adb_direct.c revision 1.7 1 /* $NetBSD: adb_direct.c,v 1.7 1998/11/15 19:41:33 tsubai Exp $ */
2
3 /* From: adb_direct.c 2.02 4/18/97 jpw */
4
5 /*
6 * Copyright (C) 1996, 1997 John P. Wittkoski
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by John P. Wittkoski.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*
36 * This code is rather messy, but I don't have time right now
37 * to clean it up as much as I would like.
38 * But it works, so I'm happy. :-) jpw
39 */
40
41 /*
42 * TO DO:
43 * - We could reduce the time spent in the adb_intr_* routines
44 * by having them save the incoming and outgoing data directly
45 * in the adbInbound and adbOutbound queues, as it would reduce
46 * the number of times we need to copy the data around. It
47 * would also make the code more readable and easier to follow.
48 * - (Related to above) Use the header part of adbCommand to
49 * reduce the number of copies we have to do of the data.
50 * - (Related to above) Actually implement the adbOutbound queue.
51 * This is fairly easy once you switch all the intr routines
52 * over to using adbCommand structs directly.
53 * - There is a bug in the state machine of adb_intr_cuda
54 * code that causes hangs, especially on 030 machines, probably
55 * because of some timing issues. Because I have been unable to
56 * determine the exact cause of this bug, I used the timeout function
57 * to check for and recover from this condition. If anyone finds
58 * the actual cause of this bug, the calls to timeout and the
59 * adb_cuda_tickle routine can be removed.
60 */
61
62 #include <sys/param.h>
63 #include <sys/cdefs.h>
64 #include <sys/systm.h>
65 #include <sys/device.h>
66
67 #include <machine/param.h>
68 #include <machine/cpu.h>
69 #include <machine/adbsys.h>
70
71 #include <macppc/dev/viareg.h>
72 #include <macppc/dev/adbvar.h>
73
74 #define printf_intr printf
75
76 #ifdef DEBUG
77 #ifndef ADB_DEBUG
78 #define ADB_DEBUG
79 #endif
80 #endif
81
82 /* some misc. leftovers */
83 #define vPB 0x0000
84 #define vPB3 0x08
85 #define vPB4 0x10
86 #define vPB5 0x20
87 #define vSR_INT 0x04
88 #define vSR_OUT 0x10
89
90 /* the type of ADB action that we are currently preforming */
91 #define ADB_ACTION_NOTREADY 0x1 /* has not been initialized yet */
92 #define ADB_ACTION_IDLE 0x2 /* the bus is currently idle */
93 #define ADB_ACTION_OUT 0x3 /* sending out a command */
94 #define ADB_ACTION_IN 0x4 /* receiving data */
95 #define ADB_ACTION_POLLING 0x5 /* polling - II only */
96
97 /*
98 * These describe the state of the ADB bus itself, although they
99 * don't necessarily correspond directly to ADB states.
100 * Note: these are not really used in the IIsi code.
101 */
102 #define ADB_BUS_UNKNOWN 0x1 /* we don't know yet - all models */
103 #define ADB_BUS_IDLE 0x2 /* bus is idle - all models */
104 #define ADB_BUS_CMD 0x3 /* starting a command - II models */
105 #define ADB_BUS_ODD 0x4 /* the "odd" state - II models */
106 #define ADB_BUS_EVEN 0x5 /* the "even" state - II models */
107 #define ADB_BUS_ACTIVE 0x6 /* active state - IIsi models */
108 #define ADB_BUS_ACK 0x7 /* currently ACKing - IIsi models */
109
110 /*
111 * Shortcuts for setting or testing the VIA bit states.
112 * Not all shortcuts are used for every type of ADB hardware.
113 */
114 #define ADB_SET_STATE_IDLE_II() via_reg_or(VIA1, vBufB, (vPB4 | vPB5))
115 #define ADB_SET_STATE_IDLE_IISI() via_reg_and(VIA1, vBufB, ~(vPB4 | vPB5))
116 #define ADB_SET_STATE_IDLE_CUDA() via_reg_or(VIA1, vBufB, (vPB4 | vPB5))
117 #define ADB_SET_STATE_CMD() via_reg_and(VIA1, vBufB, ~(vPB4 | vPB5))
118 #define ADB_SET_STATE_EVEN() write_via_reg(VIA1, vBufB, \
119 (read_via_reg(VIA1, vBufB) | vPB4) & ~vPB5)
120 #define ADB_SET_STATE_ODD() write_via_reg(VIA1, vBufB, \
121 (read_via_reg(VIA1, vBufB) | vPB5) & ~vPB4 )
122 #define ADB_SET_STATE_ACTIVE() via_reg_or(VIA1, vBufB, vPB5)
123 #define ADB_SET_STATE_INACTIVE() via_reg_and(VIA1, vBufB, ~vPB5)
124 #define ADB_SET_STATE_TIP() via_reg_and(VIA1, vBufB, ~vPB5)
125 #define ADB_CLR_STATE_TIP() via_reg_or(VIA1, vBufB, vPB5)
126 #define ADB_SET_STATE_ACKON() via_reg_or(VIA1, vBufB, vPB4)
127 #define ADB_SET_STATE_ACKOFF() via_reg_and(VIA1, vBufB, ~vPB4)
128 #define ADB_TOGGLE_STATE_ACK_CUDA() via_reg_xor(VIA1, vBufB, vPB4)
129 #define ADB_SET_STATE_ACKON_CUDA() via_reg_and(VIA1, vBufB, ~vPB4)
130 #define ADB_SET_STATE_ACKOFF_CUDA() via_reg_or(VIA1, vBufB, vPB4)
131 #define ADB_SET_SR_INPUT() via_reg_and(VIA1, vACR, ~vSR_OUT)
132 #define ADB_SET_SR_OUTPUT() via_reg_or(VIA1, vACR, vSR_OUT)
133 #define ADB_SR() read_via_reg(VIA1, vSR)
134 #define ADB_VIA_INTR_ENABLE() write_via_reg(VIA1, vIER, 0x84)
135 #define ADB_VIA_INTR_DISABLE() write_via_reg(VIA1, vIER, 0x04)
136 #define ADB_VIA_CLR_INTR() write_via_reg(VIA1, vIFR, 0x04)
137 #define ADB_INTR_IS_OFF (vPB3 == (read_via_reg(VIA1, vBufB) & vPB3))
138 #define ADB_INTR_IS_ON (0 == (read_via_reg(VIA1, vBufB) & vPB3))
139 #define ADB_SR_INTR_IS_OFF (0 == (read_via_reg(VIA1, vIFR) & vSR_INT))
140 #define ADB_SR_INTR_IS_ON (vSR_INT == (read_via_reg(VIA1, \
141 vIFR) & vSR_INT))
142
143 /*
144 * This is the delay that is required (in uS) between certain
145 * ADB transactions. The actual timing delay for for each uS is
146 * calculated at boot time to account for differences in machine speed.
147 */
148 /*#define ADB_DELAY 150*/
149 #define ADB_DELAY 1000
150
151 /*
152 * Maximum ADB message length; includes space for data, result, and
153 * device code - plus a little for safety.
154 */
155 #define ADB_MAX_MSG_LENGTH 16
156 #define ADB_MAX_HDR_LENGTH 8
157
158 #define ADB_QUEUE 32
159 #define ADB_TICKLE_TICKS 4
160
161 /*
162 * A structure for storing information about each ADB device.
163 */
164 struct ADBDevEntry {
165 void (*ServiceRtPtr) __P((void));
166 void *DataAreaAddr;
167 char devType;
168 char origAddr;
169 char currentAddr;
170 };
171
172 /*
173 * Used to hold ADB commands that are waiting to be sent out.
174 */
175 struct adbCmdHoldEntry {
176 u_char outBuf[ADB_MAX_MSG_LENGTH]; /* our message */
177 u_char *saveBuf; /* buffer to know where to save result */
178 u_char *compRout; /* completion routine pointer */
179 u_char *data; /* completion routine data pointer */
180 };
181
182 /*
183 * Eventually used for two separate queues, the queue between
184 * the upper and lower halves, and the outgoing packet queue.
185 * TO DO: adbCommand can replace all of adbCmdHoldEntry eventually
186 */
187 struct adbCommand {
188 u_char header[ADB_MAX_HDR_LENGTH]; /* not used yet */
189 u_char data[ADB_MAX_MSG_LENGTH]; /* packet data only */
190 u_char *saveBuf; /* where to save result */
191 u_char *compRout; /* completion routine pointer */
192 u_char *compData; /* completion routine data pointer */
193 u_int cmd; /* the original command for this data */
194 u_int unsol; /* 1 if packet was unsolicited */
195 u_int ack_only; /* 1 for no special processing */
196 };
197
198 /*
199 * A few variables that we need and their initial values.
