adb_direct.c revision 1.9 1 /* $NetBSD: adb_direct.c,v 1.9 1999/01/12 10:38:00 tsubai Exp $ */
2
3 /* From: adb_direct.c 2.02 4/18/97 jpw */
4
5 /*
6 * Copyright (C) 1996, 1997 John P. Wittkoski
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by John P. Wittkoski.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*
36 * This code is rather messy, but I don't have time right now
37 * to clean it up as much as I would like.
38 * But it works, so I'm happy. :-) jpw
39 */
40
41 /*
42 * TO DO:
43 * - We could reduce the time spent in the adb_intr_* routines
44 * by having them save the incoming and outgoing data directly
45 * in the adbInbound and adbOutbound queues, as it would reduce
46 * the number of times we need to copy the data around. It
47 * would also make the code more readable and easier to follow.
48 * - (Related to above) Use the header part of adbCommand to
49 * reduce the number of copies we have to do of the data.
50 * - (Related to above) Actually implement the adbOutbound queue.
51 * This is fairly easy once you switch all the intr routines
52 * over to using adbCommand structs directly.
53 * - There is a bug in the state machine of adb_intr_cuda
54 * code that causes hangs, especially on 030 machines, probably
55 * because of some timing issues. Because I have been unable to
56 * determine the exact cause of this bug, I used the timeout function
57 * to check for and recover from this condition. If anyone finds
58 * the actual cause of this bug, the calls to timeout and the
59 * adb_cuda_tickle routine can be removed.
60 */
61
62 #include <sys/param.h>
63 #include <sys/cdefs.h>
64 #include <sys/systm.h>
65 #include <sys/device.h>
66
67 #include <machine/param.h>
68 #include <machine/cpu.h>
69 #include <machine/adbsys.h>
70
71 #include <macppc/dev/viareg.h>
72 #include <macppc/dev/adbvar.h>
73
74 #define printf_intr printf
75
76 #ifdef DEBUG
77 #ifndef ADB_DEBUG
78 #define ADB_DEBUG
79 #endif
80 #endif
81
82 /* some misc. leftovers */
83 #define vPB 0x0000
84 #define vPB3 0x08
85 #define vPB4 0x10
86 #define vPB5 0x20
87 #define vSR_INT 0x04
88 #define vSR_OUT 0x10
89
90 /* the type of ADB action that we are currently preforming */
91 #define ADB_ACTION_NOTREADY 0x1 /* has not been initialized yet */
92 #define ADB_ACTION_IDLE 0x2 /* the bus is currently idle */
93 #define ADB_ACTION_OUT 0x3 /* sending out a command */
94 #define ADB_ACTION_IN 0x4 /* receiving data */
95 #define ADB_ACTION_POLLING 0x5 /* polling - II only */
96
97 /*
98 * These describe the state of the ADB bus itself, although they
99 * don't necessarily correspond directly to ADB states.
100 * Note: these are not really used in the IIsi code.
101 */
102 #define ADB_BUS_UNKNOWN 0x1 /* we don't know yet - all models */
103 #define ADB_BUS_IDLE 0x2 /* bus is idle - all models */
104 #define ADB_BUS_CMD 0x3 /* starting a command - II models */
105 #define ADB_BUS_ODD 0x4 /* the "odd" state - II models */
106 #define ADB_BUS_EVEN 0x5 /* the "even" state - II models */
107 #define ADB_BUS_ACTIVE 0x6 /* active state - IIsi models */
108 #define ADB_BUS_ACK 0x7 /* currently ACKing - IIsi models */
109
110 /*
111 * Shortcuts for setting or testing the VIA bit states.
112 * Not all shortcuts are used for every type of ADB hardware.
113 */
114 #define ADB_SET_STATE_IDLE_II() via_reg_or(VIA1, vBufB, (vPB4 | vPB5))
115 #define ADB_SET_STATE_IDLE_IISI() via_reg_and(VIA1, vBufB, ~(vPB4 | vPB5))
116 #define ADB_SET_STATE_IDLE_CUDA() via_reg_or(VIA1, vBufB, (vPB4 | vPB5))
117 #define ADB_SET_STATE_CMD() via_reg_and(VIA1, vBufB, ~(vPB4 | vPB5))
118 #define ADB_SET_STATE_EVEN() write_via_reg(VIA1, vBufB, \
119 (read_via_reg(VIA1, vBufB) | vPB4) & ~vPB5)
120 #define ADB_SET_STATE_ODD() write_via_reg(VIA1, vBufB, \
121 (read_via_reg(VIA1, vBufB) | vPB5) & ~vPB4 )
122 #define ADB_SET_STATE_ACTIVE() via_reg_or(VIA1, vBufB, vPB5)
123 #define ADB_SET_STATE_INACTIVE() via_reg_and(VIA1, vBufB, ~vPB5)
124 #define ADB_SET_STATE_TIP() via_reg_and(VIA1, vBufB, ~vPB5)
125 #define ADB_CLR_STATE_TIP() via_reg_or(VIA1, vBufB, vPB5)
126 #define ADB_SET_STATE_ACKON() via_reg_or(VIA1, vBufB, vPB4)
127 #define ADB_SET_STATE_ACKOFF() via_reg_and(VIA1, vBufB, ~vPB4)
128 #define ADB_TOGGLE_STATE_ACK_CUDA() via_reg_xor(VIA1, vBufB, vPB4)
129 #define ADB_SET_STATE_ACKON_CUDA() via_reg_and(VIA1, vBufB, ~vPB4)
130 #define ADB_SET_STATE_ACKOFF_CUDA() via_reg_or(VIA1, vBufB, vPB4)
131 #define ADB_SET_SR_INPUT() via_reg_and(VIA1, vACR, ~vSR_OUT)
132 #define ADB_SET_SR_OUTPUT() via_reg_or(VIA1, vACR, vSR_OUT)
133 #define ADB_SR() read_via_reg(VIA1, vSR)
134 #define ADB_VIA_INTR_ENABLE() write_via_reg(VIA1, vIER, 0x84)
135 #define ADB_VIA_INTR_DISABLE() write_via_reg(VIA1, vIER, 0x04)
136 #define ADB_VIA_CLR_INTR() write_via_reg(VIA1, vIFR, 0x04)
137 #define ADB_INTR_IS_OFF (vPB3 == (read_via_reg(VIA1, vBufB) & vPB3))
138 #define ADB_INTR_IS_ON (0 == (read_via_reg(VIA1, vBufB) & vPB3))
139 #define ADB_SR_INTR_IS_OFF (0 == (read_via_reg(VIA1, vIFR) & vSR_INT))
140 #define ADB_SR_INTR_IS_ON (vSR_INT == (read_via_reg(VIA1, \
141 vIFR) & vSR_INT))
142
143 /*
144 * This is the delay that is required (in uS) between certain
145 * ADB transactions. The actual timing delay for for each uS is
146 * calculated at boot time to account for differences in machine speed.
147 */
148 #define ADB_DELAY 150
149
150 /*
151 * Maximum ADB message length; includes space for data, result, and
152 * device code - plus a little for safety.
153 */
154 #define ADB_MAX_MSG_LENGTH 16
155 #define ADB_MAX_HDR_LENGTH 8
156
157 #define ADB_QUEUE 32
158 #define ADB_TICKLE_TICKS 4
159
160 /*
161 * A structure for storing information about each ADB device.
162 */
163 struct ADBDevEntry {
164 void (*ServiceRtPtr) __P((void));
165 void *DataAreaAddr;
166 char devType;
167 char origAddr;
168 char currentAddr;
169 };
170
171 /*
172 * Used to hold ADB commands that are waiting to be sent out.
173 */
174 struct adbCmdHoldEntry {
175 u_char outBuf[ADB_MAX_MSG_LENGTH]; /* our message */
176 u_char *saveBuf; /* buffer to know where to save result */
177 u_char *compRout; /* completion routine pointer */
178 u_char *data; /* completion routine data pointer */
179 };
180
181 /*
182 * Eventually used for two separate queues, the queue between
183 * the upper and lower halves, and the outgoing packet queue.
184 * TO DO: adbCommand can replace all of adbCmdHoldEntry eventually
185 */
186 struct adbCommand {
187 u_char header[ADB_MAX_HDR_LENGTH]; /* not used yet */
188 u_char data[ADB_MAX_MSG_LENGTH]; /* packet data only */
189 u_char *saveBuf; /* where to save result */
190 u_char *compRout; /* completion routine pointer */
191 u_char *compData; /* completion routine data pointer */
192 u_int cmd; /* the original command for this data */
193 u_int unsol; /* 1 if packet was unsolicited */
194 u_int ack_only; /* 1 for no special processing */
195 };
196
197 /*
198 * A few variables that we need and their initial values.
