kauai.c revision 1.14 1 /* $NetBSD: kauai.c,v 1.14 2004/08/13 03:12:59 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2003 Tsubai Masanari. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: kauai.c,v 1.14 2004/08/13 03:12:59 thorpej Exp $");
31
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/device.h>
35 #include <sys/malloc.h>
36
37 #include <uvm/uvm_extern.h>
38
39 #include <machine/bus.h>
40
41 #include <dev/ata/atareg.h>
42 #include <dev/ata/atavar.h>
43 #include <dev/ic/wdcvar.h>
44
45 #include <dev/ofw/openfirm.h>
46
47 #include <dev/pci/pcivar.h>
48 #include <dev/pci/pcireg.h>
49 #include <dev/pci/pcidevs.h>
50
51 #include <macppc/dev/dbdma.h>
52
53 #define WDC_REG_NPORTS 8
54 #define WDC_AUXREG_OFFSET 0x16
55
56 #define PIO_CONFIG_REG (0x200 >> 4) /* PIO and DMA access timing */
57 #define DMA_CONFIG_REG (0x210 >> 4) /* UDMA access timing */
58
59 struct kauai_softc {
60 struct wdc_softc sc_wdcdev;
61 struct wdc_channel *wdc_chanptr;
62 struct wdc_channel wdc_channel;
63 struct ata_queue wdc_queue;
64 dbdma_regmap_t *sc_dmareg;
65 dbdma_command_t *sc_dmacmd;
66 u_int sc_piotiming_r[2];
67 u_int sc_piotiming_w[2];
68 u_int sc_dmatiming_r[2];
69 u_int sc_dmatiming_w[2];
70 void (*sc_calc_timing)(struct kauai_softc *, int);
71 };
72
73 int kauai_match __P((struct device *, struct cfdata *, void *));
74 void kauai_attach __P((struct device *, struct device *, void *));
75 int kauai_dma_init __P((void *, int, int, void *, size_t, int));
76 void kauai_dma_start __P((void *, int, int));
77 int kauai_dma_finish __P((void *, int, int, int));
78 void kauai_set_modes __P((struct wdc_channel *));
79 static void calc_timing_kauai __P((struct kauai_softc *, int));
80 static int getnodebypci(pci_chipset_tag_t, pcitag_t);
81
82 CFATTACH_DECL(kauai, sizeof(struct kauai_softc),
83 kauai_match, kauai_attach, NULL, wdcactivate);
84
85 int
86 kauai_match(parent, match, aux)
87 struct device *parent;
88 struct cfdata *match;
89 void *aux;
90 {
91 struct pci_attach_args *pa = aux;
92
93 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_APPLE &&
94 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_APPLE_KAUAI ||
95 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_APPLE_UNINORTH_ATA))
96 return 5;
97
98 return 0;
99 }
100
101 void
102 kauai_attach(parent, self, aux)
103 struct device *parent, *self;
104 void *aux;
105 {
106 struct kauai_softc *sc = (void *)self;
107 struct pci_attach_args *pa = aux;
108 struct wdc_channel *chp = &sc->wdc_channel;
109 pci_intr_handle_t ih;
110 paddr_t regbase, dmabase;
111 int node, reg[5], i;
112
113 #ifdef DIAGNOSTIC
114 if ((vaddr_t)sc->sc_dmacmd & 0x0f) {
115 printf(": bad dbdma alignment\n");
116 return;
117 }
118 #endif
119
120 node = getnodebypci(pa->pa_pc, pa->pa_tag);
121 if (node == 0) {
122 printf(": cannot find gmac node\n");
123 return;
124 }
125
126 if (OF_getprop(node, "assigned-addresses", reg, sizeof reg) < 12) {
127 printf(": cannot get address property\n");
128 return;
129 }
130 regbase = reg[2] + 0x2000;
131 dmabase = reg[2] + 0x1000;
132
133 /*
134 * XXX PCI_INTERRUPT_REG seems to be wired to 0.
135 * XXX So use fixed intrpin and intrline values.
