c revision 1.40 1 /* $NetBSD: adb_direct.c,v 1.40 2009/03/14 14:46:01 dsl Exp $ */
2
3 /* From: adb_direct.c 2.02 4/18/97 jpw */
4
5 /*
6 * Copyright (C) 1996, 1997 John P. Wittkoski
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by John P. Wittkoski.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*
36 * This code is rather messy, but I don't have time right now
37 * to clean it up as much as I would like.
38 * But it works, so I'm happy. :-) jpw
39 */
40
41 /*
42 * TO DO:
43 * - We could reduce the time spent in the adb_intr_* routines
44 * by having them save the incoming and outgoing data directly
45 * in the adbInbound and adbOutbound queues, as it would reduce
46 * the number of times we need to copy the data around. It
47 * would also make the code more readable and easier to follow.
48 * - (Related to above) Use the header part of adbCommand to
49 * reduce the number of copies we have to do of the data.
50 * - (Related to above) Actually implement the adbOutbound queue.
51 * This is fairly easy once you switch all the intr routines
52 * over to using adbCommand structs directly.
53 * - There is a bug in the state machine of adb_intr_cuda
54 * code that causes hangs, especially on 030 machines, probably
55 * because of some timing issues. Because I have been unable to
56 * determine the exact cause of this bug, I used the timeout function
57 * to check for and recover from this condition. If anyone finds
58 * the actual cause of this bug, the calls to timeout and the
59 * adb_cuda_tickle routine can be removed.
60 */
61
62 #include <sys/cdefs.h>
63 __KERNEL_RCSID(0, "$NetBSD: adb_direct.c,v 1.40 2009/03/14 14:46:01 dsl Exp $");
64
65 #include <sys/param.h>
66 #include <sys/systm.h>
67 #include <sys/callout.h>
68 #include <sys/device.h>
69
70 #include <machine/cpu.h>
71 #include <machine/autoconf.h>
72 #include <machine/adbsys.h>
73 #include <machine/pio.h>
74
75 #include <macppc/dev/viareg.h>
76 #include <macppc/dev/adbvar.h>
77 #include <macppc/dev/pm_direct.h>
78
79 #define printf_intr printf
80
81 #ifdef DEBUG
82 #ifndef ADB_DEBUG
83 #define ADB_DEBUG
84 #endif
85 #endif
86
87 /* some misc. leftovers */
88 #define vPB 0x0000
89 #define vPB3 0x08
90 #define vPB4 0x10
91 #define vPB5 0x20
92 #define vSR_INT 0x04
93 #define vSR_OUT 0x10
94
95 /* the type of ADB action that we are currently preforming */
96 #define ADB_ACTION_NOTREADY 0x1 /* has not been initialized yet */
97 #define ADB_ACTION_IDLE 0x2 /* the bus is currently idle */
98 #define ADB_ACTION_OUT 0x3 /* sending out a command */
99 #define ADB_ACTION_IN 0x4 /* receiving data */
100 #define ADB_ACTION_POLLING 0x5 /* polling - II only */
101
102 /*
103 * These describe the state of the ADB bus itself, although they
104 * don't necessarily correspond directly to ADB states.
105 * Note: these are not really used in the IIsi code.
106 */
107 #define ADB_BUS_UNKNOWN 0x1 /* we don't know yet - all models */
108 #define ADB_BUS_IDLE 0x2 /* bus is idle - all models */
109 #define ADB_BUS_CMD 0x3 /* starting a command - II models */
110 #define ADB_BUS_ODD 0x4 /* the "odd" state - II models */
111 #define ADB_BUS_EVEN 0x5 /* the "even" state - II models */
112 #define ADB_BUS_ACTIVE 0x6 /* active state - IIsi models */
113 #define ADB_BUS_ACK 0x7 /* currently ACKing - IIsi models */
114
115 /*
116 * Shortcuts for setting or testing the VIA bit states.
117 * Not all shortcuts are used for every type of ADB hardware.
118 */
119 #define ADB_SET_STATE_IDLE_CUDA() via_reg_or(VIA1, vBufB, (vPB4 | vPB5))
120 #define ADB_SET_STATE_TIP() via_reg_and(VIA1, vBufB, ~vPB5)
121 #define ADB_CLR_STATE_TIP() via_reg_or(VIA1, vBufB, vPB5)
122 #define ADB_TOGGLE_STATE_ACK_CUDA() via_reg_xor(VIA1, vBufB, vPB4)
123 #define ADB_SET_STATE_ACKOFF_CUDA() via_reg_or(VIA1, vBufB, vPB4)
124 #define ADB_SET_SR_INPUT() via_reg_and(VIA1, vACR, ~vSR_OUT)
125 #define ADB_SET_SR_OUTPUT() via_reg_or(VIA1, vACR, vSR_OUT)
126 #define ADB_SR() read_via_reg(VIA1, vSR)
127 #define ADB_VIA_INTR_ENABLE() write_via_reg(VIA1, vIER, 0x84)
128 #define ADB_VIA_INTR_DISABLE() write_via_reg(VIA1, vIER, 0x04)
129 #define ADB_INTR_IS_OFF (vPB3 == (read_via_reg(VIA1, vBufB) & vPB3))
130 #define ADB_INTR_IS_ON (0 == (read_via_reg(VIA1, vBufB) & vPB3))
131 #define ADB_SR_INTR_IS_OFF (0 == (read_via_reg(VIA1, vIFR) & vSR_INT))
132 #define ADB_SR_INTR_IS_ON (vSR_INT == (read_via_reg(VIA1, \
133 vIFR) & vSR_INT))
134
135 /*
136 * This is the delay that is required (in uS) between certain
137 * ADB transactions. The actual timing delay for for each uS is
138 * calculated at boot time to account for differences in machine speed.
139 */
140 #define ADB_DELAY 150
141
142 /*
143 * Maximum ADB message length; includes space for data, result, and
144 * device code - plus a little for safety.
145 */
146 #define ADB_MAX_MSG_LENGTH 16
147 #define ADB_MAX_HDR_LENGTH 8
148
149 #define ADB_QUEUE 32
150 #define ADB_TICKLE_TICKS 4
151
152 /*
153 * A structure for storing information about each ADB device.
154 */
155 struct ADBDevEntry {
156 void (*ServiceRtPtr)(void);
157 void *DataAreaAddr;
158 int devType;
159 int origAddr;
160 int currentAddr;
161 };
162
163 /*
164 * Used to hold ADB commands that are waiting to be sent out.
165 */
166 struct adbCmdHoldEntry {
167 u_char outBuf[ADB_MAX_MSG_LENGTH]; /* our message */
168 u_char *saveBuf; /* buffer to know where to save result */
169 adbComp *compRout; /* completion routine pointer */
170 int *data; /* completion routine data pointer */
171 };
172
173 /*
174 * Eventually used for two separate queues, the queue between
175 * the upper and lower halves, and the outgoing packet queue.
176 * TO DO: adbCommand can replace all of adbCmdHoldEntry eventually
177 */
178 struct adbCommand {
179 u_char header[ADB_MAX_HDR_LENGTH]; /* not used yet */
180 u_char data[ADB_MAX_MSG_LENGTH]; /* packet data only */
181 u_char *saveBuf; /* where to save result */
182 adbComp *compRout; /* completion routine pointer */
183 volatile int *compData; /* completion routine data pointer */
184 u_int cmd; /* the original command for this data */
185 u_int unsol; /* 1 if packet was unsolicited */
186 u_int ack_only; /* 1 for no special processing */
187 };
188
189 /*
190 * A few variables that we need and their initial values.