199 */
200 int adbHardware = ADB_HW_UNKNOWN;
201 int adbActionState = ADB_ACTION_NOTREADY;
202 int adbBusState = ADB_BUS_UNKNOWN;
203 int adbWaiting = 0; /* waiting for return data from the device */
204 int adbWriteDelay = 0; /* working on (or waiting to do) a write */
205 int adbOutQueueHasData = 0; /* something in the queue waiting to go out */
206 int adbNextEnd = 0; /* the next incoming bute is the last (II) */
207 int adbSoftPower = 0; /* machine supports soft power */
208
209 int adbWaitingCmd = 0; /* ADB command we are waiting for */
210 u_char *adbBuffer = (long)0; /* pointer to user data area */
211 void *adbCompRout = (long)0; /* pointer to the completion routine */
212 void *adbCompData = (long)0; /* pointer to the completion routine data */
213 long adbFakeInts = 0; /* keeps track of fake ADB interrupts for
214 * timeouts (II) */
215 int adbStarting = 1; /* doing ADBReInit so do polling differently */
216 int adbSendTalk = 0; /* the intr routine is sending the talk, not
217 * the user (II) */
218 int adbPolling = 0; /* we are polling for service request */
219 int adbPollCmd = 0; /* the last poll command we sent */
220
221 u_char adbInputBuffer[ADB_MAX_MSG_LENGTH]; /* data input buffer */
222 u_char adbOutputBuffer[ADB_MAX_MSG_LENGTH]; /* data output buffer */
223 struct adbCmdHoldEntry adbOutQueue; /* our 1 entry output queue */
224
225 int adbSentChars = 0; /* how many characters we have sent */
226 int adbLastDevice = 0; /* last ADB dev we heard from (II ONLY) */
227 int adbLastDevIndex = 0; /* last ADB dev loc in dev table (II ONLY) */
228 int adbLastCommand = 0; /* the last ADB command we sent (II) */
229
230 struct ADBDevEntry ADBDevTable[16]; /* our ADB device table */
231 int ADBNumDevices; /* num. of ADB devices found with ADBReInit */
232
233 struct adbCommand adbInbound[ADB_QUEUE]; /* incoming queue */
234 int adbInCount = 0; /* how many packets in in queue */
235 int adbInHead = 0; /* head of in queue */
236 int adbInTail = 0; /* tail of in queue */
237 struct adbCommand adbOutbound[ADB_QUEUE]; /* outgoing queue - not used yet */
238 int adbOutCount = 0; /* how many packets in out queue */
239 int adbOutHead = 0; /* head of out queue */
240 int adbOutTail = 0; /* tail of out queue */
241
242 int tickle_count = 0; /* how many tickles seen for this packet? */
243 int tickle_serial = 0; /* the last packet tickled */
244 int adb_cuda_serial = 0; /* the current packet */
245
246 volatile u_char *Via1Base;
247 extern int adb_polling; /* Are we polling? */
248
249 void pm_setup_adb __P((void));
250 void pm_check_adb_devices __P((int));
251 void pm_intr __P((void));
252 int pm_adb_op __P((u_char *, void *, void *, int));
253 void pm_init_adb_device __P((void));
254
255 /*
256 * The following are private routines.
257 */
258 #ifdef ADB_DEBUG
259 void print_single __P((u_char *));
260 #endif
261 void adb_intr __P((void));
262 void adb_intr_II __P((void));
263 void adb_intr_IIsi __P((void));
264 void adb_intr_cuda __P((void));
265 void adb_soft_intr __P((void));
266 int send_adb_II __P((u_char *, u_char *, void *, void *, int));
267 int send_adb_IIsi __P((u_char *, u_char *, void *, void *, int));
268 int send_adb_cuda __P((u_char *, u_char *, void *, void *, int));
269 void adb_intr_cuda_test __P((void));
270 void adb_cuda_tickle __P((void));
271 void adb_pass_up __P((struct adbCommand *));
272 void adb_op_comprout __P((caddr_t, caddr_t, int));
273 void adb_reinit __P((void));
274 int count_adbs __P((void));
275 int get_ind_adb_info __P((ADBDataBlock *, int));
276 int get_adb_info __P((ADBDataBlock *, int));
277 int set_adb_info __P((ADBSetInfoBlock *, int));
278 void adb_setup_hw_type __P((void));
279 int adb_op __P((Ptr, Ptr, Ptr, short));
280 int adb_op_sync __P((Ptr, Ptr, Ptr, short));
281 void adb_read_II __P((u_char *));
282 void adb_hw_setup __P((void));
283 void adb_hw_setup_IIsi __P((u_char *));
284 void adb_comp_exec __P((void));
285 int adb_cmd_result __P((u_char *));
286 int adb_cmd_extra __P((u_char *));
287 int adb_guess_next_device __P((void));
288 int adb_prog_switch_enable __P((void));
289 int adb_prog_switch_disable __P((void));
290 /* we should create this and it will be the public version */
291 int send_adb __P((u_char *, void *, void *));
292
293 #ifdef ADB_DEBUG
294 /*
295 * print_single
296 * Diagnostic display routine. Displays the hex values of the
297 * specified elements of the u_char. The length of the "string"
298 * is in [0].
299 */
300 void
301 print_single(thestring)
302 u_char *thestring;
303 {
304 int x;
305
306 if ((int)(thestring[0]) == 0) {
307 printf_intr("nothing returned\n");
308 return;
309 }
310 if (thestring == 0) {
311 printf_intr("no data - null pointer\n");
312 return;
313 }
314 if (thestring[0] > 20) {
315 printf_intr("ADB: ACK > 20 no way!\n");
316 thestring[0] = 20;
317 }
318 printf_intr("(length=0x%x):", thestring[0]);
319 for (x = 0; x < thestring[0]; x++)
320 printf_intr(" 0x%02x", thestring[x + 1]);
321 printf_intr("\n");
322 }
323 #endif
324
325 void
326 adb_cuda_tickle(void)
327 {
328 volatile int s;
329
330 if (adbActionState == ADB_ACTION_IN) {
331 if (tickle_serial == adb_cuda_serial) {
332 if (++tickle_count > 0) {
333 s = splhigh();
334 adbActionState = ADB_ACTION_IDLE;
335 adbInputBuffer[0] = 0;
336 ADB_SET_STATE_IDLE_CUDA();
337 splx(s);
338 }
339 } else {
340 tickle_serial = adb_cuda_serial;
341 tickle_count = 0;
342 }
343 } else {
344 tickle_serial = adb_cuda_serial;
345 tickle_count = 0;
346 }
347
348 timeout((void *)adb_cuda_tickle, 0, ADB_TICKLE_TICKS);
349 }
350
351 /*
352 * called when when an adb interrupt happens
353 *
354 * Cuda version of adb_intr
355 * TO DO: do we want to add some calls to intr_dispatch() here to
356 * grab serial interrupts?
357 */
358 void
359 adb_intr_cuda(void)
360 {
361 volatile int i, ending;
362 volatile unsigned int s;
363 struct adbCommand packet;
364
365 s = splhigh(); /* can't be too careful - might be called */
366 /* from a routine, NOT an interrupt */
367
368 ADB_VIA_CLR_INTR(); /* clear interrupt */
369 ADB_VIA_INTR_DISABLE(); /* disable ADB interrupt on IIs. */
370
371 switch_start:
372 switch (adbActionState) {
373 case ADB_ACTION_IDLE:
374 /*
375 * This is an unexpected packet, so grab the first (dummy)
376 * byte, set up the proper vars, and tell the chip we are
377 * starting to receive the packet by setting the TIP bit.
378 */
379 adbInputBuffer[1] = ADB_SR();
380 adb_cuda_serial++;
381 if (ADB_INTR_IS_OFF) /* must have been a fake start */
382 break;
383
384 ADB_SET_SR_INPUT();
385 ADB_SET_STATE_TIP();
386
387 adbInputBuffer[0] = 1;
388 adbActionState = ADB_ACTION_IN;
389 #ifdef ADB_DEBUG
390 if (adb_debug)
391 printf_intr("idle 0x%02x ", adbInputBuffer[1]);
392 #endif
393 break;
394
395 case ADB_ACTION_IN:
396 adbInputBuffer[++adbInputBuffer[0]] = ADB_SR();
397 /* intr off means this is the last byte (end of frame) */
398 if (ADB_INTR_IS_OFF)
399 ending = 1;
400 else
401 ending = 0;
402
403 if (1 == ending) { /* end of message? */
404 #ifdef ADB_DEBUG
405 if (adb_debug) {
406 printf_intr("in end 0x%02x ",
407 adbInputBuffer[adbInputBuffer[0]]);
408 print_single(adbInputBuffer);
409 }
410 #endif
411
412 /*
413 * Are we waiting AND does this packet match what we
414 * are waiting for AND is it coming from either the
415 * ADB or RTC/PRAM sub-device? This section _should_
416 * recognize all ADB and RTC/PRAM type commands, but
417 * there may be more... NOTE: commands are always at
418 * [4], even for RTC/PRAM commands.
419 */
420 /* set up data for adb_pass_up */
421 for (i = 0; i <= adbInputBuffer[0]; i++)
422 packet.data[i] = adbInputBuffer[i];
423
424 if ((adbWaiting == 1) &&
425 (adbInputBuffer[4] == adbWaitingCmd) &&
426 ((adbInputBuffer[2] == 0x00) ||
427 (adbInputBuffer[2] == 0x01))) {
428 packet.saveBuf = adbBuffer;
429 packet.compRout = adbCompRout;
430 packet.compData = adbCompData;
431 packet.unsol = 0;
432 packet.ack_only = 0;
433 adb_pass_up(&packet);
434
435 adbWaitingCmd = 0; /* reset "waiting" vars */
436 adbWaiting = 0;
437 adbBuffer = (long)0;
438 adbCompRout = (long)0;
439 adbCompData = (long)0;
440 } else {
441 packet.unsol = 1;
442 packet.ack_only = 0;
443 adb_pass_up(&packet);
444 }
445
446
447 /* reset vars and signal the end of this frame */
448 adbActionState = ADB_ACTION_IDLE;
449 adbInputBuffer[0] = 0;
450 ADB_SET_STATE_IDLE_CUDA();
451 /*ADB_SET_SR_INPUT();*/
452
453 /*
454 * If there is something waiting to be sent out,
455 * the set everything up and send the first byte.
456 */
457 if (adbWriteDelay == 1) {
458 delay(ADB_DELAY); /* required */
459 adbSentChars = 0;
460 adbActionState = ADB_ACTION_OUT;
461 /*
462 * If the interrupt is on, we were too slow
463 * and the chip has already started to send
464 * something to us, so back out of the write
465 * and start a read cycle.