136 */
137 if (pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_INTERRUPT_REG) == 0) {
138 pa->pa_intrpin = 1;
139 pa->pa_intrline = 39;
140 }
141
142 if (pci_intr_map(pa, &ih)) {
143 printf(": unable to map interrupt\n");
144 return;
145 }
146 printf(": interrupting at %s\n", pci_intr_string(pa->pa_pc, ih));
147
148 chp->cmd_iot = chp->ctl_iot = macppc_make_bus_space_tag(regbase, 4);
149
150 if (bus_space_map(chp->cmd_iot, 0, WDC_REG_NPORTS, 0,
151 &chp->cmd_baseioh) ||
152 bus_space_subregion(chp->cmd_iot, chp->cmd_baseioh,
153 WDC_AUXREG_OFFSET, 1, &chp->ctl_ioh)) {
154 printf("%s: couldn't map registers\n", self->dv_xname);
155 return;
156 }
157 for (i = 0; i < WDC_NREG; i++) {
158 if (bus_space_subregion(chp->cmd_iot, chp->cmd_baseioh, i,
159 i == 0 ? 4 : 1, &chp->cmd_iohs[i]) != 0) {
160 bus_space_unmap(chp->cmd_iot, chp->cmd_baseioh,
161 WDC_REG_NPORTS);
162 printf("%s: couldn't subregion registers\n",
163 sc->sc_wdcdev.sc_dev.dv_xname);
164 return;
165 }
166 }
167 wdc_init_shadow_regs(chp);
168
169 if (pci_intr_establish(pa->pa_pc, ih, IPL_BIO, wdcintr, chp) == NULL) {
170 printf("%s: unable to establish interrupt\n", self->dv_xname);
171 return;
172 }
173
174
175 sc->sc_wdcdev.PIO_cap = 4;
176 sc->sc_wdcdev.DMA_cap = 2;
177 sc->sc_wdcdev.UDMA_cap = 5;
178 sc->sc_wdcdev.cap |= WDC_CAPABILITY_DATA16;
179 sc->sc_wdcdev.cap |= WDC_CAPABILITY_DMA | WDC_CAPABILITY_UDMA;
180 sc->wdc_chanptr = chp;
181 sc->sc_wdcdev.channels = &sc->wdc_chanptr;
182 sc->sc_wdcdev.nchannels = 1;
183 sc->sc_wdcdev.dma_arg = sc;
184 sc->sc_wdcdev.dma_init = kauai_dma_init;
185 sc->sc_wdcdev.dma_start = kauai_dma_start;
186 sc->sc_wdcdev.dma_finish = kauai_dma_finish;
187 sc->sc_wdcdev.set_modes = kauai_set_modes;
188 sc->sc_calc_timing = calc_timing_kauai;
189 sc->sc_dmareg = (void *)dmabase;
190
191 chp->ch_channel = 0;
192 chp->ch_wdc = &sc->sc_wdcdev;
193 chp->ch_queue = &sc->wdc_queue;
194
195 wdcattach(chp);
196 }
197
198 void
199 kauai_set_modes(chp)
200 struct wdc_channel *chp;
201 {
202 struct kauai_softc *sc = (void *)chp->ch_wdc;
203 struct ata_drive_datas *drvp0 = &chp->ch_drive[0];
204 struct ata_drive_datas *drvp1 = &chp->ch_drive[1];
205 struct ata_drive_datas *drvp;
206 int drive;
207
208 if ((drvp0->drive_flags & DRIVE) && (drvp1->drive_flags & DRIVE)) {
209 drvp0->PIO_mode = drvp1->PIO_mode =
210 min(drvp0->PIO_mode, drvp1->PIO_mode);
211 }
212
213 for (drive = 0; drive < 2; drive++) {
214 drvp = &chp->ch_drive[drive];
215 if (drvp->drive_flags & DRIVE) {
216 (*sc->sc_calc_timing)(sc, drive);
217 bus_space_write_4(chp->cmd_iot, chp->cmd_baseioh,
218 PIO_CONFIG_REG, sc->sc_piotiming_r[drive]);
219 bus_space_write_4(chp->cmd_iot, chp->cmd_baseioh,
220 DMA_CONFIG_REG, sc->sc_dmatiming_r[drive]);
221 }
222 }
223 }
224
225 /*
226 * IDE transfer timings
227 */
228 static const u_int pio_timing_kauai[] = { /* 0xff000fff */
229 0x08000a92, /* Mode 0 */
230 0x0800060f, /* 1 */
231 0x0800038b, /* 2 */
232 0x05000249, /* 3 */
233 0x04000148 /* 4 */
234 };
235 static const u_int dma_timing_kauai[] = { /* 0x00fff000 */
236 0x00618000, /* Mode 0 */
237 0x00209000, /* 1 */
238 0x00148000 /* 2 */
239 };
240 static const u_int udma_timing_kauai[] = { /* 0x0000ffff */
241 0x000070c0, /* Mode 0 */
242 0x00005d80, /* 1 */
243 0x00004a60, /* 2 */
244 0x00003a50, /* 3 */
245 0x00002a30, /* 4 */
246 0x00002921 /* 5 */
247 };
248
249 /*
250 * Timing calculation for Kauai.