191 */
192 int adbHardware = ADB_HW_UNKNOWN;
193 int adbActionState = ADB_ACTION_NOTREADY;
194 int adbWaiting = 0; /* waiting for return data from the device */
195 int adbWriteDelay = 0; /* working on (or waiting to do) a write */
196
197 int adbWaitingCmd = 0; /* ADB command we are waiting for */
198 u_char *adbBuffer = (long)0; /* pointer to user data area */
199 adbComp *adbCompRout = NULL; /* pointer to the completion routine */
200 volatile int *adbCompData = NULL; /* pointer to the completion routine data */
201 int adbStarting = 1; /* doing ADBReInit so do polling differently */
202
203 u_char adbInputBuffer[ADB_MAX_MSG_LENGTH]; /* data input buffer */
204 u_char adbOutputBuffer[ADB_MAX_MSG_LENGTH]; /* data output buffer */
205
206 int adbSentChars = 0; /* how many characters we have sent */
207
208 struct ADBDevEntry ADBDevTable[16]; /* our ADB device table */
209 int ADBNumDevices; /* num. of ADB devices found with ADBReInit */
210
211 struct adbCommand adbInbound[ADB_QUEUE]; /* incoming queue */
212 int adbInCount = 0; /* how many packets in in queue */
213 int adbInHead = 0; /* head of in queue */
214 int adbInTail = 0; /* tail of in queue */
215 struct adbCommand adbOutbound[ADB_QUEUE]; /* outgoing queue - not used yet */
216 int adbOutCount = 0; /* how many packets in out queue */
217 int adbOutHead = 0; /* head of out queue */
218 int adbOutTail = 0; /* tail of out queue */
219
220 int tickle_count = 0; /* how many tickles seen for this packet? */
221 int tickle_serial = 0; /* the last packet tickled */
222 int adb_cuda_serial = 0; /* the current packet */
223
224 struct callout adb_cuda_tickle_ch;
225 struct callout adb_soft_intr_ch;
226
227 volatile u_char *Via1Base;
228 extern int adb_polling; /* Are we polling? */
229
230 void pm_setup_adb(void);
231 void pm_check_adb_devices(int);
232 int pm_adb_op(u_char *, void *, volatile void *, int);
233 void pm_init_adb_device(void);
234
235 /*
236 * The following are private routines.
237 */
238 #ifdef ADB_DEBUG
239 void print_single(u_char *);
240 #endif
241 void adb_soft_intr(void);
242 int send_adb_cuda(u_char *, u_char *, adbComp *, volatile void *, int);
243 void adb_intr_cuda_test(void);
244 void adb_cuda_tickle(void);
245 void adb_pass_up(struct adbCommand *);
246 void adb_op_comprout(void *, volatile int *, int);
247 void adb_reinit(void);
248 int count_adbs(void);
249 int get_ind_adb_info(ADBDataBlock *, int);
250 int get_adb_info(ADBDataBlock *, int);
251 int set_adb_info(ADBSetInfoBlock *, int);
252 void adb_setup_hw_type(void);
253 int adb_op (Ptr, adbComp *, volatile void *, short);
254 int adb_op_sync(Ptr, adbComp *, Ptr, short);
255 void adb_hw_setup(void);
256 int adb_cmd_result(u_char *);
257 int adb_cmd_extra(u_char *);
258 /* we should create this and it will be the public version */
259 int send_adb(u_char *, void *, void *);
260
261 int setsoftadb(void);
262
263 #ifdef ADB_DEBUG
264 /*
265 * print_single
266 * Diagnostic display routine. Displays the hex values of the
267 * specified elements of the u_char. The length of the "string"
268 * is in [0].
269 */
270 void
271 print_single(str)
272 u_char *str;
273 {
274 int x;
275
276 if (str == 0) {
277 printf_intr("no data - null pointer\n");
278 return;
279 }
280 if (*str == 0) {
281 printf_intr("nothing returned\n");
282 return;
283 }
284 if (*str > 20) {
285 printf_intr("ADB: ACK > 20 no way!\n");
286 *str = 20;
287 }
288 printf_intr("(length=0x%x):", *str);
289 for (x = 1; x <= *str; x++)
290 printf_intr(" 0x%02x", str[x]);
291 printf_intr("\n");
292 }
293 #endif
294
295 void
296 adb_cuda_tickle(void)
297 {
298 volatile int s;
299
300 if (adbActionState == ADB_ACTION_IN) {
301 if (tickle_serial == adb_cuda_serial) {
302 if (++tickle_count > 0) {
303 s = splhigh();
304 adbActionState = ADB_ACTION_IDLE;
305 adbInputBuffer[0] = 0;
306 ADB_SET_STATE_IDLE_CUDA();
307 splx(s);
308 }
309 } else {
310 tickle_serial = adb_cuda_serial;
311 tickle_count = 0;
312 }
313 } else {
314 tickle_serial = adb_cuda_serial;
315 tickle_count = 0;
316 }
317
318 callout_reset(&adb_cuda_tickle_ch, ADB_TICKLE_TICKS,
319 (void *)adb_cuda_tickle, NULL);
320 }
321
322 /*
323 * called when when an adb interrupt happens
324 *
325 * Cuda version of adb_intr
326 * TO DO: do we want to add some calls to intr_dispatch() here to
327 * grab serial interrupts?
328 */
329 int
330 adb_intr_cuda(void *arg)
331 {
332 volatile int i, ending;
333 volatile unsigned int s;
334 struct adbCommand packet;
335 uint8_t reg;
336
337 s = splhigh(); /* can't be too careful - might be called */
338 /* from a routine, NOT an interrupt */
339
340 reg = read_via_reg(VIA1, vIFR); /* Read the interrupts */
341 if ((reg & 0x80) == 0) {
342 splx(s);
343 return 0; /* No interrupts to process */
344 }
345
346 write_via_reg(VIA1, vIFR, reg & 0x7f); /* Clear 'em */
347
348 ADB_VIA_INTR_DISABLE(); /* disable ADB interrupt on IIs. */
349
350 switch_start:
351 switch (adbActionState) {
352 case ADB_ACTION_IDLE:
353 /*
354 * This is an unexpected packet, so grab the first (dummy)
355 * byte, set up the proper vars, and tell the chip we are
356 * starting to receive the packet by setting the TIP bit.