466 */
467 if (ADB_INTR_IS_ON) {
468 ADB_SET_SR_INPUT();
469 ADB_SET_STATE_IDLE_CUDA();
470 adbSentChars = 0;
471 adbActionState = ADB_ACTION_IDLE;
472 adbInputBuffer[0] = 0;
473 break;
474 }
475 /*
476 * If we got here, it's ok to start sending
477 * so load the first byte and tell the chip
478 * we want to send.
479 */
480 ADB_SET_STATE_TIP();
481 ADB_SET_SR_OUTPUT();
482 write_via_reg(VIA1, vSR, adbOutputBuffer[adbSentChars + 1]);
483 }
484 } else {
485 ADB_TOGGLE_STATE_ACK_CUDA();
486 #ifdef ADB_DEBUG
487 if (adb_debug)
488 printf_intr("in 0x%02x ",
489 adbInputBuffer[adbInputBuffer[0]]);
490 #endif
491 }
492 break;
493
494 case ADB_ACTION_OUT:
495 i = ADB_SR(); /* reset SR-intr in IFR */
496 #ifdef ADB_DEBUG
497 if (adb_debug)
498 printf_intr("intr out 0x%02x ", i);
499 #endif
500
501 adbSentChars++;
502 if (ADB_INTR_IS_ON) { /* ADB intr low during write */
503 #ifdef ADB_DEBUG
504 if (adb_debug)
505 printf_intr("intr was on ");
506 #endif
507 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
508 ADB_SET_STATE_IDLE_CUDA();
509 adbSentChars = 0; /* must start all over */
510 adbActionState = ADB_ACTION_IDLE; /* new state */
511 adbInputBuffer[0] = 0;
512 adbWriteDelay = 1; /* must retry when done with
513 * read */
514 delay(ADB_DELAY);
515 goto switch_start; /* process next state right
516 * now */
517 break;
518 }
519 if (adbOutputBuffer[0] == adbSentChars) { /* check for done */
520 if (0 == adb_cmd_result(adbOutputBuffer)) { /* do we expect data
521 * back? */
522 adbWaiting = 1; /* signal waiting for return */
523 adbWaitingCmd = adbOutputBuffer[2]; /* save waiting command */
524 } else { /* no talk, so done */
525 /* set up stuff for adb_pass_up */
526 for (i = 0; i <= adbInputBuffer[0]; i++)
527 packet.data[i] = adbInputBuffer[i];
528 packet.saveBuf = adbBuffer;
529 packet.compRout = adbCompRout;
530 packet.compData = adbCompData;
531 packet.cmd = adbWaitingCmd;
532 packet.unsol = 0;
533 packet.ack_only = 1;
534 adb_pass_up(&packet);
535
536 /* reset "waiting" vars, just in case */
537 adbWaitingCmd = 0;
538 adbBuffer = (long)0;
539 adbCompRout = (long)0;
540 adbCompData = (long)0;
541 }
542
543 adbWriteDelay = 0; /* done writing */
544 adbActionState = ADB_ACTION_IDLE; /* signal bus is idle */
545 ADB_SET_SR_INPUT();
546 ADB_SET_STATE_IDLE_CUDA();
547 #ifdef ADB_DEBUG
548 if (adb_debug)
549 printf_intr("write done ");
550 #endif
551 } else {
552 write_via_reg(VIA1, vSR, adbOutputBuffer[adbSentChars + 1]); /* send next byte */
553 ADB_TOGGLE_STATE_ACK_CUDA(); /* signal byte ready to
554 * shift */
555 #ifdef ADB_DEBUG
556 if (adb_debug)
557 printf_intr("toggle ");
558 #endif
559 }
560 break;
561
562 case ADB_ACTION_NOTREADY:
563 #ifdef ADB_DEBUG
564 if (adb_debug)
565 printf_intr("adb: not yet initialized\n");
566 #endif
567 break;
568
569 default:
570 #ifdef ADB_DEBUG
571 if (adb_debug)
572 printf_intr("intr: unknown ADB state\n");
573 #endif
574 }
575
576 ADB_VIA_INTR_ENABLE(); /* enable ADB interrupt on IIs. */
577
578 splx(s); /* restore */
579
580 return;
581 } /* end adb_intr_cuda */
582
583
584 int
585 send_adb_cuda(u_char * in, u_char * buffer, void *compRout, void *data, int
586 command)
587 {
588 int i, s, len;
589
590 #ifdef ADB_DEBUG
591 if (adb_debug)
592 printf_intr("SEND\n");
593 #endif
594
595 if (adbActionState == ADB_ACTION_NOTREADY)
596 return 1;
597
598 /* Don't interrupt while we are messing with the ADB */
599 s = splhigh();
600
601 if ((adbActionState == ADB_ACTION_IDLE) && /* ADB available? */
602 (ADB_INTR_IS_OFF)) { /* and no incoming interrupt? */
603 } else
604 if (adbWriteDelay == 0) /* it's busy, but is anything waiting? */
605 adbWriteDelay = 1; /* if no, then we'll "queue"
606 * it up */
607 else {
608 splx(s);
609 return 1; /* really busy! */
610 }
611
612 #ifdef ADB_DEBUG
613 if (adb_debug)
614 printf_intr("QUEUE\n");
615 #endif
616 if ((long)in == (long)0) { /* need to convert? */
617 /*
618 * Don't need to use adb_cmd_extra here because this section
619 * will be called ONLY when it is an ADB command (no RTC or
620 * PRAM)
621 */
622 if ((command & 0x0c) == 0x08) /* copy addl data ONLY if
623 * doing a listen! */
624 len = buffer[0]; /* length of additional data */
625 else
626 len = 0;/* no additional data */
627
628 adbOutputBuffer[0] = 2 + len; /* dev. type + command + addl.
629 * data */
630 adbOutputBuffer[1] = 0x00; /* mark as an ADB command */
631 adbOutputBuffer[2] = (u_char)command; /* load command */
632
633 for (i = 1; i <= len; i++) /* copy additional output
634 * data, if any */
635 adbOutputBuffer[2 + i] = buffer[i];
636 } else
637 for (i = 0; i <= (in[0] + 1); i++)
638 adbOutputBuffer[i] = in[i];
639
640 adbSentChars = 0; /* nothing sent yet */
641 adbBuffer = buffer; /* save buffer to know where to save result */
642 adbCompRout = compRout; /* save completion routine pointer */
643 adbCompData = data; /* save completion routine data pointer */
644 adbWaitingCmd = adbOutputBuffer[2]; /* save wait command */
645
646 if (adbWriteDelay != 1) { /* start command now? */
647 #ifdef ADB_DEBUG
648 if (adb_debug)
649 printf_intr("out start NOW");
650 #endif
651 delay(ADB_DELAY);
652 adbActionState = ADB_ACTION_OUT; /* set next state */
653 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
654 write_via_reg(VIA1, vSR, adbOutputBuffer[adbSentChars + 1]); /* load byte for output */
655 ADB_SET_STATE_ACKOFF_CUDA();
656 ADB_SET_STATE_TIP(); /* tell ADB that we want to send */
657 }
658 adbWriteDelay = 1; /* something in the write "queue" */
659
660 splx(s);
661
662 if ((s & (1 << 18)) || adb_polling) /* XXX were VIA1 interrupts blocked ? */
663 /* poll until byte done */
664 while ((adbActionState != ADB_ACTION_IDLE) || (ADB_INTR_IS_ON)
665 || (adbWaiting == 1))
666 if (ADB_SR_INTR_IS_ON) { /* wait for "interrupt" */
667 adb_intr_cuda(); /* process it */
668 adb_soft_intr();
669 }
670
671 return 0;
672 } /* send_adb_cuda */
673
674
675 void
676 adb_intr_II(void)
677 {
678 panic("adb_intr_II");
679 }
680
681
682 /*
683 * send_adb version for II series machines
684 */
685 int
686 send_adb_II(u_char * in, u_char * buffer, void *compRout, void *data, int command)
687 {
688 panic("send_adb_II");
689 }
690
691
692 /*
693 * This routine is called from the II series interrupt routine
694 * to determine what the "next" device is that should be polled.
695 */
696 int
697 adb_guess_next_device(void)
698 {
699 int last, i, dummy;
700
701 if (adbStarting) {
702 /*
703 * Start polling EVERY device, since we can't be sure there is
704 * anything in the device table yet
705 */
706 if (adbLastDevice < 1 || adbLastDevice > 15)
707 adbLastDevice = 1;
708 if (++adbLastDevice > 15) /* point to next one */
709 adbLastDevice = 1;
710 } else {
711 /* find the next device using the device table */
712 if (adbLastDevice < 1 || adbLastDevice > 15) /* let's be parinoid */
713 adbLastDevice = 2;
714 last = 1; /* default index location */
715
716 for (i = 1; i < 16; i++) /* find index entry */
717 if (ADBDevTable[i].currentAddr == adbLastDevice) { /* look for device */
718 last = i; /* found it */
719 break;
720 }
721 dummy = last; /* index to start at */
722 for (;;) { /* find next device in index */
723 if (++dummy > 15) /* wrap around if needed */
724 dummy = 1;
725 if (dummy == last) { /* didn't find any other
726 * device! This can happen if
727 * there are no devices on the
728 * bus */
729 dummy = 2;
730 break;
731 }
732 /* found the next device */
733 if (ADBDevTable[dummy].devType != 0)
734 break;
735 }
736 adbLastDevice = ADBDevTable[dummy].currentAddr;
737 }
738 return adbLastDevice;
739 }
740
741
742 /*
743 * Called when when an adb interrupt happens.
744 * This routine simply transfers control over to the appropriate
745 * code for the machine we are running on.
