Home | History | Annotate | Line # | Download | only in dev
kauai.c revision 1.19.36.1
      1 /*	$NetBSD: kauai.c,v 1.19.36.1 2007/06/07 20:30:44 garbled Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2003 Tsubai Masanari.  All rights reserved.
      5  *
      6  * Redistribution and use in source and binary forms, with or without
      7  * modification, are permitted provided that the following conditions
      8  * are met:
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice, this list of conditions and the following disclaimer.
     11  * 2. Redistributions in binary form must reproduce the above copyright
     12  *    notice, this list of conditions and the following disclaimer in the
     13  *    documentation and/or other materials provided with the distribution.
     14  * 3. The name of the author may not be used to endorse or promote products
     15  *    derived from this software without specific prior written permission.
     16  *
     17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     26  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 #include <sys/cdefs.h>
     30 __KERNEL_RCSID(0, "$NetBSD: kauai.c,v 1.19.36.1 2007/06/07 20:30:44 garbled Exp $");
     31 
     32 #include <sys/param.h>
     33 #include <sys/systm.h>
     34 #include <sys/device.h>
     35 #include <sys/malloc.h>
     36 
     37 #include <uvm/uvm_extern.h>
     38 
     39 #include <machine/bus.h>
     40 #include <machine/pio.h>
     41 
     42 #include <dev/ata/atareg.h>
     43 #include <dev/ata/atavar.h>
     44 #include <dev/ic/wdcvar.h>
     45 
     46 #include <dev/ofw/openfirm.h>
     47 
     48 #include <dev/pci/pcivar.h>
     49 #include <dev/pci/pcireg.h>
     50 #include <dev/pci/pcidevs.h>
     51 
     52 #include <macppc/dev/dbdma.h>
     53 
     54 #define WDC_REG_NPORTS		8
     55 #define WDC_AUXREG_OFFSET	0x16
     56 #define WDC_AUXREG_NPORTS	1
     57 
     58 #define PIO_CONFIG_REG (0x200 >> 4)	/* PIO and DMA access timing */
     59 #define DMA_CONFIG_REG (0x210 >> 4)	/* UDMA access timing */
     60 
     61 struct kauai_softc {
     62 	struct wdc_softc sc_wdcdev;
     63 	struct ata_channel *sc_chanptr;
     64 	struct ata_channel sc_channel;
     65 	struct wdc_regs sc_wdc_regs;
     66 	struct ata_queue sc_queue;
     67 	struct powerpc_bus_space sc_iot;
     68 	dbdma_regmap_t *sc_dmareg;
     69 	dbdma_command_t	*sc_dmacmd;
     70 	u_int sc_piotiming_r[2];
     71 	u_int sc_piotiming_w[2];
     72 	u_int sc_dmatiming_r[2];
     73 	u_int sc_dmatiming_w[2];
     74 	void (*sc_calc_timing)(struct kauai_softc *, int);
     75 };
     76 
     77 int kauai_match __P((struct device *, struct cfdata *, void *));
     78 void kauai_attach __P((struct device *, struct device *, void *));
     79 int kauai_dma_init __P((void *, int, int, void *, size_t, int));
     80 void kauai_dma_start __P((void *, int, int));
     81 int kauai_dma_finish __P((void *, int, int, int));
     82 void kauai_set_modes __P((struct ata_channel *));
     83 static void calc_timing_kauai __P((struct kauai_softc *, int));
     84 static int getnodebypci(pci_chipset_tag_t, pcitag_t);
     85 
     86 CFATTACH_DECL(kauai, sizeof(struct kauai_softc),
     87     kauai_match, kauai_attach, NULL, wdcactivate);
     88 
     89 int
     90 kauai_match(parent, match, aux)
     91 	struct device *parent;
     92 	struct cfdata *match;
     93 	void *aux;
     94 {
     95 	struct pci_attach_args *pa = aux;
     96 
     97 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_APPLE &&
     98 	    (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_APPLE_KAUAI ||
     99 	     PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_APPLE_UNINORTH_ATA))
    100 		return 5;
    101 
    102 	return 0;
    103 }
    104 
    105 void
    106 kauai_attach(parent, self, aux)
    107 	struct device *parent, *self;
    108 	void *aux;
    109 {
    110 	struct kauai_softc *sc = (void *)self;
    111 	struct pci_attach_args *pa = aux;
    112 	struct ata_channel *chp = &sc->sc_channel;
    113 	struct wdc_regs *wdr;
    114 	pci_intr_handle_t ih;
    115 	paddr_t regbase, dmabase;
    116 	int node, reg[5], i;
    117 
    118 #ifdef DIAGNOSTIC
    119 	if ((vaddr_t)sc->sc_dmacmd & 0x0f) {
    120 		printf(": bad dbdma alignment\n");
    121 		return;
    122 	}
    123 #endif
    124 
    125 	node = getnodebypci(pa->pa_pc, pa->pa_tag);
    126 	if (node == 0) {
    127 		printf(": cannot find gmac node\n");
    128 		return;
    129 	}
    130 
    131 	if (OF_getprop(node, "assigned-addresses", reg, sizeof reg) < 12) {
    132 		printf(": cannot get address property\n");
    133 		return;
    134 	}
    135 	regbase = reg[2] + 0x2000;
    136 	dmabase = reg[2] + 0x1000;
    137 
    138 	/*
    139 	 * XXX PCI_INTERRUPT_REG seems to be wired to 0.