200 */
201 int adbHardware = ADB_HW_UNKNOWN;
202 int adbActionState = ADB_ACTION_NOTREADY;
203 int adbBusState = ADB_BUS_UNKNOWN;
204 int adbWaiting = 0; /* waiting for return data from the device */
205 int adbWriteDelay = 0; /* working on (or waiting to do) a write */
206 int adbOutQueueHasData = 0; /* something in the queue waiting to go out */
207 int adbNextEnd = 0; /* the next incoming bute is the last (II) */
208 int adbSoftPower = 0; /* machine supports soft power */
209
210 int adbWaitingCmd = 0; /* ADB command we are waiting for */
211 u_char *adbBuffer = (long)0; /* pointer to user data area */
212 void *adbCompRout = (long)0; /* pointer to the completion routine */
213 void *adbCompData = (long)0; /* pointer to the completion routine data */
214 long adbFakeInts = 0; /* keeps track of fake ADB interrupts for
215 * timeouts (II) */
216 int adbStarting = 1; /* doing ADBReInit so do polling differently */
217 int adbSendTalk = 0; /* the intr routine is sending the talk, not
218 * the user (II) */
219 int adbPolling = 0; /* we are polling for service request */
220 int adbPollCmd = 0; /* the last poll command we sent */
221
222 u_char adbInputBuffer[ADB_MAX_MSG_LENGTH]; /* data input buffer */
223 u_char adbOutputBuffer[ADB_MAX_MSG_LENGTH]; /* data output buffer */
224 struct adbCmdHoldEntry adbOutQueue; /* our 1 entry output queue */
225
226 int adbSentChars = 0; /* how many characters we have sent */
227 int adbLastDevice = 0; /* last ADB dev we heard from (II ONLY) */
228 int adbLastDevIndex = 0; /* last ADB dev loc in dev table (II ONLY) */
229 int adbLastCommand = 0; /* the last ADB command we sent (II) */
230
231 struct ADBDevEntry ADBDevTable[16]; /* our ADB device table */
232 int ADBNumDevices; /* num. of ADB devices found with ADBReInit */
233
234 struct adbCommand adbInbound[ADB_QUEUE]; /* incoming queue */
235 int adbInCount = 0; /* how many packets in in queue */
236 int adbInHead = 0; /* head of in queue */
237 int adbInTail = 0; /* tail of in queue */
238 struct adbCommand adbOutbound[ADB_QUEUE]; /* outgoing queue - not used yet */
239 int adbOutCount = 0; /* how many packets in out queue */
240 int adbOutHead = 0; /* head of out queue */
241 int adbOutTail = 0; /* tail of out queue */
242
243 int tickle_count = 0; /* how many tickles seen for this packet? */
244 int tickle_serial = 0; /* the last packet tickled */
245 int adb_cuda_serial = 0; /* the current packet */
246
247 volatile u_char *Via1Base;
248 extern int adb_polling; /* Are we polling? */
249
250 void pm_setup_adb __P((void));
251 void pm_check_adb_devices __P((int));
252 void pm_intr __P((void));
253 int pm_adb_op __P((u_char *, void *, void *, int));
254 void pm_init_adb_device __P((void));
255
256 /*
257 * The following are private routines.
258 */
259 #ifdef ADB_DEBUG
260 void print_single __P((u_char *));
261 #endif
262 void adb_intr __P((void));
263 void adb_intr_II __P((void));
264 void adb_intr_IIsi __P((void));
265 void adb_intr_cuda __P((void));
266 void adb_soft_intr __P((void));
267 int send_adb_II __P((u_char *, u_char *, void *, void *, int));
268 int send_adb_IIsi __P((u_char *, u_char *, void *, void *, int));
269 int send_adb_cuda __P((u_char *, u_char *, void *, void *, int));
270 void adb_intr_cuda_test __P((void));
271 void adb_cuda_tickle __P((void));
272 void adb_pass_up __P((struct adbCommand *));
273 void adb_op_comprout __P((caddr_t, caddr_t, int));
274 void adb_reinit __P((void));
275 int count_adbs __P((void));
276 int get_ind_adb_info __P((ADBDataBlock *, int));
277 int get_adb_info __P((ADBDataBlock *, int));
278 int set_adb_info __P((ADBSetInfoBlock *, int));
279 void adb_setup_hw_type __P((void));
280 int adb_op __P((Ptr, Ptr, Ptr, short));
281 int adb_op_sync __P((Ptr, Ptr, Ptr, short));
282 void adb_read_II __P((u_char *));
283 void adb_hw_setup __P((void));
284 void adb_hw_setup_IIsi __P((u_char *));
285 void adb_comp_exec __P((void));
286 int adb_cmd_result __P((u_char *));
287 int adb_cmd_extra __P((u_char *));
288 int adb_guess_next_device __P((void));
289 int adb_prog_switch_enable __P((void));
290 int adb_prog_switch_disable __P((void));
291 /* we should create this and it will be the public version */
292 int send_adb __P((u_char *, void *, void *));
293
294 #ifdef ADB_DEBUG
295 /*
296 * print_single
297 * Diagnostic display routine. Displays the hex values of the
298 * specified elements of the u_char. The length of the "string"
299 * is in [0].
300 */
301 void
302 print_single(thestring)
303 u_char *thestring;
304 {
305 int x;
306
307 if ((int)(thestring[0]) == 0) {
308 printf_intr("nothing returned\n");
309 return;
310 }
311 if (thestring == 0) {
312 printf_intr("no data - null pointer\n");
313 return;
314 }
315 if (thestring[0] > 20) {
316 printf_intr("ADB: ACK > 20 no way!\n");
317 thestring[0] = 20;
318 }
319 printf_intr("(length=0x%x):", thestring[0]);
320 for (x = 0; x < thestring[0]; x++)
321 printf_intr(" 0x%02x", thestring[x + 1]);
322 printf_intr("\n");
323 }
324 #endif
325
326 void
327 adb_cuda_tickle(void)
328 {
329 volatile int s;
330
331 if (adbActionState == ADB_ACTION_IN) {
332 if (tickle_serial == adb_cuda_serial) {
333 if (++tickle_count > 0) {
334 s = splhigh();
335 adbActionState = ADB_ACTION_IDLE;
336 adbInputBuffer[0] = 0;
337 ADB_SET_STATE_IDLE_CUDA();
338 splx(s);
339 }
340 } else {
341 tickle_serial = adb_cuda_serial;
342 tickle_count = 0;
343 }
344 } else {
345 tickle_serial = adb_cuda_serial;
346 tickle_count = 0;
347 }
348
349 timeout((void *)adb_cuda_tickle, 0, ADB_TICKLE_TICKS);
350 }
351
352 /*
353 * called when when an adb interrupt happens
354 *
355 * Cuda version of adb_intr
356 * TO DO: do we want to add some calls to intr_dispatch() here to
357 * grab serial interrupts?
358 */
359 void
360 adb_intr_cuda(void)
361 {
362 volatile int i, ending;
363 volatile unsigned int s;
364 struct adbCommand packet;
365
366 s = splhigh(); /* can't be too careful - might be called */
367 /* from a routine, NOT an interrupt */
368
369 ADB_VIA_CLR_INTR(); /* clear interrupt */
370 ADB_VIA_INTR_DISABLE(); /* disable ADB interrupt on IIs. */
371
372 switch_start:
373 switch (adbActionState) {
374 case ADB_ACTION_IDLE:
375 /*
376 * This is an unexpected packet, so grab the first (dummy)
377 * byte, set up the proper vars, and tell the chip we are
378 * starting to receive the packet by setting the TIP bit.
379 */
380 adbInputBuffer[1] = ADB_SR();
381 adb_cuda_serial++;
382 if (ADB_INTR_IS_OFF) /* must have been a fake start */
383 break;
384
385 ADB_SET_SR_INPUT();
386 ADB_SET_STATE_TIP();
387
388 adbInputBuffer[0] = 1;
389 adbActionState = ADB_ACTION_IN;
390 #ifdef ADB_DEBUG
391 if (adb_debug)
392 printf_intr("idle 0x%02x ", adbInputBuffer[1]);
393 #endif
394 break;
395
396 case ADB_ACTION_IN:
397 adbInputBuffer[++adbInputBuffer[0]] = ADB_SR();
398 /* intr off means this is the last byte (end of frame) */
399 if (ADB_INTR_IS_OFF)
400 ending = 1;
401 else
402 ending = 0;
403
404 if (1 == ending) { /* end of message? */
405 #ifdef ADB_DEBUG
406 if (adb_debug) {
407 printf_intr("in end 0x%02x ",
408 adbInputBuffer[adbInputBuffer[0]]);
409 print_single(adbInputBuffer);
410 }
411 #endif
412
413 /*
414 * Are we waiting AND does this packet match what we
415 * are waiting for AND is it coming from either the
416 * ADB or RTC/PRAM sub-device? This section _should_
417 * recognize all ADB and RTC/PRAM type commands, but
418 * there may be more... NOTE: commands are always at
419 * [4], even for RTC/PRAM commands.
420 */
421 /* set up data for adb_pass_up */
422 for (i = 0; i <= adbInputBuffer[0]; i++)
423 packet.data[i] = adbInputBuffer[i];
424
425 if ((adbWaiting == 1) &&
426 (adbInputBuffer[4] == adbWaitingCmd) &&
427 ((adbInputBuffer[2] == 0x00) ||
428 (adbInputBuffer[2] == 0x01))) {
429 packet.saveBuf = adbBuffer;
430 packet.compRout = adbCompRout;
431 packet.compData = adbCompData;
432 packet.unsol = 0;
433 packet.ack_only = 0;
434 adb_pass_up(&packet);
435
436 adbWaitingCmd = 0; /* reset "waiting" vars */
437 adbWaiting = 0;
438 adbBuffer = (long)0;
439 adbCompRout = (long)0;
440 adbCompData = (long)0;
441 } else {
442 packet.unsol = 1;
443 packet.ack_only = 0;
444 adb_pass_up(&packet);
445 }
446
447
448 /* reset vars and signal the end of this frame */
449 adbActionState = ADB_ACTION_IDLE;
450 adbInputBuffer[0] = 0;
451 ADB_SET_STATE_IDLE_CUDA();
452 /*ADB_SET_SR_INPUT();*/
453
454 /*
455 * If there is something waiting to be sent out,
456 * the set everything up and send the first byte.
457 */
458 if (adbWriteDelay == 1) {
459 delay(ADB_DELAY); /* required */
460 adbSentChars = 0;
461 adbActionState = ADB_ACTION_OUT;
462 /*
463 * If the interrupt is on, we were too slow
464 * and the chip has already started to send
465 * something to us, so back out of the write
466 * and start a read cycle.