746 */
747 void
748 adb_intr(void)
749 {
750 switch (adbHardware) {
751 case ADB_HW_II:
752 adb_intr_II();
753 break;
754
755 case ADB_HW_IISI:
756 adb_intr_IIsi();
757 break;
758
759 case ADB_HW_PB:
760 pm_intr();
761 break;
762
763 case ADB_HW_CUDA:
764 adb_intr_cuda();
765 break;
766
767 case ADB_HW_UNKNOWN:
768 break;
769 }
770 }
771
772
773 /*
774 * called when when an adb interrupt happens
775 *
776 * IIsi version of adb_intr
777 *
778 */
779 void
780 adb_intr_IIsi(void)
781 {
782 panic("adb_intr_IIsi");
783 }
784
785
786 /*****************************************************************************
787 * if the device is currently busy, and there is no data waiting to go out, then
788 * the data is "queued" in the outgoing buffer. If we are already waiting, then
789 * we return.
790 * in: if (in == 0) then the command string is built from command and buffer
791 * if (in != 0) then in is used as the command string
792 * buffer: additional data to be sent (used only if in == 0)
793 * this is also where return data is stored
794 * compRout: the completion routine that is called when then return value
795 * is received (if a return value is expected)
796 * data: a data pointer that can be used by the completion routine
797 * command: an ADB command to be sent (used only if in == 0)
798 *
799 */
800 int
801 send_adb_IIsi(u_char * in, u_char * buffer, void *compRout, void *data, int
802 command)
803 {
804 panic("send_adb_IIsi");
805 }
806
807
808 /*
809 * adb_pass_up is called by the interrupt-time routines.
810 * It takes the raw packet data that was received from the
811 * device and puts it into the queue that the upper half
812 * processes. It then signals for a soft ADB interrupt which
813 * will eventually call the upper half routine (adb_soft_intr).
814 *
815 * If in->unsol is 0, then this is either the notification
816 * that the packet was sent (on a LISTEN, for example), or the
817 * response from the device (on a TALK). The completion routine
818 * is called only if the user specified one.
819 *
820 * If in->unsol is 1, then this packet was unsolicited and
821 * so we look up the device in the ADB device table to determine
822 * what it's default service routine is.
823 *
824 * If in->ack_only is 1, then we really only need to call
825 * the completion routine, so don't do any other stuff.
826 *
827 * Note that in->data contains the packet header AND data,
828 * while adbInbound[]->data contains ONLY data.
829 *
830 * Note: Called only at interrupt time. Assumes this.
831 */
832 void
833 adb_pass_up(struct adbCommand *in)
834 {
835 int i, start = 0, len = 0, cmd = 0;
836 ADBDataBlock block;
837
838 /* temp for testing */
839 /*u_char *buffer = 0;*/
840 /*u_char *compdata = 0;*/
841 /*u_char *comprout = 0;*/
842
843 if (adbInCount >= ADB_QUEUE) {
844 #ifdef ADB_DEBUG
845 if (adb_debug)
846 printf_intr("adb: ring buffer overflow\n");
847 #endif
848 return;
849 }
850
851 if (in->ack_only) {
852 len = in->data[0];
853 cmd = in->cmd;
854 start = 0;
855 } else {
856 switch (adbHardware) {
857 case ADB_HW_II:
858 cmd = in->data[1];
859 if (in->data[0] < 2)
860 len = 0;
861 else
862 len = in->data[0]-1;
863 start = 1;
864 break;
865
866 case ADB_HW_IISI:
867 case ADB_HW_CUDA:
868 /* If it's unsolicited, accept only ADB data for now */
869 if (in->unsol)
870 if (0 != in->data[2])
871 return;
872 cmd = in->data[4];
873 if (in->data[0] < 5)
874 len = 0;
875 else
876 len = in->data[0]-4;
877 start = 4;
878 break;
879
880 case ADB_HW_PB:
881 cmd = in->data[1];
882 if (in->data[0] < 2)
883 len = 0;
884 else
885 len = in->data[0]-1;
886 start = 1;
887 break;
888
889 case ADB_HW_UNKNOWN:
890 return;
891 }
892
893 /* Make sure there is a valid device entry for this device */
894 if (in->unsol) {
895 /* ignore unsolicited data during adbreinit */
896 if (adbStarting)
897 return;
898 /* get device's comp. routine and data area */
899 if (-1 == get_adb_info(&block, ((cmd & 0xf0) >> 4)))
900 return;
901 }
902 }
903
904 /*
905 * If this is an unsolicited packet, we need to fill in
906 * some info so adb_soft_intr can process this packet
907 * properly. If it's not unsolicited, then use what
908 * the caller sent us.
909 */
910 if (in->unsol) {
911 adbInbound[adbInTail].compRout = (void *)block.dbServiceRtPtr;
912 adbInbound[adbInTail].compData = (void *)block.dbDataAreaAddr;
913 adbInbound[adbInTail].saveBuf = (void *)adbInbound[adbInTail].data;
914 } else {
915 adbInbound[adbInTail].compRout = (void *)in->compRout;
916 adbInbound[adbInTail].compData = (void *)in->compData;
917 adbInbound[adbInTail].saveBuf = (void *)in->saveBuf;
918 }
919
920 #ifdef ADB_DEBUG
921 if (adb_debug && in->data[1] == 2)
922 printf_intr("adb: caught error\n");
923 #endif
924
925 /* copy the packet data over */
926 /*
927 * TO DO: If the *_intr routines fed their incoming data
928 * directly into an adbCommand struct, which is passed to
929 * this routine, then we could eliminate this copy.
930 */
931 for (i = 1; i <= len; i++)
932 adbInbound[adbInTail].data[i] = in->data[start+i];
933
934 adbInbound[adbInTail].data[0] = len;
935 adbInbound[adbInTail].cmd = cmd;
936
937 adbInCount++;
938 if (++adbInTail >= ADB_QUEUE)
939 adbInTail = 0;
940
941 /*
942 * If the debugger is running, call upper half manually.
943 * Otherwise, trigger a soft interrupt to handle the rest later.
944 */
945 if (adb_polling)
946 adb_soft_intr();
947 else
948 setsoftadb();
949
950 return;
951 }
952
953
954 /*
955 * Called to process the packets after they have been
956 * placed in the incoming queue.
957 *
958 */
959 void
960 adb_soft_intr(void)
961 {
962 int s, i;
963 int cmd = 0;
964 u_char *buffer = 0;
965 u_char *comprout = 0;
966 u_char *compdata = 0;
967
968 #if 0
969 s = splhigh();
970 printf_intr("sr: %x\n", (s & 0x0700));
971 splx(s);
972 #endif
973
974 /*delay(2*ADB_DELAY);*/
975
976 while (adbInCount) {
977 #ifdef ADB_DEBUG
978 if (adb_debug & 0x80)
979 printf_intr("%x %x %x ",
980 adbInCount, adbInHead, adbInTail);
981 #endif
982 /* get the data we need from the queue */
983 buffer = adbInbound[adbInHead].saveBuf;
984 comprout = adbInbound[adbInHead].compRout;
985 compdata = adbInbound[adbInHead].compData;
986 cmd = adbInbound[adbInHead].cmd;
987
988 /* copy over data to data area if it's valid */
989 /*
990 * Note that for unsol packets we don't want to copy the
991 * data anywhere, so buffer was already set to 0.
992 * For ack_only buffer was set to 0, so don't copy.
993 */
994 if (buffer)
995 for (i = 0; i <= adbInbound[adbInHead].data[0]; i++)
996 *(buffer+i) = adbInbound[adbInHead].data[i];
997
998 #ifdef ADB_DEBUG
999 if (adb_debug & 0x80) {
1000 printf_intr("%p %p %p %x ",
1001 buffer, comprout, compdata, (short)cmd);
1002 printf_intr("buf: ");
1003 print_single(adbInbound[adbInHead].data);
1004 }
1005 #endif
1006
1007 /* call default completion routine if it's valid */
1008 if (comprout) {
1009 int (*f)() = (void *)comprout;
1010
1011 (*f)(buffer, compdata, cmd);
1012 #if 0
1013 #ifdef __NetBSD__
1014 asm(" movml #0xffff,sp@- | save all registers
1015 movl %0,a2 | compdata
1016 movl %1,a1 | comprout
1017 movl %2,a0 | buffer
1018 movl %3,d0 | cmd
1019 jbsr a1@ | go call the routine
1020 movml sp@+,#0xffff | restore all registers"
1021 :
1022 : "g"(compdata), "g"(comprout),
1023 "g"(buffer), "g"(cmd)
1024 : "d0", "a0", "a1", "a2");
1025 #else /* for macos based testing */
1026 asm
1027 {
1028 movem.l a0/a1/a2/d0, -(a7)
1029 move.l compdata, a2
1030 move.l comprout, a1
1031 move.l buffer, a0
1032 move.w cmd, d0
1033 jsr(a1)
1034 movem.l(a7)+, d0/a2/a1/a0
1035 }
1036 #endif
1037 #endif
1038 }
1039
1040 s = splhigh();
1041 adbInCount--;
1042 if (++adbInHead >= ADB_QUEUE)
1043 adbInHead = 0;
1044 splx(s);
1045
1046 }
1047 return;
1048 }
1049
1050
1051 /*
1052 * This is my version of the ADBOp routine. It mainly just calls the
1053 * hardware-specific routine.