357 */
358 adbInputBuffer[1] = ADB_SR();
359 adb_cuda_serial++;
360 if (ADB_INTR_IS_OFF) /* must have been a fake start */
361 break;
362
363 ADB_SET_SR_INPUT();
364 ADB_SET_STATE_TIP();
365
366 adbInputBuffer[0] = 1;
367 adbActionState = ADB_ACTION_IN;
368 #ifdef ADB_DEBUG
369 if (adb_debug)
370 printf_intr("idle 0x%02x ", adbInputBuffer[1]);
371 #endif
372 break;
373
374 case ADB_ACTION_IN:
375 adbInputBuffer[++adbInputBuffer[0]] = ADB_SR();
376 /* intr off means this is the last byte (end of frame) */
377 if (ADB_INTR_IS_OFF)
378 ending = 1;
379 else
380 ending = 0;
381
382 if (1 == ending) { /* end of message? */
383 #ifdef ADB_DEBUG
384 if (adb_debug) {
385 printf_intr("in end 0x%02x ",
386 adbInputBuffer[adbInputBuffer[0]]);
387 print_single(adbInputBuffer);
388 }
389 #endif
390
391 /*
392 * Are we waiting AND does this packet match what we
393 * are waiting for AND is it coming from either the
394 * ADB or RTC/PRAM sub-device? This section _should_
395 * recognize all ADB and RTC/PRAM type commands, but
396 * there may be more... NOTE: commands are always at
397 * [4], even for RTC/PRAM commands.
398 */
399 /* set up data for adb_pass_up */
400 memcpy(packet.data, adbInputBuffer, adbInputBuffer[0] + 1);
401
402 if ((adbWaiting == 1) &&
403 (adbInputBuffer[4] == adbWaitingCmd) &&
404 ((adbInputBuffer[2] == 0x00) ||
405 (adbInputBuffer[2] == 0x01))) {
406 packet.saveBuf = adbBuffer;
407 packet.compRout = adbCompRout;
408 packet.compData = adbCompData;
409 packet.unsol = 0;
410 packet.ack_only = 0;
411 adb_pass_up(&packet);
412
413 adbWaitingCmd = 0; /* reset "waiting" vars */
414 adbWaiting = 0;
415 adbBuffer = (long)0;
416 adbCompRout = (long)0;
417 adbCompData = (long)0;
418 } else {
419 packet.unsol = 1;
420 packet.ack_only = 0;
421 adb_pass_up(&packet);
422 }
423
424
425 /* reset vars and signal the end of this frame */
426 adbActionState = ADB_ACTION_IDLE;
427 adbInputBuffer[0] = 0;
428 ADB_SET_STATE_IDLE_CUDA();
429 /*ADB_SET_SR_INPUT();*/
430
431 /*
432 * If there is something waiting to be sent out,
433 * the set everything up and send the first byte.
434 */
435 if (adbWriteDelay == 1) {
436 delay(ADB_DELAY); /* required */
437 adbSentChars = 0;
438 adbActionState = ADB_ACTION_OUT;
439 /*
440 * If the interrupt is on, we were too slow
441 * and the chip has already started to send
442 * something to us, so back out of the write
443 * and start a read cycle.
444 */
445 if (ADB_INTR_IS_ON) {
446 ADB_SET_SR_INPUT();
447 ADB_SET_STATE_IDLE_CUDA();
448 adbSentChars = 0;
449 adbActionState = ADB_ACTION_IDLE;
450 adbInputBuffer[0] = 0;
451 break;
452 }
453 /*
454 * If we got here, it's ok to start sending
455 * so load the first byte and tell the chip
456 * we want to send.
457 */
458 ADB_SET_STATE_TIP();
459 ADB_SET_SR_OUTPUT();
460 write_via_reg(VIA1, vSR, adbOutputBuffer[adbSentChars + 1]);
461 }
462 } else {
463 ADB_TOGGLE_STATE_ACK_CUDA();
464 #ifdef ADB_DEBUG
465 if (adb_debug)
466 printf_intr("in 0x%02x ",
467 adbInputBuffer[adbInputBuffer[0]]);
468 #endif
469 }
470 break;
471
472 case ADB_ACTION_OUT:
473 i = ADB_SR(); /* reset SR-intr in IFR */
474 #ifdef ADB_DEBUG
475 if (adb_debug)
476 printf_intr("intr out 0x%02x ", i);
477 #endif
478
479 adbSentChars++;
480 if (ADB_INTR_IS_ON) { /* ADB intr low during write */
481 #ifdef ADB_DEBUG
482 if (adb_debug)
483 printf_intr("intr was on ");
484 #endif
485 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
486 ADB_SET_STATE_IDLE_CUDA();
487 adbSentChars = 0; /* must start all over */
488 adbActionState = ADB_ACTION_IDLE; /* new state */
489 adbInputBuffer[0] = 0;
490 adbWriteDelay = 1; /* must retry when done with
491 * read */
492 delay(ADB_DELAY);
493 goto switch_start; /* process next state right
494 * now */
495 break;
496 }
497 if (adbOutputBuffer[0] == adbSentChars) { /* check for done */
498 if (0 == adb_cmd_result(adbOutputBuffer)) { /* do we expect data
499 * back? */
500 adbWaiting = 1; /* signal waiting for return */
501 adbWaitingCmd = adbOutputBuffer[2]; /* save waiting command */
502 } else { /* no talk, so done */
503 /* set up stuff for adb_pass_up */
504 memcpy(packet.data, adbInputBuffer, adbInputBuffer[0] + 1);
505 packet.saveBuf = adbBuffer;
506 packet.compRout = adbCompRout;
507 packet.compData = adbCompData;
508 packet.cmd = adbWaitingCmd;
509 packet.unsol = 0;
510 packet.ack_only = 1;
511 adb_pass_up(&packet);
512
513 /* reset "waiting" vars, just in case */
514 adbWaitingCmd = 0;
515 adbBuffer = (long)0;
516 adbCompRout = NULL;
517 adbCompData = NULL;
518 }
519
520 adbWriteDelay = 0; /* done writing */
521 adbActionState = ADB_ACTION_IDLE; /* signal bus is idle */
522 ADB_SET_SR_INPUT();
523 ADB_SET_STATE_IDLE_CUDA();
524 #ifdef ADB_DEBUG
525 if (adb_debug)
526 printf_intr("write done ");
527 #endif
528 } else {
529 write_via_reg(VIA1, vSR, adbOutputBuffer[adbSentChars + 1]); /* send next byte */
530 ADB_TOGGLE_STATE_ACK_CUDA(); /* signal byte ready to
531 * shift */
532 #ifdef ADB_DEBUG
533 if (adb_debug)
534 printf_intr("toggle ");
535 #endif
536 }
537 break;
538
539 case ADB_ACTION_NOTREADY:
540 #ifdef ADB_DEBUG
541 if (adb_debug)
542 printf_intr("adb: not yet initialized\n");
543 #endif
544 break;
545
546 default:
547 #ifdef ADB_DEBUG
548 if (adb_debug)
549 printf_intr("intr: unknown ADB state\n");
550 #endif
551 break;
552 }
553
554 ADB_VIA_INTR_ENABLE(); /* enable ADB interrupt on IIs. */
555
556 splx(s); /* restore */
557
558 return 1;
559 } /* end adb_intr_cuda */
560
561
562 int
563 send_adb_cuda(u_char * in, u_char * buffer, adbComp *compRout,
564 volatile void *data, int command)
565 {
566 int s, len;
567
568 #ifdef ADB_DEBUG
569 if (adb_debug)
570 printf_intr("SEND\n");
571 #endif
572
573 if (adbActionState == ADB_ACTION_NOTREADY)
574 return 1;
575
576 /* Don't interrupt while we are messing with the ADB */
577 s = splhigh();
578
579 if ((adbActionState == ADB_ACTION_IDLE) && /* ADB available? */
580 (ADB_INTR_IS_OFF)) { /* and no incoming interrupt? */
581 } else
582 if (adbWriteDelay == 0) /* it's busy, but is anything waiting? */
583 adbWriteDelay = 1; /* if no, then we'll "queue"
584 * it up */
585 else {
586 splx(s);
587 return 1; /* really busy! */
588 }
589
590 #ifdef ADB_DEBUG
591 if (adb_debug)
592 printf_intr("QUEUE\n");
593 #endif
594 if ((long)in == (long)0) { /* need to convert? */
595 /*
596 * Don't need to use adb_cmd_extra here because this section
597 * will be called ONLY when it is an ADB command (no RTC or
598 * PRAM)
599 */
600 if ((command & 0x0c) == 0x08) /* copy addl data ONLY if
601 * doing a listen! */
602 len = buffer[0]; /* length of additional data */
603 else
604 len = 0;/* no additional data */
605
606 adbOutputBuffer[0] = 2 + len; /* dev. type + command + addl.