    140 	 * XXX So use fixed intrpin and intrline values.
    141 	 */
    142 	if (pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_INTERRUPT_REG) == 0) {
    143 		pa->pa_intrpin = 1;
    144 		pa->pa_intrline = 39;
    145 	}
    146 
    147 	if (pci_intr_map(pa, &ih)) {
    148 		printf(": unable to map interrupt\n");
    149 		return;
    150 	}
    151 	printf(": interrupting at %s\n", pci_intr_string(pa->pa_pc, ih));
    152 
    153 	sc->sc_wdcdev.regs = wdr = &sc->sc_wdc_regs;
    154 
    155 	sc->sc_iot.pbs_offset = regbase;
    156 	sc->sc_iot.pbs_base = 0;
    157 	sc->sc_iot.pbs_limit = WDC_REG_NPORTS;
    158 	sc->sc_iot.pbs_flags = _BUS_SPACE_LITTLE_ENDIAN |  4;
    159 	bus_space_init(&sc->sc_iot, "kauai io", NULL, 0);
    160 
    161 	wdr->cmd_iot = wdr->ctl_iot = &sc->sc_iot;
    162 
    163 	if (bus_space_map(wdr->cmd_iot, regbase, WDC_REG_NPORTS, 0,
    164 	    &wdr->cmd_baseioh) ||
    165 	    bus_space_subregion(wdr->cmd_iot, wdr->cmd_baseioh,
    166 			WDC_AUXREG_OFFSET, 1, &wdr->ctl_ioh)) {
    167 		printf("%s: couldn't map registers\n", self->dv_xname);
    168 		return;
    169 	}
    170 	for (i = 0; i < WDC_NREG; i++) {
    171 		if (bus_space_subregion(wdr->cmd_iot, wdr->cmd_baseioh, i,
    172 		    i == 0 ? 4 : 1, &wdr->cmd_iohs[i]) != 0) {
    173 			bus_space_unmap(wdr->cmd_iot, wdr->cmd_baseioh,
    174 			    WDC_REG_NPORTS);
    175 			printf("%s: couldn't subregion registers\n",
    176 			    sc->sc_wdcdev.sc_atac.atac_dev.dv_xname);
    177 			return;
    178 		}
    179 	}
    180 
    181 	if (pci_intr_establish(pa->pa_pc, ih, IPL_BIO, wdcintr, chp) == NULL) {
    182 		printf("%s: unable to establish interrupt\n", self->dv_xname);
    183 		return;
    184 	}
    185 
    186 
    187 	sc->sc_wdcdev.sc_atac.atac_pio_cap = 4;
    188 	sc->sc_wdcdev.sc_atac.atac_dma_cap = 2;
    189 	sc->sc_wdcdev.sc_atac.atac_udma_cap = 5;
    190 	sc->sc_wdcdev.sc_atac.atac_cap |= ATAC_CAP_DATA16;
    191 	sc->sc_wdcdev.sc_atac.atac_cap |= ATAC_CAP_DMA | ATAC_CAP_UDMA;
    192 	sc->sc_chanptr = chp;
    193 	sc->sc_wdcdev.sc_atac.atac_channels = &sc->sc_chanptr;
    194 	sc->sc_wdcdev.sc_atac.atac_nchannels = 1;
    195 	sc->sc_wdcdev.dma_arg = sc;
    196 	sc->sc_wdcdev.dma_init = kauai_dma_init;
    197 	sc->sc_wdcdev.dma_start = kauai_dma_start;
    198 	sc->sc_wdcdev.dma_finish = kauai_dma_finish;
    199 	sc->sc_wdcdev.sc_atac.atac_set_modes = kauai_set_modes;
    200 	sc->sc_calc_timing = calc_timing_kauai;
    201 	sc->sc_dmareg = (void *)dmabase;
    202 
    203 	chp->ch_channel = 0;
    204 	chp->ch_atac = &sc->sc_wdcdev.sc_atac;
    205 	chp->ch_queue = &sc->sc_queue;
    206 	chp->ch_ndrive = 2;
    207 	wdc_init_shadow_regs(chp);
    208 
    209 	wdcattach(chp);
    210 }
    211 
    212 void
    213 kauai_set_modes(chp)
    214 	struct ata_channel *chp;
    215 {
    216 	struct kauai_softc *sc = (void *)chp->ch_atac;
    217 	struct wdc_regs *wdr = CHAN_TO_WDC_REGS(chp);