251 */
252 void
253 calc_timing_kauai(sc, drive)
254 struct kauai_softc *sc;
255 int drive;
256 {
257 struct wdc_channel *chp = &sc->wdc_channel;
258 struct ata_drive_datas *drvp = &chp->ch_drive[drive];
259 int piomode = drvp->PIO_mode;
260 int dmamode = drvp->DMA_mode;
261 int udmamode = drvp->UDMA_mode;
262 u_int pioconf, dmaconf;
263
264 pioconf = pio_timing_kauai[piomode];
265
266 dmaconf = 0;
267 if (drvp->drive_flags & DRIVE_DMA)
268 dmaconf |= dma_timing_kauai[dmamode];
269 if (drvp->drive_flags & DRIVE_UDMA)
270 dmaconf |= udma_timing_kauai[udmamode];
271
272 if (drvp->drive_flags & DRIVE_UDMA)
273 dmaconf |= 1;
274
275 sc->sc_piotiming_r[drive] = sc->sc_piotiming_w[drive] = pioconf;
276 sc->sc_dmatiming_r[drive] = sc->sc_dmatiming_w[drive] = dmaconf;
277 }
278
279 int
280 kauai_dma_init(v, channel, drive, databuf, datalen, flags)
281 void *v;
282 void *databuf;
283 size_t datalen;
284 int flags;
285 {
286 struct kauai_softc *sc = v;
287 dbdma_command_t *cmdp = sc->sc_dmacmd;
288 struct wdc_channel *chp = &sc->wdc_channel;
289 vaddr_t va = (vaddr_t)databuf;
290 int read = flags & WDC_DMA_READ;
291 int cmd = read ? DBDMA_CMD_IN_MORE : DBDMA_CMD_OUT_MORE;
292 u_int offset;
293
294 bus_space_write_4(chp->cmd_iot, chp->cmd_baseioh, DMA_CONFIG_REG,
295 read ? sc->sc_dmatiming_r[drive] : sc->sc_dmatiming_w[drive]);
296 bus_space_read_4(chp->cmd_iot, chp->cmd_baseioh, DMA_CONFIG_REG);
297
298 offset = va & PGOFSET;
299
300 /* if va is not page-aligned, setup the first page */
301 if (offset != 0) {
302 int rest = PAGE_SIZE - offset; /* the rest of the page */
303
304 if (datalen > rest) { /* if continues to next page */
305 DBDMA_BUILD(cmdp, cmd, 0, rest, vtophys(va),
306 DBDMA_INT_NEVER, DBDMA_WAIT_NEVER,
307 DBDMA_BRANCH_NEVER);
308 datalen -= rest;
309 va += rest;
310 cmdp++;
311 }
312 }
313
314 /* now va is page-aligned */
315 while (datalen > PAGE_SIZE) {
316 DBDMA_BUILD(cmdp, cmd, 0, PAGE_SIZE, vtophys(va),
317 DBDMA_INT_NEVER, DBDMA_WAIT_NEVER, DBDMA_BRANCH_NEVER);
318 datalen -= PAGE_SIZE;
319 va += PAGE_SIZE;
320 cmdp++;
321 }
322
323 /* the last page (datalen <= PAGE_SIZE here) */
324 cmd = read ? DBDMA_CMD_IN_LAST : DBDMA_CMD_OUT_LAST;
325 DBDMA_BUILD(cmdp, cmd, 0, datalen, vtophys(va),
326 DBDMA_INT_NEVER, DBDMA_WAIT_NEVER, DBDMA_BRANCH_NEVER);
327 cmdp++;
328
329 DBDMA_BUILD(cmdp, DBDMA_CMD_STOP, 0, 0, 0,
330 DBDMA_INT_NEVER, DBDMA_WAIT_NEVER, DBDMA_BRANCH_NEVER);
331
332 return 0;
333 }
334
335 void
336 kauai_dma_start(v, channel, drive)
337 void *v;
338 int channel, drive;
339 {
340 struct kauai_softc *sc = v;
341
342 dbdma_start(sc->sc_dmareg, sc->sc_dmacmd);
343 }
344
345 int
346 kauai_dma_finish(v, channel, drive, read)
347 void *v;
348 int channel, drive;
349 int read;
350 {
351 struct kauai_softc *sc = v;
352
353 dbdma_stop(sc->sc_dmareg);
354 return 0;
355 }
356
357 /*
358 * Find OF-device corresponding to the PCI device.
359 */
360 int
361 getnodebypci(pc, tag)
362 pci_chipset_tag_t pc;
363 pcitag_t tag;
364 {
365 int bus, dev, func;
366 u_int reg[5];
367 int p, q;
368 int l, b, d, f;
369
370 pci_decompose_tag(pc, tag, &bus, &dev, &func);
371
372 for (q = OF_peer(0); q; q = p) {
373 l = OF_getprop(q, "assigned-addresses", reg, sizeof(reg));
374 if (l > 4) {
375 b = (reg[0] >> 16) & 0xff;
376 d = (reg[0] >> 11) & 0x1f;
377 f = (reg[0] >> 8) & 0x07;
378
379 if (b == bus && d == dev && f == func)
380 return q;
381 }
382 if ((p = OF_child(q)))
383 continue;
384 while (q) {
385 if ((p = OF_peer(q)))
386 break;
387 q = OF_parent(q);
388 }
389 }
390 return 0;
391 }
392