fcu.c revision 1.7 1 /* $NetBSD: fcu.c,v 1.7 2025/09/17 14:15:59 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2018 Michael Lorenz
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: fcu.c,v 1.7 2025/09/17 14:15:59 thorpej Exp $");
31
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/device.h>
35 #include <sys/conf.h>
36 #include <sys/bus.h>
37 #include <sys/kthread.h>
38 #include <sys/sysctl.h>
39
40 #include <dev/i2c/i2cvar.h>
41
42 #include <dev/sysmon/sysmonvar.h>
43
44 #include <dev/ofw/openfirm.h>
45
46 #include <macppc/dev/fancontrolvar.h>
47
48 #include "opt_fcu.h"
49
50 #ifdef FCU_DEBUG
51 #define DPRINTF printf
52 #else
53 #define DPRINTF if (0) printf
54 #endif
55
56 /* FCU registers, from OpenBSD's fcu.c */
57 #define FCU_FAN_FAIL 0x0b /* fans states in bits 0<1-6>7 */
58 #define FCU_FAN_ACTIVE 0x0d
59 #define FCU_FANREAD(x) 0x11 + (x)*2
60 #define FCU_FANSET(x) 0x10 + (x)*2
61 #define FCU_PWM_FAIL 0x2b
62 #define FCU_PWM_ACTIVE 0x2d
63 #define FCU_PWMREAD(x) 0x30 + (x)*2
64
65
66 typedef struct _fcu_fan {
67 int target;
68 int reg;
69 int base_rpm, max_rpm;
70 int step;
71 int duty; /* for pwm fans */
72 } fcu_fan_t;
73
74 #define FCU_ZONE_CPU 0
75 #define FCU_ZONE_CASE 1
76 #define FCU_ZONE_DRIVEBAY 2
77 #define FCU_ZONE_COUNT 3
78
79 struct fcu_softc {
80 device_t sc_dev;
81 i2c_tag_t sc_i2c;
82 i2c_addr_t sc_addr;
83 struct sysctlnode *sc_sysctl_me;
84 struct sysmon_envsys *sc_sme;
85 envsys_data_t sc_sensors[32];
86 int sc_nsensors;
87 fancontrol_zone_t sc_zones[FCU_ZONE_COUNT];
88 fcu_fan_t sc_fans[FANCONTROL_MAX_FANS];
89 int sc_nfans;
90 lwp_t *sc_thread;
91 bool sc_dying, sc_pwm;
92 uint8_t sc_eeprom0[160];
93 uint8_t sc_eeprom1[160];
94 };
95
96 static int fcu_match(device_t, cfdata_t, void *);
97 static void fcu_attach(device_t, device_t, void *);
98
99 static void fcu_sensors_refresh(struct sysmon_envsys *, envsys_data_t *);
100 static void fcu_configure_sensor(struct fcu_softc *, envsys_data_t *);
101
102 static bool is_cpu(const envsys_data_t *);
103 static bool is_case(const envsys_data_t *);
104 static bool is_drive(const envsys_data_t *);
105
106 static int fcu_set_rpm(void *, int, int);
107 static int fcu_get_rpm(void *, int);
108 static void fcu_adjust(void *);
109
110 CFATTACH_DECL_NEW(fcu, sizeof(struct fcu_softc),
111 fcu_match, fcu_attach, NULL, NULL);
112
113 static const struct device_compatible_entry compat_data[] = {
114 { .compat = "fcu" },
115 DEVICE_COMPAT_EOL
116 };
117
118 static int
119 fcu_match(device_t parent, cfdata_t match, void *aux)
120 {
121 struct i2c_attach_args *ia = aux;
122 int match_result;
123
124 if (iic_use_direct_match(ia, match, compat_data, &match_result))
125 return match_result;
126
127 if (ia->ia_addr == 0x2f)
128 return I2C_MATCH_ADDRESS_ONLY;
129
130 return 0;
131 }
132
133 static void
134 fcu_attach(device_t parent, device_t self, void *aux)
135 {
136 struct fcu_softc *sc = device_private(self);
137 struct i2c_attach_args *ia = aux;
138 int phandle = devhandle_to_of(device_handle(self));
139 int i;
140
141 sc->sc_dev = self;
142 sc->sc_i2c = ia->ia_tag;
143 sc->sc_addr = ia->ia_addr;
144
145 aprint_naive("\n");
146 aprint_normal(": Fan Control Unit\n");
147
148 sysctl_createv(NULL, 0, NULL, (void *) &sc->sc_sysctl_me,
149 CTLFLAG_READWRITE,
150 CTLTYPE_NODE, device_xname(sc->sc_dev), NULL,
151 NULL, 0, NULL, 0,
152 CTL_MACHDEP, CTL_CREATE, CTL_EOL);
153
154 if (get_cpuid(0, sc->sc_eeprom0) < 160) {
155 /*
156 * XXX this should never happen, we depend on the EEPROM for
157 * calibration data to make sense of temperature and voltage
158 * sensors elsewhere, and fan parameters here.