    218 	struct ata_drive_datas *drvp0 = &chp->ch_drive[0];
    219 	struct ata_drive_datas *drvp1 = &chp->ch_drive[1];
    220 	struct ata_drive_datas *drvp;
    221 	int drive;
    222 
    223 	if ((drvp0->drive_flags & DRIVE) && (drvp1->drive_flags & DRIVE)) {
    224 		drvp0->PIO_mode = drvp1->PIO_mode =
    225 		    min(drvp0->PIO_mode, drvp1->PIO_mode);
    226 	}
    227 
    228 	for (drive = 0; drive < 2; drive++) {
    229 		drvp = &chp->ch_drive[drive];
    230 		if (drvp->drive_flags & DRIVE) {
    231 			(*sc->sc_calc_timing)(sc, drive);
    232 			bus_space_write_4(wdr->cmd_iot, wdr->cmd_baseioh,
    233 			    PIO_CONFIG_REG, sc->sc_piotiming_r[drive]);
    234 			bus_space_write_4(wdr->cmd_iot, wdr->cmd_baseioh,
    235 			    DMA_CONFIG_REG, sc->sc_dmatiming_r[drive]);
    236 		}
    237 	}
    238 }
    239 
    240 /*
    241  * IDE transfer timings
    242  */
    243 static const u_int pio_timing_kauai[] = {	/* 0xff000fff */
    244 	0x08000a92,	/* Mode 0 */
    245 	0x0800060f,	/*      1 */
    246 	0x0800038b,	/*      2 */
    247 	0x05000249,	/*      3 */
    248 	0x04000148	/*      4 */
    249 };
    250 static const u_int dma_timing_kauai[] = {	/* 0x00fff000 */
    251 	0x00618000,	/* Mode 0 */
    252 	0x00209000,	/*      1 */
    253 	0x00148000	/*      2 */
    254 };
    255 static const u_int udma_timing_kauai[] = {	/* 0x0000ffff */
    256 	0x000070c0,	/* Mode 0 */
    257 	0x00005d80,	/*      1 */
    258 	0x00004a60,	/*      2 */
    259 	0x00003a50,	/*      3 */
    260 	0x00002a30,	/*      4 */
    261 	0x00002921	/*      5 */
    262 };
    263 
    264 /*
    265  * Timing calculation for Kauai.
    266  */
    267 void
    268 calc_timing_kauai(sc, drive)
    269 	struct kauai_softc *sc;
    270 	int drive;
    271 {
    272 	struct ata_channel *chp = &sc->sc_channel;
    273 	struct ata_drive_datas *drvp = &chp->ch_drive[drive];
    274 	int piomode = drvp->PIO_mode;
    275 	int dmamode = drvp->DMA_mode;
    276 	int udmamode = drvp->UDMA_mode;
    277 	u_int pioconf, dmaconf;
    278 
    279 	pioconf = pio_timing_kauai[piomode];
    280 
    281 	dmaconf = 0;
    282 	if (drvp->drive_flags & DRIVE_DMA)
    283 		dmaconf |= dma_timing_kauai[dmamode];
    284 	if (drvp->drive_flags & DRIVE_UDMA)
    285 		dmaconf |= udma_timing_kauai[udmamode];
    286 
    287 	if (drvp->drive_flags & DRIVE_UDMA)
    288 		dmaconf |= 1;
    289 
    290 	sc->sc_piotiming_r[drive] = sc->sc_piotiming_w[drive] = pioconf;
    291 	sc->sc_dmatiming_r[drive] = sc->sc_dmatiming_w[drive] = dmaconf;
    292 }
    293 
    294 int
    295 kauai_dma_init(v, channel, drive, databuf, datalen, flags)
    296 	void *v;
    297 	void *databuf;
    298 	size_t datalen;
    299 	int flags;
    300 {
    301 	struct kauai_softc *sc = v;
    302 	dbdma_command_t *cmdp = sc->sc_dmacmd;
    303 	struct ata_channel *chp = &sc->sc_channel;
    304 	struct wdc_regs *wdr = CHAN_TO_WDC_REGS(chp);
    305 	vaddr_t va = (vaddr_t)databuf;
    306 	int read = flags & WDC_DMA_READ;