607 * data */
608 adbOutputBuffer[1] = 0x00; /* mark as an ADB command */
609 adbOutputBuffer[2] = (u_char)command; /* load command */
610
611 /* copy additional output data, if any */
612 memcpy(adbOutputBuffer + 3, buffer + 1, len);
613 } else
614 /* if data ready, just copy over */
615 memcpy(adbOutputBuffer, in, in[0] + 2);
616
617 adbSentChars = 0; /* nothing sent yet */
618 adbBuffer = buffer; /* save buffer to know where to save result */
619 adbCompRout = compRout; /* save completion routine pointer */
620 adbCompData = data; /* save completion routine data pointer */
621 adbWaitingCmd = adbOutputBuffer[2]; /* save wait command */
622
623 if (adbWriteDelay != 1) { /* start command now? */
624 #ifdef ADB_DEBUG
625 if (adb_debug)
626 printf_intr("out start NOW");
627 #endif
628 delay(ADB_DELAY);
629 adbActionState = ADB_ACTION_OUT; /* set next state */
630 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
631 write_via_reg(VIA1, vSR, adbOutputBuffer[adbSentChars + 1]); /* load byte for output */
632 ADB_SET_STATE_ACKOFF_CUDA();
633 ADB_SET_STATE_TIP(); /* tell ADB that we want to send */
634 }
635 adbWriteDelay = 1; /* something in the write "queue" */
636
637 splx(s);
638
639 if ((s & (1 << 18)) || adb_polling) /* XXX were VIA1 interrupts blocked ? */
640 /* poll until byte done */
641 while ((adbActionState != ADB_ACTION_IDLE) || (ADB_INTR_IS_ON)
642 || (adbWaiting == 1))
643 if (ADB_SR_INTR_IS_ON) { /* wait for "interrupt" */
644 adb_intr_cuda(NULL); /* process it */
645 adb_soft_intr();
646 }
647
648 return 0;
649 } /* send_adb_cuda */
650
651 int
652 adb_intr(void *arg)
653 {
654 switch (adbHardware) {
655 case ADB_HW_PMU:
656 return pm_intr(arg);
657 break;
658
659 case ADB_HW_CUDA:
660 return adb_intr_cuda(arg);
661 break;
662
663 case ADB_HW_UNKNOWN:
664 break;
665 }
666 return 0;
667 }
668
669
670 /*
671 * adb_pass_up is called by the interrupt-time routines.
672 * It takes the raw packet data that was received from the
673 * device and puts it into the queue that the upper half
674 * processes. It then signals for a soft ADB interrupt which
675 * will eventually call the upper half routine (adb_soft_intr).
676 *
677 * If in->unsol is 0, then this is either the notification
678 * that the packet was sent (on a LISTEN, for example), or the
679 * response from the device (on a TALK). The completion routine
680 * is called only if the user specified one.
681 *
682 * If in->unsol is 1, then this packet was unsolicited and
683 * so we look up the device in the ADB device table to determine
684 * what it's default service routine is.
685 *
686 * If in->ack_only is 1, then we really only need to call
687 * the completion routine, so don't do any other stuff.
688 *
689 * Note that in->data contains the packet header AND data,
690 * while adbInbound[]->data contains ONLY data.
691 *
692 * Note: Called only at interrupt time. Assumes this.
693 */
694 void
695 adb_pass_up(struct adbCommand *in)
696 {
697 int start = 0, len = 0, cmd = 0;
698 ADBDataBlock block;
699
700 /* temp for testing */
701 /*u_char *buffer = 0;*/
702 /*u_char *compdata = 0;*/
703 /*u_char *comprout = 0;*/
704
705 if (adbInCount >= ADB_QUEUE) {
706 #ifdef ADB_DEBUG
707 if (adb_debug)
708 printf_intr("adb: ring buffer overflow\n");
709 #endif
710 return;
711 }
712
713 if (in->ack_only) {
714 len = in->data[0];
715 cmd = in->cmd;
716 start = 0;
717 } else {
718 switch (adbHardware) {
719 case ADB_HW_CUDA:
720 /* If it's unsolicited, accept only ADB data for now */
721 if (in->unsol)
722 if (0 != in->data[2])
723 return;
724 cmd = in->data[4];
725 if (in->data[0] < 5)
726 len = 0;
727 else
728 len = in->data[0]-4;
729 start = 4;
730 break;
731
732 case ADB_HW_PMU:
733 cmd = in->data[1];
734 if (in->data[0] < 2)
735 len = 0;
736 else
737 len = in->data[0]-1;
738 start = 1;
739 break;
740
741 case ADB_HW_UNKNOWN:
742 return;
743 }
744
745 /* Make sure there is a valid device entry for this device */
746 if (in->unsol) {
747 /* ignore unsolicited data during adbreinit */
748 if (adbStarting)
749 return;
750 /* get device's comp. routine and data area */
751 if (-1 == get_adb_info(&block, ADB_CMDADDR(cmd)))
752 return;
753 }
754 }
755
756 /*
757 * If this is an unsolicited packet, we need to fill in
758 * some info so adb_soft_intr can process this packet
759 * properly. If it's not unsolicited, then use what
760 * the caller sent us.
761 */
762 if (in->unsol) {
763 adbInbound[adbInTail].compRout = (void *)block.dbServiceRtPtr;
764 adbInbound[adbInTail].compData = (void *)block.dbDataAreaAddr;
765 adbInbound[adbInTail].saveBuf = (void *)adbInbound[adbInTail].data;
766 } else {
767 adbInbound[adbInTail].compRout = in->compRout;
768 adbInbound[adbInTail].compData = in->compData;
769 adbInbound[adbInTail].saveBuf = in->saveBuf;
770 }
771
772 #ifdef ADB_DEBUG
773 if (adb_debug && in->data[1] == 2)
774 printf_intr("adb: caught error\n");
775 #endif
776
777 /* copy the packet data over */
778 /*
779 * TO DO: If the *_intr routines fed their incoming data
780 * directly into an adbCommand struct, which is passed to
781 * this routine, then we could eliminate this copy.
782 */
783 memcpy(adbInbound[adbInTail].data + 1, in->data + start + 1, len);
784 adbInbound[adbInTail].data[0] = len;
785 adbInbound[adbInTail].cmd = cmd;
786
787 adbInCount++;
788 if (++adbInTail >= ADB_QUEUE)
789 adbInTail = 0;
790
791 /*
792 * If the debugger is running, call upper half manually.