467 */
468 if (ADB_INTR_IS_ON) {
469 ADB_SET_SR_INPUT();
470 ADB_SET_STATE_IDLE_CUDA();
471 adbSentChars = 0;
472 adbActionState = ADB_ACTION_IDLE;
473 adbInputBuffer[0] = 0;
474 break;
475 }
476 /*
477 * If we got here, it's ok to start sending
478 * so load the first byte and tell the chip
479 * we want to send.
480 */
481 ADB_SET_STATE_TIP();
482 ADB_SET_SR_OUTPUT();
483 write_via_reg(VIA1, vSR, adbOutputBuffer[adbSentChars + 1]);
484 }
485 } else {
486 ADB_TOGGLE_STATE_ACK_CUDA();
487 #ifdef ADB_DEBUG
488 if (adb_debug)
489 printf_intr("in 0x%02x ",
490 adbInputBuffer[adbInputBuffer[0]]);
491 #endif
492 }
493 break;
494
495 case ADB_ACTION_OUT:
496 i = ADB_SR(); /* reset SR-intr in IFR */
497 #ifdef ADB_DEBUG
498 if (adb_debug)
499 printf_intr("intr out 0x%02x ", i);
500 #endif
501
502 adbSentChars++;
503 if (ADB_INTR_IS_ON) { /* ADB intr low during write */
504 #ifdef ADB_DEBUG
505 if (adb_debug)
506 printf_intr("intr was on ");
507 #endif
508 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
509 ADB_SET_STATE_IDLE_CUDA();
510 adbSentChars = 0; /* must start all over */
511 adbActionState = ADB_ACTION_IDLE; /* new state */
512 adbInputBuffer[0] = 0;
513 adbWriteDelay = 1; /* must retry when done with
514 * read */
515 delay(ADB_DELAY);
516 goto switch_start; /* process next state right
517 * now */
518 break;
519 }
520 if (adbOutputBuffer[0] == adbSentChars) { /* check for done */
521 if (0 == adb_cmd_result(adbOutputBuffer)) { /* do we expect data
522 * back? */
523 adbWaiting = 1; /* signal waiting for return */
524 adbWaitingCmd = adbOutputBuffer[2]; /* save waiting command */
525 } else { /* no talk, so done */
526 /* set up stuff for adb_pass_up */
527 for (i = 0; i <= adbInputBuffer[0]; i++)
528 packet.data[i] = adbInputBuffer[i];
529 packet.saveBuf = adbBuffer;
530 packet.compRout = adbCompRout;
531 packet.compData = adbCompData;
532 packet.cmd = adbWaitingCmd;
533 packet.unsol = 0;
534 packet.ack_only = 1;
535 adb_pass_up(&packet);
536
537 /* reset "waiting" vars, just in case */
538 adbWaitingCmd = 0;
539 adbBuffer = (long)0;
540 adbCompRout = (long)0;
541 adbCompData = (long)0;
542 }
543
544 adbWriteDelay = 0; /* done writing */
545 adbActionState = ADB_ACTION_IDLE; /* signal bus is idle */
546 ADB_SET_SR_INPUT();
547 ADB_SET_STATE_IDLE_CUDA();
548 #ifdef ADB_DEBUG
549 if (adb_debug)
550 printf_intr("write done ");
551 #endif
552 } else {
553 write_via_reg(VIA1, vSR, adbOutputBuffer[adbSentChars + 1]); /* send next byte */
554 ADB_TOGGLE_STATE_ACK_CUDA(); /* signal byte ready to
555 * shift */
556 #ifdef ADB_DEBUG
557 if (adb_debug)
558 printf_intr("toggle ");
559 #endif
560 }
561 break;
562
563 case ADB_ACTION_NOTREADY:
564 #ifdef ADB_DEBUG
565 if (adb_debug)
566 printf_intr("adb: not yet initialized\n");
567 #endif
568 break;
569
570 default:
571 #ifdef ADB_DEBUG
572 if (adb_debug)
573 printf_intr("intr: unknown ADB state\n");
574 #endif
575 }
576
577 ADB_VIA_INTR_ENABLE(); /* enable ADB interrupt on IIs. */
578
579 splx(s); /* restore */
580
581 return;
582 } /* end adb_intr_cuda */
583
584
585 int
586 send_adb_cuda(u_char * in, u_char * buffer, void *compRout, void *data, int
587 command)
588 {
589 int i, s, len;
590
591 #ifdef ADB_DEBUG
592 if (adb_debug)
593 printf_intr("SEND\n");
594 #endif
595
596 if (adbActionState == ADB_ACTION_NOTREADY)
597 return 1;
598
599 /* Don't interrupt while we are messing with the ADB */
600 s = splhigh();
601
602 if ((adbActionState == ADB_ACTION_IDLE) && /* ADB available? */
603 (ADB_INTR_IS_OFF)) { /* and no incoming interrupt? */
604 } else
605 if (adbWriteDelay == 0) /* it's busy, but is anything waiting? */
606 adbWriteDelay = 1; /* if no, then we'll "queue"
607 * it up */
608 else {
609 splx(s);
610 return 1; /* really busy! */
611 }
612
613 #ifdef ADB_DEBUG
614 if (adb_debug)
615 printf_intr("QUEUE\n");
616 #endif
617 if ((long)in == (long)0) { /* need to convert? */
618 /*
619 * Don't need to use adb_cmd_extra here because this section
620 * will be called ONLY when it is an ADB command (no RTC or
621 * PRAM)
622 */
623 if ((command & 0x0c) == 0x08) /* copy addl data ONLY if
624 * doing a listen! */
625 len = buffer[0]; /* length of additional data */
626 else
627 len = 0;/* no additional data */
628
629 adbOutputBuffer[0] = 2 + len; /* dev. type + command + addl.
630 * data */
631 adbOutputBuffer[1] = 0x00; /* mark as an ADB command */
632 adbOutputBuffer[2] = (u_char)command; /* load command */
633
634 for (i = 1; i <= len; i++) /* copy additional output
635 * data, if any */
636 adbOutputBuffer[2 + i] = buffer[i];
637 } else
638 for (i = 0; i <= (in[0] + 1); i++)
639 adbOutputBuffer[i] = in[i];
640
641 adbSentChars = 0; /* nothing sent yet */
642 adbBuffer = buffer; /* save buffer to know where to save result */
643 adbCompRout = compRout; /* save completion routine pointer */
644 adbCompData = data; /* save completion routine data pointer */
645 adbWaitingCmd = adbOutputBuffer[2]; /* save wait command */
646
647 if (adbWriteDelay != 1) { /* start command now? */
648 #ifdef ADB_DEBUG
649 if (adb_debug)
650 printf_intr("out start NOW");
651 #endif
652 delay(ADB_DELAY);
653 adbActionState = ADB_ACTION_OUT; /* set next state */
654 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
655 write_via_reg(VIA1, vSR, adbOutputBuffer[adbSentChars + 1]); /* load byte for output */
656 ADB_SET_STATE_ACKOFF_CUDA();
657 ADB_SET_STATE_TIP(); /* tell ADB that we want to send */
658 }
659 adbWriteDelay = 1; /* something in the write "queue" */
660
661 splx(s);
662
663 if ((s & (1 << 18)) || adb_polling) /* XXX were VIA1 interrupts blocked ? */
664 /* poll until byte done */
665 while ((adbActionState != ADB_ACTION_IDLE) || (ADB_INTR_IS_ON)
666 || (adbWaiting == 1))
667 if (ADB_SR_INTR_IS_ON) { /* wait for "interrupt" */
668 adb_intr_cuda(); /* process it */
669 adb_soft_intr();
670 }
671
672 return 0;
673 } /* send_adb_cuda */
674
675
676 void
677 adb_intr_II(void)
678 {
679 panic("adb_intr_II");
680 }
681
682
683 /*
684 * send_adb version for II series machines
685 */
686 int
687 send_adb_II(u_char * in, u_char * buffer, void *compRout, void *data, int command)
688 {
689 panic("send_adb_II");
690 }
691
692
693 /*
694 * This routine is called from the II series interrupt routine
695 * to determine what the "next" device is that should be polled.
696 */
697 int
698 adb_guess_next_device(void)
699 {
700 int last, i, dummy;
701
702 if (adbStarting) {
703 /*
704 * Start polling EVERY device, since we can't be sure there is
705 * anything in the device table yet
706 */
707 if (adbLastDevice < 1 || adbLastDevice > 15)
708 adbLastDevice = 1;
709 if (++adbLastDevice > 15) /* point to next one */
710 adbLastDevice = 1;
711 } else {
712 /* find the next device using the device table */
713 if (adbLastDevice < 1 || adbLastDevice > 15) /* let's be parinoid */
714 adbLastDevice = 2;
715 last = 1; /* default index location */
716
717 for (i = 1; i < 16; i++) /* find index entry */
718 if (ADBDevTable[i].currentAddr == adbLastDevice) { /* look for device */
719 last = i; /* found it */
720 break;
721 }
722 dummy = last; /* index to start at */
723 for (;;) { /* find next device in index */
724 if (++dummy > 15) /* wrap around if needed */
725 dummy = 1;
726 if (dummy == last) { /* didn't find any other
727 * device! This can happen if
728 * there are no devices on the
729 * bus */
730 dummy = 2;
731 break;
732 }
733 /* found the next device */
734 if (ADBDevTable[dummy].devType != 0)
735 break;
736 }
737 adbLastDevice = ADBDevTable[dummy].currentAddr;
738 }
739 return adbLastDevice;
740 }
741
742
743 /*
744 * Called when when an adb interrupt happens.
745 * This routine simply transfers control over to the appropriate
746 * code for the machine we are running on.