1054 *
1055 * data : pointer to data area to be used by compRout
1056 * compRout : completion routine
1057 * buffer : for LISTEN: points to data to send - MAX 8 data bytes,
1058 * byte 0 = # of bytes
1059 * : for TALK: points to place to save return data
1060 * command : the adb command to send
1061 * result : 0 = success
1062 * : -1 = could not complete
1063 */
1064 int
1065 adb_op(Ptr buffer, Ptr compRout, Ptr data, short command)
1066 {
1067 int result;
1068
1069 switch (adbHardware) {
1070 case ADB_HW_II:
1071 result = send_adb_II((u_char *)0, (u_char *)buffer,
1072 (void *)compRout, (void *)data, (int)command);
1073 if (result == 0)
1074 return 0;
1075 else
1076 return -1;
1077 break;
1078
1079 case ADB_HW_IISI:
1080 result = send_adb_IIsi((u_char *)0, (u_char *)buffer,
1081 (void *)compRout, (void *)data, (int)command);
1082 /*
1083 * I wish I knew why this delay is needed. It usually needs to
1084 * be here when several commands are sent in close succession,
1085 * especially early in device probes when doing collision
1086 * detection. It must be some race condition. Sigh. - jpw
1087 */
1088 delay(100);
1089 if (result == 0)
1090 return 0;
1091 else
1092 return -1;
1093 break;
1094
1095 case ADB_HW_PB:
1096 result = pm_adb_op((u_char *)buffer, (void *)compRout,
1097 (void *)data, (int)command);
1098
1099 if (result == 0)
1100 return 0;
1101 else
1102 return -1;
1103 break;
1104
1105 case ADB_HW_CUDA:
1106 result = send_adb_cuda((u_char *)0, (u_char *)buffer,
1107 (void *)compRout, (void *)data, (int)command);
1108 if (result == 0)
1109 return 0;
1110 else
1111 return -1;
1112 break;
1113
1114 case ADB_HW_UNKNOWN:
1115 default:
1116 return -1;
1117 }
1118 }
1119
1120
1121 /*
1122 * adb_hw_setup
1123 * This routine sets up the possible machine specific hardware
1124 * config (mainly VIA settings) for the various models.
1125 */
1126 void
1127 adb_hw_setup(void)
1128 {
1129 volatile int i;
1130 u_char send_string[ADB_MAX_MSG_LENGTH];
1131
1132 switch (adbHardware) {
1133 case ADB_HW_II:
1134 via_reg_or(VIA1, vDirB, 0x30); /* register B bits 4 and 5:
1135 * outputs */
1136 via_reg_and(VIA1, vDirB, 0xf7); /* register B bit 3: input */
1137 via_reg_and(VIA1, vACR, ~vSR_OUT); /* make sure SR is set
1138 * to IN (II, IIsi) */
1139 adbActionState = ADB_ACTION_IDLE; /* used by all types of
1140 * hardware (II, IIsi) */
1141 adbBusState = ADB_BUS_IDLE; /* this var. used in II-series
1142 * code only */
1143 write_via_reg(VIA1, vIER, 0x84);/* make sure VIA interrupts
1144 * are on (II, IIsi) */
1145 ADB_SET_STATE_IDLE_II(); /* set ADB bus state to idle */
1146
1147 ADB_VIA_CLR_INTR(); /* clear interrupt */
1148 break;
1149
1150 case ADB_HW_IISI:
1151 via_reg_or(VIA1, vDirB, 0x30); /* register B bits 4 and 5:
1152 * outputs */
1153 via_reg_and(VIA1, vDirB, 0xf7); /* register B bit 3: input */
1154 via_reg_and(VIA1, vACR, ~vSR_OUT); /* make sure SR is set
1155 * to IN (II, IIsi) */
1156 adbActionState = ADB_ACTION_IDLE; /* used by all types of
1157 * hardware (II, IIsi) */
1158 adbBusState = ADB_BUS_IDLE; /* this var. used in II-series
1159 * code only */
1160 write_via_reg(VIA1, vIER, 0x84);/* make sure VIA interrupts
1161 * are on (II, IIsi) */
1162 ADB_SET_STATE_IDLE_IISI(); /* set ADB bus state to idle */
1163
1164 /* get those pesky clock ticks we missed while booting */
1165 for (i = 0; i < 30; i++) {
1166 delay(ADB_DELAY);
1167 adb_hw_setup_IIsi(send_string);
1168 #ifdef ADB_DEBUG
1169 if (adb_debug) {
1170 printf_intr("adb: cleanup: ");
1171 print_single(send_string);
1172 }
1173 #endif
1174 delay(ADB_DELAY);
1175 if (ADB_INTR_IS_OFF)
1176 break;
1177 }
1178 break;
1179
1180 case ADB_HW_PB:
1181 /*
1182 * XXX - really PM_VIA_CLR_INTR - should we put it in
1183 * pm_direct.h?
1184 */
1185 write_via_reg(VIA1, vIFR, 0x90); /* clear interrupt */
1186 break;
1187
1188 case ADB_HW_CUDA:
1189 via_reg_or(VIA1, vDirB, 0x30); /* register B bits 4 and 5:
1190 * outputs */
1191 via_reg_and(VIA1, vDirB, 0xf7); /* register B bit 3: input */
1192 via_reg_and(VIA1, vACR, ~vSR_OUT); /* make sure SR is set
1193 * to IN */
1194 write_via_reg(VIA1, vACR, (read_via_reg(VIA1, vACR) | 0x0c) & ~0x10);
1195 adbActionState = ADB_ACTION_IDLE; /* used by all types of
1196 * hardware */
1197 adbBusState = ADB_BUS_IDLE; /* this var. used in II-series
1198 * code only */
1199 write_via_reg(VIA1, vIER, 0x84);/* make sure VIA interrupts
1200 * are on */
1201 ADB_SET_STATE_IDLE_CUDA(); /* set ADB bus state to idle */
1202
1203 /* sort of a device reset */
1204 i = ADB_SR(); /* clear interrupt */
1205 ADB_VIA_INTR_DISABLE(); /* no interrupts while clearing */
1206 ADB_SET_STATE_IDLE_CUDA(); /* reset state to idle */
1207 delay(ADB_DELAY);
1208 ADB_SET_STATE_TIP(); /* signal start of frame */
1209 delay(ADB_DELAY);
1210 ADB_TOGGLE_STATE_ACK_CUDA();
1211 delay(ADB_DELAY);
1212 ADB_CLR_STATE_TIP();
1213 delay(ADB_DELAY);
1214 ADB_SET_STATE_IDLE_CUDA(); /* back to idle state */
1215 i = ADB_SR(); /* clear interrupt */
1216 ADB_VIA_INTR_ENABLE(); /* ints ok now */
1217 break;
1218
1219 case ADB_HW_UNKNOWN:
1220 default:
1221 write_via_reg(VIA1, vIER, 0x04);/* turn interrupts off - TO
1222 * DO: turn PB ints off? */
1223 return;
1224 break;
1225 }
1226 }
1227
1228
1229 /*
1230 * adb_hw_setup_IIsi
1231 * This is sort of a "read" routine that forces the adb hardware through a read cycle
1232 * if there is something waiting. This helps "clean up" any commands that may have gotten
1233 * stuck or stopped during the boot process.
1234 *
1235 */
1236 void
1237 adb_hw_setup_IIsi(u_char * buffer)
1238 {
1239 panic("adb_hw_setup_IIsi");
1240 }
1241
1242
1243
1244 /*
1245 * adb_reinit sets up the adb stuff
1246 *
1247 */
1248 void
1249 adb_reinit(void)
1250 {
1251 u_char send_string[ADB_MAX_MSG_LENGTH];
1252 int s = 0;
1253 volatile int i, x;
1254 int command;
1255 int result;
1256 int saveptr; /* point to next free relocation address */
1257 int device;
1258 int nonewtimes; /* times thru loop w/o any new devices */
1259 ADBDataBlock data; /* temp. holder for getting device info */
1260
1261 (void)(&s); /* work around lame GCC bug */
1262
1263 /* Make sure we are not interrupted while building the table. */
1264 if (adbHardware != ADB_HW_PB) /* ints must be on for PB? */
1265 s = splhigh();
1266
1267 ADBNumDevices = 0; /* no devices yet */
1268
1269 /* Let intr routines know we are running reinit */
1270 adbStarting = 1;
1271
1272 /*
1273 * Initialize the ADB table. For now, we'll always use the same table
1274 * that is defined at the beginning of this file - no mallocs.
1275 */
1276 for (i = 0; i < 16; i++)
1277 ADBDevTable[i].devType = 0;
1278
1279 adb_setup_hw_type(); /* setup hardware type */
1280
1281 adb_hw_setup(); /* init the VIA bits and hard reset ADB */
1282
1283 delay(1000);
1284
1285 /* send an ADB reset first */
1286 adb_op_sync((Ptr)0, (Ptr)0, (Ptr)0, (short)0x00);
1287
1288 /*
1289 * Probe for ADB devices. Probe devices 1-15 quickly to determine
1290 * which device addresses are in use and which are free. For each
1291 * address that is in use, move the device at that address to a higher
1292 * free address. Continue doing this at that address until no device
1293 * responds at that address. Then move the last device that was moved
1294 * back to the original address. Do this for the remaining addresses
1295 * that we determined were in use.
1296 *
1297 * When finished, do this entire process over again with the updated
1298 * list of in use addresses. Do this until no new devices have been
1299 * found in 20 passes though the in use address list. (This probably
1300 * seems long and complicated, but it's the best way to detect multiple
1301 * devices at the same address - sometimes it takes a couple of tries
1302 * before the collision is detected.)