793 * Otherwise, trigger a soft interrupt to handle the rest later.
794 */
795 if (adb_polling)
796 adb_soft_intr();
797 else
798 setsoftadb();
799
800 return;
801 }
802
803
804 /*
805 * Called to process the packets after they have been
806 * placed in the incoming queue.
807 *
808 */
809 void
810 adb_soft_intr(void)
811 {
812 int s;
813 int cmd = 0;
814 u_char *buffer = 0;
815 adbComp *comprout = NULL;
816 volatile int *compdata = 0;
817
818 #if 0
819 s = splhigh();
820 printf_intr("sr: %x\n", (s & 0x0700));
821 splx(s);
822 #endif
823
824 /*delay(2*ADB_DELAY);*/
825
826 while (adbInCount) {
827 #ifdef ADB_DEBUG
828 if (adb_debug & 0x80)
829 printf_intr("%x %x %x ",
830 adbInCount, adbInHead, adbInTail);
831 #endif
832 /* get the data we need from the queue */
833 buffer = adbInbound[adbInHead].saveBuf;
834 comprout = adbInbound[adbInHead].compRout;
835 compdata = adbInbound[adbInHead].compData;
836 cmd = adbInbound[adbInHead].cmd;
837
838 /* copy over data to data area if it's valid */
839 /*
840 * Note that for unsol packets we don't want to copy the
841 * data anywhere, so buffer was already set to 0.
842 * For ack_only buffer was set to 0, so don't copy.
843 */
844 if (buffer)
845 memcpy(buffer, adbInbound[adbInHead].data,
846 adbInbound[adbInHead].data[0] + 1);
847
848 #ifdef ADB_DEBUG
849 if (adb_debug & 0x80) {
850 printf_intr("%p %p %p %x ",
851 buffer, comprout, compdata, (short)cmd);
852 printf_intr("buf: ");
853 print_single(adbInbound[adbInHead].data);
854 }
855 #endif
856 /* Remove the packet from the queue before calling
857 * the completion routine, so that the completion
858 * routine can reentrantly process the queue. For
859 * example, this happens when polling is turned on
860 * by entering the debuger by keystroke.
861 */
862 s = splhigh();
863 adbInCount--;
864 if (++adbInHead >= ADB_QUEUE)
865 adbInHead = 0;
866 splx(s);
867
868 /* call default completion routine if it's valid */
869 if (comprout)
870 (*comprout)(buffer, compdata, cmd);
871 }
872 return;
873 }
874
875
876 /*
877 * This is my version of the ADBOp routine. It mainly just calls the
878 * hardware-specific routine.
879 *
880 * data : pointer to data area to be used by compRout
881 * compRout : completion routine
882 * buffer : for LISTEN: points to data to send - MAX 8 data bytes,
883 * byte 0 = # of bytes
884 * : for TALK: points to place to save return data
885 * command : the adb command to send
886 * result : 0 = success
887 * : -1 = could not complete
888 */
889 int
890 adb_op(Ptr buffer, adbComp *compRout, volatile void *data, short command)
891 {
892 int result;
893
894 switch (adbHardware) {
895 case ADB_HW_PMU:
896 result = pm_adb_op((u_char *)buffer, compRout,
897 data, (int)command);
898
899 if (result == 0)
900 return 0;
901 else
902 return -1;
903 break;
904
905 case ADB_HW_CUDA:
906 result = send_adb_cuda((u_char *)0, (u_char *)buffer,
907 compRout, data, (int)command);
908 if (result == 0)
909 return 0;
910 else
911 return -1;
912 break;
913
914 case ADB_HW_UNKNOWN:
915 default:
916 return -1;
917 }
918 }
919
920
921 /*
922 * adb_hw_setup
923 * This routine sets up the possible machine specific hardware
924 * config (mainly VIA settings) for the various models.
925 */
926 void
927 adb_hw_setup(void)
928 {
929 volatile int i;
930
931 switch (adbHardware) {
932 case ADB_HW_PMU:
933 /*
934 * XXX - really PM_VIA_CLR_INTR - should we put it in
935 * pm_direct.h?
936 */
937 write_via_reg(VIA1, vIFR, 0x90); /* clear interrupt */
938 break;
939
940 case ADB_HW_CUDA:
941 via_reg_or(VIA1, vDirB, 0x30); /* register B bits 4 and 5:
942 * outputs */
943 via_reg_and(VIA1, vDirB, 0xf7); /* register B bit 3: input */
944 via_reg_and(VIA1, vACR, ~vSR_OUT); /* make sure SR is set
945 * to IN */
946 write_via_reg(VIA1, vACR, (read_via_reg(VIA1, vACR) | 0x0c) & ~0x10);
947 adbActionState = ADB_ACTION_IDLE; /* used by all types of
948 * hardware */
949 write_via_reg(VIA1, vIER, 0x84);/* make sure VIA interrupts
950 * are on */
951 ADB_SET_STATE_IDLE_CUDA(); /* set ADB bus state to idle */
952
953 /* sort of a device reset */
954 i = ADB_SR(); /* clear interrupt */
955 ADB_VIA_INTR_DISABLE(); /* no interrupts while clearing */
956 ADB_SET_STATE_IDLE_CUDA(); /* reset state to idle */
957 delay(ADB_DELAY);
958 ADB_SET_STATE_TIP(); /* signal start of frame */
959 delay(ADB_DELAY);
960 ADB_TOGGLE_STATE_ACK_CUDA();
961 delay(ADB_DELAY);
962 ADB_CLR_STATE_TIP();
963 delay(ADB_DELAY);
964 ADB_SET_STATE_IDLE_CUDA(); /* back to idle state */
965 i = ADB_SR(); /* clear interrupt */
966 ADB_VIA_INTR_ENABLE(); /* ints ok now */
967 break;
968
969 case ADB_HW_UNKNOWN:
970 default:
971 write_via_reg(VIA1, vIER, 0x04);/* turn interrupts off - TO
972 * DO: turn PB ints off? */
973 return;
974 break;
975 }
976 }
977
978 /*
979 * adb_reinit sets up the adb stuff
980 *
981 */
982 void
983 adb_reinit(void)
984 {
985 u_char send_string[ADB_MAX_MSG_LENGTH];
986 ADBDataBlock data; /* temp. holder for getting device info */
987 volatile int i, x;
988 int s = 0; /* XXX: gcc */
989 int command;
990 int result;
991 int saveptr; /* point to next free relocation address */
992 int device;
993 int nonewtimes; /* times thru loop w/o any new devices */
994 static bool callo;
995
996 if (!callo) {
997 callo = true;
998 callout_init(&adb_cuda_tickle_ch, 0);
999 callout_init(&adb_soft_intr_ch, 0);
1000 }
1001
1002 /* Make sure we are not interrupted while building the table. */
1003 if (adbHardware != ADB_HW_PMU) /* ints must be on for PMU? */
1004 s = splhigh();
1005
1006 ADBNumDevices = 0; /* no devices yet */
1007
1008 /* Let intr routines know we are running reinit */
1009 adbStarting = 1;
1010
1011 /*
1012 * Initialize the ADB table. For now, we'll always use the same table
1013 * that is defined at the beginning of this file - no mallocs.