747 */
748 void
749 adb_intr(void)
750 {
751 switch (adbHardware) {
752 case ADB_HW_II:
753 adb_intr_II();
754 break;
755
756 case ADB_HW_IISI:
757 adb_intr_IIsi();
758 break;
759
760 case ADB_HW_PB:
761 pm_intr();
762 break;
763
764 case ADB_HW_CUDA:
765 adb_intr_cuda();
766 break;
767
768 case ADB_HW_UNKNOWN:
769 break;
770 }
771 }
772
773
774 /*
775 * called when when an adb interrupt happens
776 *
777 * IIsi version of adb_intr
778 *
779 */
780 void
781 adb_intr_IIsi(void)
782 {
783 panic("adb_intr_IIsi");
784 }
785
786
787 /*****************************************************************************
788 * if the device is currently busy, and there is no data waiting to go out, then
789 * the data is "queued" in the outgoing buffer. If we are already waiting, then
790 * we return.
791 * in: if (in == 0) then the command string is built from command and buffer
792 * if (in != 0) then in is used as the command string
793 * buffer: additional data to be sent (used only if in == 0)
794 * this is also where return data is stored
795 * compRout: the completion routine that is called when then return value
796 * is received (if a return value is expected)
797 * data: a data pointer that can be used by the completion routine
798 * command: an ADB command to be sent (used only if in == 0)
799 *
800 */
801 int
802 send_adb_IIsi(u_char * in, u_char * buffer, void *compRout, void *data, int
803 command)
804 {
805 panic("send_adb_IIsi");
806 }
807
808
809 /*
810 * adb_pass_up is called by the interrupt-time routines.
811 * It takes the raw packet data that was received from the
812 * device and puts it into the queue that the upper half
813 * processes. It then signals for a soft ADB interrupt which
814 * will eventually call the upper half routine (adb_soft_intr).
815 *
816 * If in->unsol is 0, then this is either the notification
817 * that the packet was sent (on a LISTEN, for example), or the
818 * response from the device (on a TALK). The completion routine
819 * is called only if the user specified one.
820 *
821 * If in->unsol is 1, then this packet was unsolicited and
822 * so we look up the device in the ADB device table to determine
823 * what it's default service routine is.
824 *
825 * If in->ack_only is 1, then we really only need to call
826 * the completion routine, so don't do any other stuff.
827 *
828 * Note that in->data contains the packet header AND data,
829 * while adbInbound[]->data contains ONLY data.
830 *
831 * Note: Called only at interrupt time. Assumes this.
832 */
833 void
834 adb_pass_up(struct adbCommand *in)
835 {
836 int i, start = 0, len = 0, cmd = 0;
837 ADBDataBlock block;
838
839 /* temp for testing */
840 /*u_char *buffer = 0;*/
841 /*u_char *compdata = 0;*/
842 /*u_char *comprout = 0;*/
843
844 if (adbInCount >= ADB_QUEUE) {
845 #ifdef ADB_DEBUG
846 if (adb_debug)
847 printf_intr("adb: ring buffer overflow\n");
848 #endif
849 return;
850 }
851
852 if (in->ack_only) {
853 len = in->data[0];
854 cmd = in->cmd;
855 start = 0;
856 } else {
857 switch (adbHardware) {
858 case ADB_HW_II:
859 cmd = in->data[1];
860 if (in->data[0] < 2)
861 len = 0;
862 else
863 len = in->data[0]-1;
864 start = 1;
865 break;
866
867 case ADB_HW_IISI:
868 case ADB_HW_CUDA:
869 /* If it's unsolicited, accept only ADB data for now */
870 if (in->unsol)
871 if (0 != in->data[2])
872 return;
873 cmd = in->data[4];
874 if (in->data[0] < 5)
875 len = 0;
876 else
877 len = in->data[0]-4;
878 start = 4;
879 break;
880
881 case ADB_HW_PB:
882 cmd = in->data[1];
883 if (in->data[0] < 2)
884 len = 0;
885 else
886 len = in->data[0]-1;
887 start = 1;
888 break;
889
890 case ADB_HW_UNKNOWN:
891 return;
892 }
893
894 /* Make sure there is a valid device entry for this device */
895 if (in->unsol) {
896 /* ignore unsolicited data during adbreinit */
897 if (adbStarting)
898 return;
899 /* get device's comp. routine and data area */
900 if (-1 == get_adb_info(&block, ((cmd & 0xf0) >> 4)))
901 return;
902 }
903 }
904
905 /*
906 * If this is an unsolicited packet, we need to fill in
907 * some info so adb_soft_intr can process this packet
908 * properly. If it's not unsolicited, then use what
909 * the caller sent us.
910 */
911 if (in->unsol) {
912 adbInbound[adbInTail].compRout = (void *)block.dbServiceRtPtr;
913 adbInbound[adbInTail].compData = (void *)block.dbDataAreaAddr;
914 adbInbound[adbInTail].saveBuf = (void *)adbInbound[adbInTail].data;
915 } else {
916 adbInbound[adbInTail].compRout = (void *)in->compRout;
917 adbInbound[adbInTail].compData = (void *)in->compData;
918 adbInbound[adbInTail].saveBuf = (void *)in->saveBuf;
919 }
920
921 #ifdef ADB_DEBUG
922 if (adb_debug && in->data[1] == 2)
923 printf_intr("adb: caught error\n");
924 #endif
925
926 /* copy the packet data over */
927 /*
928 * TO DO: If the *_intr routines fed their incoming data
929 * directly into an adbCommand struct, which is passed to
930 * this routine, then we could eliminate this copy.
931 */
932 for (i = 1; i <= len; i++)
933 adbInbound[adbInTail].data[i] = in->data[start+i];
934
935 adbInbound[adbInTail].data[0] = len;
936 adbInbound[adbInTail].cmd = cmd;
937
938 adbInCount++;
939 if (++adbInTail >= ADB_QUEUE)
940 adbInTail = 0;
941
942 /*
943 * If the debugger is running, call upper half manually.
944 * Otherwise, trigger a soft interrupt to handle the rest later.
945 */
946 if (adb_polling)
947 adb_soft_intr();
948 else
949 setsoftadb();
950
951 return;
952 }
953
954
955 /*
956 * Called to process the packets after they have been
957 * placed in the incoming queue.
958 *
959 */
960 void
961 adb_soft_intr(void)
962 {
963 int s, i;
964 int cmd = 0;
965 u_char *buffer = 0;
966 u_char *comprout = 0;
967 u_char *compdata = 0;
968
969 #if 0
970 s = splhigh();
971 printf_intr("sr: %x\n", (s & 0x0700));
972 splx(s);
973 #endif
974
975 /*delay(2*ADB_DELAY);*/
976
977 while (adbInCount) {
978 #ifdef ADB_DEBUG
979 if (adb_debug & 0x80)
980 printf_intr("%x %x %x ",
981 adbInCount, adbInHead, adbInTail);
982 #endif
983 /* get the data we need from the queue */
984 buffer = adbInbound[adbInHead].saveBuf;
985 comprout = adbInbound[adbInHead].compRout;
986 compdata = adbInbound[adbInHead].compData;
987 cmd = adbInbound[adbInHead].cmd;
988
989 /* copy over data to data area if it's valid */
990 /*
991 * Note that for unsol packets we don't want to copy the
992 * data anywhere, so buffer was already set to 0.
993 * For ack_only buffer was set to 0, so don't copy.
994 */
995 if (buffer)
996 for (i = 0; i <= adbInbound[adbInHead].data[0]; i++)
997 *(buffer+i) = adbInbound[adbInHead].data[i];
998
999 #ifdef ADB_DEBUG
1000 if (adb_debug & 0x80) {
1001 printf_intr("%p %p %p %x ",
1002 buffer, comprout, compdata, (short)cmd);
1003 printf_intr("buf: ");
1004 print_single(adbInbound[adbInHead].data);
1005 }
1006 #endif
1007
1008 /* call default completion routine if it's valid */
1009 if (comprout) {
1010 int (*f)() = (void *)comprout;
1011
1012 (*f)(buffer, compdata, cmd);
1013 #if 0
1014 #ifdef __NetBSD__
1015 asm(" movml #0xffff,sp@- | save all registers
1016 movl %0,a2 | compdata
1017 movl %1,a1 | comprout
1018 movl %2,a0 | buffer
1019 movl %3,d0 | cmd
1020 jbsr a1@ | go call the routine
1021 movml sp@+,#0xffff | restore all registers"
1022 :
1023 : "g"(compdata), "g"(comprout),
1024 "g"(buffer), "g"(cmd)
1025 : "d0", "a0", "a1", "a2");
1026 #else /* for macos based testing */
1027 asm
1028 {
1029 movem.l a0/a1/a2/d0, -(a7)
1030 move.l compdata, a2
1031 move.l comprout, a1
1032 move.l buffer, a0
1033 move.w cmd, d0
1034 jsr(a1)
1035 movem.l(a7)+, d0/a2/a1/a0
1036 }
1037 #endif
1038 #endif
1039 }
1040
1041 s = splhigh();
1042 adbInCount--;
1043 if (++adbInHead >= ADB_QUEUE)
1044 adbInHead = 0;
1045 splx(s);
1046
1047 }
1048 return;
1049 }
1050
1051
1052 /*
1053 * This is my version of the ADBOp routine. It mainly just calls the
1054 * hardware-specific routine.