    307 	int cmd = read ? DBDMA_CMD_IN_MORE : DBDMA_CMD_OUT_MORE;
    308 	u_int offset;
    309 
    310 	bus_space_write_4(wdr->cmd_iot, wdr->cmd_baseioh, DMA_CONFIG_REG,
    311 	    read ? sc->sc_dmatiming_r[drive] : sc->sc_dmatiming_w[drive]);
    312 	bus_space_read_4(wdr->cmd_iot, wdr->cmd_baseioh, DMA_CONFIG_REG);
    313 
    314 	offset = va & PGOFSET;
    315 
    316 	/* if va is not page-aligned, setup the first page */
    317 	if (offset != 0) {
    318 		int rest = PAGE_SIZE - offset;	/* the rest of the page */
    319 
    320 		if (datalen > rest) {		/* if continues to next page */
    321 			DBDMA_BUILD(cmdp, cmd, 0, rest, vtophys(va),
    322 				DBDMA_INT_NEVER, DBDMA_WAIT_NEVER,
    323 				DBDMA_BRANCH_NEVER);
    324 			datalen -= rest;
    325 			va += rest;
    326 			cmdp++;
    327 		}
    328 	}
    329 
    330 	/* now va is page-aligned */
    331 	while (datalen > PAGE_SIZE) {
    332 		DBDMA_BUILD(cmdp, cmd, 0, PAGE_SIZE, vtophys(va),
    333 			DBDMA_INT_NEVER, DBDMA_WAIT_NEVER, DBDMA_BRANCH_NEVER);
    334 		datalen -= PAGE_SIZE;
    335 		va += PAGE_SIZE;
    336 		cmdp++;
    337 	}
    338 
    339 	/* the last page (datalen <= PAGE_SIZE here) */
    340 	cmd = read ? DBDMA_CMD_IN_LAST : DBDMA_CMD_OUT_LAST;
    341 	DBDMA_BUILD(cmdp, cmd, 0, datalen, vtophys(va),
    342 		DBDMA_INT_NEVER, DBDMA_WAIT_NEVER, DBDMA_BRANCH_NEVER);
    343 	cmdp++;
    344 
    345 	DBDMA_BUILD(cmdp, DBDMA_CMD_STOP, 0, 0, 0,
    346 		DBDMA_INT_NEVER, DBDMA_WAIT_NEVER, DBDMA_BRANCH_NEVER);
    347 
    348 	return 0;
    349 }
    350 
    351 void
    352 kauai_dma_start(v, channel, drive)
    353 	void *v;
    354 	int channel, drive;
    355 {
    356 	struct kauai_softc *sc = v;
    357 
    358 	dbdma_start(sc->sc_dmareg, sc->sc_dmacmd);
    359 }
    360 
    361 int
    362 kauai_dma_finish(v, channel, drive, read)
    363 	void *v;
    364 	int channel, drive;
    365 	int read;
    366 {
    367 	struct kauai_softc *sc = v;
    368 
    369 	dbdma_stop(sc->sc_dmareg);
    370 	return 0;
    371 }
    372 
    373 /*
    374  * Find OF-device corresponding to the PCI device.
    375  */
    376 int
    377 getnodebypci(pc, tag)
    378 	pci_chipset_tag_t pc;
    379 	pcitag_t tag;
    380 {
    381 	int bus, dev, func;
    382 	u_int reg[5];
    383 	int p, q;
    384 	int l, b, d, f;
    385 
    386 	pci_decompose_tag(pc, tag, &bus, &dev, &func);
    387 
    388 	for (q = OF_peer(0); q; q = p) {
    389 		l = OF_getprop(q, "assigned-addresses", reg, sizeof(reg));
    390 		if (l > 4) {
    391 			b = (reg[0] >> 16) & 0xff;
    392 			d = (reg[0] >> 11) & 0x1f;
    393 			f = (reg[0] >> 8) & 0x07;
    394 
    395 			if (b == bus && d == dev && f == func)
    396 				return q;
    397 		}
    398 		if ((p = OF_child(q)))
    399 			continue;
    400 		while (q) {
    401 			if ((p = OF_peer(q)))
    402 				break;
    403 			q = OF_parent(q);
    404 		}
    405 	}
    406 	return 0;
    407 }
    408