1014 */
1015 for (i = 0; i < 16; i++)
1016 ADBDevTable[i].devType = 0;
1017
1018 adb_setup_hw_type(); /* setup hardware type */
1019
1020 adb_hw_setup(); /* init the VIA bits and hard reset ADB */
1021
1022 delay(1000);
1023
1024 /* send an ADB reset first */
1025 result = adb_op_sync((Ptr)0, NULL, (Ptr)0, (short)0x00);
1026 delay(200000);
1027
1028 #ifdef ADB_DEBUG
1029 if (result && adb_debug) {
1030 printf_intr("adb_reinit: failed to reset, result = %d\n",result);
1031 }
1032 #endif
1033
1034 /*
1035 * Probe for ADB devices. Probe devices 1-15 quickly to determine
1036 * which device addresses are in use and which are free. For each
1037 * address that is in use, move the device at that address to a higher
1038 * free address. Continue doing this at that address until no device
1039 * responds at that address. Then move the last device that was moved
1040 * back to the original address. Do this for the remaining addresses
1041 * that we determined were in use.
1042 *
1043 * When finished, do this entire process over again with the updated
1044 * list of in use addresses. Do this until no new devices have been
1045 * found in 20 passes though the in use address list. (This probably
1046 * seems long and complicated, but it's the best way to detect multiple
1047 * devices at the same address - sometimes it takes a couple of tries
1048 * before the collision is detected.)
1049 */
1050
1051 /* initial scan through the devices */
1052 for (i = 1; i < 16; i++) {
1053 send_string[0] = 0;
1054 command = ADBTALK(i, 3);
1055 result = adb_op_sync((Ptr)send_string, NULL,
1056 (Ptr)0, (short)command);
1057
1058 #ifdef ADB_DEBUG
1059 if (result && adb_debug) {
1060 printf_intr("adb_reinit: scan of device %d, result = %d, str = 0x%x\n",
1061 i,result,send_string[0]);
1062 }
1063 #endif
1064
1065 if (send_string[0] != 0) {
1066 /* check for valid device handler */
1067 switch (send_string[2]) {
1068 case 0:
1069 case 0xfd:
1070 case 0xfe:
1071 case 0xff:
1072 continue; /* invalid, skip */
1073 }
1074
1075 /* found a device */
1076 ++ADBNumDevices;
1077 KASSERT(ADBNumDevices < 16);
1078 ADBDevTable[ADBNumDevices].devType =
1079 (int)send_string[2];
1080 ADBDevTable[ADBNumDevices].origAddr = i;
1081 ADBDevTable[ADBNumDevices].currentAddr = i;
1082 ADBDevTable[ADBNumDevices].DataAreaAddr =
1083 (long)0;
1084 ADBDevTable[ADBNumDevices].ServiceRtPtr = (void *)0;
1085 pm_check_adb_devices(i); /* tell pm driver device
1086 * is here */
1087 }
1088 }
1089
1090 /* find highest unused address */
1091 for (saveptr = 15; saveptr > 0; saveptr--)
1092 if (-1 == get_adb_info(&data, saveptr))
1093 break;
1094
1095 #ifdef ADB_DEBUG
1096 if (adb_debug & 0x80) {
1097 printf_intr("first free is: 0x%02x\n", saveptr);
1098 printf_intr("devices: %i\n", ADBNumDevices);
1099 }
1100 #endif
1101
1102 nonewtimes = 0; /* no loops w/o new devices */
1103 while (saveptr > 0 && nonewtimes++ < 11) {
1104 for (i = 1; i <= ADBNumDevices; i++) {
1105 device = ADBDevTable[i].currentAddr;
1106 #ifdef ADB_DEBUG
1107 if (adb_debug & 0x80)
1108 printf_intr("moving device 0x%02x to 0x%02x "
1109 "(index 0x%02x) ", device, saveptr, i);
1110 #endif
1111
1112 /* send TALK R3 to address */
1113 command = ADBTALK(device, 3);
1114 adb_op_sync((Ptr)send_string, NULL,
1115 (Ptr)0, (short)command);
1116
1117 /* move device to higher address */
1118 command = ADBLISTEN(device, 3);
1119 send_string[0] = 2;
1120 send_string[1] = (u_char)(saveptr | 0x60);
1121 send_string[2] = 0xfe;
1122 adb_op_sync((Ptr)send_string, NULL,
1123 (Ptr)0, (short)command);
1124 delay(500);
1125
1126 /* send TALK R3 - anything at new address? */
1127 command = ADBTALK(saveptr, 3);
1128 adb_op_sync((Ptr)send_string, NULL,
1129 (Ptr)0, (short)command);
1130 delay(500);
1131
1132 if (send_string[0] == 0) {
1133 #ifdef ADB_DEBUG
1134 if (adb_debug & 0x80)
1135 printf_intr("failed, continuing\n");
1136 #endif
1137 continue;
1138 }
1139
1140 /* send TALK R3 - anything at old address? */
1141 command = ADBTALK(device, 3);
1142 result = adb_op_sync((Ptr)send_string, NULL,
1143 (Ptr)0, (short)command);
1144 if (send_string[0] != 0) {
1145 /* check for valid device handler */
1146 switch (send_string[2]) {
1147 case 0:
1148 case 0xfd:
1149 case 0xfe:
1150 case 0xff:
1151 continue; /* invalid, skip */
1152 }
1153
1154 /* new device found */
1155 /* update data for previously moved device */
1156 ADBDevTable[i].currentAddr = saveptr;
1157 #ifdef ADB_DEBUG
1158 if (adb_debug & 0x80)
1159 printf_intr("old device at index %i\n",i);
1160 #endif
1161 /* add new device in table */
1162 #ifdef ADB_DEBUG
1163 if (adb_debug & 0x80)
1164 printf_intr("new device found\n");
1165 #endif
1166 if (saveptr > ADBNumDevices) {
1167 ++ADBNumDevices;
1168 KASSERT(ADBNumDevices < 16);
1169 }
1170 ADBDevTable[ADBNumDevices].devType =
1171 (int)send_string[2];
1172 ADBDevTable[ADBNumDevices].origAddr = device;
1173 ADBDevTable[ADBNumDevices].currentAddr = device;
1174 /* These will be set correctly in adbsys.c */
1175 /* Until then, unsol. data will be ignored. */
1176 ADBDevTable[ADBNumDevices].DataAreaAddr =
1177 (long)0;
1178 ADBDevTable[ADBNumDevices].ServiceRtPtr =
1179 (void *)0;
1180 /* find next unused address */
1181 for (x = saveptr; x > 0; x--) {
1182 if (-1 == get_adb_info(&data, x)) {
1183 saveptr = x;
1184 break;
1185 }
1186 }
1187 if (x == 0)
1188 saveptr = 0;
1189 #ifdef ADB_DEBUG
1190 if (adb_debug & 0x80)
1191 printf_intr("new free is 0x%02x\n",
1192 saveptr);
1193 #endif
1194 nonewtimes = 0;
1195 /* tell pm driver device is here */
1196 pm_check_adb_devices(device);
1197 } else {
1198 #ifdef ADB_DEBUG
1199 if (adb_debug & 0x80)
1200 printf_intr("moving back...\n");
1201 #endif
1202 /* move old device back */
1203 command = ADBLISTEN(saveptr, 3);
1204 send_string[0] = 2;
1205 send_string[1] = (u_char)(device | 0x60);
1206 send_string[2] = 0xfe;
1207 adb_op_sync((Ptr)send_string, NULL,
1208 (Ptr)0, (short)command);
1209 delay(1000);
1210 }
1211 }
1212 }
1213
1214 #ifdef ADB_DEBUG
1215 if (adb_debug) {
1216 for (i = 1; i <= ADBNumDevices; i++) {
1217 x = get_ind_adb_info(&data, i);
1218 if (x != -1)
1219 printf_intr("index 0x%x, addr 0x%x, type 0x%x\n",
1220 i, x, data.devType);
1221 }
1222 }
1223 #endif
1224
1225 #ifdef ADB_DEBUG
1226 if (adb_debug) {
1227 if (0 == ADBNumDevices) /* tell user if no devices found */
1228 printf_intr("adb: no devices found\n");
1229 }
1230 #endif
1231
1232 adbStarting = 0; /* not starting anymore */
1233 #ifdef ADB_DEBUG
1234 if (adb_debug)
1235 printf_intr("adb: ADBReInit complete\n");
1236 #endif
1237
1238 if (adbHardware == ADB_HW_CUDA)
1239 callout_reset(&adb_cuda_tickle_ch, ADB_TICKLE_TICKS,
1240 (void *)adb_cuda_tickle, NULL);
1241
1242 if (adbHardware != ADB_HW_PMU) /* ints must be on for PMU? */
1243 splx(s);
1244 }
1245
1246 /*
1247 * adb_cmd_result
1248 *
1249 * This routine lets the caller know whether the specified adb command string
1250 * should expect a returned result, such as a TALK command.