1055 *
1056 * data : pointer to data area to be used by compRout
1057 * compRout : completion routine
1058 * buffer : for LISTEN: points to data to send - MAX 8 data bytes,
1059 * byte 0 = # of bytes
1060 * : for TALK: points to place to save return data
1061 * command : the adb command to send
1062 * result : 0 = success
1063 * : -1 = could not complete
1064 */
1065 int
1066 adb_op(Ptr buffer, Ptr compRout, Ptr data, short command)
1067 {
1068 int result;
1069
1070 switch (adbHardware) {
1071 case ADB_HW_II:
1072 result = send_adb_II((u_char *)0, (u_char *)buffer,
1073 (void *)compRout, (void *)data, (int)command);
1074 if (result == 0)
1075 return 0;
1076 else
1077 return -1;
1078 break;
1079
1080 case ADB_HW_IISI:
1081 result = send_adb_IIsi((u_char *)0, (u_char *)buffer,
1082 (void *)compRout, (void *)data, (int)command);
1083 /*
1084 * I wish I knew why this delay is needed. It usually needs to
1085 * be here when several commands are sent in close succession,
1086 * especially early in device probes when doing collision
1087 * detection. It must be some race condition. Sigh. - jpw
1088 */
1089 delay(100);
1090 if (result == 0)
1091 return 0;
1092 else
1093 return -1;
1094 break;
1095
1096 case ADB_HW_PB:
1097 result = pm_adb_op((u_char *)buffer, (void *)compRout,
1098 (void *)data, (int)command);
1099
1100 if (result == 0)
1101 return 0;
1102 else
1103 return -1;
1104 break;
1105
1106 case ADB_HW_CUDA:
1107 result = send_adb_cuda((u_char *)0, (u_char *)buffer,
1108 (void *)compRout, (void *)data, (int)command);
1109 if (result == 0)
1110 return 0;
1111 else
1112 return -1;
1113 break;
1114
1115 case ADB_HW_UNKNOWN:
1116 default:
1117 return -1;
1118 }
1119 }
1120
1121
1122 /*
1123 * adb_hw_setup
1124 * This routine sets up the possible machine specific hardware
1125 * config (mainly VIA settings) for the various models.
1126 */
1127 void
1128 adb_hw_setup(void)
1129 {
1130 volatile int i;
1131 u_char send_string[ADB_MAX_MSG_LENGTH];
1132
1133 switch (adbHardware) {
1134 case ADB_HW_II:
1135 via_reg_or(VIA1, vDirB, 0x30); /* register B bits 4 and 5:
1136 * outputs */
1137 via_reg_and(VIA1, vDirB, 0xf7); /* register B bit 3: input */
1138 via_reg_and(VIA1, vACR, ~vSR_OUT); /* make sure SR is set
1139 * to IN (II, IIsi) */
1140 adbActionState = ADB_ACTION_IDLE; /* used by all types of
1141 * hardware (II, IIsi) */
1142 adbBusState = ADB_BUS_IDLE; /* this var. used in II-series
1143 * code only */
1144 write_via_reg(VIA1, vIER, 0x84);/* make sure VIA interrupts
1145 * are on (II, IIsi) */
1146 ADB_SET_STATE_IDLE_II(); /* set ADB bus state to idle */
1147
1148 ADB_VIA_CLR_INTR(); /* clear interrupt */
1149 break;
1150
1151 case ADB_HW_IISI:
1152 via_reg_or(VIA1, vDirB, 0x30); /* register B bits 4 and 5:
1153 * outputs */
1154 via_reg_and(VIA1, vDirB, 0xf7); /* register B bit 3: input */
1155 via_reg_and(VIA1, vACR, ~vSR_OUT); /* make sure SR is set
1156 * to IN (II, IIsi) */
1157 adbActionState = ADB_ACTION_IDLE; /* used by all types of
1158 * hardware (II, IIsi) */
1159 adbBusState = ADB_BUS_IDLE; /* this var. used in II-series
1160 * code only */
1161 write_via_reg(VIA1, vIER, 0x84);/* make sure VIA interrupts
1162 * are on (II, IIsi) */
1163 ADB_SET_STATE_IDLE_IISI(); /* set ADB bus state to idle */
1164
1165 /* get those pesky clock ticks we missed while booting */
1166 for (i = 0; i < 30; i++) {
1167 delay(ADB_DELAY);
1168 adb_hw_setup_IIsi(send_string);
1169 #ifdef ADB_DEBUG
1170 if (adb_debug) {
1171 printf_intr("adb: cleanup: ");
1172 print_single(send_string);
1173 }
1174 #endif
1175 delay(ADB_DELAY);
1176 if (ADB_INTR_IS_OFF)
1177 break;
1178 }
1179 break;
1180
1181 case ADB_HW_PB:
1182 /*
1183 * XXX - really PM_VIA_CLR_INTR - should we put it in
1184 * pm_direct.h?
1185 */
1186 write_via_reg(VIA1, vIFR, 0x90); /* clear interrupt */
1187 break;
1188
1189 case ADB_HW_CUDA:
1190 via_reg_or(VIA1, vDirB, 0x30); /* register B bits 4 and 5:
1191 * outputs */
1192 via_reg_and(VIA1, vDirB, 0xf7); /* register B bit 3: input */
1193 via_reg_and(VIA1, vACR, ~vSR_OUT); /* make sure SR is set
1194 * to IN */
1195 write_via_reg(VIA1, vACR, (read_via_reg(VIA1, vACR) | 0x0c) & ~0x10);
1196 adbActionState = ADB_ACTION_IDLE; /* used by all types of
1197 * hardware */
1198 adbBusState = ADB_BUS_IDLE; /* this var. used in II-series
1199 * code only */
1200 write_via_reg(VIA1, vIER, 0x84);/* make sure VIA interrupts
1201 * are on */
1202 ADB_SET_STATE_IDLE_CUDA(); /* set ADB bus state to idle */
1203
1204 /* sort of a device reset */
1205 i = ADB_SR(); /* clear interrupt */
1206 ADB_VIA_INTR_DISABLE(); /* no interrupts while clearing */
1207 ADB_SET_STATE_IDLE_CUDA(); /* reset state to idle */
1208 delay(ADB_DELAY);
1209 ADB_SET_STATE_TIP(); /* signal start of frame */
1210 delay(ADB_DELAY);
1211 ADB_TOGGLE_STATE_ACK_CUDA();
1212 delay(ADB_DELAY);
1213 ADB_CLR_STATE_TIP();
1214 delay(ADB_DELAY);
1215 ADB_SET_STATE_IDLE_CUDA(); /* back to idle state */
1216 i = ADB_SR(); /* clear interrupt */
1217 ADB_VIA_INTR_ENABLE(); /* ints ok now */
1218 break;
1219
1220 case ADB_HW_UNKNOWN:
1221 default:
1222 write_via_reg(VIA1, vIER, 0x04);/* turn interrupts off - TO
1223 * DO: turn PB ints off? */
1224 return;
1225 break;
1226 }
1227 }
1228
1229
1230 /*
1231 * adb_hw_setup_IIsi
1232 * This is sort of a "read" routine that forces the adb hardware through a read cycle
1233 * if there is something waiting. This helps "clean up" any commands that may have gotten
1234 * stuck or stopped during the boot process.
1235 *
1236 */
1237 void
1238 adb_hw_setup_IIsi(u_char * buffer)
1239 {
1240 panic("adb_hw_setup_IIsi");
1241 }
1242
1243
1244
1245 /*
1246 * adb_reinit sets up the adb stuff
1247 *
1248 */
1249 void
1250 adb_reinit(void)
1251 {
1252 u_char send_string[ADB_MAX_MSG_LENGTH];
1253 int s = 0;
1254 volatile int i, x;
1255 int command;
1256 int result;
1257 int saveptr; /* point to next free relocation address */
1258 int device;
1259 int nonewtimes; /* times thru loop w/o any new devices */
1260 ADBDataBlock data; /* temp. holder for getting device info */
1261
1262 (void)(&s); /* work around lame GCC bug */
1263
1264 /* Make sure we are not interrupted while building the table. */
1265 if (adbHardware != ADB_HW_PB) /* ints must be on for PB? */
1266 s = splhigh();
1267
1268 ADBNumDevices = 0; /* no devices yet */
1269
1270 /* Let intr routines know we are running reinit */
1271 adbStarting = 1;
1272
1273 /*
1274 * Initialize the ADB table. For now, we'll always use the same table
1275 * that is defined at the beginning of this file - no mallocs.
1276 */
1277 for (i = 0; i < 16; i++)
1278 ADBDevTable[i].devType = 0;
1279
1280 adb_setup_hw_type(); /* setup hardware type */
1281
1282 adb_hw_setup(); /* init the VIA bits and hard reset ADB */
1283
1284 DELAY(1000);
1285
1286 /* send an ADB reset first */
1287 adb_op_sync((Ptr)0, (Ptr)0, (Ptr)0, (short)0x00);
1288
1289 /*
1290 * Probe for ADB devices. Probe devices 1-15 quickly to determine
1291 * which device addresses are in use and which are free. For each
1292 * address that is in use, move the device at that address to a higher
1293 * free address. Continue doing this at that address until no device
1294 * responds at that address. Then move the last device that was moved
1295 * back to the original address. Do this for the remaining addresses
1296 * that we determined were in use.
1297 *
1298 * When finished, do this entire process over again with the updated
1299 * list of in use addresses. Do this until no new devices have been
1300 * found in 20 passes though the in use address list. (This probably
1301 * seems long and complicated, but it's the best way to detect multiple
1302 * devices at the same address - sometimes it takes a couple of tries
1303 * before the collision is detected.)