159 */
160 aprint_error_dev(self, "no EEPROM data for CPU 0\n");
161 return;
162 }
163
164 /* init zones */
165 sc->sc_zones[FCU_ZONE_CPU].name = "CPUs";
166 sc->sc_zones[FCU_ZONE_CPU].filter = is_cpu;
167 sc->sc_zones[FCU_ZONE_CPU].cookie = sc;
168 sc->sc_zones[FCU_ZONE_CPU].get_rpm = fcu_get_rpm;
169 sc->sc_zones[FCU_ZONE_CPU].set_rpm = fcu_set_rpm;
170 sc->sc_zones[FCU_ZONE_CPU].Tmin = 50;
171 sc->sc_zones[FCU_ZONE_CPU].Tmax = 85;
172 sc->sc_zones[FCU_ZONE_CPU].nfans = 0;
173 sc->sc_zones[FCU_ZONE_CASE].name = "Slots";
174 sc->sc_zones[FCU_ZONE_CASE].filter = is_case;
175 sc->sc_zones[FCU_ZONE_CASE].cookie = sc;
176 sc->sc_zones[FCU_ZONE_CASE].Tmin = 50;
177 sc->sc_zones[FCU_ZONE_CASE].Tmax = 75;
178 sc->sc_zones[FCU_ZONE_CASE].nfans = 0;
179 sc->sc_zones[FCU_ZONE_CASE].get_rpm = fcu_get_rpm;
180 sc->sc_zones[FCU_ZONE_CASE].set_rpm = fcu_set_rpm;
181 sc->sc_zones[FCU_ZONE_DRIVEBAY].name = "Drivebays";
182 sc->sc_zones[FCU_ZONE_DRIVEBAY].filter = is_drive;
183 sc->sc_zones[FCU_ZONE_DRIVEBAY].cookie = sc;
184 sc->sc_zones[FCU_ZONE_DRIVEBAY].get_rpm = fcu_get_rpm;
185 sc->sc_zones[FCU_ZONE_DRIVEBAY].set_rpm = fcu_set_rpm;
186 sc->sc_zones[FCU_ZONE_DRIVEBAY].Tmin = 30;
187 sc->sc_zones[FCU_ZONE_DRIVEBAY].Tmax = 50;
188 sc->sc_zones[FCU_ZONE_DRIVEBAY].nfans = 0;
189
190 sc->sc_sme = sysmon_envsys_create();
191 sc->sc_sme->sme_name = device_xname(self);
192 sc->sc_sme->sme_cookie = sc;
193 sc->sc_sme->sme_refresh = fcu_sensors_refresh;
194
195 sc->sc_sensors[0].units = ENVSYS_SFANRPM;
196 sc->sc_sensors[1].state = ENVSYS_SINVALID;
197 sc->sc_nfans = 0;
198
199 /* round up sensors */
200 int ch;
201
202 sc->sc_nsensors = 0;
203 ch = OF_child(phandle);
204 if (ch == 0) {
205 /* old style data, no individual nodes for fans, annoying */
206 char loc[256], tp[256], descr[32], type[32];
207 uint32_t reg_rpm = 0x10, reg_pwm = 0x32, reg;
208 uint32_t id[16];
209 int num, lidx = 0, tidx = 0;
210
211 num = OF_getprop(phandle, "hwctrl-id", id, 64);
212 OF_getprop(phandle, "hwctrl-location", loc, 1024);
213 OF_getprop(phandle, "hwctrl-type", tp, 1024);
214 while (num > 0) {
215 envsys_data_t *s = &sc->sc_sensors[sc->sc_nsensors];
216
217 s->state = ENVSYS_SINVALID;
218 strcpy(descr, &loc[lidx]);
219 strcpy(type, &tp[tidx]);
220 if (strstr(type, "rpm") != NULL) {
221 s->units = ENVSYS_SFANRPM;
222 reg = reg_rpm;
223 reg_rpm += 2;
224 } else if (strstr(type, "pwm") != NULL) {
225 s->units = ENVSYS_SFANRPM;
226 reg = reg_pwm;
227 reg_pwm += 2;
228 } else goto skip;
229
230 s->private = reg;
231 strcpy(s->desc, descr);
232
233 fcu_configure_sensor(sc, s);
234
235 sysmon_envsys_sensor_attach(sc->sc_sme, s);
236 sc->sc_nsensors++;
237 skip:
238 lidx += strlen(descr) + 1;
239 tidx += strlen(type) + 1;
240 num -= 4;
241 }
242 } else {
243 /* new style, with individual nodes */
244 while (ch != 0) {
245 char type[32], descr[32];
246 uint32_t reg;
247