1251 *
1252 * returns: 0 if a result should be expected
1253 * 1 if a result should NOT be expected
1254 */
1255 int
1256 adb_cmd_result(u_char *in)
1257 {
1258 switch (adbHardware) {
1259 case ADB_HW_CUDA:
1260 /* was it an ADB talk command? */
1261 if ((in[1] == 0x00) && ((in[2] & 0x0c) == 0x0c))
1262 return 0;
1263 /* was it an RTC/PRAM read date/time? */
1264 if ((in[1] == 0x01) && (in[2] == 0x03))
1265 return 0;
1266 return 1;
1267
1268 case ADB_HW_PMU:
1269 return 1;
1270
1271 case ADB_HW_UNKNOWN:
1272 default:
1273 return 1;
1274 }
1275 }
1276
1277
1278 /*
1279 * adb_cmd_extra
1280 *
1281 * This routine lets the caller know whether the specified adb command string
1282 * may have extra data appended to the end of it, such as a LISTEN command.
1283 *
1284 * returns: 0 if extra data is allowed
1285 * 1 if extra data is NOT allowed
1286 */
1287 int
1288 adb_cmd_extra(u_char *in)
1289 {
1290 switch (adbHardware) {
1291 case ADB_HW_CUDA:
1292 /*
1293 * TO DO: support needs to be added to recognize RTC and PRAM
1294 * commands
1295 */
1296 if ((in[2] & 0x0c) == 0x08) /* was it a listen command? */
1297 return 0;
1298 /* add others later */
1299 return 1;
1300
1301 case ADB_HW_PMU:
1302 return 1;
1303
1304 case ADB_HW_UNKNOWN:
1305 default:
1306 return 1;
1307 }
1308 }
1309
1310 /*
1311 * adb_op_sync
1312 *
1313 * This routine does exactly what the adb_op routine does, except that after
1314 * the adb_op is called, it waits until the return value is present before
1315 * returning.
1316 *
1317 * NOTE: The user specified compRout is ignored, since this routine specifies
1318 * it's own to adb_op, which is why you really called this in the first place
1319 * anyway.
1320 */
1321 int
1322 adb_op_sync(Ptr buffer, adbComp *compRout, Ptr data, short command)
1323 {
1324 int tmout;
1325 int result;
1326 volatile int flag = 0;
1327
1328 result = adb_op(buffer, adb_op_comprout,
1329 &flag, command); /* send command */
1330 if (result == 0) { /* send ok? */
1331 /*
1332 * Total time to wait is calculated as follows:
1333 * - Tlt (stop to start time): 260 usec
1334 * - start bit: 100 usec
1335 * - up to 8 data bytes: 64 * 100 usec = 6400 usec
1336 * - stop bit (with SRQ): 140 usec
1337 * Total: 6900 usec
1338 *
1339 * This is the total time allowed by the specification. Any
1340 * device that doesn't conform to this will fail to operate
1341 * properly on some Apple systems. In spite of this we
1342 * double the time to wait; some Cuda-based apparently
1343 * queues some commands and allows the main CPU to continue
1344 * processing (radical concept, eh?). To be safe, allow
1345 * time for two complete ADB transactions to occur.
1346 */
1347 for (tmout = 13800; !flag && tmout >= 10; tmout -= 10)
1348 delay(10);
1349 if (!flag && tmout > 0)
1350 delay(tmout);
1351
1352 if (!flag)
1353 result = -2;
1354 }
1355
1356 return result;
1357 }
1358
1359 /*
1360 * adb_op_comprout
1361 *
1362 * This function is used by the adb_op_sync routine so it knows when the
1363 * function is done.