1304 */
1305
1306 /* initial scan through the devices */
1307 for (i = 1; i < 16; i++) {
1308 command = (int)(0x0f | ((int)(i & 0x000f) << 4)); /* talk R3 */
1309 result = adb_op_sync((Ptr)send_string, (Ptr)0,
1310 (Ptr)0, (short)command);
1311 if (0x00 != send_string[0]) { /* anything come back ?? */
1312 ADBDevTable[++ADBNumDevices].devType =
1313 (u_char)send_string[2];
1314 ADBDevTable[ADBNumDevices].origAddr = i;
1315 ADBDevTable[ADBNumDevices].currentAddr = i;
1316 ADBDevTable[ADBNumDevices].DataAreaAddr =
1317 (long)0;
1318 ADBDevTable[ADBNumDevices].ServiceRtPtr = (void *)0;
1319 pm_check_adb_devices(i); /* tell pm driver device
1320 * is here */
1321 }
1322 }
1323
1324 /* find highest unused address */
1325 for (saveptr = 15; saveptr > 0; saveptr--)
1326 if (-1 == get_adb_info(&data, saveptr))
1327 break;
1328
1329 if (saveptr == 0) /* no free addresses??? */
1330 saveptr = 15;
1331
1332 #ifdef ADB_DEBUG
1333 if (adb_debug & 0x80) {
1334 printf_intr("first free is: 0x%02x\n", saveptr);
1335 printf_intr("devices: %i\n", ADBNumDevices);
1336 }
1337 #endif
1338
1339 nonewtimes = 0; /* no loops w/o new devices */
1340 while (nonewtimes++ < 11) {
1341 for (i = 1; i <= ADBNumDevices; i++) {
1342 device = ADBDevTable[i].currentAddr;
1343 #ifdef ADB_DEBUG
1344 if (adb_debug & 0x80)
1345 printf_intr("moving device 0x%02x to 0x%02x "
1346 "(index 0x%02x) ", device, saveptr, i);
1347 #endif
1348
1349 /* send TALK R3 to address */
1350 command = (int)(0x0f | ((int)(device & 0x000f) << 4));
1351 adb_op_sync((Ptr)send_string, (Ptr)0,
1352 (Ptr)0, (short)command);
1353
1354 /* move device to higher address */
1355 command = (int)(0x0b | ((int)(device & 0x000f) << 4));
1356 send_string[0] = 2;
1357 send_string[1] = (u_char)(saveptr | 0x60);
1358 send_string[2] = 0xfe;
1359 adb_op_sync((Ptr)send_string, (Ptr)0,
1360 (Ptr)0, (short)command);
1361
1362 /* send TALK R3 - anything at old address? */
1363 command = (int)(0x0f | ((int)(device & 0x000f) << 4));
1364 result = adb_op_sync((Ptr)send_string, (Ptr)0,
1365 (Ptr)0, (short)command);
1366 if (send_string[0] != 0) {
1367 /* new device found */
1368 /* update data for previously moved device */
1369 ADBDevTable[i].currentAddr = saveptr;
1370 #ifdef ADB_DEBUG
1371 if (adb_debug & 0x80)
1372 printf_intr("old device at index %i\n",i);
1373 #endif
1374 /* add new device in table */
1375 #ifdef ADB_DEBUG
1376 if (adb_debug & 0x80)
1377 printf_intr("new device found\n");
1378 #endif
1379 ADBDevTable[++ADBNumDevices].devType =
1380 (u_char)send_string[2];
1381 ADBDevTable[ADBNumDevices].origAddr = device;
1382 ADBDevTable[ADBNumDevices].currentAddr = device;
1383 /* These will be set correctly in adbsys.c */
1384 /* Until then, unsol. data will be ignored. */
1385 ADBDevTable[ADBNumDevices].DataAreaAddr =
1386 (long)0;
1387 ADBDevTable[ADBNumDevices].ServiceRtPtr =
1388 (void *)0;
1389 /* find next unused address */
1390 for (x = saveptr; x > 0; x--)
1391 if (-1 == get_adb_info(&data, x)) {
1392 saveptr = x;
1393 break;
1394 }
1395 #ifdef ADB_DEBUG
1396 if (adb_debug & 0x80)
1397 printf_intr("new free is 0x%02x\n",
1398 saveptr);
1399 #endif
1400 nonewtimes = 0;
1401 /* tell pm driver device is here */
1402 pm_check_adb_devices(device);
1403 } else {
1404 #ifdef ADB_DEBUG
1405 if (adb_debug & 0x80)
1406 printf_intr("moving back...\n");
1407 #endif
1408 /* move old device back */
1409 command = (int)(0x0b | ((int)(saveptr & 0x000f) << 4));
1410 send_string[0] = 2;
1411 send_string[1] = (u_char)(device | 0x60);
1412 send_string[2] = 0xfe;
1413 adb_op_sync((Ptr)send_string, (Ptr)0,
1414 (Ptr)0, (short)command);
1415 }
1416 }
1417 }
1418
1419 #ifdef ADB_DEBUG
1420 if (adb_debug) {
1421 for (i = 1; i <= ADBNumDevices; i++) {
1422 x = get_ind_adb_info(&data, i);
1423 if (x != -1)
1424 printf_intr("index 0x%x, addr 0x%x, type 0x%x\n",
1425 i, x, data.devType);
1426 }
1427 }
1428 #endif
1429
1430 #ifndef MRG_ADB
1431 /* enable the programmer's switch, if we have one */
1432 adb_prog_switch_enable();
1433 #endif
1434
1435 #ifdef ADB_DEBUG
1436 if (adb_debug) {
1437 if (0 == ADBNumDevices) /* tell user if no devices found */
1438 printf_intr("adb: no devices found\n");
1439 }
1440 #endif
1441
1442 adbStarting = 0; /* not starting anymore */
1443 #ifdef ADB_DEBUG
1444 if (adb_debug)
1445 printf_intr("adb: ADBReInit complete\n");
1446 #endif
1447
1448 if (adbHardware == ADB_HW_CUDA)
1449 timeout((void *)adb_cuda_tickle, 0, ADB_TICKLE_TICKS);
1450
1451 if (adbHardware != ADB_HW_PB) /* ints must be on for PB? */
1452 splx(s);
1453 return;
1454 }
1455
1456
1457 #if 0
1458 /*
1459 * adb_comp_exec
1460 * This is a general routine that calls the completion routine if there is one.
1461 * NOTE: This routine is now only used by pm_direct.c
1462 * All the code in this file (adb_direct.c) uses
1463 * the adb_pass_up routine now.
1464 */
1465 void
1466 adb_comp_exec(void)
1467 {
1468 if ((long)0 != adbCompRout) /* don't call if empty return location */
1469 #ifdef __NetBSD__
1470 asm(" movml #0xffff,sp@- | save all registers
1471 movl %0,a2 | adbCompData
1472 movl %1,a1 | adbCompRout
1473 movl %2,a0 | adbBuffer
1474 movl %3,d0 | adbWaitingCmd
1475 jbsr a1@ | go call the routine
1476 movml sp@+,#0xffff | restore all registers"
1477 :
1478 : "g"(adbCompData), "g"(adbCompRout),
1479 "g"(adbBuffer), "g"(adbWaitingCmd)
1480 : "d0", "a0", "a1", "a2");
1481 #else /* for Mac OS-based testing */
1482 asm {
1483 movem.l a0/a1/a2/d0, -(a7)
1484 move.l adbCompData, a2
1485 move.l adbCompRout, a1
1486 move.l adbBuffer, a0
1487 move.w adbWaitingCmd, d0
1488 jsr(a1)
1489 movem.l(a7) +, d0/a2/a1/a0
1490 }
1491 #endif
1492 }
1493 #endif
1494
1495
1496 /*
1497 * adb_cmd_result
1498 *
1499 * This routine lets the caller know whether the specified adb command string
1500 * should expect a returned result, such as a TALK command.
1501 *
1502 * returns: 0 if a result should be expected
1503 * 1 if a result should NOT be expected
1504 */
1505 int
1506 adb_cmd_result(u_char *in)
1507 {
1508 switch (adbHardware) {
1509 case ADB_HW_II:
1510 /* was it an ADB talk command? */
1511 if ((in[1] & 0x0c) == 0x0c)
1512 return 0;
1513 return 1;
1514
1515 case ADB_HW_IISI:
1516 case ADB_HW_CUDA:
1517 /* was it an ADB talk command? */
1518 if ((in[1] == 0x00) && ((in[2] & 0x0c) == 0x0c))
1519 return 0;
1520 /* was it an RTC/PRAM read date/time? */
1521 if ((in[1] == 0x01) && (in[2] == 0x03))
1522 return 0;
1523 return 1;
1524
1525 case ADB_HW_PB:
1526 return 1;
1527
1528 case ADB_HW_UNKNOWN:
1529 default:
1530 return 1;
1531 }
1532 }
1533
1534
1535 /*
1536 * adb_cmd_extra
1537 *
1538 * This routine lets the caller know whether the specified adb command string
1539 * may have extra data appended to the end of it, such as a LISTEN command.
1540 *
1541 * returns: 0 if extra data is allowed
1542 * 1 if extra data is NOT allowed
1543 */
1544 int
1545 adb_cmd_extra(u_char *in)
1546 {
1547 switch (adbHardware) {
1548 case ADB_HW_II:
1549 if ((in[1] & 0x0c) == 0x08) /* was it a listen command? */
1550 return 0;
1551 return 1;
1552
1553 case ADB_HW_IISI:
1554 case ADB_HW_CUDA:
1555 /*
1556 * TO DO: support needs to be added to recognize RTC and PRAM
1557 * commands
1558 */
1559 if ((in[2] & 0x0c) == 0x08) /* was it a listen command? */
1560 return 0;
1561 /* add others later */
1562 return 1;
1563
1564 case ADB_HW_PB:
1565 return 1;
1566
1567 case ADB_HW_UNKNOWN:
1568 default:
1569 return 1;
1570 }
1571 }
1572
1573
1574 /*
1575 * adb_op_sync
1576 *
1577 * This routine does exactly what the adb_op routine does, except that after
1578 * the adb_op is called, it waits until the return value is present before
1579 * returning.
1580 *
1581 * NOTE: The user specified compRout is ignored, since this routine specifies
1582 * it's own to adb_op, which is why you really called this in the first place
1583 * anyway.