1303 */
1304
1305 /* initial scan through the devices */
1306 for (i = 1; i < 16; i++) {
1307 command = (int)(0x0f | ((int)(i & 0x000f) << 4)); /* talk R3 */
1308 result = adb_op_sync((Ptr)send_string, (Ptr)0,
1309 (Ptr)0, (short)command);
1310 if (0x00 != send_string[0]) { /* anything come back ?? */
1311 ADBDevTable[++ADBNumDevices].devType =
1312 (u_char)send_string[2];
1313 ADBDevTable[ADBNumDevices].origAddr = i;
1314 ADBDevTable[ADBNumDevices].currentAddr = i;
1315 ADBDevTable[ADBNumDevices].DataAreaAddr =
1316 (long)0;
1317 ADBDevTable[ADBNumDevices].ServiceRtPtr = (void *)0;
1318 pm_check_adb_devices(i); /* tell pm driver device
1319 * is here */
1320 }
1321 }
1322
1323 /* find highest unused address */
1324 for (saveptr = 15; saveptr > 0; saveptr--)
1325 if (-1 == get_adb_info(&data, saveptr))
1326 break;
1327
1328 if (saveptr == 0) /* no free addresses??? */
1329 saveptr = 15;
1330
1331 #ifdef ADB_DEBUG
1332 if (adb_debug & 0x80) {
1333 printf_intr("first free is: 0x%02x\n", saveptr);
1334 printf_intr("devices: %i\n", ADBNumDevices);
1335 }
1336 #endif
1337
1338 nonewtimes = 0; /* no loops w/o new devices */
1339 while (nonewtimes++ < 11) {
1340 for (i = 1; i <= ADBNumDevices; i++) {
1341 device = ADBDevTable[i].currentAddr;
1342 #ifdef ADB_DEBUG
1343 if (adb_debug & 0x80)
1344 printf_intr("moving device 0x%02x to 0x%02x "
1345 "(index 0x%02x) ", device, saveptr, i);
1346 #endif
1347
1348 /* send TALK R3 to address */
1349 command = (int)(0x0f | ((int)(device & 0x000f) << 4));
1350 adb_op_sync((Ptr)send_string, (Ptr)0,
1351 (Ptr)0, (short)command);
1352
1353 /* move device to higher address */
1354 command = (int)(0x0b | ((int)(device & 0x000f) << 4));
1355 send_string[0] = 2;
1356 send_string[1] = (u_char)(saveptr | 0x60);
1357 send_string[2] = 0xfe;
1358 adb_op_sync((Ptr)send_string, (Ptr)0,
1359 (Ptr)0, (short)command);
1360 delay(500);
1361
1362 /* send TALK R3 - anything at old address? */
1363 command = (int)(0x0f | ((int)(device & 0x000f) << 4));
1364 result = adb_op_sync((Ptr)send_string, (Ptr)0,
1365 (Ptr)0, (short)command);
1366 if (send_string[0] != 0) {
1367 /* new device found */
1368 /* update data for previously moved device */
1369 ADBDevTable[i].currentAddr = saveptr;
1370 #ifdef ADB_DEBUG
1371 if (adb_debug & 0x80)
1372 printf_intr("old device at index %i\n",i);
1373 #endif
1374 /* add new device in table */
1375 #ifdef ADB_DEBUG
1376 if (adb_debug & 0x80)
1377 printf_intr("new device found\n");
1378 #endif
1379 ADBDevTable[++ADBNumDevices].devType =
1380 (u_char)send_string[2];
1381 ADBDevTable[ADBNumDevices].origAddr = device;
1382 ADBDevTable[ADBNumDevices].currentAddr = device;
1383 /* These will be set correctly in adbsys.c */
1384 /* Until then, unsol. data will be ignored. */
1385 ADBDevTable[ADBNumDevices].DataAreaAddr =
1386 (long)0;
1387 ADBDevTable[ADBNumDevices].ServiceRtPtr =
1388 (void *)0;
1389 /* find next unused address */
1390 for (x = saveptr; x > 0; x--)
1391 if (-1 == get_adb_info(&data, x)) {
1392 saveptr = x;
1393 break;
1394 }
1395 #ifdef ADB_DEBUG
1396 if (adb_debug & 0x80)
1397 printf_intr("new free is 0x%02x\n",
1398 saveptr);
1399 #endif
1400 nonewtimes = 0;
1401 /* tell pm driver device is here */
1402 pm_check_adb_devices(device);
1403 } else {
1404 #ifdef ADB_DEBUG
1405 if (adb_debug & 0x80)
1406 printf_intr("moving back...\n");
1407 #endif
1408 /* move old device back */
1409 command = (int)(0x0b | ((int)(saveptr & 0x000f) << 4));
1410 send_string[0] = 2;
1411 send_string[1] = (u_char)(device | 0x60);
1412 send_string[2] = 0xfe;
1413 adb_op_sync((Ptr)send_string, (Ptr)0,
1414 (Ptr)0, (short)command);
1415 delay(1000);
1416 }
1417 }
1418 }
1419
1420 #ifdef ADB_DEBUG
1421 if (adb_debug) {
1422 for (i = 1; i <= ADBNumDevices; i++) {
1423 x = get_ind_adb_info(&data, i);
1424 if (x != -1)
1425 printf_intr("index 0x%x, addr 0x%x, type 0x%x\n",
1426 i, x, data.devType);
1427 }
1428 }
1429 #endif
1430
1431 #ifndef MRG_ADB
1432 /* enable the programmer's switch, if we have one */
1433 adb_prog_switch_enable();
1434 #endif
1435
1436 #ifdef ADB_DEBUG
1437 if (adb_debug) {
1438 if (0 == ADBNumDevices) /* tell user if no devices found */
1439 printf_intr("adb: no devices found\n");
1440 }
1441 #endif
1442
1443 adbStarting = 0; /* not starting anymore */
1444 #ifdef ADB_DEBUG
1445 if (adb_debug)
1446 printf_intr("adb: ADBReInit complete\n");
1447 #endif
1448
1449 if (adbHardware == ADB_HW_CUDA)
1450 timeout((void *)adb_cuda_tickle, 0, ADB_TICKLE_TICKS);
1451
1452 if (adbHardware != ADB_HW_PB) /* ints must be on for PB? */
1453 splx(s);
1454 return;
1455 }
1456
1457
1458 #if 0
1459 /*
1460 * adb_comp_exec
1461 * This is a general routine that calls the completion routine if there is one.
1462 * NOTE: This routine is now only used by pm_direct.c
1463 * All the code in this file (adb_direct.c) uses
1464 * the adb_pass_up routine now.
1465 */
1466 void
1467 adb_comp_exec(void)
1468 {
1469 if ((long)0 != adbCompRout) /* don't call if empty return location */
1470 #ifdef __NetBSD__
1471 asm(" movml #0xffff,sp@- | save all registers
1472 movl %0,a2 | adbCompData
1473 movl %1,a1 | adbCompRout
1474 movl %2,a0 | adbBuffer
1475 movl %3,d0 | adbWaitingCmd
1476 jbsr a1@ | go call the routine
1477 movml sp@+,#0xffff | restore all registers"
1478 :
1479 : "g"(adbCompData), "g"(adbCompRout),
1480 "g"(adbBuffer), "g"(adbWaitingCmd)
1481 : "d0", "a0", "a1", "a2");
1482 #else /* for Mac OS-based testing */
1483 asm {
1484 movem.l a0/a1/a2/d0, -(a7)
1485 move.l adbCompData, a2
1486 move.l adbCompRout, a1
1487 move.l adbBuffer, a0
1488 move.w adbWaitingCmd, d0
1489 jsr(a1)
1490 movem.l(a7) +, d0/a2/a1/a0
1491 }
1492 #endif
1493 }
1494 #endif
1495
1496
1497 /*
1498 * adb_cmd_result
1499 *
1500 * This routine lets the caller know whether the specified adb command string
1501 * should expect a returned result, such as a TALK command.
1502 *
1503 * returns: 0 if a result should be expected
1504 * 1 if a result should NOT be expected
1505 */
1506 int
1507 adb_cmd_result(u_char *in)
1508 {
1509 switch (adbHardware) {
1510 case ADB_HW_II:
1511 /* was it an ADB talk command? */
1512 if ((in[1] & 0x0c) == 0x0c)
1513 return 0;
1514 return 1;
1515
1516 case ADB_HW_IISI:
1517 case ADB_HW_CUDA:
1518 /* was it an ADB talk command? */
1519 if ((in[1] == 0x00) && ((in[2] & 0x0c) == 0x0c))
1520 return 0;
1521 /* was it an RTC/PRAM read date/time? */
1522 if ((in[1] == 0x01) && (in[2] == 0x03))
1523 return 0;
1524 return 1;
1525
1526 case ADB_HW_PB:
1527 return 1;
1528
1529 case ADB_HW_UNKNOWN:
1530 default:
1531 return 1;
1532 }
1533 }
1534
1535
1536 /*
1537 * adb_cmd_extra
1538 *
1539 * This routine lets the caller know whether the specified adb command string
1540 * may have extra data appended to the end of it, such as a LISTEN command.
1541 *
1542 * returns: 0 if extra data is allowed
1543 * 1 if extra data is NOT allowed
1544 */
1545 int
1546 adb_cmd_extra(u_char *in)
1547 {
1548 switch (adbHardware) {
1549 case ADB_HW_II:
1550 if ((in[1] & 0x0c) == 0x08) /* was it a listen command? */
1551 return 0;
1552 return 1;
1553
1554 case ADB_HW_IISI:
1555 case ADB_HW_CUDA:
1556 /*
1557 * TO DO: support needs to be added to recognize RTC and PRAM
1558 * commands
1559 */
1560 if ((in[2] & 0x0c) == 0x08) /* was it a listen command? */
1561 return 0;
1562 /* add others later */
1563 return 1;
1564
1565 case ADB_HW_PB:
1566 return 1;
1567
1568 case ADB_HW_UNKNOWN:
1569 default:
1570 return 1;
1571 }
1572 }
1573
1574
1575 /*
1576 * adb_op_sync
1577 *
1578 * This routine does exactly what the adb_op routine does, except that after
1579 * the adb_op is called, it waits until the return value is present before
1580 * returning.
1581 *
1582 * NOTE: The user specified compRout is ignored, since this routine specifies
1583 * it's own to adb_op, which is why you really called this in the first place
1584 * anyway.