1364 */
1365 void
1366 adb_op_comprout(void *buffer, volatile int *compdata, int cmd)
1367 {
1368 volatile int *p = compdata;
1369
1370 *p = 1;
1371 }
1372
1373 void
1374 adb_setup_hw_type(void)
1375 {
1376 switch (adbHardware) {
1377 case ADB_HW_CUDA:
1378 return;
1379
1380 case ADB_HW_PMU:
1381 pm_setup_adb();
1382 return;
1383
1384 default:
1385 panic("unknown adb hardware");
1386 }
1387 }
1388
1389 int
1390 count_adbs(void)
1391 {
1392 int i;
1393 int found;
1394
1395 found = 0;
1396
1397 for (i = 1; i < 16; i++)
1398 if (0 != ADBDevTable[i].devType)
1399 found++;
1400
1401 return found;
1402 }
1403
1404 int
1405 get_ind_adb_info(ADBDataBlock * info, int index)
1406 {
1407 if ((index < 1) || (index > 15)) /* check range 1-15 */
1408 return (-1);
1409
1410 #ifdef ADB_DEBUG
1411 if (adb_debug & 0x80)
1412 printf_intr("index 0x%x devType is: 0x%x\n", index,
1413 ADBDevTable[index].devType);
1414 #endif
1415 if (0 == ADBDevTable[index].devType) /* make sure it's a valid entry */
1416 return (-1);
1417
1418 info->devType = ADBDevTable[index].devType;
1419 info->origADBAddr = ADBDevTable[index].origAddr;
1420 info->dbServiceRtPtr = (Ptr)ADBDevTable[index].ServiceRtPtr;
1421 info->dbDataAreaAddr = (Ptr)ADBDevTable[index].DataAreaAddr;
1422
1423 return (ADBDevTable[index].currentAddr);
1424 }
1425
1426 int
1427 get_adb_info(ADBDataBlock * info, int adbAddr)
1428 {
1429 int i;
1430
1431 if ((adbAddr < 1) || (adbAddr > 15)) /* check range 1-15 */
1432 return (-1);
1433
1434 for (i = 1; i < 15; i++)
1435 if (ADBDevTable[i].currentAddr == adbAddr) {
1436 info->devType = ADBDevTable[i].devType;
1437 info->origADBAddr = ADBDevTable[i].origAddr;
1438 info->dbServiceRtPtr = (Ptr)ADBDevTable[i].ServiceRtPtr;
1439 info->dbDataAreaAddr = ADBDevTable[i].DataAreaAddr;
1440 return 0; /* found */
1441 }
1442
1443 return (-1); /* not found */
1444 }
1445
1446 int
1447 set_adb_info(ADBSetInfoBlock * info, int adbAddr)
1448 {
1449 int i;
1450
1451 if ((adbAddr < 1) || (adbAddr > 15)) /* check range 1-15 */
1452 return (-1);
1453
1454 for (i = 1; i < 15; i++)
1455 if (ADBDevTable[i].currentAddr == adbAddr) {
1456 ADBDevTable[i].ServiceRtPtr =
1457 (void *)(info->siServiceRtPtr);
1458 ADBDevTable[i].DataAreaAddr = info->siDataAreaAddr;
1459 return 0; /* found */
1460 }
1461
1462 return (-1); /* not found */
1463
1464 }
1465
1466 #ifndef MRG_ADB
1467
1468 /* caller should really use machine-independent version: getPramTime */
1469 /* this version does pseudo-adb access only */
1470 int
1471 adb_read_date_time(unsigned long *t)
1472 {
1473 u_char output[ADB_MAX_MSG_LENGTH];
1474 int result;
1475 volatile int flag = 0;
1476
1477 switch (adbHardware) {
1478 case ADB_HW_PMU:
1479 pm_read_date_time(t);
1480 return 0;
1481
1482 case ADB_HW_CUDA:
1483 output[0] = 0x02; /* 2 byte message */
1484 output[1] = 0x01; /* to pram/rtc device */
1485 output[2] = 0x03; /* read date/time */
1486 result = send_adb_cuda((u_char *)output, (u_char *)output,
1487 adb_op_comprout, &flag, (int)0);
1488 if (result != 0) /* exit if not sent */
1489 return -1;
1490
1491 while (0 == flag) /* wait for result */
1492 ;
1493
1494 memcpy(t, output + 1, 4);
1495 return 0;
1496
1497 case ADB_HW_UNKNOWN:
1498 default:
1499 return -1;
1500 }
1501 }
1502
1503 /* caller should really use machine-independent version: setPramTime */
1504 /* this version does pseudo-adb access only */
1505 int
1506 adb_set_date_time(unsigned long t)
1507 {
1508 u_char output[ADB_MAX_MSG_LENGTH];
1509 int result;
1510 volatile int flag = 0;
1511
1512 switch (adbHardware) {
1513
1514 case ADB_HW_CUDA:
1515 output[0] = 0x06; /* 6 byte message */
1516 output[1] = 0x01; /* to pram/rtc device */
1517 output[2] = 0x09; /* set date/time */
1518 output[3] = (u_char)(t >> 24);
1519 output[4] = (u_char)(t >> 16);
1520 output[5] = (u_char)(t >> 8);
1521 output[6] = (u_char)(t);
1522 result = send_adb_cuda((u_char *)output, (u_char *)0,
1523 adb_op_comprout, &flag, (int)0);
1524 if (result != 0) /* exit if not sent */
1525 return -1;
1526
1527 while (0 == flag) /* wait for send to finish */
1528 ;
1529
1530 return 0;
1531
1532 case ADB_HW_PMU:
1533 pm_set_date_time(t);
1534 return 0;
1535
1536 case ADB_HW_UNKNOWN:
1537 default:
1538 return -1;
1539 }
1540 }
1541
1542
1543 int
1544 adb_poweroff(void)
1545 {
1546 u_char output[ADB_MAX_MSG_LENGTH];
1547 int result;
1548
1549 adb_polling = 1;
1550
1551 switch (adbHardware) {
1552 case ADB_HW_PMU:
1553 pm_adb_poweroff();
1554
1555 for (;;); /* wait for power off */
1556
1557 return 0;
1558
1559 case ADB_HW_CUDA:
1560 output[0] = 0x02; /* 2 byte message */
1561 output[1] = 0x01; /* to pram/rtc/soft-power device */
1562 output[2] = 0x0a; /* set date/time */
1563 result = send_adb_cuda((u_char *)output, (u_char *)0,
1564 (void *)0, (void *)0, (int)0);
1565 if (result != 0) /* exit if not sent */
1566 return -1;
1567
1568 for (;;); /* wait for power off */
1569
1570 return 0;
1571
1572 case ADB_HW_UNKNOWN:
1573 default:
1574 return -1;
1575 }
1576 }
1577
1578 int
1579 CountADBs(void)
1580 {
1581 return (count_adbs());
1582 }
1583
1584 void
1585 ADBReInit(void)
1586 {
1587 adb_reinit();
1588 }
1589
1590 int
1591 GetIndADB(ADBDataBlock * info, int index)
1592 {
1593 return (get_ind_adb_info(info, index));
1594 }
1595
1596 int
1597 GetADBInfo(ADBDataBlock * info, int adbAddr)
1598 {
1599 return (get_adb_info(info, adbAddr));
1600 }
1601
1602 int
1603 SetADBInfo(ADBSetInfoBlock * info, int adbAddr)
1604 {
1605 return (set_adb_info(info, adbAddr));
1606 }
1607
1608 int
1609 ADBOp(Ptr buffer, adbComp *compRout, Ptr data, short commandNum)
1610 {
1611 return (adb_op(buffer, compRout, data, commandNum));
1612 }
1613
1614 #endif
1615
1616 int
1617 setsoftadb()
1618 {
1619 callout_reset(&adb_soft_intr_ch, 1, (void *)adb_soft_intr, NULL);
1620 return 0;
1621 }
1622
1623 void
1624 adb_cuda_autopoll()
1625 {
1626 volatile int flag = 0;
1627 int result;
1628 u_char output[16];
1629
1630 output[0] = 0x03; /* 3-byte message */
1631 output[1] = 0x01; /* to pram/rtc device */
1632 output[2] = 0x01; /* cuda autopoll */
1633 output[3] = 0x01;
1634 result = send_adb_cuda(output, output, adb_op_comprout,
1635 &flag, 0);
1636 if (result != 0) /* exit if not sent */
1637 return;
1638
1639 while (flag == 0); /* wait for result */
1640 }
1641
1642 void
1643 adb_restart(void)
1644 {
1645 int result;
1646 u_char output[16];
1647
1648 adb_polling = 1;
1649
1650 switch (adbHardware) {
1651 case ADB_HW_CUDA:
1652 output[0] = 0x02; /* 2 byte message */
1653 output[1] = 0x01; /* to pram/rtc/soft-power device */
1654 output[2] = 0x11; /* restart */
1655 result = send_adb_cuda(output, NULL, NULL, NULL, 0);
1656 if (result != 0) /* exit if not sent */
1657 return;
1658 while (1); /* not return */
1659
1660 case ADB_HW_PMU:
1661 pm_adb_restart();
1662 while (1); /* not return */
1663 }
1664 }
1665