1584 */
1585 int
1586 adb_op_sync(Ptr buffer, Ptr compRout, Ptr data, short command)
1587 {
1588 int result;
1589 volatile int flag = 0;
1590
1591 result = adb_op(buffer, (void *)adb_op_comprout,
1592 (void *)&flag, command); /* send command */
1593 if (result == 0) /* send ok? */
1594 while (0 == flag)
1595 /* wait for compl. routine */;
1596
1597 return result;
1598 }
1599
1600
1601 /*
1602 * adb_op_comprout
1603 *
1604 * This function is used by the adb_op_sync routine so it knows when the
1605 * function is done.
1606 */
1607 void
1608 adb_op_comprout(buffer, compdata, cmd)
1609 caddr_t buffer, compdata;
1610 int cmd;
1611 {
1612 short *p = (short *)compdata;
1613
1614 *p = 1;
1615 }
1616
1617 void
1618 adb_setup_hw_type(void)
1619 {
1620 switch (adbHardware) {
1621 case ADB_HW_CUDA:
1622 adbSoftPower = 1;
1623 return;
1624
1625 case ADB_HW_PB:
1626 pm_setup_adb();
1627 return;
1628
1629 default:
1630 panic("unknown adb hardware");
1631 }
1632 #if 0
1633 response = 0; /*mac68k_machine.machineid;*/
1634
1635 /*
1636 * Determine what type of ADB hardware we are running on.
1637 */
1638 switch (response) {
1639 case MACH_MACC610: /* Centris 610 */
1640 case MACH_MACC650: /* Centris 650 */
1641 case MACH_MACII: /* II */
1642 case MACH_MACIICI: /* IIci */
1643 case MACH_MACIICX: /* IIcx */
1644 case MACH_MACIIX: /* IIx */
1645 case MACH_MACQ610: /* Quadra 610 */
1646 case MACH_MACQ650: /* Quadra 650 */
1647 case MACH_MACQ700: /* Quadra 700 */
1648 case MACH_MACQ800: /* Quadra 800 */
1649 case MACH_MACSE30: /* SE/30 */
1650 adbHardware = ADB_HW_II;
1651 #ifdef ADB_DEBUG
1652 if (adb_debug)
1653 printf_intr("adb: using II series hardware support\n");
1654 #endif
1655 break;
1656
1657 case MACH_MACCLASSICII: /* Classic II */
1658 case MACH_MACLCII: /* LC II, Performa 400/405/430 */
1659 case MACH_MACLCIII: /* LC III, Performa 450 */
1660 case MACH_MACIISI: /* IIsi */
1661 case MACH_MACIIVI: /* IIvi */
1662 case MACH_MACIIVX: /* IIvx */
1663 case MACH_MACP460: /* Performa 460/465/467 */
1664 case MACH_MACP600: /* Performa 600 */
1665 case MACH_MACQ900: /* Quadra 900 - XXX not sure */
1666 case MACH_MACQ950: /* Quadra 950 - XXX not sure */
1667 adbHardware = ADB_HW_IISI;
1668 #ifdef ADB_DEBUG
1669 if (adb_debug)
1670 printf_intr("adb: using IIsi series hardware support\n");
1671 #endif
1672 break;
1673
1674 case MACH_MACPB140: /* PowerBook 140 */
1675 case MACH_MACPB145: /* PowerBook 145 */
1676 case MACH_MACPB150: /* PowerBook 150 */
1677 case MACH_MACPB160: /* PowerBook 160 */
1678 case MACH_MACPB165: /* PowerBook 165 */
1679 case MACH_MACPB165C: /* PowerBook 165c */
1680 case MACH_MACPB170: /* PowerBook 170 */
1681 case MACH_MACPB180: /* PowerBook 180 */
1682 case MACH_MACPB180C: /* PowerBook 180c */
1683 adbHardware = ADB_HW_PB;
1684 pm_setup_adb();
1685 #ifdef ADB_DEBUG
1686 if (adb_debug)
1687 printf_intr("adb: using PowerBook 100-series hardware support\n");
1688 #endif
1689 break;
1690
1691 case MACH_MACPB210: /* PowerBook Duo 210 */
1692 case MACH_MACPB230: /* PowerBook Duo 230 */
1693 case MACH_MACPB250: /* PowerBook Duo 250 */
1694 case MACH_MACPB270: /* PowerBook Duo 270 */
1695 case MACH_MACPB280: /* PowerBook Duo 280 */
1696 case MACH_MACPB280C: /* PowerBook Duo 280c */
1697 case MACH_MACPB500: /* PowerBook 500 series */
1698 adbHardware = ADB_HW_PB;
1699 pm_setup_adb();
1700 #ifdef ADB_DEBUG
1701 if (adb_debug)
1702 printf_intr("adb: using PowerBook Duo-series and PowerBook 500-series hardware support\n");
1703 #endif
1704 break;
1705
1706 case MACH_MACC660AV: /* Centris 660AV */
1707 case MACH_MACCCLASSIC: /* Color Classic */
1708 case MACH_MACCCLASSICII: /* Color Classic II */
1709 case MACH_MACLC475: /* LC 475, Performa 475/476 */
1710 case MACH_MACLC475_33: /* Clock-chipped 47x */
1711 case MACH_MACLC520: /* LC 520 */
1712 case MACH_MACLC575: /* LC 575, Performa 575/577/578 */
1713 case MACH_MACP550: /* LC 550, Performa 550 */
1714 case MACH_MACP580: /* Performa 580/588 */
1715 case MACH_MACQ605: /* Quadra 605 */
1716 case MACH_MACQ605_33: /* Clock-chipped Quadra 605 */
1717 case MACH_MACQ630: /* LC 630, Performa 630, Quadra 630 */
1718 case MACH_MACQ840AV: /* Quadra 840AV */
1719 adbHardware = ADB_HW_CUDA;
1720 #ifdef ADB_DEBUG
1721 if (adb_debug)
1722 printf_intr("adb: using Cuda series hardware support\n");
1723 #endif
1724 break;
1725 default:
1726 adbHardware = ADB_HW_UNKNOWN;
1727 #ifdef ADB_DEBUG
1728 if (adb_debug) {
1729 printf_intr("adb: hardware type unknown for this machine\n");
1730 printf_intr("adb: ADB support is disabled\n");
1731 }
1732 #endif
1733 break;
1734 }
1735
1736 /*
1737 * Determine whether this machine has ADB based soft power.
1738 */
1739 switch (response) {
1740 case MACH_MACCCLASSIC: /* Color Classic */
1741 case MACH_MACCCLASSICII: /* Color Classic II */
1742 case MACH_MACIISI: /* IIsi */
1743 case MACH_MACIIVI: /* IIvi */
1744 case MACH_MACIIVX: /* IIvx */
1745 case MACH_MACLC520: /* LC 520 */
1746 case MACH_MACLC575: /* LC 575, Performa 575/577/578 */
1747 case MACH_MACP550: /* LC 550, Performa 550 */
1748 case MACH_MACP600: /* Performa 600 */
1749 case MACH_MACQ630: /* LC 630, Performa 630, Quadra 630 */
1750 case MACH_MACQ840AV: /* Quadra 840AV */
1751 case MACH_MACQ900: /* Quadra 900 - XXX not sure */
1752 case MACH_MACQ950: /* Quadra 950 - XXX not sure */
1753 adbSoftPower = 1;
1754 break;
1755 }
1756 #endif
1757 }
1758
1759 int
1760 count_adbs(void)
1761 {
1762 int i;
1763 int found;
1764
1765 found = 0;
1766
1767 for (i = 1; i < 16; i++)
1768 if (0 != ADBDevTable[i].devType)
1769 found++;
1770
1771 return found;
1772 }
1773
1774 int
1775 get_ind_adb_info(ADBDataBlock * info, int index)
1776 {
1777 if ((index < 1) || (index > 15)) /* check range 1-15 */
1778 return (-1);
1779
1780 #ifdef ADB_DEBUG
1781 if (adb_debug & 0x80)
1782 printf_intr("index 0x%x devType is: 0x%x\n", index,
1783 ADBDevTable[index].devType);
1784 #endif
1785 if (0 == ADBDevTable[index].devType) /* make sure it's a valid entry */
1786 return (-1);
1787
1788 info->devType = ADBDevTable[index].devType;
1789 info->origADBAddr = ADBDevTable[index].origAddr;
1790 info->dbServiceRtPtr = (Ptr)ADBDevTable[index].ServiceRtPtr;
1791 info->dbDataAreaAddr = (Ptr)ADBDevTable[index].DataAreaAddr;
1792
1793 return (ADBDevTable[index].currentAddr);
1794 }
1795
1796 int
1797 get_adb_info(ADBDataBlock * info, int adbAddr)
1798 {
1799 int i;
1800
1801 if ((adbAddr < 1) || (adbAddr > 15)) /* check range 1-15 */
1802 return (-1);
1803
1804 for (i = 1; i < 15; i++)
1805 if (ADBDevTable[i].currentAddr == adbAddr) {
1806 info->devType = ADBDevTable[i].devType;
1807 info->origADBAddr = ADBDevTable[i].origAddr;
1808 info->dbServiceRtPtr = (Ptr)ADBDevTable[i].ServiceRtPtr;
1809 info->dbDataAreaAddr = ADBDevTable[i].DataAreaAddr;
1810 return 0; /* found */
1811 }
1812
1813 return (-1); /* not found */
1814 }
1815
1816 int
1817 set_adb_info(ADBSetInfoBlock * info, int adbAddr)
1818 {
1819 int i;
1820
1821 if ((adbAddr < 1) || (adbAddr > 15)) /* check range 1-15 */
1822 return (-1);
1823
1824 for (i = 1; i < 15; i++)
1825 if (ADBDevTable[i].currentAddr == adbAddr) {
1826 ADBDevTable[i].ServiceRtPtr =
1827 (void *)(info->siServiceRtPtr);
1828 ADBDevTable[i].DataAreaAddr = info->siDataAreaAddr;
1829 return 0; /* found */
1830 }
1831
1832 return (-1); /* not found */
1833
1834 }
1835
1836 #ifndef MRG_ADB