248 envsys_data_t *s = &sc->sc_sensors[sc->sc_nsensors];
249
250 s->state = ENVSYS_SINVALID;
251
252 if (OF_getprop(ch, "device_type", type, 32) <= 0)
253 goto next;
254
255 if (strcmp(type, "fan-rpm-control") == 0) {
256 s->units = ENVSYS_SFANRPM;
257 } else if (strcmp(type, "fan-pwm-control") == 0) {
258 /* XXX we get the type from the register number */
259 s->units = ENVSYS_SFANRPM;
260 /* skip those for now since we don't really know how to interpret them */
261 #if 0
262 } else if (strcmp(type, "power-sensor") == 0) {
263 s->units = ENVSYS_SVOLTS_DC;
264 #endif
265 } else if (strcmp(type, "gpi-sensor") == 0) {
266 s->units = ENVSYS_INDICATOR;
267 } else {
268 /* ignore other types for now */
269 goto next;
270 }
271
272 if (OF_getprop(ch, "reg", ®, sizeof(reg)) <= 0)
273 goto next;
274 s->private = reg;
275
276 if (OF_getprop(ch, "location", descr, 32) <= 0)
277 goto next;
278 strcpy(s->desc, descr);
279
280 fcu_configure_sensor(sc, s);
281
282 sysmon_envsys_sensor_attach(sc->sc_sme, s);
283 sc->sc_nsensors++;
284 next:
285 ch = OF_peer(ch);
286 }
287 }
288 sysmon_envsys_register(sc->sc_sme);
289
290 /* setup sysctls for our zones etc. */
291 for (i = 0; i < FCU_ZONE_COUNT; i++) {
292 fancontrol_init_zone(&sc->sc_zones[i], sc->sc_sysctl_me);
293 }
294
295 sc->sc_dying = FALSE;
296 kthread_create(PRI_NONE, 0, curcpu(), fcu_adjust, sc, &sc->sc_thread,
297 "fan control");
298 }
299
300 static void
301 fcu_configure_sensor(struct fcu_softc *sc, envsys_data_t *s)
302 {
303 int have_eeprom1 = 1;
304
305 if (get_cpuid(1, sc->sc_eeprom1) < 160)
306 have_eeprom1 = 0;
307
308 if (s->units == ENVSYS_SFANRPM) {
309 fcu_fan_t *fan = &sc->sc_fans[sc->sc_nfans];
310 uint8_t *eeprom = NULL;
311 uint16_t rmin, rmax;
312
313 if (strstr(s->desc, "CPU A") != NULL)
314 eeprom = sc->sc_eeprom0;
315 if (strstr(s->desc, "CPU B") != NULL) {
316 /*
317 * XXX
318 * this should never happen
319 */
320 if (have_eeprom1 == 0) {
321 eeprom = sc->sc_eeprom0;
322 } else
323 eeprom = sc->sc_eeprom1;
324 }
325
326 fan->reg = s->private;
327 fan->target = 0;
328 fan->duty = 0x80;
329
330 /* speed settings from EEPROM */
331 if (strstr(s->desc, "PUMP") != NULL) {
332 KASSERT(eeprom != NULL);
333 memcpy(&rmin, &eeprom[0x54], 2);
334 memcpy(&rmax, &eeprom[0x56], 2);
335 fan->base_rpm = rmin;
336 fan->max_rpm = rmax;
337 fan->step = (rmax - rmin) / 30;
338 } else if (strstr(s->desc, "INTAKE") != NULL) {
339 KASSERT(eeprom != NULL);
340 memcpy(&rmin, &eeprom[0x4c], 2);
341 memcpy(&rmax, &eeprom[0x4e], 2);
342 fan->base_rpm = rmin;
343 fan->max_rpm = rmax;
344 fan->step = (rmax - rmin) / 30;
345 } else if (strstr(s->desc, "EXHAUST") != NULL) {
346 KASSERT(eeprom != NULL);
347 memcpy(&rmin, &eeprom[0x50], 2);
348 memcpy(&rmax, &eeprom[0x52], 2);
349 fan->base_rpm = rmin;
350 fan->max_rpm = rmax;
351 fan->step = (rmax - rmin) / 30;
352 } else if (strstr(s->desc, "DRIVE") != NULL ) {
353 fan->base_rpm = 1000;