1585 */
1586 int
1587 adb_op_sync(Ptr buffer, Ptr compRout, Ptr data, short command)
1588 {
1589 int result;
1590 volatile int flag = 0;
1591
1592 result = adb_op(buffer, (void *)adb_op_comprout,
1593 (void *)&flag, command); /* send command */
1594 if (result == 0) /* send ok? */
1595 while (0 == flag)
1596 /* wait for compl. routine */;
1597
1598 return result;
1599 }
1600
1601
1602 /*
1603 * adb_op_comprout
1604 *
1605 * This function is used by the adb_op_sync routine so it knows when the
1606 * function is done.
1607 */
1608 void
1609 adb_op_comprout(buffer, compdata, cmd)
1610 caddr_t buffer, compdata;
1611 int cmd;
1612 {
1613 short *p = (short *)compdata;
1614
1615 *p = 1;
1616 }
1617
1618 void
1619 adb_setup_hw_type(void)
1620 {
1621 switch (adbHardware) {
1622 case ADB_HW_CUDA:
1623 adbSoftPower = 1;
1624 return;
1625
1626 case ADB_HW_PB:
1627 pm_setup_adb();
1628 return;
1629
1630 default:
1631 panic("unknown adb hardware");
1632 }
1633 #if 0
1634 response = 0; /*mac68k_machine.machineid;*/
1635
1636 /*
1637 * Determine what type of ADB hardware we are running on.
1638 */
1639 switch (response) {
1640 case MACH_MACC610: /* Centris 610 */
1641 case MACH_MACC650: /* Centris 650 */
1642 case MACH_MACII: /* II */
1643 case MACH_MACIICI: /* IIci */
1644 case MACH_MACIICX: /* IIcx */
1645 case MACH_MACIIX: /* IIx */
1646 case MACH_MACQ610: /* Quadra 610 */
1647 case MACH_MACQ650: /* Quadra 650 */
1648 case MACH_MACQ700: /* Quadra 700 */
1649 case MACH_MACQ800: /* Quadra 800 */
1650 case MACH_MACSE30: /* SE/30 */
1651 adbHardware = ADB_HW_II;
1652 #ifdef ADB_DEBUG
1653 if (adb_debug)
1654 printf_intr("adb: using II series hardware support\n");
1655 #endif
1656 break;
1657
1658 case MACH_MACCLASSICII: /* Classic II */
1659 case MACH_MACLCII: /* LC II, Performa 400/405/430 */
1660 case MACH_MACLCIII: /* LC III, Performa 450 */
1661 case MACH_MACIISI: /* IIsi */
1662 case MACH_MACIIVI: /* IIvi */
1663 case MACH_MACIIVX: /* IIvx */
1664 case MACH_MACP460: /* Performa 460/465/467 */
1665 case MACH_MACP600: /* Performa 600 */
1666 case MACH_MACQ900: /* Quadra 900 - XXX not sure */
1667 case MACH_MACQ950: /* Quadra 950 - XXX not sure */
1668 adbHardware = ADB_HW_IISI;
1669 #ifdef ADB_DEBUG
1670 if (adb_debug)
1671 printf_intr("adb: using IIsi series hardware support\n");
1672 #endif
1673 break;
1674
1675 case MACH_MACPB140: /* PowerBook 140 */
1676 case MACH_MACPB145: /* PowerBook 145 */
1677 case MACH_MACPB150: /* PowerBook 150 */
1678 case MACH_MACPB160: /* PowerBook 160 */
1679 case MACH_MACPB165: /* PowerBook 165 */
1680 case MACH_MACPB165C: /* PowerBook 165c */
1681 case MACH_MACPB170: /* PowerBook 170 */
1682 case MACH_MACPB180: /* PowerBook 180 */
1683 case MACH_MACPB180C: /* PowerBook 180c */
1684 adbHardware = ADB_HW_PB;
1685 pm_setup_adb();
1686 #ifdef ADB_DEBUG
1687 if (adb_debug)
1688 printf_intr("adb: using PowerBook 100-series hardware support\n");
1689 #endif
1690 break;
1691
1692 case MACH_MACPB210: /* PowerBook Duo 210 */
1693 case MACH_MACPB230: /* PowerBook Duo 230 */
1694 case MACH_MACPB250: /* PowerBook Duo 250 */
1695 case MACH_MACPB270: /* PowerBook Duo 270 */
1696 case MACH_MACPB280: /* PowerBook Duo 280 */
1697 case MACH_MACPB280C: /* PowerBook Duo 280c */
1698 case MACH_MACPB500: /* PowerBook 500 series */
1699 adbHardware = ADB_HW_PB;
1700 pm_setup_adb();
1701 #ifdef ADB_DEBUG
1702 if (adb_debug)
1703 printf_intr("adb: using PowerBook Duo-series and PowerBook 500-series hardware support\n");
1704 #endif
1705 break;
1706
1707 case MACH_MACC660AV: /* Centris 660AV */
1708 case MACH_MACCCLASSIC: /* Color Classic */
1709 case MACH_MACCCLASSICII: /* Color Classic II */
1710 case MACH_MACLC475: /* LC 475, Performa 475/476 */
1711 case MACH_MACLC475_33: /* Clock-chipped 47x */
1712 case MACH_MACLC520: /* LC 520 */
1713 case MACH_MACLC575: /* LC 575, Performa 575/577/578 */
1714 case MACH_MACP550: /* LC 550, Performa 550 */
1715 case MACH_MACP580: /* Performa 580/588 */
1716 case MACH_MACQ605: /* Quadra 605 */
1717 case MACH_MACQ605_33: /* Clock-chipped Quadra 605 */
1718 case MACH_MACQ630: /* LC 630, Performa 630, Quadra 630 */
1719 case MACH_MACQ840AV: /* Quadra 840AV */
1720 adbHardware = ADB_HW_CUDA;
1721 #ifdef ADB_DEBUG
1722 if (adb_debug)
1723 printf_intr("adb: using Cuda series hardware support\n");
1724 #endif
1725 break;
1726 default:
1727 adbHardware = ADB_HW_UNKNOWN;
1728 #ifdef ADB_DEBUG
1729 if (adb_debug) {
1730 printf_intr("adb: hardware type unknown for this machine\n");
1731 printf_intr("adb: ADB support is disabled\n");
1732 }
1733 #endif
1734 break;
1735 }
1736
1737 /*
1738 * Determine whether this machine has ADB based soft power.
1739 */
1740 switch (response) {
1741 case MACH_MACCCLASSIC: /* Color Classic */
1742 case MACH_MACCCLASSICII: /* Color Classic II */
1743 case MACH_MACIISI: /* IIsi */
1744 case MACH_MACIIVI: /* IIvi */
1745 case MACH_MACIIVX: /* IIvx */
1746 case MACH_MACLC520: /* LC 520 */
1747 case MACH_MACLC575: /* LC 575, Performa 575/577/578 */
1748 case MACH_MACP550: /* LC 550, Performa 550 */
1749 case MACH_MACP600: /* Performa 600 */
1750 case MACH_MACQ630: /* LC 630, Performa 630, Quadra 630 */
1751 case MACH_MACQ840AV: /* Quadra 840AV */
1752 case MACH_MACQ900: /* Quadra 900 - XXX not sure */
1753 case MACH_MACQ950: /* Quadra 950 - XXX not sure */
1754 adbSoftPower = 1;
1755 break;
1756 }
1757 #endif
1758 }
1759
1760 int
1761 count_adbs(void)
1762 {
1763 int i;
1764 int found;
1765
1766 found = 0;
1767
1768 for (i = 1; i < 16; i++)
1769 if (0 != ADBDevTable[i].devType)
1770 found++;
1771
1772 return found;
1773 }
1774
1775 int
1776 get_ind_adb_info(ADBDataBlock * info, int index)
1777 {
1778 if ((index < 1) || (index > 15)) /* check range 1-15 */
1779 return (-1);
1780
1781 #ifdef ADB_DEBUG
1782 if (adb_debug & 0x80)
1783 printf_intr("index 0x%x devType is: 0x%x\n", index,
1784 ADBDevTable[index].devType);
1785 #endif
1786 if (0 == ADBDevTable[index].devType) /* make sure it's a valid entry */
1787 return (-1);
1788
1789 info->devType = ADBDevTable[index].devType;
1790 info->origADBAddr = ADBDevTable[index].origAddr;
1791 info->dbServiceRtPtr = (Ptr)ADBDevTable[index].ServiceRtPtr;
1792 info->dbDataAreaAddr = (Ptr)ADBDevTable[index].DataAreaAddr;
1793
1794 return (ADBDevTable[index].currentAddr);
1795 }
1796
1797 int
1798 get_adb_info(ADBDataBlock * info, int adbAddr)
1799 {
1800 int i;
1801
1802 if ((adbAddr < 1) || (adbAddr > 15)) /* check range 1-15 */
1803 return (-1);
1804
1805 for (i = 1; i < 15; i++)
1806 if (ADBDevTable[i].currentAddr == adbAddr) {
1807 info->devType = ADBDevTable[i].devType;
1808 info->origADBAddr = ADBDevTable[i].origAddr;
1809 info->dbServiceRtPtr = (Ptr)ADBDevTable[i].ServiceRtPtr;
1810 info->dbDataAreaAddr = ADBDevTable[i].DataAreaAddr;
1811 return 0; /* found */
1812 }
1813
1814 return (-1); /* not found */
1815 }
1816
1817 int
1818 set_adb_info(ADBSetInfoBlock * info, int adbAddr)
1819 {
1820 int i;
1821
1822 if ((adbAddr < 1) || (adbAddr > 15)) /* check range 1-15 */
1823 return (-1);
1824
1825 for (i = 1; i < 15; i++)
1826 if (ADBDevTable[i].currentAddr == adbAddr) {
1827 ADBDevTable[i].ServiceRtPtr =
1828 (void *)(info->siServiceRtPtr);
1829 ADBDevTable[i].DataAreaAddr = info->siDataAreaAddr;
1830 return 0; /* found */
1831 }
1832
1833 return (-1); /* not found */
1834
1835 }
1836
1837 #ifndef MRG_ADB
1838
1839 /* caller should really use machine-independant version: getPramTime */