1837
1838 /* caller should really use machine-independant version: getPramTime */
1839 /* this version does pseudo-adb access only */
1840 int
1841 adb_read_date_time(unsigned long *time)
1842 {
1843 u_char output[ADB_MAX_MSG_LENGTH];
1844 int result;
1845 volatile int flag = 0;
1846
1847 switch (adbHardware) {
1848 case ADB_HW_II:
1849 return -1;
1850
1851 case ADB_HW_IISI:
1852 output[0] = 0x02; /* 2 byte message */
1853 output[1] = 0x01; /* to pram/rtc device */
1854 output[2] = 0x03; /* read date/time */
1855 result = send_adb_IIsi((u_char *)output, (u_char *)output,
1856 (void *)adb_op_comprout, (int *)&flag, (int)0);
1857 if (result != 0) /* exit if not sent */
1858 return -1;
1859
1860 while (0 == flag) /* wait for result */
1861 ;
1862
1863 *time = (long)(*(long *)(output + 1));
1864 return 0;
1865
1866 case ADB_HW_PB:
1867 pm_read_date_time(time);
1868 return -1;
1869
1870 case ADB_HW_CUDA:
1871 output[0] = 0x02; /* 2 byte message */
1872 output[1] = 0x01; /* to pram/rtc device */
1873 output[2] = 0x03; /* read date/time */
1874 result = send_adb_cuda((u_char *)output, (u_char *)output,
1875 (void *)adb_op_comprout, (void *)&flag, (int)0);
1876 if (result != 0) /* exit if not sent */
1877 return -1;
1878
1879 while (0 == flag) /* wait for result */
1880 ;
1881
1882 memcpy(time, output + 1, 4);
1883 return 0;
1884
1885 case ADB_HW_UNKNOWN:
1886 default:
1887 return -1;
1888 }
1889 }
1890
1891 /* caller should really use machine-independant version: setPramTime */
1892 /* this version does pseudo-adb access only */
1893 int
1894 adb_set_date_time(unsigned long time)
1895 {
1896 u_char output[ADB_MAX_MSG_LENGTH];
1897 int result;
1898 volatile int flag = 0;
1899
1900 switch (adbHardware) {
1901
1902 case ADB_HW_CUDA:
1903 output[0] = 0x06; /* 6 byte message */
1904 output[1] = 0x01; /* to pram/rtc device */
1905 output[2] = 0x09; /* set date/time */
1906 output[3] = (u_char)(time >> 24);
1907 output[4] = (u_char)(time >> 16);
1908 output[5] = (u_char)(time >> 8);
1909 output[6] = (u_char)(time);
1910 result = send_adb_cuda((u_char *)output, (u_char *)0,
1911 (void *)adb_op_comprout, (void *)&flag, (int)0);
1912 if (result != 0) /* exit if not sent */
1913 return -1;
1914
1915 while (0 == flag) /* wait for send to finish */
1916 ;
1917
1918 return 0;
1919
1920 case ADB_HW_II:
1921 case ADB_HW_IISI:
1922 case ADB_HW_PB:
1923 case ADB_HW_UNKNOWN:
1924 default:
1925 return -1;
1926 }
1927 }
1928
1929
1930 int
1931 adb_poweroff(void)
1932 {
1933 u_char output[ADB_MAX_MSG_LENGTH];
1934 int result;
1935
1936 if (!adbSoftPower)
1937 return -1;
1938
1939 switch (adbHardware) {
1940 case ADB_HW_IISI:
1941 output[0] = 0x02; /* 2 byte message */
1942 output[1] = 0x01; /* to pram/rtc/soft-power device */
1943 output[2] = 0x0a; /* set date/time */
1944 result = send_adb_IIsi((u_char *)output, (u_char *)0,
1945 (void *)0, (void *)0, (int)0);
1946 if (result != 0) /* exit if not sent */
1947 return -1;
1948
1949 for (;;); /* wait for power off */
1950
1951 return 0;
1952
1953 case ADB_HW_PB:
1954 return -1;
1955
1956 case ADB_HW_CUDA:
1957 output[0] = 0x02; /* 2 byte message */
1958 output[1] = 0x01; /* to pram/rtc/soft-power device */
1959 output[2] = 0x0a; /* set date/time */
1960 result = send_adb_cuda((u_char *)output, (u_char *)0,
1961 (void *)0, (void *)0, (int)0);
1962 if (result != 0) /* exit if not sent */
1963 return -1;
1964
1965 for (;;); /* wait for power off */
1966
1967 return 0;
1968
1969 case ADB_HW_II: /* II models don't do ADB soft power */
1970 case ADB_HW_UNKNOWN:
1971 default:
1972 return -1;
1973 }
1974 }
1975
1976 int
1977 adb_prog_switch_enable(void)
1978 {
1979 u_char output[ADB_MAX_MSG_LENGTH];
1980 int result;
1981 volatile int flag = 0;
1982
1983 switch (adbHardware) {
1984 case ADB_HW_IISI:
1985 output[0] = 0x03; /* 3 byte message */
1986 output[1] = 0x01; /* to pram/rtc/soft-power device */
1987 output[2] = 0x1c; /* prog. switch control */
1988 output[3] = 0x01; /* enable */
1989 result = send_adb_IIsi((u_char *)output, (u_char *)0,
1990 (void *)adb_op_comprout, (void *)&flag, (int)0);
1991 if (result != 0) /* exit if not sent */
1992 return -1;
1993
1994 while (0 == flag) /* wait for send to finish */
1995 ;
1996
1997 return 0;
1998
1999 case ADB_HW_PB:
2000 return -1;
2001
2002 case ADB_HW_II: /* II models don't do prog. switch */
2003 case ADB_HW_CUDA: /* cuda doesn't do prog. switch TO DO: verify this */
2004 case ADB_HW_UNKNOWN:
2005 default:
2006 return -1;
2007 }
2008 }
2009
2010 int
2011 adb_prog_switch_disable(void)
2012 {
2013 u_char output[ADB_MAX_MSG_LENGTH];
2014 int result;
2015 volatile int flag = 0;
2016
2017 switch (adbHardware) {
2018 case ADB_HW_IISI:
2019 output[0] = 0x03; /* 3 byte message */
2020 output[1] = 0x01; /* to pram/rtc/soft-power device */
2021 output[2] = 0x1c; /* prog. switch control */
2022 output[3] = 0x01; /* disable */
2023 result = send_adb_IIsi((u_char *)output, (u_char *)0,
2024 (void *)adb_op_comprout, (void *)&flag, (int)0);
2025 if (result != 0) /* exit if not sent */
2026 return -1;
2027
2028 while (0 == flag) /* wait for send to finish */
2029 ;
2030
2031 return 0;
2032
2033 case ADB_HW_PB:
2034 return -1;
2035
2036 case ADB_HW_II: /* II models don't do prog. switch */
2037 case ADB_HW_CUDA: /* cuda doesn't do prog. switch */
2038 case ADB_HW_UNKNOWN:
2039 default:
2040 return -1;
2041 }
2042 }
2043
2044 int
2045 CountADBs(void)
2046 {
2047 return (count_adbs());
2048 }
2049
2050 void
2051 ADBReInit(void)
2052 {
2053 adb_reinit();
2054 }
2055
2056 int
2057 GetIndADB(ADBDataBlock * info, int index)
2058 {
2059 return (get_ind_adb_info(info, index));
2060 }
2061
2062 int
2063 GetADBInfo(ADBDataBlock * info, int adbAddr)
2064 {
2065 return (get_adb_info(info, adbAddr));
2066 }
2067
2068 int
2069 SetADBInfo(ADBSetInfoBlock * info, int adbAddr)
2070 {
2071 return (set_adb_info(info, adbAddr));
2072 }
2073
2074 int
2075 ADBOp(Ptr buffer, Ptr compRout, Ptr data, short commandNum)
2076 {
2077 return (adb_op(buffer, compRout, data, commandNum));
2078 }
2079
2080 #endif
2081
2082 int
2083 setsoftadb()
2084 {
2085 timeout((void *)adb_soft_intr, NULL, 1);
2086 return 0;
2087 }
2088
2089 void
2090 adb_cuda_autopoll()
2091 {
2092 volatile int flag = 0;
2093 int result;
2094 u_char output[16];
2095 extern void adb_op_comprout();
2096
2097 output[0] = 0x03; /* 3-byte message */
2098 output[1] = 0x01; /* to pram/rtc device */
2099 output[2] = 0x01; /* cuda autopoll */
2100 output[3] = 0x01;
2101 result = send_adb_cuda(output, output, adb_op_comprout,
2102 (void *)&flag, 0);
2103 if (result != 0) /* exit if not sent */
2104 return;
2105
2106 while (flag == 0); /* wait for result */
2107 }
2108
2109 void
2110 powermac_restart()
2111 {
2112 volatile int flag = 0;
2113 int result;
2114 u_char output[16];
2115
2116 switch (adbHardware) {
2117 case ADB_HW_CUDA:
2118 output[0] = 0x02; /* 2 byte message */
2119 output[1] = 0x01; /* to pram/rtc/soft-power device */
2120 output[2] = 0x11; /* restart */
2121 result = send_adb_cuda((u_char *)output, (u_char *)0,
2122 (void *)0, (void *)0, (int)0);
2123 if (result != 0) /* exit if not sent */
2124 return;
2125 while (1); /* not return */
2126
2127 case ADB_HW_PB:
2128 pm_adb_restart();
2129 return;
2130 }
2131 }
2132
2133 void
2134 powermac_powerdown()
2135 {
2136 adb_poweroff();
2137 }
2138