354 fan->max_rpm = 3000;
355 fan->step = 100;
356 } else {
357 fan->base_rpm = 1000;
358 fan->max_rpm = 3000;
359 fan->step = 100;
360 }
361 DPRINTF("fan %s: %d - %d rpm, step %d\n",
362 s->desc, fan->base_rpm, fan->max_rpm, fan->step);
363
364 /* now stuff them into zones */
365 if (strstr(s->desc, "CPU") != NULL) {
366 fancontrol_zone_t *z = &sc->sc_zones[FCU_ZONE_CPU];
367 z->fans[z->nfans].num = sc->sc_nfans;
368 z->fans[z->nfans].min_rpm = fan->base_rpm;
369 z->fans[z->nfans].max_rpm = fan->max_rpm;
370 z->fans[z->nfans].name = s->desc;
371 z->nfans++;
372 } else if ((strstr(s->desc, "BACKSIDE") != NULL) ||
373 (strstr(s->desc, "SLOT") != NULL)) {
374 fancontrol_zone_t *z = &sc->sc_zones[FCU_ZONE_CASE];
375 z->fans[z->nfans].num = sc->sc_nfans;
376 z->fans[z->nfans].min_rpm = fan->base_rpm;
377 z->fans[z->nfans].max_rpm = fan->max_rpm;
378 z->fans[z->nfans].name = s->desc;
379 z->nfans++;
380 } else if (strstr(s->desc, "DRIVE") != NULL) {
381 fancontrol_zone_t *z = &sc->sc_zones[FCU_ZONE_DRIVEBAY];
382 z->fans[z->nfans].num = sc->sc_nfans;
383 z->fans[z->nfans].min_rpm = fan->base_rpm;
384 z->fans[z->nfans].max_rpm = fan->max_rpm;
385 z->fans[z->nfans].name = s->desc;
386 z->nfans++;
387 }
388 sc->sc_nfans++;
389 }
390 }
391 static void
392 fcu_sensors_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
393 {
394 struct fcu_softc *sc = sme->sme_cookie;
395 uint8_t cmd;
396 uint16_t data = 0;
397 int error;
398
399 if (edata->units == ENVSYS_SFANRPM) {
400 cmd = edata->private + 1;
401 } else
402 cmd = edata->private;
403
404 /* fcu is a macppc only thing so we can safely assume big endian */
405 iic_acquire_bus(sc->sc_i2c, 0);
406 error = iic_exec(sc->sc_i2c, I2C_OP_READ_WITH_STOP,
407 sc->sc_addr, &cmd, 1, &data, 2, 0);
408 iic_release_bus(sc->sc_i2c, 0);
409
410 if (error) {
411 edata->state = ENVSYS_SINVALID;
412 return;
413 }
414
415 edata->state = ENVSYS_SVALID;
416
417 switch (edata->units) {
418 case ENVSYS_SFANRPM:
419 edata->value_cur = data >> 3;
420 break;
421 case ENVSYS_SVOLTS_DC:
422 /* XXX this reads bogus */
423 edata->value_cur = data * 1000;
424 break;
425 case ENVSYS_INDICATOR:
426 /* guesswork for now */
427 edata->value_cur = data >> 8;
428 break;
429 default:
430 edata->state = ENVSYS_SINVALID;
431 }
432 }
433
434 static bool
435 is_cpu(const envsys_data_t *edata)
436 {
437 if (edata->units != ENVSYS_STEMP)
438 return false;
439 if (strstr(edata->desc, "CPU") != NULL)
440 return TRUE;
441 return false;
442 }
443
444 static bool
445 is_case(const envsys_data_t *edata)
446 {
447 if (edata->units != ENVSYS_STEMP)
448 return false;
449 if ((strstr(edata->desc, "MLB") != NULL) ||
450 (strstr(edata->desc, "BACKSIDE") != NULL) ||
451 (strstr(edata->desc, "U3") != NULL))
452 return TRUE;
453 return false;
454 }
455
456 static bool
457 is_drive(const envsys_data_t *edata)
458 {
459 if (edata->units != ENVSYS_STEMP)
460 return false;