1840 /* this version does pseudo-adb access only */
1841 int
1842 adb_read_date_time(unsigned long *time)
1843 {
1844 u_char output[ADB_MAX_MSG_LENGTH];
1845 int result;
1846 volatile int flag = 0;
1847
1848 switch (adbHardware) {
1849 case ADB_HW_II:
1850 return -1;
1851
1852 case ADB_HW_IISI:
1853 output[0] = 0x02; /* 2 byte message */
1854 output[1] = 0x01; /* to pram/rtc device */
1855 output[2] = 0x03; /* read date/time */
1856 result = send_adb_IIsi((u_char *)output, (u_char *)output,
1857 (void *)adb_op_comprout, (int *)&flag, (int)0);
1858 if (result != 0) /* exit if not sent */
1859 return -1;
1860
1861 while (0 == flag) /* wait for result */
1862 ;
1863
1864 *time = (long)(*(long *)(output + 1));
1865 return 0;
1866
1867 case ADB_HW_PB:
1868 pm_read_date_time(time);
1869 return -1;
1870
1871 case ADB_HW_CUDA:
1872 output[0] = 0x02; /* 2 byte message */
1873 output[1] = 0x01; /* to pram/rtc device */
1874 output[2] = 0x03; /* read date/time */
1875 result = send_adb_cuda((u_char *)output, (u_char *)output,
1876 (void *)adb_op_comprout, (void *)&flag, (int)0);
1877 if (result != 0) /* exit if not sent */
1878 return -1;
1879
1880 while (0 == flag) /* wait for result */
1881 ;
1882
1883 memcpy(time, output + 1, 4);
1884 return 0;
1885
1886 case ADB_HW_UNKNOWN:
1887 default:
1888 return -1;
1889 }
1890 }
1891
1892 /* caller should really use machine-independant version: setPramTime */
1893 /* this version does pseudo-adb access only */
1894 int
1895 adb_set_date_time(unsigned long time)
1896 {
1897 u_char output[ADB_MAX_MSG_LENGTH];
1898 int result;
1899 volatile int flag = 0;
1900
1901 switch (adbHardware) {
1902
1903 case ADB_HW_CUDA:
1904 output[0] = 0x06; /* 6 byte message */
1905 output[1] = 0x01; /* to pram/rtc device */
1906 output[2] = 0x09; /* set date/time */
1907 output[3] = (u_char)(time >> 24);
1908 output[4] = (u_char)(time >> 16);
1909 output[5] = (u_char)(time >> 8);
1910 output[6] = (u_char)(time);
1911 result = send_adb_cuda((u_char *)output, (u_char *)0,
1912 (void *)adb_op_comprout, (void *)&flag, (int)0);
1913 if (result != 0) /* exit if not sent */
1914 return -1;
1915
1916 while (0 == flag) /* wait for send to finish */
1917 ;
1918
1919 return 0;
1920
1921 case ADB_HW_II:
1922 case ADB_HW_IISI:
1923 case ADB_HW_PB:
1924 case ADB_HW_UNKNOWN:
1925 default:
1926 return -1;
1927 }
1928 }
1929
1930
1931 int
1932 adb_poweroff(void)
1933 {
1934 u_char output[ADB_MAX_MSG_LENGTH];
1935 int result;
1936
1937 if (!adbSoftPower)
1938 return -1;
1939
1940 adb_polling = 1;
1941
1942 switch (adbHardware) {
1943 case ADB_HW_IISI:
1944 output[0] = 0x02; /* 2 byte message */
1945 output[1] = 0x01; /* to pram/rtc/soft-power device */
1946 output[2] = 0x0a; /* set date/time */
1947 result = send_adb_IIsi((u_char *)output, (u_char *)0,
1948 (void *)0, (void *)0, (int)0);
1949 if (result != 0) /* exit if not sent */
1950 return -1;
1951
1952 for (;;); /* wait for power off */
1953
1954 return 0;
1955
1956 case ADB_HW_PB:
1957 return -1;
1958
1959 case ADB_HW_CUDA:
1960 output[0] = 0x02; /* 2 byte message */
1961 output[1] = 0x01; /* to pram/rtc/soft-power device */
1962 output[2] = 0x0a; /* set date/time */
1963 result = send_adb_cuda((u_char *)output, (u_char *)0,
1964 (void *)0, (void *)0, (int)0);
1965 if (result != 0) /* exit if not sent */
1966 return -1;
1967
1968 for (;;); /* wait for power off */
1969
1970 return 0;
1971
1972 case ADB_HW_II: /* II models don't do ADB soft power */
1973 case ADB_HW_UNKNOWN:
1974 default:
1975 return -1;
1976 }
1977 }
1978
1979 int
1980 adb_prog_switch_enable(void)
1981 {
1982 u_char output[ADB_MAX_MSG_LENGTH];
1983 int result;
1984 volatile int flag = 0;
1985
1986 switch (adbHardware) {
1987 case ADB_HW_IISI:
1988 output[0] = 0x03; /* 3 byte message */
1989 output[1] = 0x01; /* to pram/rtc/soft-power device */
1990 output[2] = 0x1c; /* prog. switch control */
1991 output[3] = 0x01; /* enable */
1992 result = send_adb_IIsi((u_char *)output, (u_char *)0,
1993 (void *)adb_op_comprout, (void *)&flag, (int)0);
1994 if (result != 0) /* exit if not sent */
1995 return -1;
1996
1997 while (0 == flag) /* wait for send to finish */
1998 ;
1999
2000 return 0;
2001
2002 case ADB_HW_PB:
2003 return -1;
2004
2005 case ADB_HW_II: /* II models don't do prog. switch */
2006 case ADB_HW_CUDA: /* cuda doesn't do prog. switch TO DO: verify this */
2007 case ADB_HW_UNKNOWN:
2008 default:
2009 return -1;
2010 }
2011 }
2012
2013 int
2014 adb_prog_switch_disable(void)
2015 {
2016 u_char output[ADB_MAX_MSG_LENGTH];
2017 int result;
2018 volatile int flag = 0;
2019
2020 switch (adbHardware) {
2021 case ADB_HW_IISI:
2022 output[0] = 0x03; /* 3 byte message */
2023 output[1] = 0x01; /* to pram/rtc/soft-power device */
2024 output[2] = 0x1c; /* prog. switch control */
2025 output[3] = 0x01; /* disable */
2026 result = send_adb_IIsi((u_char *)output, (u_char *)0,
2027 (void *)adb_op_comprout, (void *)&flag, (int)0);
2028 if (result != 0) /* exit if not sent */
2029 return -1;
2030
2031 while (0 == flag) /* wait for send to finish */
2032 ;
2033
2034 return 0;
2035
2036 case ADB_HW_PB:
2037 return -1;
2038
2039 case ADB_HW_II: /* II models don't do prog. switch */
2040 case ADB_HW_CUDA: /* cuda doesn't do prog. switch */
2041 case ADB_HW_UNKNOWN:
2042 default:
2043 return -1;
2044 }
2045 }
2046
2047 int
2048 CountADBs(void)
2049 {
2050 return (count_adbs());
2051 }
2052
2053 void
2054 ADBReInit(void)
2055 {
2056 adb_reinit();
2057 }
2058
2059 int
2060 GetIndADB(ADBDataBlock * info, int index)
2061 {
2062 return (get_ind_adb_info(info, index));
2063 }
2064
2065 int
2066 GetADBInfo(ADBDataBlock * info, int adbAddr)
2067 {
2068 return (get_adb_info(info, adbAddr));
2069 }
2070
2071 int
2072 SetADBInfo(ADBSetInfoBlock * info, int adbAddr)
2073 {
2074 return (set_adb_info(info, adbAddr));
2075 }
2076
2077 int
2078 ADBOp(Ptr buffer, Ptr compRout, Ptr data, short commandNum)
2079 {
2080 return (adb_op(buffer, compRout, data, commandNum));
2081 }
2082
2083 #endif
2084
2085 int
2086 setsoftadb()
2087 {
2088 timeout((void *)adb_soft_intr, NULL, 1);
2089 return 0;
2090 }
2091
2092 void
2093 adb_cuda_autopoll()
2094 {
2095 volatile int flag = 0;
2096 int result;
2097 u_char output[16];
2098 extern void adb_op_comprout();
2099
2100 output[0] = 0x03; /* 3-byte message */
2101 output[1] = 0x01; /* to pram/rtc device */
2102 output[2] = 0x01; /* cuda autopoll */
2103 output[3] = 0x01;
2104 result = send_adb_cuda(output, output, adb_op_comprout,
2105 (void *)&flag, 0);
2106 if (result != 0) /* exit if not sent */
2107 return;
2108
2109 while (flag == 0); /* wait for result */
2110 }
2111
2112 void
2113 adb_restart()
2114 {
2115 volatile int flag = 0;
2116 int result;
2117 u_char output[16];
2118
2119 adb_polling = 1;
2120
2121 switch (adbHardware) {
2122 case ADB_HW_CUDA:
2123 output[0] = 0x02; /* 2 byte message */
2124 output[1] = 0x01; /* to pram/rtc/soft-power device */
2125 output[2] = 0x11; /* restart */
2126 result = send_adb_cuda((u_char *)output, (u_char *)0,
2127 (void *)0, (void *)0, (int)0);
2128 if (result != 0) /* exit if not sent */
2129 return;
2130 while (1); /* not return */
2131
2132 case ADB_HW_PB:
2133 pm_adb_restart();
2134 return;
2135 }
2136 }
2137
2138 void
2139 powermac_restart()
2140 {
2141 adb_restart();
2142 }
2143
2144 void
2145 powermac_powerdown()
2146 {
2147 adb_poweroff();
2148 }
2149