461 if (strstr(edata->desc, "DRIVE") != NULL)
462 return TRUE;
463 return false;
464 }
465
466 static int
467 fcu_get_rpm(void *cookie, int which)
468 {
469 struct fcu_softc *sc = cookie;
470 fcu_fan_t *f = &sc->sc_fans[which];
471 int error;
472 uint16_t data = 0;
473 uint8_t cmd;
474
475 iic_acquire_bus(sc->sc_i2c, 0);
476 cmd = f->reg + 1;
477 error = iic_exec(sc->sc_i2c, I2C_OP_READ_WITH_STOP,
478 sc->sc_addr, &cmd, 1, &data, 2, 0);
479 iic_release_bus(sc->sc_i2c, 0);
480 if (error != 0) return 0;
481 data = data >> 3;
482 return data;
483 }
484
485 static int
486 fcu_set_rpm(void *cookie, int which, int speed)
487 {
488 struct fcu_softc *sc = cookie;
489 fcu_fan_t *f = &sc->sc_fans[which];
490 int error = 0;
491 uint8_t cmd;
492
493 if (speed > f->max_rpm) speed = f->max_rpm;
494 if (speed < f->base_rpm) speed = f->base_rpm;
495
496 if (f->reg < 0x30) {
497 uint16_t data;
498 /* simple rpm fan, just poke the register */
499
500 if (f->target == speed) return 0;
501 iic_acquire_bus(sc->sc_i2c, 0);
502 cmd = f->reg;
503 data = (speed << 3);
504 error = iic_exec(sc->sc_i2c, I2C_OP_WRITE_WITH_STOP,
505 sc->sc_addr, &cmd, 1, &data, 2, 0);
506 iic_release_bus(sc->sc_i2c, 0);
507 } else {
508 int diff;
509 int nduty = f->duty;
510 int current_speed;
511 /* pwm fan, measure speed, then adjust duty cycle */
512 DPRINTF("pwm fan ");
513 current_speed = fcu_get_rpm(sc, which);
514 diff = current_speed - speed;
515 DPRINTF("d %d s %d t %d diff %d ", f->duty, current_speed, speed, diff);
516 if (diff > 100) {
517 nduty = uimax(20, nduty - 1);
518 }
519 if (diff < -100) {
520 nduty = uimin(0xd0, nduty + 1);
521 }
522 cmd = f->reg;
523 DPRINTF("%s nduty %d", __func__, nduty);
524 if (nduty != f->duty) {
525 uint8_t arg = nduty;
526 iic_acquire_bus(sc->sc_i2c, 0);
527 error = iic_exec(sc->sc_i2c, I2C_OP_WRITE_WITH_STOP,
528 sc->sc_addr, &cmd, 1, &arg, 1, 0);
529 iic_release_bus(sc->sc_i2c, 0);
530 f->duty = nduty;
531 sc->sc_pwm = TRUE;
532
533 }
534 DPRINTF("ok\n");
535 }
536 if (error) printf("boo\n");
537 f->target = speed;
538 return 0;
539 }
540
541 static void
542 fcu_adjust(void *cookie)
543 {
544 struct fcu_softc *sc = cookie;
545 int i;
546 uint8_t cmd, data;
547
548 while (!sc->sc_dying) {
549 /* poke the FCU so we don't go 747 */
550 iic_acquire_bus(sc->sc_i2c, 0);
551 cmd = FCU_FAN_ACTIVE;
552 iic_exec(sc->sc_i2c, I2C_OP_READ_WITH_STOP,
553 sc->sc_addr, &cmd, 1, &data, 1, 0);
554 iic_release_bus(sc->sc_i2c, 0);
555 sc->sc_pwm = FALSE;
556 for (i = 0; i < FCU_ZONE_COUNT; i++)
557 fancontrol_adjust_zone(&sc->sc_zones[i]);
558 /*
559 * take a shorter nap if we're in the process of adjusting a
560 * PWM fan, which relies on measuring speed and then changing
561 * its duty cycle until we're reasonable close to the target
562 * speed
563 */
564 kpause("fanctrl", true, mstohz(sc->sc_pwm ? 1000 : 2000), NULL);
565 }
566 kthread_exit(0);
567 }
568